Heat Transfer (H3055)

15 credits, Level 6

Spring teaching

Revision of the basic laws of and simple concepts in, conduction, convection and radiation.

1-D steady state conduction in plane and radial geometries, heat transfer from extended surfaces. Simple time-dependent heat conduction.

Numerical Methods in Conduction
Finite difference approximations, implementation of boundary conditions, 2D steady state and 1D time dependent problems, direct and indirect solution methods.

Principles of Convection
Modes of convection, the convection coefficient and how to obtain it. Dimensionless groups, the average Nusselt number, the Reynolds analogy.

Applications of Convection
Flat plate laminar and turbulent flow, pipe flow, free convection from vertical and horizontal surfaces.

The Stefan-Boltzmann law, radiative properties, view factors, black body and grey body analysis. Combined radiation and convection.


50%: Lecture
27%: Practical (Laboratory)
23%: Seminar (Class)


40%: Coursework (Report)
60%: Examination (Computer-based examination)

Contact hours and workload

This module is approximately 150 hours of work. This breaks down into about 29 hours of contact time and about 121 hours of independent study. The University may make minor variations to the contact hours for operational reasons, including timetabling requirements.

We regularly review our modules to incorporate student feedback, staff expertise, as well as the latest research and teaching methodology. We’re planning to run these modules in the academic year 2023/24. However, there may be changes to these modules in response to COVID-19, staff availability, student demand or updates to our curriculum. We’ll make sure to let our applicants know of material changes to modules at the earliest opportunity.


This module is offered on the following courses: