Degrees with research placement

If you're a high-performing Physics student with top grades you could be eligible for our Physics (with a research placement) MPhys degree. You'll go on research placements with our renowned academics over your summer holidays and learn about real research methods and practices. Choose from lab-based projects or theoretical projects.

Why study Physics (with a research placement) MPhys? 

  • work on a research problem with one of our renowned academics
  • develop your knowledge and skills to enhance your studies 
  • prepare for your future career or further study 
  • get paid during your summer placement to cover your living expenses.


You can find out if you're eligible for this course by checking the entry requirements on our undergraduate prospectus

How does the research placement work? 

This is a paid project that takes place over the summer. You select a project in the Spring term. Once you have a supervisor assigned, you both agree when you will carry out the project.

The duration of the summer research placements are:

Year 1 - 4 week placement

Year 2 - 8 week placement

Year 3 - 8 week placement (optional).

SEPnet logoThe project is assessed by a report. You may agree with your supervisor on additionally preparing a science poster, or a journal review.

We also encourage you to explore other avenues for gaining research experience, such as the Sussex Junior Research Associate scheme, and other organisations such as the Royal Astronomical Society and our partners in South East Physics Network.

Our projects

See some of the placements we currently offer below. Because we're a forward-thinking department, we only offer the most up-to-date projects to our students, which means these projects are subject to change.   

If you are already studying at Sussex you can find out more about each project on our internal pages


Projects have included:

  • High energy astrophysics
  • Surveying the universe 
  • Star formation in the distant universe using the Hershcel Multi-Tiered Extragalactic Survey (HerMES)
  • Making galaxies: theoretical modelling of galaxy formation
  • Making a splash: Modelling water with smoothed-particle hydrodynamics
  • Cosmology from the microwave background
  • The inflationary model
  • Signatures of cosmic reionisation
  • Calibrating a small radio telescope
  • Fisihing for EELS (Extreme Emission Line Sources)
Atomic, Molecular and Optical Physics 

Projects have included:

  • Circuit Quantum Electrodynamics with a single trapped electron
  • Ion Quantum Technology
  • Quantum systems from confined cold atoms
  • Single-ion cavity QED
  • Single Molecules Under Control: Laser stabilisation for the manipulation of single molecular ions
  • Computational quantum mechanics 
  • Set up of a photonic characterisation bench using ultrafast optical sources
  • Using quantum physics to improve measurement technology
Particle Physics

Projects have included:

  • EDM - Can you run the universe backwards
  • Looking for direct evidence for Dark Matter
  • Measuring the neutrino mass with SNO+
  • Performance studies for an upgrade of the ATLAS trigger (in collaboration with Dr Mark Sutton - Sussex)
  • Supersymmetry Searches at ATLAS
  • Warped Extra-dimensional models
  • Radon emanation measurements
  • The physics of flavour with the ATLAS experiment
  • Fast trajectory reconstruction and retina-like algorithms
  • Magnetic and electric field development for neutron EDM measurement 
Theoretical Physics

Projects have included: 

  • Exploring the Quantum Vacuum: Understanding the Lamb shift caused by vacuum fluctuations in various systems
  • Higgs coupling fits
  • Warped extra-dimensional models
  • Jet physics at the LHC
  • Newton's potential in gravitational theories beyond General Relativity. 
  • Phase transitions in statistical and particle physics
  • Phase transitions in the early universe 
  • Quantum systems from confined cold atoms
  • Solitons and oscillons
  • Symmetry breaking in particle physics
  • Lorentz, canonical and gauge transformations in moving media

Hear from our students

You might also be interested in:

Contact us

Physics and Astronomy