Analogue Communication and Propagation (H6107)
15 credits, Level 5
Spring teaching
In this module, you are introduced to key physical and engineering concepts in high frequency propagation that underpin the transmission and reception of analogue electromagnetic signals.
Your studies in this module cover:
- Maxwell's equations, the electromagnetic wave equation, the Poynting vector
- plane waves, phase and group velocity, skin depth
- propagation along transmission lines, attenuation and distortion, characteristic impedance, reflections and standing waves
- electromagnetic propagation in free space, line of sight communications and design using Fresnel zone, power budget in satellite links, tropospheric and ionospheric propagation
- introduction to antennas and aerials (including dipole, Yagi-Ueda, arrays, dish, planar, patch, antennas for CP) radiation pattern, reciprocity theorem, antenna gain
- analogue communication systems, modulation and demodulation systems (AM/FM/pulse), phase lock loops
- physical sources and statistical properties of electrical noise, signal-to-noise ratio, noise figure, noise temperature
- spectrum management and EMC, radio transmitter and receiver architecture.
Teaching
89%: Lecture
11%: Practical (Laboratory)
Assessment
20%: Coursework (Problem set)
80%: Examination (Computer-based examination)
Contact hours and workload
This module is approximately 150 hours of work. This breaks down into about 37 hours of contact time and about 113 hours of independent study. The University may make minor variations to the contact hours for operational reasons, including timetabling requirements.
We regularly review our modules to incorporate student feedback, staff expertise, as well as the latest research and teaching methodology. We’re planning to run these modules in the academic year 2023/24. However, there may be changes to these modules in response to COVID-19, staff availability, student demand or updates to our curriculum. We’ll make sure to let our applicants know of material changes to modules at the earliest opportunity.
Courses
This module is offered on the following courses: