
Page 1

Final Report 2006
Degree: Multimedia Digital Systems
Department: Informatics
Tutor: Paul Newbury

Project: 3-D Mountain Formation Simulator

Student: Benjamin Smith
Candidate Number: 83421

Page 2

Statement of originality

This report is submitted as part requirement for the degree of Multimedia and Digital
Systems at the University of Sussex. It is the product of my own labour except where
indicated in the text. The report may be freely copied and distributed provided the
source is acknowledged.

Signed ________________________

Page 3

Acknowledgements

I would like to Acknowledge Adam Kane, lead programmer of Forge effects for his
email response, which has helped me to further my research.

Thanks also to Paul Newbury, my project supervisor for his support and calming
influence throughout the completion of the project.

Finally I would like to express my thanks to Robert Ayres, Dan Cudlip, Ali Lockie,
Emma Avis, and Jemmina Pulsford for their support and motivation, throughout many
a late night in the lab, and to Veronique Besnard for her support and sentiments of
“Bon Courage”.

Page 4

Summary

This project seeks to push the boundaries of research into the capabilities of merging two leading

software technologies; 3D Studio Max and Macromedia Director. 3D Studio Max is an industry

leading 3D graphics design package capable of creating complex and scientifically accurate

simulations. Macromedia Director MX is a powerful leading platform for the development, design and

publication of interactive multimedia. The purpose of this project is to create an interactive 3D

Mountain formation simulator and tutorial, by utilising the 3D Graphics potential of 3D Studio Max,

and the interactive interface design capabilities of Director, and its programming platform, Lingo. To

this end, much of the time and efforts in the successful completion and implementation of the simulator

and tutorial have been based on a wealth of research and sequential experiments into the possible

methods of execution.

In theory it should be relatively straight forward to create an interface which merges these two software

technologies, as their authors have laid down utilities within both programs to enable users to be able to

do so. Yet in practise the route to completion has been far from direct, with little previously

documented about the methodologies one might use in order to create a bespoke 3D interactive

simulator by merging 3D Studio Max and Macromedia Director. This project seeks to add something

to this relatively uncharted area, perhaps even to aid the endeavours of future users in the research and

completion of their own bespoke packages. In the process of doing this, the user has not been

forgotten; the final result is a tutorial which is aesthetically designed, with a wide use of multimedia to

aid the interactive learning experience. The tutorial has been based upon the current AQA GCSE

specifications for geography students between the ages of 14 too 16, and its primary objectives are to

inform and explain the creation of Fold Mountains through the use of multimedia and an interactive 3D

simulator.

Page 5

1 Introduction..7
1.1 Project Title: 3-D Mountain Formation Simulator ..7
1.2 Problem Area ...7
1.3 Professional Considerations ...8

2 Requirement Analysis ..9
2.2 Weaknesses in Current Teaching Methods ..10
2.3 Primary Objectives:..10
2.4 Secondary Objectives...11

3 Background ..11
3.1 Interactivity ..11
3.2 Interactivities Impact on Education ...12
3.3 Review of existing software...13
3.3.1 Prentice Hall case study ..13
3.3.2 Moorland school case study..14
3.4 Software Choice ...15

4 Design...16
4.1 Design Principles ...17
4.1 Mid-Fi Prototypes ..18

5 Implementation ..22
5.1 Manipulating Meshes ...22
5.1.1 Key Frames ...23
5.1.2 Dynamics ..23
5.1.3 Havok Physics...24
5.1.4 Rigid body objects ..24
5.1.5 Bones systems ...24
5.1.6 Space Warps..25
5.1.7 Shockwave 3D ..26
5.1.8 Detailed Picking ..27
5.2 Collision Detection ..31
5.3 Creating Interactivity ...33
5.4 Simulation inputs ...35
5.5 Radio button system and plate textures..37
5.6 Building a Keyframed animation with lingo..38
5.7 Interactivity outside the simulator..42
5.8 Picture slide show ..44
5.9 Animations ...45
5.10 Navigation ..46

Page 6

6 Testing ..47

7. Evaluation ...47
7.1 Task Specific User Testing ..47
7.2 Testing Requirement Analysis ...48
7.3 Open ended User study ..49
7.4 Targeted User study ...50

8. Conclusion...51

9. References ...53

10. Bibliography ..54

11. Figures...55

12. Appendices...56
Front Menu Page ..69
Learn Menu Page ...69
Fold Mountain Page ...71
More about fold Mountains..72
Animation Menu Page ...79
Animation1 Page..79
Animation2 Page..79
Animation 3 Page...80
Images and other mountains ..80
Slide Show ...81
Simulation Tutorial ..81
Simulation Page ...82
Mountain Sculptor Page...97

Page 7

1 Introduction

1.1 Project Title: 3-D Mountain Formation Simulator
The purpose of this report is to document the stages design, implementation and testing of a mountain

formation tutorial. This tutorial will utilise the latest technologies in 3-D interactivity and simulations,

and will investigate and explore the capabilities of merging the technologies of two leading software

applications together (3-D studio max [1], and Macromedia Director [2]) in a method not yet tried to its

potential.

The motivation for undertaking this project is a combination of my fascination with world geography

and mountainous environments, and my interest in the concept of interactive computer simulations. At

present there is no such program that utilises the interactive characteristics of a simulation for the

purposes of E-learning in this area. This tutorial will be designed specifically to correspond to the

curriculum of a GCSE geography student.

“A computer simulation or a computer model is a computer program which attempts to simulate an

abstract model of a particular system.” [3]

Computer simulations are fast becoming a valuable tool for modelling natural systems in physics,

chemistry and biology, and of engineering new technology, in order to achieve a deeper analysis into

the operation of these systems. Traditionally, the formal modelling of systems has been via a

mathematical model, which attempts to find analytical solutions to problems. These solutions enable

the prediction of the behaviour of the system from a set of parameters and initial conditions.

The aim of this project is to utilise simulation methods to create a tutorial program that works under a

smooth user-friendly environment, which enables the user to learn, understand and create their own

virtual mountain range. It will demonstrate to them the various factors, the impact of changing these

factors, and relate this back to “real world” plate tectonics. There is a lack of such software in the

market today. Out of the few existing mountain formation simulators that have been discovered

through extensive research, none are sympathetic to the average computer user. In the field of

education, this absence is even more noticeable. Thus this program is not intended to perfectly forecast

scientifically accurate simulations. The Purpose of this software is to teach and inform in an

interactive environment. It will be aimed specifically at GCSE students, and will teach them what is

required by the national curriculum.

1.2 Problem Area

There has been a continuing downward trend in entries for geography at both GCSE and A-level since

1995.

Page 8

”

“

“Therte number of GCSE geography entries has fallen by over 20% and a similar decline has been

experieenced at A-level since 1998” [4]

There has been little research on the reasons for the decline in numbers but according to a report by the

Qualifications and Curriculum Authority 2005 [5], suggested reasons include:

• Pupils’ perceptions of the subject and the way it is taught.

• Structural changes to the whole curriculum.

Thus, a factor in this decrease is the method in which geography is currently taught. It is a dynamic

subject constantly re-evaluating its foundations, and re-establishing itself as research is developed in a

particular field. However, the teaching of this subject does not reflect its dynamic and interactive

nature. Utilising the interactive fundamentals within dynamic simulations will add an extra valuable

dimension to the learning process. It would not be credible to expect to create a fully interactive high

standard tutorial to encompass the whole of the GCSE subject of geography within the scope of this

project. Instead this report will document the design, fabrication and evaluation process for a very

specific subject within the wider boundaries of geography, that subject being the formation of Fold

Mountains. This not only brings a new aspect to the current teaching methods of GCSE geography, but

to the realms of multimedia interactive learning. Addressing an area which up until now has been

relatively un-trodden by combining two technologies. 3-D graphic animation and interactive learning

are joined to create a 3-Dimensional fully interactive simulator, to be used not for analysing or

predicting specific scenarios but for the purpose of etching and instruction.

1.3 Professional Considerations

The ethical standards governing the computing profession in Britain are defined by the Code of

Conduct and Code of Practice, published by the British Computer Society. In conducting this project I

am aware that these guidelines must be read, understood and applied to the work and research that I do.

The statement below extracted from the BSC Code of conduct is the most appropriate to my work.

14. You shall seek to upgrade your professional knowledge and skill, and shall maintain

awareness of technological developments, procedures and standards which are relevant to

your field, and encourage your subordinates to do likewise.

[6]

In conducting this project, new and existing technologies will be investigated and used in conjunction

with each other, in situations not tested before. I will document the results of all of these experiments,

in which technologies and concepts are merged together.

The statements in figure [1.2] are extracts from the British computer society’s code of Practise, and are

relevant to my project development. As an active developer looking to research further into the field of

Page 9

”

interactive simulation design, I have exchanged ideas with professional developers via emails, and web

forums, and sought advice in areas I feel I must research.

• Keep in close touch with and contribute to current developments in the

specialism, particularly within the organisation and your own industry.

• Maintain your knowledge of your specialism at the highest level by, for example,

reading relevant literature, attending conferences and seminars, meeting and

maintaining contact with other leading practitioners and through taking an active

part in appropriate learned, professional and trade bodies

• Understand the boundaries of your specialist knowledge; admit when you may be

required to cross this boundary and seek advice from colleagues with the

necessary expertise; do not make misleading claims about your expertise.

[7]

One such email is shown in the appendix number 3. This was sent to the developer of the Prentice

Hall case study (shown in section 3.3). The response lead to some useful expert resources, which are

utalised for the final implementation. Furthermore an ongoing communication with this developer has

now started.

2 Requirement Analysis
The National Curriculum requires that students should be given opportunities to apply and develop

their ICT (Information Communication and Technology) capacity in all aspects of geography through

the use of ICT tools to support their learning.

“In each specification candidates will be required to make effective use of ICT in ways appropriate

to the needs of the subject.” [8]

The aims set out below describe the educational purpose of following a course based on AQA

(Assessment and Qualifications Alliance) GCSE in Geography, This specification offers opportunities

for candidates to, among other things;

 ‘Appreciate that the study of geography is dynamic, because new ideas and methods lead to new

interpretations’ [9]

The idea that the study of geography is dynamic is founded by the very nature of a dynamically

changing world. Geography is an incredibly broad subject encasing social, physical, environmental,

and economical aspects of what is happening in the world today. Each of these aspects is interlinked

“

Page 10

”

“

with each other on an ever-changing course of development. It should therefore, stand to reason that

the nature in which geography is taught should reflect the dynamic nature of its content.

2.2 Weaknesses in Current Teaching Methods

A report from the Chief Inspector of schools on teaching of Geography (OFSTED 1995) based on a

large sample of English schools paints a bleak picture. It points out that the quality of teaching was

good or better than that of the previous OFSTED report 4 years earlier in only 42 percent of lessons.

Some of the weaknesses detected are fundamental: challenge, pace and motivation in lessons were

often unsatisfactory, weak subject knowledge, “over-reliance on text books, undemanding activities

and insufficient attention to real places and particular circumstances.” [10]

The process of Fold Mountains is currently included in the AQA specification within section 9.1 shown

in figure 2.4 (Tectonic activity). Where it states:

 Specification detail Guidance

The Earth’s crust is

unstable and creates

hazards.

Global distribution of continental plates.

Tensional and compressional margins.

Characteristic features and formation of

fold mountains, earthquakes (focus,

epicentre) and volcanoes (composite and

shield volcanoes).

Occurrence and measurement of

earthquakes.

The processes of plate

movements should be

understood and their role in

the formation of fold

mountains, earthquakes and

volcanoes.

The link between earthquakes

and plate

boundaries to be understood.

Figure 2.1 Tectonic activity within education [10]

So it is apparent that the nature of physical geography is recognised as dynamic and unstable, yet the

current teaching methods for this subject do not accord with its dynamic characteristics, with the use of

“cold” text books and insufficient attention to particular places and real circumstances.

2.3 Primary Objectives:

• To create a tutorial explaining how Fold Mountains are formed using 3Dimensional

simulations, demonstrating the tectonic activities involved and the result of these activities.

• To prompt the user to enter variable values into the program such as: Force(N); Mass; time;

rock type.

• To introduce causality where altering any given variable affects the resultant 3D animation.

• To make the program interactive and enjoyable to use.

Page 11

• To investigate the possibilities of combining 3DS MAX technologies with that of Macromedia

Director.

• Program must accord with what is required from National Curriculum.

• The user will be able to control the camera view of the animation as it is in motion.

• The user will be able to zoom in and out of the animation.

• The program will have a tutorial on how to use the simulator.

• The program will also act as a tutorial on other types of tectonic activity.

2.4 Secondary Objectives

• The program will simulate more than one type of tectonic movement.

• The user will be able to ‘play’ with their new mountain range, by creating snow and wind.

• The user will be able to place a character in the scene to explore the terrain.

• The program will have a quiz/game on mountain formations.

3 Background
It is important to establish the extent to which interactivity in the learning environment is effective, and

how maximising interactivity will actually bring any gains. This section seeks to define the role of

interactivity in education, its effects and evaluate the success of similar interactive tutorials which have

sought to achieve learning through simulations. It also justifies the software that will be used to create

this program, and brings to attention a primary objective of this project, which is to investigate the

possibilities of combining two software technologies that theoretically should merge well together in

order to create an interactive simulation.

3.1 Interactivity

Interaction has always been thought of as a feedback loop, in a sense a decision cycle. The user will

start with a specific goal in mind; and generate a method of achieving this goal, for example by setting

variables, clicking buttons, dragging and dropping icons. The plan is then executed by carrying out

these actions and finally the result is compared with the original forecast in mind. This process is

interactive because the user’s actions dictate the environment, and if well designed this process will be

repeated until the user approaches something close to the expected result. The user acts and the

environment reacts; the user registers the result, and acts once again. Interactivity is further maximised

as the environment is made more responsive to the cognitive needs of the user. This moves more

toward the social sense of interaction as shown in figure 3.1.

Page 12

In more traditional learning
a tutor used the media
which was available: text,
book, black board, etc.
There was little or no
interaction with media
developers, nor indeed often
with the learners.

Computer aided learning
has a more dynamic
interaction, implying
feedback between the tutor
and the developer.

Interactive learning involves
both the tutor and the
learner in feedback loops
with the developer.

Figure 3.1 Types of Interactivity

3.2 Interactivities Impact on Education

The ready access to full-motion video and sound allows instructors to vastly increase the emotional and

motivational appeal of their material, which in turn, should have dramatic effect on the impact that it has on

students and their eventual information retention. It is a truism to say that knowledge is not naturally

compartmentalised. Many simulation programs raise the issue, because although they are designed with one

subject in mind, their use and the learning that can be achieved may cover a number of disciplines. The

Mountain formation simulation is designed specifically for the geography GCSE, but other subjects could

gain a great use from it. Science of forces and Newton’s will be re-enforced; geology and mathematics are

also affected.

“Information technology is encouraging this breakdown because it supports the development and use of

materials which are naturally interdisciplinary.” [11]

The interruption of information technology in the learning environment, has forced tutors to re-think the way

in which they teach. It has been suggested that the technology opens the way to the replacement of teachers

by software and training systems. This is not what this application is designed for. With their present power

and application, computers and interactive learning provide an extra mechanism in the arsenal of tools

available to the learner, and indeed to the teacher, in a sense that it is the teacher who must place it in the

appropriate position among all other resources that may be available. The attitude and approach adopted by

the teacher will dictate the success of interactive technology in the curriculum.

Developer Developer

Tutor/media

Learner Learner

Tutor/media

Developer

Learner

Tutor/media

Traditional Computer-aided Interactive

Page 13

3.3 Review of existing software

Investigations into the tutorials currently available show that similar interactive simulation approaches have

been attempted and to some degree of success. An evaluation of these existing tutorials has been carried out

to obtain what might constitute a good tutorial as opposed to a bad one. This looks at the usability of the

systems, and examines the technologies that were used to create them. Take sections 3.3.1 as examples of

successful interactive tutorials:

3.3.1 Prentice Hall case study

3D Topographic Maps

Developed for Pearson Prentice Hall (a global leader in online learning) as part of the Science Explorer

digital curriculum and featured as a Macromedia Showcase Site. This real-time 3D simulation illustrates how

topographic maps are created and used to depict changes in elevation. Students are able to sculpt mountains

and valleys in real-time and see the changes to the corresponding topographic map.

Figure 3.2 Topographic Map Case Study Prentice Hall

3D Ocean Waves

Developed for Pearson Prentice Hall as part of the Science Explorer digital curriculum and featured as a

Macromedia Showcase Site. This is a real-time 3D wave simulator that demonstrates the connection between

wind speed and ocean particle motion depth. The student can modify the properties of an ocean wave and see

the effect from any perspective

Figure 3.3 Ocean Wave Case Study Prentice Hall

The appealing factor in both of these interactive tutorial simulations is their aesthetic quality. Their capability

to allow the user to rotate camera angles, zoom and pan makes them both very ‘usable’. It encourages an

experimental environment in which a student may learn. Through the use of the real-time 3D capabilities in

Director, these online simulations include water, reflections and mesh deformations and a host of other 3D

[12]

[12]

Page 14

features standards in most cutting-edge 3D tools. The Macromedia W3D exporter allowed ForgeFX's 3D

artists and animators to do their art work in 3D Studio Max and export their files into a format that worked

with Director. One project requires students to sculpt a mountain in real-time and then be able to see the

resultant topographic map.

 “Building on top of the foundation that Director MX provides, we were able to create the custom

components for this experience." [12]

 This simulation is of particular interest and it directly involves dynamically deforming an object in Director.

The technologies this tutorial used in order to achieve this however, is not the same as what is required of the

3D Mountain Formation Simulator, as the graphics were created in Director, and not exported from 3D

Studio Max, as explained in the email that was received from Adam Kane in appendices 3. The

implementation section 5.1.8 investigates the technologies that were used to create this kind of deformable

geometry. The examples given above are successful tutorials as they seek to engage the audience in the

learning experience, using the concepts of the interactive feed back loops explained in figure 3.1. This is an

important point to consider when designing a new tutorial, and something that this project will seek to

emulate by implementing a dynamic simulation.

3.3.2 Moorland school case study

Other tutorials are less successful in their goal to engage the audience. Take the example below (figure 3.4),

a series of screen shots of an online tutorial about plate tectonics. Instantly it is visible that the layout is

unattractive, not seeming to have any consistency between images and text space, and not following any

recognisable structure such as Greenberg’s grids principle of effective visual communication for GUI design

[23]. The result is that the tutorial lacks a sense of horizontal and vertical alignment, making it difficult to

locate like components, and creating an unstructured organization. Its contrast is unclear as it does not bring

attention to dominant elements, and does not group similar elements by proximity. The consistency within

the tutorial is also lacking, with no established location or format for image or textual components.

This tutorial engages its students little more than that of a normal textbook. Its only interactivity is the

utilisation of Hyperlinks to other related topics.

Page 15

Figure 3.4 Case Study Moorland school

This tutorial has informed my design, by illustrating the possible misconceptions that can affect the appealing

aspect of an interactive tutorial. The inconstancy of the layout and lack of interactivity are aspects that must

be improved upon. An efficient use of white space often makes an interface look clean and easy to read. In

this example however, it seems awkwardly thought out and is consequently confusing to read. The 3D

graphics are a positive point which helps to digest the tectonic movements. This aspect of 3D graphics is

something that will implement the final design of the Mountain Formation Tutorial.

3.4 Software Choice

This tutorial will be created using Macromedia Director, and 3D Studio Max. Along side the progression of

this tutorial will be an investigation into how these two industry leading softwares can be used in conjunction

with each other to create an interactive accurately modelled 3D simulation.

The Havok Xtra within Director provides a physics simulation mechanism for shockwave 3D worlds. It

allows setting up collision behaviour, motion, gravity, friction, mass and elasticity of objects, as well as other

real world dynamics.

“A Havok cast member is linked to a shockwave 3D cast member. Havok cast members can be created

through 3D Studio MAX 4-5-7 (with the Reactor plug-in).” [13]

This should allow accurately rendered graphics to be exported as a W3D file and manipulated within

Director. The extent to which these exported graphics can be made deformable within director is thus far less

clear.

“The Shockwave 3D exporter does not support soft-body or non-bone-based mesh deformations. You

cannot animate the bend of a bird's wing without using a bones system.” [14]

Therefore the creation of this tutorial poses a difficult question: how can one dynamically deform the mesh of

a 3WD object within Director? There are a variety of ways in which this can be done, each having its merits

and disadvantages. During the course of this project, each one of these methods will be investigated and

[24]

Page 16

justified. Thus exploring the functionality of these tools with Director and 3DS MAX is one of the main tasks

of this project.

Alternative software such as Java 3D, C++ etc. could be used to create this tutorial. Java 3D is a scene graph

based 3D API for the Java platform from Sun Microsystems. It typically runs on top of either OpenGL or

Direct3D. C++ is a superset of the C language, an object-oriented programming (OOP) language that is

viewed by many as the best language for creating large-scale applications. It was decided not to use these

languages to create the tutorial, as this project is as much an investigation into the functionality of 3D Studio

Max and Director (lingo), as it is a tutorial. Also to learn and effectively utilise C++ and Java3d would

require a longer time-scale. There is much literature on how to interact with pre-rendered 3D models within

Director using its inbuilt behaviours, but very little literature illuminating how one might create a more

bespoke package which enables manipulation of a model’s geometry within Director after it has been built

and rendered. For this reason, this project seeks to venture beyond the basic interaction techniques, and

actually reveal how one might start to close the gap between a 3D authoring package (3D Studio Max), and a

multimedia interaction design package (Director).

4 Design
Before the implementation of the software, design and navigation issues need to be considered. The Initial

program design is shown in Figure 4.1 and demonstrates how the various sections of the tutorial interlink

with each other. This preliminary design proved to be too narrow, as the nature of the subject which is to be

taught far exceeds the boundaries that this design allows. During the implementation of the tutorial it quickly

became apparent that a more robust data flow design would be needed, which would be more flexible and

enable a wider range of information to be covered.

The 3D Mountain Tutorial

Begin Tutorial

Simulator

Games

Test 1

Test 2

Simulator
Tutorial

 Game 1

Simulator

Answers

Page 3

Page 2

Page 1

Figure 4.1 Design and navigation concepts

Test Yourself

Page 17

Figure 4.2 Final Design and navigation map

Figure 4.2 demonstrates a more finalised design flow of the tutorial, this implementation allows the inclusion

of a much wider range of information and media, such as movies, sound, interactive animation and diagrams,

and of course the body of the program, the simulation.

4.1 Design Principles

In order to create a comprehendible and interactive tutorial, the design process has closely followed a series

of strict design principles. The principles are explained below along side an explanation of where and how

they have been implemented.

1. The principle of metaphor

This involves borrowing behaviours from systems familiar to that which is in the process of design. This is a

most important part of the design process as a system which seems familiar will aid the user in understanding

how to interact with it. In implementing this principle, metaphors from the real world will been used, such as

sliders to set values, virtual tools such as magnifying glasses to control model interactions, and interface

metaphors such as a T.V. standby buttons.

2. The principle of feature exposure

To let the user see clearly what functions are available so that a quick visual scan can determine what the

program actually does. This will be implemented using various features such as toolbars, menu and Submenu

items and dialog boxes.

Main Menu

Sim

Simulator Mountain Sculptor

Fold Mountains

3D Diagram Animations Pictures

Tectonic Plates

Animation Guide

Convergent Transform Divergent

Pic Select

Pic Slide
Show

Control
Panel

Cameras Feedback
panels

Page 18

3. The principle of coherence

This principle will ensure that the behaviour of the program is internally and externally consistent. Internal

consistency means that the program's behaviours make "sense" with respect to other parts of the program,

such that modifying a variable in one way will hold true for modifying any other variables, creating a set of

rules under which the interaction will preside.

4. The principle of focus

Some aspects of a GUI attract attention more than others do. The mouse cursor is probably the most intensely

observed object on the screen. Within the program it will be used not only in order to navigate, but as a tool

for setting the simulation and manipulating the 3D model. Therefore global state changes will be signalled by

changes to the appearance of the cursor, such as different symbols to represent different tools e.g. sculpting,

zooming, Camera Panning, and model rotation.

5. The principle of safety

The software should let the user develop confidence by providing a safety net for novices, without slowing

down more advanced users. This will be implemented within the program by “are you sure” style dialogue

boxes in the most important places.

6. The principle of aesthetics

This program explains how mountains are formed, an awe inspiring world landscape, the program should

seek to inspire and enthuse its users it must be attractive and aesthetic to use in order to reflect its subject

content.

4.1 Mid-Fi Prototypes

The initial program design is based highly on the aesthetic principles explained above, along with feature

exposure in the form of navigation menus and tool bars. It is consistent and coherent, using various interface

metaphors such as the animation control buttons. The layout is clear and uncluttered, giving maximum focus

to the important aspects. Figures 4.2 and 4.3 illustrate how the front-end design of the system might look.

Page 19

Figure 4.2 Start page front end design Mid-FI 1

Figure 4.3 Simulation page front end design Mid-FI 1

This is the
Navigation
panel with
which the user
will be able to
jump to other
parts of the
program.

The Tools panel where the user can use various tools
to manipulate the simulator, such as zoom and pan.

The Active
Display panel
shows text,
information
and
animations.

Page 20

Figure 4.3 is a possible design choice for the simulation part of the tutorial. Note that the Tools panel is

activated with various control mechanisms, compared to the front screen in figure 4.2. The problem with this

design is that it is difficult to read, as the colours do not contrast well against each other. It is clear and

uncluttered, but is not obvious how to use, and has no instructional documentation. The second prototype

below deals with these issues.

The simulation prototype in figures 4.4 to 4.7 has a much clearer contrast making instructions easy to read. It

also makes use of some recognition HCI principles, by making the objects, actions, and options visible. The

user should not have to remember information from one part of the dialogue to another.

Instructions for use of the system will be visible or easily retrievable whenever appropriate, when the user

places the mouse over one of the sliders, a user help dialogue will pop up. A unique colour is assigned to

each slider to represent different input variables, the feedback panel then displays that value in the same

colour as that of the slider, this uses a logical recognition to allow the user to interact without having to take

time to understand, how their inputs affect the system.

Outside of the simulation, the design holds consistent, with the navigation menu remaining stable, and the

body of text also always in the same panel. All navigations actions are textual based, and all control actions

are shown as buttons to reflect real world mapping. It is felt that the second prototype design is more

transparent, using clear and concise labelling, following the design principles laid out above.

Figure 4.4 Simulation page front end design Mid-FI 2

Feed back
panel in
corresponding
colours

Control Panel
for all user
interactions

Tools and
options all held
in control panel

Page 21

Figure 4.5 Menu page design Mid-FI 2

Figure 4.6 Tectonic plates design Mid-FI 2

Navigation
Menu

Text body

Navigation
actions are text

Text body

Page 22

Figure 4.7 Animation design Mid-FI 2

5 Implementation
Throughout The creation of this tutorial, it became more and more apparent that substantial research must be

undertaken in order to establish the most efficient way of implementing the simulator, problematic obstacles

have been found, and at least in most cases they have been negotiated to a degree of some success. This

section identifies these obstacles and their respective solutions, and suggests alternate routes which might

have been taken in order to tackle them.

5.1 Manipulating Meshes

A fundamental issue that concerns the implementation of this simulation is how to dynamically manipulate

the geometry of a 3Dimensional object. By ‘dynamically’, we refer to the manipulation of the object after it

has initially been rendered and in this case, exported from the authoring package in which it was created (3D

Studio Max). This proved to be a problem with many inherent obstructions, yet with more than one solution.

In order to find a solution which best suited the purposes of this particular software, an investigation was

made into merits and limitations of each technology.

Control Actions,
are buttons

Page 23

5.1.1 Key Frames

Key framing is a term used in animation which describes the process of recording the relative world position

of a given object or the vertices which make up the geometry of that object, at a discrete time. Two or more

keyframes can be established, usually with the object inhabiting a different set of world space co-ordinates at

each key frame. The system can then calculate the world position(s) of the object in-between the points in

time specified by its key frames, this process of calculation is called interpolating. Figure 5.1 demonstrates

this process.

Figure 5.1 Key Frame Interpolation

The time line bar above shows the two key frames that have been inserted; the system interpolates the

movement of the object between these two key frames to create the effect of the object moving across the

screen.

5.1.2 Dynamics

Initially the first technology that was tried was that which is offered within 3D Studio Max, a utility called

Dynamics.

“The term dynamics refers to a system of controls that generate keys to produce animation that simulates

real-world physics.” [15]

This Utility enables its users to bypass standard key framing techniques, of tediously assigning individual key

frames to smoothly alter the objects geometry, and allows a more scientifically automated approach. The

dynamics system enables physical properties to be assigned to each object in the scene (such as friction or

gravity), it enables the user to specify which object will collide against another, and then calculates a solution

over a range of frames. This produces a very natural result based on surface characteristics and properties.

The disadvantages to such a system, is that it produces a series keys which combine together to produce an

animation. When this animation is exported, all the physical properties are lost, and all that is left is the key-

framed animation. The implications of this are that it cannot be dynamically changed after exportation,

unless the key frames can still be manipulated. What is needed is a technology which allows the exportation

of objects and their physical properties, from the authoring package (3DS Max) into a form that is

Page 24

recognised by Director, to enable both the objects and their properties to then be manipulated by direct

interaction with the user. Such technology does exist, it is called “Havok Physics”.

5.1.3 Havok Physics

“ TM is a leading developer of middleware for the video game industry. Used by the world’s most

renowned game developers….. Havok’s is the dynamics driving 3ds Max from Autodesk Media and

Entertainment.” [16]

Havok’s physics technology relies on a process known as physical simulation in order to provide a dynamic

environment for the objects in a scene. This process automatically determines the motion of objects

according to their physical properties in much the same way as the dynamics utility will do. The physical

simulation splits time into small discrete steps and predicts the motion of each object during each step.

Unlike traditional keyframe-based animation, where the animator needs to specify a set of keyframed

configurations, physical simulation determines the motion of objects based on their properties. This sounds

much like the methods explained above in section 5.1.2; however there is one very important difference. The

implementation of the Havok Physics engine allows the dynamic physical properties of the scene to be saved

into a format which is recognised by Director. This extension is known as an HKE file. The HKE file

contains all information needed to dynamically simulate the same virtual world within Macromedia Director.

The Havok Xtra links physical property information (stored within a HKE file) to a display geometry (in a

W3D file) via their assigned names. This eventually allows the programmer to create a scientifically accurate

simulation that can be initiated in 3D Max, and manipulated in Director. After much experimentation with

HKE Files, another problem was soon encountered. HAVOK Xtra only works with ridged body objects.

5.1.4 Rigid body objects

The Havok Xtra assumes that all the objects in the simulated world are perfectly rigid. If all bodies are rigid

then it can take advantage of the fact that the geometry of the objects do not vary from step to step so each

shape and previous collision can be memorized to speed up the next collision test that is performed. This

naturally means that any deformable material cannot be simulated directly with the Havok Extra. Deformable

objects can only be simulated to a limited degree using rigid bodies and bone systems.

5.1.5 Bones systems

A Bones system is a jointed, hierarchical linkage of bone objects that can be used to animate other objects or

hierarchies. Bones are normally used for animating character models that have a continuous skin mesh. Lingo

contains a feature called lingo bones which recognises certain saved bone animations and allows them to be

played back, or even mixed together. This means that a physics scene can be generated using the Havok Xtra

plug in and manipulated via the bones motions. The draw backs to this are that there is a restriction of

motions to that which were exported along with the scene. These motions, although they allow the user to

control some aspect of how the geometry of the shape will alter, they do not look as realistic as previously

hoped for. An example of the outputs that can be produced using the bones system is shown below in figures

Page 25

5.2 and 5.3. Director’s Bones player manages a queue of motions. The first motion in the play list is the

motion that is currently playing or paused. When that motion finishes playing, it's removed from the play list

and the next motion begins. Creating new motions can be done by combining existing motions. For example,

a colliding motion could be combined with a collapsing motion to produce a subducting tectonic collision.

Figure 5.2 Bone animation

Figure 5.3 Rendered Bone animation

5.1.6 Space Warps

After establishing that the Havok physics engine enables the programmer to define a set of physical

properties, but does not work with deformable bodies, and that bone systems are limited to those motions that

were set within the 3D authoring package. A conclusion was reached that these methods would not suffice.

What was required was a computationally calculated simulation (as opposed to a pre-defined keyframed

simulation). Also it must be a simulation which was not limited to a pre-determined number of motions, as

defined by the bones system. The investigation moved on to a technology known as Space warps. This

enables Havok Physics simulations and also allows direct manipulation of object geometry. Figure 5.4

below, shows two such space warps imposed on the geometry of the scene, (the push and wave warps).

Page 26

Figure 5.4 Space warps

The push space warp provides a point of force away from the pad of the hydraulic jack icon. A negative force

pulls in the opposite direction, in figure 5.4. The push space warp is invoking a force on the oceanic plate,

moving it towards the continental and creating a constant pressure. In dynamics, applying a force is the same

as pushing something with your finger. The Wave space warp creates a linear wave through world space.

The wave warp was used here to create the effect of a subduction of the oceanic tectonic plate. Both space

warps are shown in more detail in figure 5.5. At this point the simulation is based on real physics and the

geometry of the models can be altered using the space warps, however, a fundamental problem became very

quickly apparent. Space warps cannot be exported, upon exportation, they become extinct. This solution

therefore cannot be applied to the purposes of this project.

Figure 5.5 Push and Wave Space warp

5.1.7 Shockwave 3D

After research into how to export 3D scenes and animations from 3D max, without loosing any of the

information which designed the animation, it was found that a file format called Shockwave 3D (W3D), is

recognised by Macromedia director and provides a utility to export information such as geometry resources,

animations, material resources, texture maps, shaders, lights, bones, and cameras.

Page 27

Figure 5.6 below shows the analysis of a shockwave 3D file.

Figure 6.5 Shockwave file analysis

 It was decided that the geometry of the objects should be established in the 3D authoring package (3D Max),

this geometry could be exported along with all the components which comprise the scene, such as the

cameras, and textures etc. The actual simulation can then be performed within Director. This way the

simulation utilises the benefits of implementing complex and interesting graphics from MAX, and maintains

the interaction through Director. Naturally the next step was to establish how to program the simulation

within Director. In order to do this, information and advise was sought from various resources, including

web forums, books and even emailing professionals within the industry for advice, one particular technology

which continued to be recommended was that of Director’s #MeshDeform function. This can be

implemented on a 3D model via a programming language called Lingo. The #MeshDeform function provides

a low level of control over the geometry of a shape. In short, it allows you to change the positions of vertices

and faces of a model in real time. A critical philosophy behind the mesh deform function is that being an

abstract tool for controlling geometry, the success of using this function depends heavily upon the

organisation of the code. In addition, building the geometry with code within Director will give a critical

advantage of understanding of the structure’s geometry, this way it becomes more apparent as to how the

structure can be changed. This became the approach that was first used. By constructing the models with

pure lingo and experimenting with the #MeshDeform modifier, various tests were run to establish how the

makeup of a shape can be dynamically altered.

5.1.8 Detailed Picking

A technique known as picking was used to modify the geometry of a plane in real-time. The Plane was

created using pure Lingo code within Director, the code used to create this plane can be seen in appendix 65.

The purpose of this experiment is to see if when the user clicks on a specific part of the plane, the faces and

vertices that make up the area which has been clicked will transform the geometry of the face, creating the

Page 28

illusion of the area rising. This is illustrated below in figure 5.7. It can be seen that the user has clicked on

various parts of the plane, thus altering the relief of the geometry.

Figure 5.7 Detailed picking of a plane

From this experiment it has been established that the shape of a plane can be altered dynamically, even after

the plane has been originally created. The code below in figure 5.8 demonstrates some of the key points in

the process of this experiment. Firstly, establishing which point to deform, by using the #clickloc function.

Then retrieving the relevant data which defines that point in world space using the #faceID and #vertlist

functions, before finally creating a new vector for that face, and reassigning it.

global scene

on beginsprite

 origin = point(sprite(spritenum).left, sprite(spritenum).top)

on mousedown

 pt = the clickloc - origin

 -- get detailed info

 modellist = sprite(spritenum).camera.modelsUnderLoc(pt, 1, #detailed

 --make sure that a model has been hit

 if modellist <> [] then

 -- find out which face was hit

 whichface = modellist[1][#faceID]

 -- find out the 3 vertices that face uses

 vertlist = scene.model[1].meshdeform.mesh[2].face[whichface]

Page 29

 cnt = scene.model[1].meshdeform.mesh.count

 meshnum = modellist[1].meshID

 --cycle through the 3 vertices

 repeat with x = 1 to 3

 --find the exact vertex location

 vert =

scene.model[1].meshdeform.mesh[meshnum].vertexlist[vertlist[x]]

 -- add a small amount to that location

 newvert = vert + vector(0,0,5)

 -- set the vertex to the modified position

 scene.model[1].meshdeform.mesh[meshnum].vertexlist[vertlist[x]] =

newvert

 end repeat

 end if

end

Figure 5.8 Detailed picking Code

In the final simulation, the geometry deformation will not occur when the user clicks on a specific region, but

when a collision of two plates is detected within a specific contact point. The natural evolution of this

experiment was to see the effects of detailed picking, on an object with 3 dimensions such as a box, as

opposed to an object with only two dimensions such as the plane described above. This proved to be a more

complex matter. In order to demonstrate why this proved to be more complicated one must first look in more

detail at the make up of a 3D object, and the terms used to describe this makeup within Director. An object

such as a plane, is made up from a series of faces. Each face is triangular in shape and has a unique index

number. Each index number points to a vector containing the three vertex points which hold the positions of

that given face in world space. This is shown in figure 5.9 below.

Page 30

Figure 5.9 Construction of 3D model

Figure 5.9 above shows the wire frame of the 3D model, it is clear that the model is made up of a series of

triangles (faces). Each point of a given triangle refers to a vector, which determines its position. Figure 5.10

below demonstrates how this method of vector based faces can then be used to create a 3 Dimensional effect.

Figure 5.10 3D polygon world

The problem that arose when trying to apply this same picking technique to an object with three dimensions

was that a box consists of no less than 6 planes. The issue here is how does one establish which plane’s

Page 31

geometry must be affected? This required some critical thinking and research into how primitives such as

boxes are created within Director, as it happens each plane that constitutes the box, has its own unique index.

Therefore when the mouse is clicked upon a given plane, the code must retrieve the index of that plane that

has been clicked upon, before retrieving the index of the face(s) that were affected. This then has other

connotations, as the mesh of a primitive box designed by Lingo code, has six planes, if the requirement is that

the geometry of the box is deformed as the user clicks on a given plane, what happens when the user clicks on

or around an area where two planes meet? This point is best illustrated by figure 5.11 below.

Figure 5.11 Plane separation

The diagram above illustrates the issues of plane separation, as now the affected plane has had its geometry

altered so much that it now no longer connects with the other planes which comprise the box model. This

creates the impression that the object is now no longer solid. This issue seemed impossible to solve, and was

not resolved until much later in the project’s development. The next sections explain how the collision

detection aspect of the simulator was created.

5.2 Collision Detection

Collision detection is one of the largest subjects in 3D programming. Director provides certain built-in tools

for dealing with collision detection, however, these functions needed to be altered to best suit this project

using vector maths.

“Collision detection is the process of determining whether two polygons in a 3D environment will intersect,

and taking the appropriate action depending on the answer.” [17]

There are three distinct ways of managing collision detection within the Director environment, the first is to

use the built in collision modifier, the second is to implement a form of boundary management, and the third

is to use the Havok Xtra plug-in which has been discussed in section 5.4. Director’s Collision Modifier

provides a basic level of collision detection, but is extremely slow and has performance implications on the

project. Firstly both plates must be assigned their own collision detector, when a collision occurs a handler is

Page 32

called to perform some kind of response. The initial experiments for this show how the problem of plane

separation starts to inhibit the performance of the simulation. This is demonstrated in figure 5.12 below.

Figure 5.12 Plane separation with Collision Detection

It can be seen that as the collision is detected, the response takes action upon the top plane of the box model.

This causes a separation of the model’s planes. To overcome this issue, the initial experiments focused

around locating those areas in which two planes will meet, i.e. at the corners. This proved extremely costly in

computational time. Later experiments worked around an attempt to bind the mesh together so that the

primitive box becomes one solid complete model. This lead to the solution, thus far the collision detection

and mesh deform functions has been invoked upon primitive models created within director using lingo. A

shockwave 3D file that has been created in 3DS Max becomes one complete mesh upon exportation. This

instantly solves the problem of plane separation. Using Exported models from 3DS Max, was the basis of the

next set of experiments. An example of the type of result is shown below in figure 5.13.

Figure 5.13 Plane separation Resolved

The resolution of the plane separation issue was a crucial step in a positive direction. From here there are two

important issues to tackle in order to complete the simulation section of the project; these were to add

Page 33

interactivity, and to improve the quality of the images which represent the tectonic plates. To improve the

images was a task which had to be carried out in 3D Max, much time is spent working on different models,

and trying to achieve a balance between high quality images and still maintain a high level of performance

from the system. Some serious performance issues soon became apparent when dealing with higher quality

images with a much higher polygon count. The simulation would now run up to 10 times slower, when used

with the higher detailed images. This made the system impossible to use unless some other aspect of the

system could be compromised. The most computationally expensive aspect of this simulation is the

calculations involved in the collision detection, and although an important part of the simulation, it does not

have to be exact in its results. It soon became clear that it was this area of the system that must be

compromised in order to optimise the speed and usability of the simulator. The boundary management

system sends out a message when a collision has just occurred within the environment. The mode with which

this system works is of paramount importance to the system’s performance. With a complex model such as

the ones exported from 3D Max, if the collision mode uses mesh detection, then the collision modifier will

check weather the actual model geometry has collided with any other geometry per frame. If the collision

mode is altered to say that of a bounding sphere, surrounding the complex geometry, the collision modifier

will work much faster but will be less precise. After trying this method it was decided that this was the best

way to advance, as the speed and optimisation that is gained from doing this, far outweighs the cost of loosing

accurate collision detection.

Another conceptual hurdle which must be overcome with Director’s collision detection modifier is the

retrieval of the collision data. It is well founded that once a model’s collision data have been retrieved, that

model can no longer move with in the scene.

“In order for the PointOfContact and collisionNormal information to be available, the resolve property for

both models must be set to true. If the resolve is set to true, the models will no be able to move after the

collision has been resolved.” [18]

The technique that was used to overcome this was to quickly disable and then re-enable the collision modifier

after the collision has occurred, and the collision information has been retrieved. This enables the models in

the simulation to move again, whilst still gaining access to the collision modifier. This involved precise

timing, in order for the system to receive the correct collision data.

5.3 Creating Interactivity

As explained in section 3.1interactivity is a key principle upon which this project is built. The simulator its

self would be useless unless it has strong interactive characteristics. It was thought that the best way to do

this would be to create a algorithm upon which the results of the collision is calculated, and for the user to be

able to manipulate variables which alter this algorithm, thus a new resultant formation will be produced upon

each alteration of the algorithm. There are three major inputs which are included in the movement of a

tectonic plate.

Page 34

“The plates-driving force is the slow convectional movement of hot, softened mantle that lies below the

rigid plates.” [19]

Although the simulator does not animate this convectional current, it does seek to interpret the resultant force

that it creates; the user is able to adjust the magnitude of this current in effect, altering the speed and force of

the plate’s movement. The Density of each tectonic plate is also a very important factor in the creation of

mountains. It is the oceanic crust which is denser and thus subducts underneath the lighter weight continental

crust. This fact is emulated in the simulator, as the user is not able to make the oceanic plate less dense than

that of the continental. If they do attempt this, then they are prompted that the simulation cannot continue, as

illustrated in figure 5.13.1 below.

Figure 5.13.1 Plate density error

This is part of the learning process, as it is not the aim of the simulator to allow users to operate it without

thinking about what they are trying to achieve. The final input that the user is able to manipulate is the rate of

movement, the average rate of movement for a continental crust is 2cm per year, and that of an oceanic crust

is as much as 5cm per year. This adjustment will alter the distance the plates will move between each step.

After the user has entered the various inputs, the program manipulates the values before it executes the code.

The rate of movement is not altered by the program, but the convection force and the rock density, are linked

in nature, and so must be intrinsically linked within the program, the section below explains the algorithm

that is used.

Page 35

5.4 Simulation inputs

The maximum density that can be entered is 3.5gm per cubic meter, this value was chosen because the

average density of an oceanic plate is 3 gm per cubic meter. It was clear when testing the simulator that the

convectional current behind the force of the plate’s movements must be an exponentially proportional

relationship to the Density of the plate. The graph in figure 5.14 illustrates this relationship with the software.

Figure 5.14 Rock Densities and Convectional Force

This relationship is created by the following block of code, where POceanicDensity is the input value for the

oceanic plate, and in Density is the new input from the slider:

pOceanicDensity = 4.5 – inDensity

--inverts input density, as explained in next section

pOceanicforce = inforce * (4.5-inDensity)

—-multiplies the input force, by the result of the maximum density(4.5)

minus the input density. This is in effect the same as multiplying it

by pOceanicDensity

However it is not as simple as this graph might suggest. In order for the user to be able to enter a value for

each variable they will interact with a slider bar as shown below in figure 5.15.

Page 36

Figure 5.15 Interactive sliders

As one might expect, sliding the bar from left to right should increase the value that it represents, this posed a

problem as increasing the rock density should in effect create a more restricted movement of the plate, put in

simple terms the greater the plate’s density the less it should be deformed. If the value entered into the

density slider above is put directly into the simulation, then the opposite would seem true, and plate with a

large density, will seem to deform more than one with a low density, as the values the system is using to

calculate the simulation are greater. In order to overcome this, a simple conversion is performed upon the

input value of the rock density, this number is then converted back after each frame of the simulation has

been calculated, so the user can see the feedback without confusion. This is shown in the following block of

code:

--Conversion of density value for calculation purposes

pOceanicDensity = 4.5 – inDensity

--conversion back to original input for feedback purposes, resultant

value then put into text box ("oceanicDensity")

put ((4.5 + inDensity) - pOceanicDensity)/2 into

member("oceanicDensity")

The graph in figure 5.16 shows the relationship between the density that is entered and the density that is used

to perform the calculations.

Figure 5.16 Input Rock Density Vs Calculation Density

Page 37

5.5 Radio button system and plate textures

It is possible within this simulation to change the texture of the two tectonic plates, and the various input

values which affect their performance within the simulation. This is done via a radio button system, whereby

the user selects which plate to edit by selecting their associated radio button. Once the user changes their

selection and reverts back to the unselected radio button, the variables they have already set, are

“remembered”, and the values of the sliders are updated to represent the values that were previously set. The

code for these radio buttons are in the appendices 37. The different plate textures are created each time the

simulation is reset. Each texture represents a different kind of rock such as basalt or granite; there is also a

grid texture which will enable the users to see clearly the geometry of the plates. Figure 5.17 shows the four

textures that are available. The code below shows how the textures were created and assigned to each model.

 --create a new shader

 shd1 = scene.newshader("gridshader1", #standard)

 shd2 = scene.newshader("gridshader2", #standard)

 shd3 = scene.newshader("gridshader3", #standard)

 --create 1st new texture

 txt1 = scene.newtexture("gridtexture1", #fromcastmember,

member("basalt"))

 txt1.nearfiltering = false

 txt1.quality = #low

 txt1.renderformat = #rgba4444-- to optimise performance we allow

render format not to store alpha information

 --apply the texture to shader1

 shd1.texture = txt1

 --create 2nd new texture

 txt2 = scene.newtexture("gridtexture2", #fromcastmember,

member("granite"))

 txt2.nearfiltering = false

 txt2.quality = #low

 txt2.renderformat = #rgba4444

 --apply the texture to shader2

 shd2.texture = txt2

 --create 3rd new texture

 txt3 = scene.newtexture("gridtexture3", #fromcastmember,

member("grid"))

 txt3.nearfiltering = false

 txt3.quality = #low

 txt3.renderformat = #rgba4444

 shd3.renderstyle = #wire

 --apply the texture to shader3

 shd3.texture = txt3

Page 38

Firstly a shader is created, given a name and type and assigned to the scene, this shader is then added to a

texture, which has been specified as low quality and given a specific render format for optimisation purposes.

The texture is then ready to be assigned to a model within the scene.

Figure 5.17 Various textures

5.6 Building a Keyframed animation with lingo

Extensive research showed that there is no pre-built Director function allowing the author to create

animations at run-time using lingo.

“Animations cannot be created at runtime using Lingo, they must be authored in a 3D modelling package

like 3D Max or Maya and be imported.” [19]

Like many programming obstructions, there is at least one way around this problem. The method that was

used to overcome this was somewhat ad-hock, but the result works well. An animation had to be built from

the simulation, which can be rewound and played for the student to be able to study. This is done quite

simply by taking a snapshot of the stage after each step in the simulation, each snapshot is saved to a movie

cast, and later displayed in the order at which they were taken, this creates the impression of a movie. The

animation can then be played back at varying speeds, and will play much smoother than the original

simulation, as there is very little code that needs to be executed in order to play the movie. The code below

demonstrates how the snap shots are taken, and how the cast members are deleted when a new animation

needs to be saved.

-- creates a new bitmap image of the stage and places it into a cast

member place holder

on makeBitmap

 NewBitmap = new(#bitmap, castLib "StagePictures")

Page 39

--creates new empty bitmap as a placeholder

 NewBitmap.picture = the stage.picture

--puts a screen print of the stage into the bitmap place holder

 if the timer > 180 then

 castLib("StagePictures").save()

--the system will stop takes a screen shot after 180 miliseconds

 end if

end

-- deletes any previously saved bitmaps, ready for new sequence

on deletecast

 finish = 21

 repeat with i = 2 to finish

 erase member i of castLib "StagePictures"

 end repeat

end on deletecast

The #Make Bitmap() function is invoked at each step of the simulation, as the code below demonstrates, this

way a series of images are created.

on exitFrame me

 repeat with x=1 to 20

 go "sim" --stay on this frame

 scene.model[2].translate(2,0,0)—-move continental plate

 scene.model[3].translate(-2,0,0)—-move oceanic plate

 scene.model[4].translate(-2,0,0)—-move water

 sprite(56).loc = sprite(56).loc +point(20,0)—-this is where snap

shot is taken

 makeBitmap –- Calls the make bitmap function shown above

 end repeat

 go to "endSim"

end

The #deleteccast() function is called as soon as the ‘Simulate’ button is pressed.

on mouseUp me

 deletecast

 go "sim"

end

set the member of sprite 2 to member 2 of castLib "stagePictures"

Page 40

-- This line of code simply loads the first of the snap shots onto the

stage.

Figure 5.18 shows some typical interactions with the completed simulation.

User alters setup values, and click on “set
Values”

User can use the step button to step slowly
through the simulation and alter the variables

as they wish

User Clicks on “Simulate”, and player head
begins to move as plates begin to deform.

Half way through Simulation

Page 41

Figure 5.18 Simulation Screen Shots

Simulation has finished, user can click on
“Go to movie to playback the animation.

User changes textures.

Page 42

5.7 Interactivity outside the simulator

There are many other aspects of this project which contribute to the interactive learning experience of the

tutorial. The separation of Pangaea, is an important theory in plate tectonics and one which must be

understood in order to grasp the fundamental concepts behind how the earth is formed, it is also a key

learning topic within the AQU GCSE Specification As explained in Figure 2.1 (Tectonic activity within

education). In order to incorporate this concept whilst keeping the interactivity theme, it was thought that an

interactive timeline would allow the user to understand how the separation occurred through the passing of

billions of years. Figure 5.19 below demonstrates how, scrolling the bar from left to right gives the

impression of a user controlled animation.

Figure 5.19 Pangaea Timeline

The method that was used to retrieve the current position of the slider is shown below, it checks that the input

value (pValue) is equal to current value, if not then the code sets the thumb slide to the corresponding

position.

on getCurrent4 me, val

 if pValue = val then exit

 pValue = min(max(val, pMinValue), pMaxValue)

 pThumbOffset = GetButtonOffset(pValue)

 me.DrawElement()

 sendSprite(me.spriteNum, #ChangeValue, pValue, 1)

 updateStage

end

The current position information is then sent to a handler which decides which image must be visible and

which must not. The script for this is shown in the appendices 15.

The project uses the concepts of 3D graphics throughout the implementation process, the section on “more

about fold mountains” takes the user to a 3D Diagram of a fold mountain, the user is able to rotate the model,

zoom in and out and to interact by clicking on various parts of the model to produce a detailed account of its

role in the process of plate tectonics. A new window appears when the user clicks on the “more about Fold

Page 43

Mountains” section which is in fact a separate director movie, designed to look like a television screen, with

various controls on the left hand side. The code used to open the movie in a new window is shown here:

 window("diagram.dir").open()

 window("diagram.dir").title = "3dDiagram"

The Figures that follow, illustrate how the user is able to interact with the model. Image ‘A’ shows the model

in its reset state, image ‘B’ illustrates the rotate capabilities. Image ‘C’ demonstrates the Zoom tool. Images

A-C make use of some of Directors pre-built behaviours, a modification to the code was needed to interpret

which tool to invoke from these three inbuilt behaviours. In order to do this, each time the user clicks on one

of the tools, a secret action field is set to a string which represents that tool. The modification of the pre-build

director behaviours simply checks what the action filed is currently set to, and invokes the corresponding

method. The code below shows how the action filed is set, and also how the cursor images were changed,

without using director’s pre-built cursor change behaviour.

global action

on mouseUp me

action = "rotate" --different action for each tool

cursor 2 --each number represents a cursor type, different for each

tool

end

Image ‘D’ Shows how the user is able to click on different layers of the model to find out information about

them, notice also that when the layer is clicked on, its texture becomes that of a transparent wireframe

(appendices 20). This enables the user to distinguish the various layers of the model. A difficult aspect of the

code behind this interaction was changing the cursor’s image as the user clicks on a new tool, even more

problematic, was keeping the new cursor image on display whilst the mouse is within the model areas space.

The code used to solve this problem is shown below:

global action

property pSprite

property pCursor

on mousewithin me

 pSprite = sprite(me.spriteNum)

 if action = "rotate" then –- check action field

 pCurspr=2 --changes cursor

 pSprite.cursor = pCursor

 else if action = "zoomin" then

 pCurspr=302

 else if action = "zoomout" then

 pCurspr=303

 end if

Page 44

end

This code simply checks the action field, and sets the pCursor value to the number that corresponds to the

appropriate sysmbol, e.g. value 2 will be represented as a crosshairs symbol. Figure 5.20 shows different

interactions with the 3D diagram.

A B

C D
Figure 5.20 Interactive 3D Model

5.8 Picture slide show

As the creation of this tutorial was inspired largely by a personal interest in its subject, it seemed fitting to

create a section which clearly depicts different mountains, and categorises them by the processes by which

they were created. This should enable the user to visualise in real terms, the scale and magnificence of what

they are learning about. It was done in the form of a slide show and is displayed within a frame of a television

set, the user is able to skip forwards and backwards through the photos, and pressing the off button will close

the window completely.

Page 45

Figure 5.21 Picture slide shows

The code used to open this movie within a new window shown below:

on mouseUP me

 window("mountainImages.dir").open()

 window("mountainImages.dir").title = "Pictures"

end

The movie uses Directors inbuilt built behaviours to create a typewriter effect, for the text, and the fade in and

out behaviours give smooth transitions between each picture.

5.9 Animations

To add a further dimension to the interactive learning experience, the use of 3D animations was a crucial part

of the tutorial, the user is able to play back movies which illustrate the three most common types of mountain

formation. These can be rewound and re-played, whilst the user reads about exactly how these occurrences

happen around the world. These animations were created in 3D studio max, and exported as AVI files. The

code which gives the user playback control is shown below:

on mouseUp me

 sprite(4).movietime = 0 -- Rewind to start

end

on mouseUp me

 sprite(4).movieRate = 0 -- Pause

end

on mouseUp me

 sprite(4).movieRate = 0.5 -- Play (at half speed)

Page 46

end

Figure 5.22 Animations

5.10 Navigation

In order to ensure the tutorial is consistent throughout the software, the same text size and font has been used

throughout. Another important feature is to ensure that the text always appears within the same frame, this is

done using code which automatically loads the text into a pre-set place holder. The text is stored outside the

program as an RTF (rich text format) file, and loaded into the appropriate text box or title box, as soon as the

play head enters a given frame, or once a button has been depressed. The code below shows how the text is

loaded into member (193) which is the empty text box place holder. The code also ensures that the text box

always has the same dimensions, is scrollable and that the font is size 12 and loads the title “Tectonic plates”

into a title placeholder.

on mouseUp me

 go to "learn"

 member(193).filename = "tectonics.rtf"

 member(193).width = 380

 member(193).height = 320

 member(193).boxType = #scroll

 member(193).fontsize = 12

 member(133).text = "Tectonic Plates"

end

This method of editing the text outside the program and dynamically loading it into the same frame,

guarantees that the text is always in the same location and will always have the same properties. The result of

this is that the program is efficient consistent and easy to use, as the user will quickly get used to the

standardised layout.

Page 47

6 Testing
A systematic check routine must be done in order to test that each element of the system works. This is

carried out using an ad-hoc checklist for each page of the tutorial, each command and navigation button is

tested for the correct action, the simulation is checked both for correct typical use and incorrect usage. The

results are shown in appendices 4. They demonstrate that the system works well as almost all tests were

successful. There were only two areas where the system was found to be unsatisfactory. The first

unsuccessful check was that of the intro movie as it jumps slightly during playback. The solution to this lies

in the VRAM optimisation extensions explained in the conclusion of this report, and is part of a greater

optimisation issue that could be managed in future extensions. The second Faulty test occurs when the user

clicks the reset button in the simulator, both the feedback values and the slider bars should return to zero to

but values on feedback panel remain the same. This creates issues with feedback, and could confuse the user.

This problem could not be resolved within the time scale, as it requires complex analysis of the passing of

data between the sliders and the feedback panel. Future implementations would have to asses this data flow.

After establishing that the system as a whole, does indeed function correctly, a series of user evaluations must

next be carried out, to understand its usability.

7. Evaluation
In order to establish the extent to which the Mountain Formation Tutorial is usable and successful in fulfilling

its requirements, a combination of user testing and evaluations must be carried out. The first form of testing

that has been done is a controlled investigation of a specific aspect of the interface.

7.1 Task Specific User Testing

A specific task that must be investigated is the simulation section of the tutorial to establish to what extent

user’s interaction yields desired results. The user first reads the instructions shown in appendices 6 to

familiarize themselves with how to use the simulator. They are then asked to perform 3 simple tasks, the first

is to change the textures of the continental plates, the second is to setup and create a step through simulation

and the third, to create a complete automatic simulation. Each user is timed in completing all three tasks, and

the number of user errors that each user encountered was recorded. A user error was defined for the purposes

of this test, as any result given by the system that the user did not understand or predict. It was the user’s task

to record any such errors, and explain why they thought them as such. The aim of this test is to assess the

performance of a user’s interaction with the simulation to gain a picture of how well the system adapts to the

needs and preconceptions of different users, and to illustrate how well the system teaches and explains to the

user how to do the task in hand. The results of the test are shown below in figure 6.1.

Page 48

Figure7.1 User Errors

The graph shows that the higher the amount of errors a user encounters, the longer they take to complete the

tasks. This would suggest that for some users, the program is not sympathetic to their learning types or their

expectations of the system. This test suggests that the system does not have enough feedback or

precautionary messages, therefore if a user encounters an error early on in the interaction, they are unsure

how to recover from that error, and are invariably lead into more problems. This hypothesis is re-enforced

from the further testing shown in the next sections.

7.2 Testing Requirement Analysis

In order to determine how well the Mountain Formation Tutorial meets its user requirements set out in the

initial planning stages, a series of systematic checks must be made to guarantee that the software does what is

required; the checks shown in appendices 7, layout the primary and secondary objectives, and breaks them

down into subtasks, these subtasks are then assigned a tick if they have been met, or a cross if they have not.

From establishing how many of the subtasks have been met it is possible to justify to what extent the

requirements have been fulfilled, and even to determine a percentage of fulfilment, although this is purely

conceptual. One Requirement that is not fully fulfilled is:

“To Prompt the user to enter variable values into the program such as: Force(N); Mass; time; rock type. “

The user is not prompted to alter the values for the three variables into the system before starting the

simulation. This is because it was thought to be a little too restrictive to constantly remind the user to enter in

new values each time the simulation is re-set, some users are already aware of this, and feel comfortable in

controlling the simulation at their own pace. However, other users who are less confident with using

programs of this nature, encountered user errors at this stage of the simulation and they did not feel they had

been given adequate guidance. Perhaps a solution to this would be to have a help document or ‘wizard’

within the simulation, with which the can be guided through the set up process, and disable once they feel

‘safe’.

Page 49

A second requirement which was found not to be fully fulfilled was:

“To Make the program interactive and enjoyable to use.”

The only way this was found to have failed was the exclusion of any sound media within the program. The

tutorial could have benefited from a use of sound/music, in various sections, as some users will respond better

to this form of media than to just reading for example. However, all things taken into account, the Tutorial is

diverse in its usage of interactive multimedia, and most users felt that the lack of sound did not inhibit their

learning experience.

The third objective which was not fully fulfilled within the scope of the program was:

“The user must be able to control the camera view of the animation as it is in motion.”

This objective was in fact fundamentally flawed and was not possible to implement within the time scale that

was given. Director has pre-built behaviours which enable the user to control camera positions. These

behaviours can be used in conjunction with any 3D model which does not change state whilst the program is

running. If a model does change state, and needs to be re-set to its original state at any point during run-time

(as is the case within the Mountain Formation Tutorial), then the camera behaviours that are bound to that

model, will encounter an error as the process of re-setting the model involves deleting it and re-importing.

This is true with any of the Director pre-built behaviours, there for all actions relating to the simulation had to

be "hard coded" without using any of the prebuilt behaviours.

7.3 Open ended User study

In order to attain some more open ended feedback, the user test group were instructed to complete a series of

questionnaires as they went through the program, this gives each user a chance to express their own views on

the software, and gives an insight into what the users are thinking as they use it. Ideally these questionnaires,

would be used to set up an iterative evaluation in which the views expressed are implemented within the

program and then resubmitted to the user test group, until such time that the users are happy with the

program. The feedback attained from these questionnaires can be used to understand what further

implementations could be considered in future extensions of the program. Actual questionnaires can be

found in the appendices number 5.

What has become clear from the open ended user study is firstly that each user felt that they learned from

using the Mountain Formation Tutorial, and that it was on the whole a pleasurable learning experience. It is

also clear that the simulator was a success with all the users feeling that it was the most useful learning tool

within the tutorial. Generally the design of the software was well received, and thought to be pleasing. The

problems that are apparent are once again concerning the system guidance and feedback, with some users

feeling that the system does not give adequate safety from errors, and does not provide enough user

documentation on how to interact with the tutorial.

Page 50

7.4 Targeted User study

The Targeted user study establishes a more directed feedback, and asks the users to think about certain

heuristic aspects of the system, establishing a scaled evaluation of these aspects. This gives a direct insight as

to how the users gauge the efficiency, usability, and aesthetics of the Mountain Formation Tutorial. The

results of the questionnaire can be seen in appendices 70. They demonstrate that the software scores highly in

its informability, and aesthetics, with all users giving good feedback for what they have learned from the

tutorial, the tests also point out that there is not enough safety checking, and error recovery within the

program. A more detailed analysis can be drawn, by comparing the user feedback against Nielsen principles

of heuristics: [25]

Visibility of system status

The system does not always keep users informed about what is going on with appropriate feedback, and some

of the feedback that is given is difficult to understand. It could benefit from loading screens, and wizards, to

help the user to set up the simulation.

Match between system and the real world

The system has been found to have a logical order, and is consistent in its design.

User control and freedom

The lack of an undo function means that the user must to go through an extended dialogue if they make a

mistake, this limits the user’s freedom somewhat.

Consistency and standards

Users do not have to wonder whether different words, situations, or actions mean the same thing. As they

find the program to be consistent and follow internal platform conventions.

Error prevention

This seems to have been the most common problem for all users, as the system does not take enough

precautions to prevent errors. This could be resolved by taking more time to eliminate error prone conditions

or by checking for errors more often within the simulator and presenting the user with confirmation options.

Recognition rather than recall

The feed back suggests that the user's memory load has been minimised. With the use of objects, actions, and

options clearly visible they do not have to remember information from one part of the dialogue to another.

Instructions for use of the system are visible and easily retrievable whenever appropriate.

Aesthetic and minimalist design

The design and aesthetics of the program were highly rated with dialogues not containing information which

is irrelevant, and the layout clear and concise.

Help users recognize, diagnose, and recover from errors

Error messages were found to be expressed in a way which did not explain precisely what the problems were

or how to recover from them with a constructively suggested a solution.

Page 51

8. Conclusion
After extensive evaluations and testing it is found that the Mountain Formation Tutorial is a largely effective,

aesthetic and informative program, fulfilling its objectives and requirements to a satisfactory level.

The research aspects to this project have been largely successful with an exploration into a wide range of

technologies that can be used to create and manipulate 3D simulations across the two software platforms.

Through a series of experiments and tests, it has been discovered that the best way to interlink and manipulate

the models between the two programs, is to create the geometry of the model in 3D Max, and export this

geometry as a shockwave file. The #MeshDeform modifier within Director can then be used to manipulate

the model in almost anyway that is required.

A crucial aim of this body of work is to investigate the possibilities of creating an interactive simulation by

interlinking two programs (Director and 3D Max). This has been an exploration into a somewhat uncharted

realm of multimedia design, it is well known that Director MX is a powerful tool to view, build and control

the movement of 3D graphics, but a different truth is revealed when examining specific aspects of its 3D

capabilities. When working with pre-built and pre-rendered 3D models, Director’s options for 3D

manipulation become rather limited if the 3D models are altered and reset within run-time. When this is the

case, the pre-built tools within Director for model manipulation cannot be used. As a result any actions that

must be invoked in order to alter a models geometry must be laboriously coded by the programmer, therefore

Director looses its easy interface advantages. That said, it is still possible to interface between the two

programs and as shown by this project, it can be done with a vast degree of customization, and yield desirable

results. In seeking to investigate and push the boundaries of Directors capabilities to deal with pre-rendered

models from 3D Max, much attention has been focussed on the successful research, experiments and

implantation of the simulator. This has resulted in an oversight of the extent to which a novice user might

need to refer to help and instructional documentation. In order to address and improve this issue of a lack of

visibility of the system’s status and better error recovery messages, an iterative evaluation would need to take

place, to ensure these cracks in the program’s usability are corrected.

The secondary objectives that were proposed for the system were somewhat ill-informed, and simply not

possible to implement within the time scale. It was realised early on in the implementation that these

extensions could not be carried out, therefore much thought was put into the proposal and implementation of

other possible extensions such as the interactive 3D diagram, and the 3D mountain sculptor. These

extensions give the program an added interactivity. Future extension for the program would be focussed

mainly around the usability of the simulator, and the reductions and prevention of user errors. Other

extensions would be beneficial such as a topographical map which the user could switch on and off, in order

to see how the movements of the plate affect the height of the mountain. Another part of the simulation

which could be extended, was the reactivity of the water. In reality, as a continental plate pushes against that

of an oceanic, the water levels of ocean will rise as it is pushed back. Currently the simulator does not

simulate this, different methods were tried, particularly concerning the #DeleteVertex function within

director, although none were adequately successful. In future extensions of the program, it would be

Page 52

desirable to fix this issue, and animate the movement of the oceans, in response to continental plate

movements.

Alternate methodologies could have been used to implement the software, although it was found that a

combination of Shockwave exportation and the #MeshDeform function serves its purpose well, further

experimentation with the bone style animations could also yield a desirable result. This idea of taking a

methodology which is specifically designed for the emulation of a bipedal skeleton, and adapting it for the

purposes of this project is an inviting one as it investigates the boundaries of the bones integration system of

Director, in the same way that this project has sought to extend the limitations of the #MeshDeform function.

The software has undergone some crucial optimization extensions but further improvements can still be

made. Two major areas for performance optimization are height and width of a 3D image and the size of the

users desktop. This is because VRAM is allocated for both the desktop and the 3D images. Very large

desktop sizes will require a considerable amount of VRAM. The 3D images will need to allocate an amount

of VRAM that’s dependant on the size of the image, the colour depth of the screen and the z-buffer for the

active 3D renderer. The amount of VRAM needed for the image can often exceed the amount needed for the

desktop. One key area of performance is preserving VRAM, and so a detailed analysis of controlling the

image and the desktop could vastly optimise the program. It would also be useful to determine the amount of

VRAM on the user’s video card and/or to estimate the amount of VRAM the Director project requires. There

are three aspects which dictate a projects VRAM requirement these are:

The screen

(Screen width * Screen height * Colour

Depth)

VRAM screen requirements

3D Images (Image width * Image height * colour depth) Image colour requirements

 (Image width * Image height * zBuffer)

Image depth requirements

 Image colour + Image depth) Total Image VRAM

requirements

Textures Texture width * Texture * colour depth) Texture VRAM requirements

Once the projects VRAM requirements have been established alongside the Users VRAM capabilities, a

number of steps can be taken to improve optimization, such as:

• Scaling down textures, as they are loaded based on the ratio between the amount of VRAM required

and the amount present

• Use multiple external casts libraries with pre-made textures for different VRAM Configurations

• Force users into software rendering mode, with a scaled down version of the project

• Warn users tat they do not have enough VRAM

Implementing these optimisation extensions, alongside the extensions suggested for simulation would

enhance the user’s learning experience, and ensure the Program always runs efficiently.

Page 53

9. References

[1] 3D Studio Max® 7.0, discreet, Copyright © 1997-2004, Inc All rights reserve, Help documentation

[2] Director, MX, © 1984-2002 Macromedia Inc Al rights reserved

[3] Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Computer_simulation, Accessed on

10/11/05

[4] J.Westaway & E.Rawling, Geography Dept Qualifications and Curriculum Authority

 “A new look for GCSE geography?” 2001

[5] J.Westaway & E.Rawling, Geography Dept Qualifications and Curriculum Authority

 “A new look for GCSE geography?” 2001

[6] British Computer Society 2005, Code of Conduct, http://www.bcs.org/server.php?show=nav.6030

Accessed on 05/11/05

[7] British Computer Society 2005, Code of Conduct http://www.bcs.org/upload/pdf/cop.pdf

Accessed on 05/11/05

[8] AQA Examining board, General Certificate of Secondary EducationGeography C 200,

http://www.aqa.org.uk/qual/pdf/AQA-3033-3038-W-SP-07.pdf accessed on 10/11/05

[9] AQA Examining board, General Certificate of Secondary EducationGeography C 200,

http://www.aqa.org.uk/qual/pdf/AQA-3033-3038-W-SP-07.pdf accessed on 12/11/05

[10] David Leat, Geography--Study and teaching (Secondary), Thinking through geograph
 Page 120

[11] Richard Fothergil,l Implications of new technology for the school curriculum, Kogan Page, 1988
 Page 120

[12] Adam Kane ForgeFX lead programmer, www.forgefx.com accessed on 12/11/05

[13] University South Wales , Australia http://www.fbe.unsw.edu.au/Learning/Director/3D/Havok/
,last accessed: 6/3/2006

[14] Macromedia official website

http://www.macromedia.com/support/director/work_3d/models_use_in_sw/
models_use_in_sw07 .htm,l last accessed: 6/2/2006

[15] 3D Studio Max® 7.0, discreet, Copyright © 1997-2004, Inc All rights reserved, Help

Documentation

[16] Copyright 1999-2005 Havok.com, http://www.havok.com/, accessed on 12/11/05

[17] Paul Catanese, Directors Third Dimension 2002 Page 781

[18] Washington University, 21-Feb-2001 18:52,

http://www.atmos.washington.edu/2001Q1/211/Group_projects/group_A_W01/what_makes _the
_plates_move.ht, accessed on 15/03/06

[19] Paul Catanese, Directors Third Dimension 2002 Page 785

Page 54

[20] University South Wales , Australia
http://www.fbe.unsw.edu.au/Learning/Director/3D/3DCastMembers.asp ,accessed on 8/3/2006

[21] Lingo widgets Slider

http://www.ullala.at/experiments/ilwidgets/index.html, accessed on 15/3/2006

[22] Lingo widgets Radio Button
http://www.ullala.at/experiments/ilwidgets/index.html, accessed 13/3/2006

[23] Ben Bederson / Saul Greenberg, Graphical Screen Design

http://www.cs.umd.edu/class/fall2002/cmsc434-0201/notes8.pdf, accessed 13/11/2005

[24] Moorland School, Lancashire
http://www.moorlandschool.co.uk/earth/tectonic.htm , accessed 13/11/2005

[25] Jacobs Nielsen, Principles of Heuristics for User interaction
http://www.useit.com/papers/heuristic/heuristic_list.html, accessed 10/3/2005

10. Bibliography

• Director’s Third Dimension - Paul Cananese, 2002, Que publishing

• David Leat, Thinking through geography, 2005, Nelson Thornes

• Implications of New Technology for the School Curriculum - Richard Fothergill, 1988, Kogan
Page publishing

• Issues in Geography Teaching - Chris Fisher, Tony Binns - 2000 RoutledgeFalmer

Page 55

11. Figures

Figure 2.1 Tectonic activity within education [10] ...10
Figure 3.1 Types of Interactivity ...12
Figure 3.2 Topographic Map Case Study Prentice Hall...13
Figure 3.3 Ocean Wave Case Study Prentice Hall..13
Figure 3.4 Case Study Moorland school ...15
Figure 4.2 Final Design and navigation map ...17
Figure 4.2 Start page front end design Mid-FI 1 ..19
Figure 4.3 Simulation page front end design Mid-FI 1...19
Figure 4.4 Simulation page front end design Mid-FI 2...20
Figure 4.5 Menu page design Mid-FI 2...21
Figure 4.6 Tectonic plates design Mid-FI 2 ..21
Figure 4.7 Animation design Mid-FI 2..22
Figure 5.1 Key Frame Interpolation ...23
Figure 5.2 Bone animation ..25
Figure 5.3 Rendered Bone animation..25
Figure 5.4 Space warps ...26
Figure 5.5 Push and Wave Space warp...26
Figure 6.5 Shockwave file analysis ...27
Figure 5.7 Detailed picking of a plane..28
Figure 5.8 Detailed picking Code ...29
Figure 5.9 Construction of 3D model..30
Figure 5.10 3D polygon world ..30
Figure 5.11 Plane separation ..31
Figure 5.12 Plane separation with Collision Detection..32
Figure 5.13 Plane separation Resolved...32
Figure 5.13.1 Plate density error ..34
Figure 5.14 Rock Densities and Convectional Force..35
Figure 5.15 Interactive sliders ..36
Figure 5.16 Input Rock Density Vs Calculation Density...36
Figure 5.17 Various textures ...38
Figure 5.18 Simulation Screen Shots...41
Figure 5.19 Pangaea Timeline ..42
Figure 5.20 Interactive 3D Model ...44
Figure 5.21 Picture slide shows ..45
Figure 5.22 Animations ...46
Figure7.1 User Errors ...48

Page 56

12. Appendices

1 Planning..58
2 Gantt chart..59
3 Email contacts with Forge FX..60
4 Ad-hoc Test ...61
5 Open ended user study 6 Specific task user testing ..65
6 Specific task user testing...66
7 Requirement Analysis Checklist ...67
8 System Wide code and behaviours..68
9 Jump to lean and load Text...69
10 Jump to Simulator and load Text..69
11 Jump Mountain Sculptor...69
12 Jump to “fold” and load Text...69
13 Jump to Front Menu ...69
14 Pangea Timeline Scroll Script ..70
15 Pangaea Display handler ...70
16 Load Diagrams.dir ...71
17 Jump to “animations” ..71
18 Jump to “Lets see some pictures” ..71
19 Jump to tutorial1...71
20 Image D, Pick layer, display text, change render style ..72
21 Orbit camera...74
22 Orbit camera trigger...75
23 Check cursor symbol...75
24 Camera zoom in..75
25 Zoom camera trigger ..76
26 Zoom camera out ..77
27 Zoom out camera trigger ..78
28 Reset Camera..78
29 Reset Camera Trigger...78
30 Button Navigations ...79
31 Button Navigations ...79
32 Button Navigations ...79
33 Button Navigations ...80
34 Button Navigations ...80
35 Close slideshow ..81
36 Button Navigations ...81

Page 57

37 Radio Button ...82
38 Update rate of movement value ..84
39 Update convection force value ...84
40 Update rock density value ..85
41 Set rate of Movement slider ..86
42 Set rate of movement feedback ...86
43 Set convection force slider..86
44 Set convection force feedback...86
45 Set rock density slider...86
46 Set density feedback..87
47 Set values Button...87
48 Reset Button ..88
49 Step Button..88
50 Simulate Button...91
51 ‘Sim’ Frame ..91
52 Making a screen shot of simulation ..92
53 Change texture to Basalt ..92
54 change texture to Grid ..92
55 change texture to obsidian..93
56 change texture to Basalt ...94
57 Initialisation script..94
58 Play head script to call initialisation..96
59 Check 3DScene ...96
60 Naming movie globals ..97
61 Mouse over help text ...97
62 Play animation..97
63 Deforming the Plate..97
64 Initializing scene...98
65 Create Box and Plane Primitive with lingo..99
66 Changing textures, granite basalt, and grid...100
67 Set up globals for movie ...101
68 Check scene is ready...101
69 Reset button ..101
70 Targeted User study..102

Page 58

1 Planning
The Gantt chart shown in appendices 2 shows the detail of planning that has been put into the creation of this
project. Each specific Task has been broken down into a series of executable steps, which have been defined
in terms of their duration. The chart shows the expected duration of each task, and the progress thus far.

Background Research (plate tectonics)
The background research involves understanding how the movements of tectonic plates affect the creation of
the earth’s surface. The purpose of this research is to understand what kinds of different movements there are
and what kinds of physics are involved.

Background Research (Director)
This is an important aspect of the creation process. As a programmer I have never used Director before,
although I am aware of some of its capabilities. This research is intended to understand how Director works,
and eventually to find what it is and is not capable of in relation to the project.

Investigate how to alter 3d animations in lingo
This task was ill informed, after investigation into this subject it is understood that if the animation is
rendered before being imported into Director, Lingo can have little effect upon the animation other than
simple control mechanisms, e.g. Stop, rewind, pause etc. However lingo can be used to create 3D graphics,
but this would be far more time consuming that using a modelling package such as 3DS max, and to a less
attractive effect. It has been discovered that the Havok physics engine may be more desirable to use for the
purposes of creating and manipulating real work physics within a Director movie, than lingo. Therefore an
addition to the planning of this project has been to research the Havok physics engine.

Experiment with various Space warps
After in-depth research it has been found that space warps do not export to a format which Director
recognises. Therefore this task has been altered to that of researching the Havok physics engine.

Meet With Dr Newbury
This has been a regular meeting every week to discuss the development of the project and take feedback from
Dr Newbury.

Page 59

2 Gantt chart

Page 60

3 Email contacts with Forge FX

From: ben smith [mailto:benbo4@hotmail.com]
Sent: Thursday, November 24, 2005 1:28 AM
To: info@forgefx.com
Subject: 3D Mountain formation Simulator

Dear sir/Madam

I am currently in the process of undertaking a final year project at university in England.
My project is to create a 3D mountain formation simulator (think tectonic plates), in which the user
can dynamically alter different variables within director such as force, mass etc.., and a resulting
animation showing the tectonic movement will be played, each time a variable is changed, the
animation will respond and look different. I am modelling the graphics in 3D Studio max, and
creating the interactivity Via Director. I was very impressed with your case study for Prentice Hall..
And i can see that you have used 3DS MAX and director to a similar effect and to some degree of
success. My question to you is this:

I am aware that you cannot export deformable meshes into director without using BONES.. I am
extremely interested in the techniques you used for your wave formation simulator and your
topographic map. Do either of these involve bones? I realise that this project is as much of an
investigation into the possibilities of integrating these two software’s, as much as it is to create a
tutorial. Do you think my project is feasible? I would very much appreciate ANY advise or help you
may have time to give me.

Thanks in Advance

Ben Smith.

Hi Ben,

Check out the meshDeform modifier. This allows you to use Lingo script within Director to
programmatically move vertices within a given 3D model. This technique does not use bones. In
general, it's more feasible to alter the geometry of models that you've built from scratch via code
rather than altering models created in Max. If you build the models yourself in code, you know
exactly how they're put together, this is how we made the wave simulator. Models that come in from
Max may be easier to generate but can also have a more complex structure which is harder to
manipulate via code in the end.

For a good source of info from experts, subscribe to:
http://nuttybar.drama.uga.edu/mailman/listinfo/dir3d-l

Cheers,

Adam

// Adam Kane (akane@forgefx.com)
// Lead Programmer, ForgeFX, LLC
// 808.946.9879 office
// 808.375.2067 cell
// www.forgefx.com

Page 61

4 Ad-hoc Test

Page Test instruction Result Correct
IntroPage Check that Skip intro

button goes to main menu
Goes to Main menu

 Check intro plays smoothly

until the end
Some minor jumps

Main Menu
Page

Check Learn link Goes to Tectonic plates page

 Check Experiment Link Goes to Simulation Page

 Check Play Link Opens mountain sculptor window

Tectonic
Plates Page

Check Main Menu Link Goes to Main menu

 Check Next Page Link Goes to Fold Mountain Page

 Check Back Link Goes to Main menu

 Ensure Pangea Timeline
works

Images fade in and out, according to movement of
slider

 Check scroll arrows Text is scrollable

 Check More about Fold
Mountains Link

Opens 3D Diagram Page

 Check Animations link Goes to Animation Guide

 Check Lets See Some
Pictures link

Goes to Picture index page

 Check Take me to the
Simulator link

Goes to getting to know the simulator page

 Check Back Link Goes back to main Menu page

3D
Diagram

Rotate Image appears to rotate, controlled by mouse
movement

 Zoomin Camera zooms in

 Zoomout Camera zooms out

 Reset Camera is reset

 Pick Model to change Text Rendering of clicked layer changes to wire frame,
and text is displayed explaining how layer is made

 Close window Window shuts down

Animation
Guide

Converging link Jumps to converging animation page

 Diverging link Jumps to diverging animation page

 Transform Link Jumps to transform animation page

 Back link Goes back to Tectonic plates page

 Next link Goes to converging animation page

 Main Menu link Jumps to main menu

Converging
Plates

Rewind button Animation returns to beginning

 Pause button Animation pauses

 Play button Animation plays

 Back button Goes back to animation guide

 Next button Goes to Diverging plates page

Page 62

 Main Menu Button Goes back to main menu

 Scroll Bar Text is scrollable

Diverging
Plates

Rewind button Animation returns to beginning

 Pause button Animation pauses

 Play button Animation plays

 Back button Goes back to Converging

 Next button Goes to Transform animation

 Main Menu button Goes back to main Menu

 Scroll Bar Text is scrollable

Transform
Plates

Rewind button Animation returns to beginning

 Pause button Animation pauses

 Play button Animation plays

 Back button Goes to Diverging plate animation page

 Next button Goes to converging plate animation

 Main Menu button Goes back to main menu

 Scroll Bar Text is scrollable

Fold
mountain
Page

Picture links Each pictures open the slide show window

 Back button Goes back to fold mountain page

 Next button Goes to getting to know the simulator page

 Main Menu Button Goes to main menu

Picture
slideshow
Page

Back button Goes back one pictures

 Next button Goes forward on pictures

 Off button Shuts down window

 Fade in New images fades in smoothly when user clicks next

 Fade Out Current image fades out smoothly when user clicks
next

 Typewriter text effect Text appears with typewriter effect, and good
readable speed

Getting to
know the
simulator
Page

Back button Goes back to fold mountain page

 Next button Goes to control panel page

 Main Menu button Goes back to main menu

 Control Panel link Goes to control panel page

 Cameras link Goes to cameras page

 Feedback Link Goes to Feedback Page

 Text scroll bars Text is scrollable

Page 63

Control
Panel Page

Back button Goes back to getting to know simulator page

 Next button Goes to cameras page

 Main Menu button Goes back to main menu

 Fade in effect Steps fade in slowly and are readable

Cameras
Page

Text scroll bars Text is scrollable

 Back button Goes back to control panel page

 Next button Goes to feedback page

 Main Menu button Goes back to main menu

Feedback
page

Text scroll bars Text is scrollable

 Back button Goes back to cameras page

 Next button Goes to getting to know simulator page

 Main Menu button Goes back to main menu

Simulation
Page

Click Radio Buttons check
that sliders adjust to
previous settings, as shown
in feedback panels

Radio buttons are selectable, sliders immediately
jump to value shown in corresponding feedback.

 Alter sliders and click set
values, make sure feedback
panel reflects values that
have just been set

Sliders are adjustable, clicking set values,
automatically enters values into feedback panel

 Set values and click step,
ensure plates move and
react upon collision

Plates collide and respond as expected

 Click step 4 times, plates
should move and deform

Plates translate, and geometry is alters

 Click reset, values should
return to zero

Sliders return to zero, but values on feedback panel
remain the same

 Select oceanic plate and
assign grid texture, basalt
texture and granite texture

Textures map on to plate

 Select continental plate and
assign grid texture, basalt
texture and granite texture

Textures map on to plate

 Set all inputs to Minimum
values and click simulate.

Result is as expected, plates collide slowly, and
geometry deformation is minimal

 Set all inputs to Maximum
values and click simulate.

Result is as expected, with plates colliding fast, and
geometry deforming a lot.

Page 64

 Set all inputs to medium
values and click simulate.

Result is good, collision is medium speed,
deformation is more than when values are set to
minimum, and les than when values are set to
maximum

 Check Go to movie button,
movie should play back
smoothly, and be
rewindable

Animations is saveable, movie can be played back
and rewound

 Place mouse over sliders to
test mouse over instructions
text

Instruction text appears in side view panel

 Check main Menu button Goes to main menu

Mountain
Sculptor
Page

Close window button Window closes

 click on basalt Texture changes correctly

 Click on granite Texture changes correctly

 Click on grid Texture changes correctly

 Click on plate with right
mouse button 3 times

Area that was clicked, drops 3 times, on y axis

 Click on plate with lest
mouse button 3 times

Area that was clicked, raises 3 times, on y axis

Page 65

5 Open ended user study

Page 66

6 Specific task user testing

Page 67

7 Requirement Analysis Checklist

Requirement Analysis In order to fulfil requirement Program must have :
Create a tutorial explaining how Fold
Mountains are formed demonstrating the
tectonic activities involved, and the result of
these activities.

Requirement met 100%

Rendered Animation of fold mountain.

Explanation of Pangea and tectonic plates.

Pangea timeline.

3D still model with interactive controls.

Fold Mountain Interactive simulation.

Prompt the user to enter variable values into the
program such as: Force(N); Mass; time; rock
type.

Requirement met 75%

Prompt to tell the user to go back if values are
.not entered
Help to suggest values to be entered.

Visibility status for feedback of current values.

Reset value options.

Introduce causality where altering any given
variable affects the resultant 3D animation.

Requirement met 100%

Ability to alter value once it is entered.

Instant reaction showing change in simulation
once value is changed.
Ability to alter values during a simulation.

Make the program interactive and enjoyable to
use.

Requirement met 86%

correctly working, interactive Animations.

Interactive slide show.

Sound samples and effects to enhance
interactions.
AVI videos.

Ability to manipulate 3D model using
interactive tools.
Buttons working correctly and link to correct
Place.
a “Play” section with interactive model in
which geometry is editable at runtime.

Investigate the possibilities of combining 3DS
MAX technologies with that of Macromedia
Director

Requirement 100% met

Investigate and explanation of Dynamics

Investigate and explanation of Havok.

Investigate and explanation of Bones.

Investigate and explanation of Spacewarps.

Investigate and explanation of Shockwave.

Investigate and explanation of #MeshDeform.

Program must accord with what is required
from National Curriculum.

Requirement 100% met

Explain Global distribution of continental
plates. Tensional and compressional margins.

Explain Characteristic features and formation
of fold mountains.
Occurrence and measurement of
earthquakes.

Page 68

The user will be able to control the camera
view of the animation as it is in motion.

The user will be able to zoom in and out of the
animation.

Requirement 50% met

Camera tool to enable user to move camera
around image during simulation.
Multiple Camera views of simulation.

The program will have a tutorial on how to use
the simulator.

Requirement 100% met

Section to explain how to change variables.

Section to describe how tutorial works.

Section to explain control panel.

Section to explain camera views.

The program will also act as a tutorial on other
types of tectonic activity.

Requirement 100% met

Section to explain and depict Dome mountains.

Section to explain and depict Fault block
mountains.
Section to explain and depict Plateau
mountains.
Section to explain and depict Volcanic
mountains.
Animations of other types of mountain
formations .
Pictures to illustrate different types of
mountain formations.

Primary Objectives 90% Met
Secondary Objectives
The program will simulate more than one type
of tectonic movement. ….
The user will be able to ‘play’ with their new
mountain range, by creating snow and wind.
The user will be able to place a character in the
scene to explore the terrain. ….
The program will have a quiz/game on
mountain formations. ….
Secondary Objectives 0% Met

8 System Wide code and behaviours
--changes colour of sprite upon mouse over this is used for ALL navigation text controls
on mousewithin me
 sprite(me.spritenum).color = RGB(100,100,100)
end

on mouseleave me
 sprite(me.spritenum).color = RGB(0,0,0)
end

--Makes sure player head does not carry on past this point unless directed by nav action
on exitFrame me
 go to the frame
end

Page 69

Front Menu Page

9 Jump to lean and load Text
--This behaviour Ensures that when the "learn" button is clicked, the player head will jump
to the label "learn" and load the tectonics.rtf file into the textbox.
on mouseUp me
 go to "learn"
 member(193).filename = "tectonics.rtf"
 member(193).width = 380
 member(193).height = 320
 member(193).boxType = #scroll
 member(193).fontsize = 12
 member(133).text = "Tectonic Plates" -- loads title
end

10 Jump to Simulator and load Text
on mouseup me
 go to "init"
 end

11 Jump Mountain Sculptor
on mouseup me
window("refinedpickingFinal4.dir").open()
window("refinedpickingFinal4.dir").title = "Mountain Sculptor"
end

Learn Menu Page

12 Jump to “fold” and load Text
--This behaviour Ensures that when the "next" button is clicked, the player head will jump
to the label "fold" and load the foldMountains.rtf file into the text box
on mouseup me
 member(193).filename = "fold.rtf"
 member(193).width = 380
 member(193).height = 300
 member(193).fontsize=12
 member(133).text = "Fold Mountains"
 go to "fold"
end

13 Jump to Front Menu
-- goes to label "start" when clicked.

Page 70

on mouseup me
 go to "start"
 end

14 Pangea Timeline Scroll Script
-- This has been modified and added too. The original script was taken from
http://www.ullala.at/experiments/ilwidgets/index.html reference number[21]
only the modified code is shown below.

--some code
on getCurrent4 me, val
 if pValue = val then exit
 pValue = min(max(val, pMinValue), pMaxValue)
 pThumbOffset = GetButtonOffset(pValue)
 me.DrawElement()
 sendSprite(me.spriteNum, #ChangeValue, pValue, 1) –- sends current value to handler
 updateStage

end
--some code

15 Pangaea Display handler
--This script receives value from scroll bar script, and decides which sprites to make
visible and which must not be seen.

property p2
property p3
property p4

on changeimage val,val2
 pValue = val2
 p1 = sprite(11)
 p2 = sprite(12)
 p3 = sprite(13)
 p4 = sprite(14)

 if val2 = "2" then
 p1.visible= true
 p1.blend = "100"
 p2.visible= false
 p3.visible= false
 p4.visible= false

 else if val2 = "3" then
 p1.visible= true
 p1.blend = "50"
 p2.visible= true
 p2.blend = "50"
 p3.visible= false
 p4.visible= false

 else if val2 = "4" then
 p1.visible= false
 p2.visible= true
 p2.blend = "100"
 p3.visible= false
 p4.visible= false

 else if val2 = "5" then
 p1.visible= false
 p2.visible= true
 p2.blend = "50"
 p3.visible= true
 p3.blend = "50"
 p4.visible= false

 else if val2 = "6" then
 p1.visible= false
 p2.visible= false
 p3.visible= true
 p3.blend = "100"
 p4.visible= false

 else if val2 = "7" then
 p1.visible= false
 p2.visible= false
 p3.visible= true

Page 71

 p3.blend = "50"
 p4.visible= true
 p4.blend = "50"

 else if val2 = "8" then
 p1.visible= false
 p2.visible= false
 p3.visible= false
 p4.visible= true
 p4.blend = "100"
 end if
 end

Fold Mountain Page

16 Load Diagrams.dir
--This behaviour opens the “diagram.dir” movie in a new window, and specifies a new title
for the window. This will run when the user click on “more about fold mountains”
on mouseup me
 window("diagram.dir").open()
 window("diagram.dir").title = "3dDiagram"
end

17 Jump to “animations”
--This behaviour ensures that when the "animations" button is clicked, the player head will
jump to the label "Animations" and load the animations.rtf file into the text box
on mouseUp me
 member(193).filename = "animations.rtf"
 member(133).text = "Animation Guide"
 go to "Animations"
end

18 Jump to “Lets see some pictures”
--This behaviour ensures that when the "lets see some pictures" button is clicked, the
player head will jump to the label “fold2”
on mouseUp me
 go to "fold2"
end

19 Jump to tutorial1
--This behaviour ensures that when the "take me to the simulator" button is clicked, the
player head will jump to the label "tutorial1" and load the tutorial.rtf file into the text
box
on mouseUp me
 member(193).filename = "tutorial1.rtf"
 member(193).height = 100
 member(193).width = 380
 member(193).boxType = #scroll
 member(193).fontsize=12
 member(133).text = "Other Mountain Types"
 go to "tutorial1"
 member(133).text = "Getting to know the Simulator"
end

Page 72

More about fold Mountains

20 Image D, Pick layer, display text, change render style

property spritenum, origin

global scene1
property whichmodel
property modellist

on preparemovie
 scene1 = member("3d")
 -- In our preparemovie event we will take care of
 -- naming all globals that we will use through the
 -- rest of the movie - generally we will be setting
 -- a global variable with a reference to the SW3D
 -- castmember to ease our typing burden later on
 -- create a new shader

end

on beginsprite
 preparemovie
 origin = point(sprite(spritenum).left, sprite(spritenum).top)
 --create backdrop--

end

on mousedown me
 pt = the clickloc - origin

 -- get detailed info
 modellist = sprite(spritenum).camera.modelsUnderLoc(pt, 1, #detailed)

 --make sure that a model has been hit
 if modellist <> [] then
 --find which model was hit
 whichmodel = modellist[1][#model].name
 modellist[1][#model].shader.renderstyle = #wire
 sendallsprites(#changetext,modellist[1][#model].name , whichmodel)
 end if
end

on mouseup me
if modellist <> [] then
 --find which model was hit
 whichmodel = modellist[1][#model].name
 modellist[1][#model].shader.renderstyle = #fill
 sendallsprites(#changetext,modellist[1][#model].name , whichmodel)
 end if
end

------ The #changeText method, alters the text box depending which layer has been hit.
on ChangeText models, whichmodel

Page 73

 if whichmodel = "lithosphere1" then
 member(5).text="Oceanic crust is the part of Earth's lithosphere which underlies the
ocean basins.It is thinner and generally less than 10 kilometres thick, but more dense than
continental crust, with a density of about 3.3 grams per cubic centimeter. Oceanic crust is
composed of mafic basaltic rocks. Most of the present day oceanic crust is less than 200
million years old because it is continuously being created at oceanic ridges and destroyed
by being pulled back into the mantle in subduction zones by the processes of plate
tectonics."
 end if

 if whichmodel = "lithosphere2" then
 member(5).text ="The continental crust is the layer of granitic, sedimentary and
metamorphic rocks which form the continents and the areas of shallow seabed close to their
shores, known as continental shelves. It is less dense than the material of the Earth's
mantle and thus floats on top of it. Continental crust is also less dense than oceanic
crust, though it is considerably thicker; 20 to 80 km versus the average oceanic thickness
of around 5-10 km. About 40% of the Earth's surface is now underlain by continental
crust.As a consequence of the density difference, when active margins of continental crust
meet oceanic crust in subduction zones, the oceanic crust is typically subducted back into
the mantle. Because of its relative low density, continental crust is only rarely subducted
or re-cycled back into the mantle (for instance, where continental crustal blocks collide
and overthicken, causing deep melting). For this reason the oldest rocks on Earth are
within the cratons or cores of the continents, rather than in repeatedly recycled oceanic
crust; the oldest continental rock is the Acasta Gneiss at 4.01 Ga, while the oldest
oceanic crust is of Jurassic age. The height of mountain ranges is usually related to the
thickness of crust. This results from the isostasy associated with orogeny (mountain
formation). The crust is thickened by the compressive forces related to subduction or
continental collision. The buoyancy of the crust forces it upwards, the forces of the
collisional stress balanced by gravity and erosion. This forms a keel or mountain root
beneath the mountain range, which is where the thickest crust is found. The thinnest
continental crust is found in rift zones, where the crust is thinned by detachment faulting
and eventually severed, replaced by oceanic crust. The edges of continental fragments
formed this way (both sides of the Atlantic Ocean, for example) are termed passive
margins."
 end if

 if whichModel = "asthenosphere1" then
 member(5).text= "The asthenosphere is the region of the Earth between 100-200 km below
the surface, but perhaps extending as deep as 400 km, that is the weak or soft zone in the
upper mantle. It lies just below the lithosphere, which is involved in plate movements and
isostatic adjustments. In spite of its heat, pressures keep it plastic, and it has a
relatively low density. Seismic waves, the speed of which decrease with the softness of a
medium, pass relatively slowly though the asthenosphere, the cue that originally alerted
seismologists to its presence; thus it has been given the name low-velocity zone. Under
the thin oceanic plates the asthenosphere is usually much nearer the seafloor surface, and
at mid-ocean ridges it rises to within a few kilometres of the ocean floor."
 end if

 if whichModel = "asthenosphere2" then
 member(5).text= "The asthenosphere is the region of the Earth between 100-200 km below
the surface, but perhaps extending as deep as 400 km, that is the weak or soft zone in the
upper mantle. It lies just below the lithosphere, which is involved in plate movements and
isostatic adjustments. In spite of its heat, pressures keep it plastic, and it has a
relatively low density. Seismic waves, the speed of which decrease with the softness of a
medium, pass relatively slowly though the asthenosphere, the cue that originally alerted
seismologists to its presence; thus it has been given the name low-velocity zone. Under
the thin oceanic plates the asthenosphere is usually much nearer the seafloor surface, and
at mid-ocean ridges it rises to within a few kilometres of the ocean floor."
 end if

if whichModel = "ocean" then
member(5).text ="The nature of a convergent boundary depends on the type of lithosphere in
the plates that are colliding. Where a dense oceanic plate collides with a less-dense
continental plate, the oceanic plate is typically thrust underneath, forming a subduction
zone. At the surface, the topographic expression is commonly an oceanic trench on the ocean
side and a mountain range on the continental side. An example of a continental-oceanic
subduction zone is the area along the western coast of South America where the oceanic
Nazca Plate is being subducted beneath the continental South American Plate. As the
subducting plate descends, its temperature rises driving off volatiles (most importantly
water). As this water rises into the mantle of the overriding plate, it lowers its melting
temperature, resulting in the formation of magma with large amounts of dissolved gases.
This can erupt to the surface, forming long chains of volcanoes inland from the continental
shelf and parallel to it. The continental spine of South America is dense with this type of
volcano. In North America the Cascade mountain range, extending north from California's
Sierra Nevada, is also of this type. Such volcanoes are characterized by alternating
periods of quiet and episodic eruptions that start with explosive gas expulsion with fine
particles of glassy volcanic ash and spongy cinders, followed by a rebuilding phase with
hot magma. The entire Pacific ocean boundary is surrounded by long stretches of volcanoes

Page 74

and is known collectively as The Ring of Fire. Where two continental plates collide the
plates either crumple and compress or one plate burrows under or (potentially) overrides
the other. Either action will create extensive mountain ranges. The most dramatic effect
seen is where the northern margins of the Indian subcontinental plate is being thrust under
a portion of the Eurasian plate, lifting it and creating the Himalaya."
---- define length width and type of text box
end if
member(5).width = 480
member(5).height = 150
member(5).boxType = #scroll
member(5).fontsize = 10
end

21 Orbit camera
---- This is a pre-built director behaviour that has been modified, only the modified parts
of the code is shown here
--
--some code
--
--PURPOSE: Checks to see if a trigger event has been received. If so it executes
-- the requested handler.
--ACCEPTS: 'aScript' as a reference to a script member.
--RETURNS: Nothing.

on enterFrame(me)
 if action = "rotate" then -- modification to check action

 if pMemberStateOK then

 if pInitialized then

 if pQueuedTriggeredEvents.count > 0 then

 repeat with j = 1 to pQueuedTriggeredEvents.count
 tEvent = pQueuedTriggeredEvents[j]

 case tEvent of
 #orbitX:
 me.orbitX(pModel)
 #orbitY:
 me.orbitY(pModel)
 #orbitZ:
 me.orbitZ(pModel, #vertical)

 #orbitXY:
 me.orbitX(pModel)
 me.orbitY(pModel)
 #orbitXZ:
 me.orbitX(pModel)
 me.orbitZ(pModel, #vertical)
 #orbitYZ:
 me.orbitY(pModel)
 me.orbitZ(pModel, #horizontal)

 end case
 end repeat

 pQueuedTriggeredEvents = []

 end if

 else
 pInitialized = me.initialize()
 end if

 else
 pMemberStateOK = me.isMemberStateOK()
 end if

 end if
end enterFrame

--PURPOSE: Saves the current mouse information and calculates the vector under
-- the current mouse location.
--ACCEPTS: 'me' as an instance of this script.
--RETURNS: Nothing.

Page 75

on mouseDown(me)

 if action = "rotate" then -- modification to check action

 if pInitialized then
 pLastMouseLocV = the mouseV
 pLastMouseLocH = the mouseH
 pLastMouseWorldVector = pCamera.spriteSpaceToWorldSpace(the mouseLoc)
 end if
 end if
end mouseDown

--PURPOSE: Saves the current mouse information and calculates the vector under
-- the current mouse location.
--ACCEPTS: 'me' as an instance of this script.
--RETURNS: Nothing.
--
--Public Custom Handlers--
--
--PURPOSE: Convert a descriptive, localized string into an associated handler
-- and execute that handler.
--ACCEPTS: 'me' as an instance of this script.
-- 'aEvent' as a string.
--RETURNS: Nothing

on registerEvent(me, aEvent, aTriggerSpriteNum, aTargetBehaviorInstance)
 if action = "rotate" then -- modification to check action

 if pInitialized then
 if me = aTargetBehaviorInstance then

 tHandler = \
 [#orbitXY:"Camera orbit on X and Y",\
 #orbitXZ:"Camera orbit on X and Z",\
 #orbitYZ:"Camera orbit on Y and Z",\
 #orbitX: "Camera orbit on X axis",\
 #orbitY: "Camera orbit on Y axis",\
 #orbitZ: "Camera orbit on Z axis"].getOne(aEvent)

 if symbolP(tHandler) then
 pQueuedTriggeredEvents.add(tHandler)
 end if

 end if
 end if
 end if

end registerEvent
--
--some code
--

22 Orbit camera trigger
global action
on mouseUp me
 action = "rotate" -- tells system which action to do
 cursor 2 -- sets cursor to crosshairs
end

23 Check cursor symbol
global action
property pSprite
property pCursor
-- ensures that the cursor always shows the correct symbol
--whilst mouse is over the image according to which action is selected
on mousewithin me
 pSprite = sprite(me.spriteNum)
 if action = "rotate" then
 pCurspr=2
 pSprite.cursor = pCursor
 else if action = "zoomin" then
 pCurspr=302
 else if action = "zoomout" then
 pCurspr=303
 end if
end

24 Camera zoom in
---- This is a pre-built director behaviour that has been modified, only the modified parts
of the code is shown here

Page 76

--
--some code
--

--PURPOSE: Checks to see if a trigger event has been received. If so it executes
-- the requested handler.
--ACCEPTS: 'me' as an instance of this script.
--RETURNS: Nothing.

on enterFrame(me)

 if action = "zoomin" then -- code enhancement
 if pMemberStateOK then

 if pInitialized then

 if pQueuedTriggeredEvents.count > 0 then

 repeat with j = 1 to pQueuedTriggeredEvents.count
 tEvent = pQueuedTriggeredEvents[j]

 case tEvent of
 #dollyCameraIn:
 me.dollyCamera(-pDollyAmount)
 #dollyCameraOut:
 me.dollyCamera(pDollyAmount)
 end case

 end repeat

 pQueuedTriggeredEvents = []

 end if

 else
 pInitialized = me.initialize()

 end if

 else
 pMemberStateOK = me.isMemberStateOK()
 end if
 end if
end enterFrame
--
--Public Custom Handlers--
--
--PURPOSE: Convert a descriptive, localized string into an associated handler
-- and execute that handler.
--ACCEPTS: 'me' as an instance of this script.
-- 'aEvent' as a string.
--RETURNS: Nothing

on registerEvent(me, aEvent, aTriggerSpriteNum, aTargetBehaviorInstance)

 if action="zoomin" then -- code enhancement
 if pInitialized then
 if me = aTargetBehaviorInstance then

 tHandler = [#dollyCameraIn: "Move Camera In", \
 #dollyCameraOut: "Move Camera Out"].getOne(aEvent)

 if symbolP(tHandler) then
 pQueuedTriggeredEvents.add(tHandler)
 end if

 end if
 end if
 end if

end registerEvent
--
-- more code

25 Zoom camera trigger
global action
on mouseUp me
 action = "zoomin"
 cursor 302

Page 77

end

26 Zoom camera out
---- This is a pre-built director behaviour that has been modified, only the modified parts
of the code is shown here
--
--some code
--
-PURPOSE: Checks to see if a trigger event has been recieved. If so it executes
-- the requested handler.
--ACCEPTS: 'me' as an instance of this script.
--RETURNS: Nothing.

on enterFrame(me)

 if action = "zoomout" then --check action
 if pMemberStateOK then

 if pInitialized then

 if pQueuedTriggeredEvents.count > 0 then

 repeat with j = 1 to pQueuedTriggeredEvents.count
 tEvent = pQueuedTriggeredEvents[j]

 case tEvent of
 #dollyCameraIn:
 me.dollyCamera(-pDollyAmount)
 #dollyCameraOut:
 me.dollyCamera(pDollyAmount)
 end case

 end repeat

 pQueuedTriggeredEvents = []

 end if

 else
 pInitialized = me.initialize()

 end if

 else
 pMemberStateOK = me.isMemberStateOK()
 end if
 end if
end enterFrame

--
--Public Custom Handlers--
--
--PURPOSE: Convert a descriptive, localized string into an associated handler
-- and execute that handler.
--ACCEPTS: 'me' as an instance of this script.
-- 'aEvent' as a string.
--RETURNS: Nothing

on registerEvent(me, aEvent, aTriggerSpriteNum, aTargetBehaviorInstance)

 if action = "zoomout" then --check action

 if pInitialized then
 if me = aTargetBehaviorInstance then

 tHandler = [#dollyCameraIn: "Move Camera In", \
 #dollyCameraOut: "Move Camera Out"].getOne(aEvent)

 if symbolP(tHandler) then
 pQueuedTriggeredEvents.add(tHandler)
 end if

 end if
 end if
 end if

end registerEvent
-- more code

Page 78

27 Zoom out camera trigger
global action
on mouseUp me
 action = "out"
 cursor 303
end

28 Reset Camera
---- This is a pre-built director behaviour that has been modified, only the modified parts
of the code is shown here
--
--some code

--
on enterFrame(me)

 if action = "reset" then –- check action
 if pMemberStateOK then

 if pInitialized then

 if pQueuedTriggeredEvents.count > 0 then
 --Although it is possible that multiple triggers could be sent to this
 --behaviour, due to its nature it doesn't make sense to do so.
 tEvent = pQueuedTriggeredEvents[1]
 case tEvent of
 #resetCamera: me.resetCamera()
 end case
 pQueuedTriggeredEvents = []
 --Purge the queue.
 end if

 else
 pInitialized = me.initialize()
 end if

 else
 pMemberStateOK = me.isMemberStateOK()
 end if
 end if
end enterFrame

--PURPOSE: Convert a descriptive, localized string into an associated handler
-- and execute that handler.
--ACCEPTS: 'me' as an instance of this script.
-- 'aEvent' as a string.
--RETURNS: Nothing

on registerEvent(me, aEvent, aTriggerSpriteNum, aTargetBehaviorInstance)

 if action = "reset" then
 if pInitialized then
 if me = aTargetBehaviorInstance then

 tHandler = \
[#resetCamera: "Reset camera"].getOne(aEvent)

 if symbolP(tHandler) then
 pQueuedTriggeredEvents.add(tHandler)
 end if

 end if
 end if
 end if

end registerEvent
--
--some code

29 Reset Camera Trigger
global scene
global action
on mouseUp me
 action = "reset" –- set action field
end

Page 79

Animation Menu Page
30 Button Navigations
-- Converge
on mouseup me
 go to "animation1"
 end
--Transform
on mouseup me
 go to "animation2"
 end
--Diverge
on mouseup me
 go to "animation3"
 end
--Back
on mouseup me
 go to "fold"
 end
--Next
on mouseup me
 go to "animation1"
 end
--Main menu
on mouseUp me
 go to "start"
end

Animation1 Page
31 Button Navigations
--Play
on mouseUp me
 sprite(4).movieRate = 0.5
end
--Pause
on mouseUp me
 sprite(4).movieRate = 0
end
--Rewind
on mouseUp me
 sprite(4).movietime = 0
 sprite(4).movierate = 0
end

--Back
on mouseup me
 go to "animation"
 end
--Next
on mouseup me
 go to "animation2"
 end
--Mainmenu
on mouseUp me
 go to "start"
end

Animation2 Page
32 Button Navigations

--Play
on mouseUp me
 sprite(4).movieRate = 0.5
end
--Pause
on mouseUp me
 sprite(4).movieRate = 0
end
--Rewind
on mouseUp me
 sprite(4).movietime = 0
 sprite(4).movierate = 0

Page 80

end

--Back
on mouseup me
 go to "animation1"
 end
--Next
on mouseup me
 go to "animation3"
 end
--Mainmenu
on mouseUp me
 go to "start"
end

Animation 3 Page
33 Button Navigations

--Play
on mouseUp me
 sprite(4).movieRate = 0.5
end
--Pause
on mouseUp me
 sprite(4).movieRate = 0
end
--Rewind
on mouseUp me
 sprite(4).movietime = 0
 sprite(4).movierate = 0
end

--Back
on mouseup me
 go to "animation"
 end
--Next
on mouseup me
 go to "animation1"
 end
--Mainmenu
on mouseUp me
 go to "start"
end

Images and other mountains
34 Button Navigations

--Opens picture slide show when image is clicked on
on mouseUP me
 window("mountainImages.dir").open()
 window("mountainImages.dir").title = "Pictures"
end

--Back
on mouseup me
 go to " fold"
 end
--Next
on mouseup me
 go to " tutorial1"
 end
--Mainmenu
on mouseUp me
 go to "start"
end

Page 81

Slide Show
35 Close slideshow

-- most of the code on this movie uses built in behaviours. With exception o the off button
below
on mousedown me
 window("mountainImages.dir").close()
 end

Simulation Tutorial

36 Button Navigations

--How to use control panel
on mouseUp me
 go to "control Panel"
end
--Cameras
on mouseUp me
 go to "control Panel"
end
--feedback
on mouseUp me
 go to "control Panel"
end

Page 82

Simulation Page

37 Radio Button
-- This Radio Button behaviour has been
modified from the website
http://www.ullala.at/experiments/ilwidgets/index.h
tml, Reference [22]
the modifications are stated in bold.

-- This behavior controls a group of
buttons so that only
-- one button displays a "down" (selected)
member while
-- the other buttons display an "up"
(deselected) member.
--
-- The button members consist of
-- an up member immediately followed by a down member in
-- the cast.
--

-- pUpMember - The up member of the button
-- pDownMember - The down member of the button
-- pButtonName - The button's name which is defined in the
-- behavior's parameter dialog box. The first word of the
-- name determines the button's group
-- pGroupName - Name of the button's group. The button
-- responds to messages sent by the other members of the
-- group only
property pUpMember, pDownMember, pButtonName, pGroupName, pSelectedPlate

-- This handler determines the up member, down member, and
-- group name for the button.
on beginSprite me

 -- Defines the button's current member
 set currentSprite to the spriteNum of me
 set currentMember to the member of sprite currentSprite
 set currentMemberNumber to the number of member currentMember

 -- Defines the up and down members for the button
 if the name of member currentMember contains "up" then

 -- Sets the up member to the sprite's member when
 -- the sprite initially contains the up member
 set pUpMember to member currentMemberNumber
 set downMemberNumber to currentMemberNumber+1
 set pDownMember to member downMemberNumber

 else

 -- Sets the up member to the member immediately before
 -- the sprite's member in the cast when the sprite
 -- contains the down member (that is, the button is
 -- initially "on")
 set pUpMember to currentMemberNumber-1
 set downMemberNumber to currentMemberNumber
 set pDownMember to member downMemberNumber
 pSelectedPlate = pButtonName
 sendAllSprites(#getSelectedPlate, PSelectedPlate)

 end if

 -- Extracts and defines the button's group name
 if stringP(pButtonName) then
 set pGroupName to word 1 of pButtonName
 end if

end

Page 83

-- This handler operates the button when it is clicked.
on mouseDown me

 checkWhich
 remberVal
 set currentSprite to the spriteNum of me

 -- Tells all the buttons in the group to display
 -- their up members
 sendAllSprites(#upButtons, pGroupName)

 -- Displays the down (selected) member
 set the member of sprite currentSprite to member pDownMember

 -- Displays the selected button's name in the text field
 set the text of member "Display Selection" to pButtonName

end

-- This handler responds to messages from other buttons in
-- the group by displaying the button's up member
on upButtons me, groupID

 -- Displays the button's up member when the upButtons
 -- message comes from a button with a matching groupID
 if groupID = pGroupName then
 set the member of sprite the spriteNum of me to pUpMember
 end if

end

-- This handler lets you set the button's group name
-- in the behavior's parameter dialog box.
on getPropertyDescriptionList

 return [#pButtonName: [#default: "unnamed",#format: #string, #comment:"Button Name"]]
end

-- This handler provides the description in the behavior
-- parameter dialog box.
on getBehaviorDescription
 return "Name of the button. First word defines the button's group."
end

on CheckWhich
-- this handler checks which plate is selected

 pSelectedPlate = pButtonName
 sendAllSprites(#getSelectedPlate, PSelectedPlate)

end

on remberVal
--This handler updates the values of the variables, if they have already been set
 if pSelectedPlate = "Radio Oceanic" then

 inputval = value(field "oeanicSpeedField")
 sendallsprites (#getCurrent1,inputval)

 inputval = value(field "oceanicforceField")
 sendallsprites (#getCurrent2,inputval)

 inputval = value(field "oceanicDensity")
 sendallsprites (#getCurrent3,inputval)

 else

 inputval = value(field "continentalSpeedField")
 sendallsprites (#getCurrent1,inputval)

 inputval = value(field "continentalforceField")
 sendallsprites (#getCurrent2,inputval)

Page 84

 inputval = value(field "continentaldensityField")
 sendallsprites (#getCurrent3,inputval)

 end if
end

38 Update rate of movement value
global scene
-- update value 1

property pMember
property pSetHandler
property pGetHandler
property pValue

on beginSprite me
 pMember = sprite(me.spriteNum).member
 h = pSetHandler
 put "g" into char 1 of h
 pGetHandler = symbol(h)
 me.updateValue()
end

on UpdateValue me
 val = sendAllSprites(pGetHandler)
 val = integer(val)
 if val <> pValue or voidP(pValue) then
 pValue = val
 put pValue into member pMember
 end if
end

on deactivateElement me
 val = integer(the text of member pMember)
 if integerP(val) then
 pValue = val
 sendAllSprites(pSetHandler, pValue)
 sendAllSprites(#updateValue)
 end if
end

on DisplayValue me, val
 -- only for #SetValue/#GetValue
 if pGetHandler = #GetValue and val <> pValue then
 pValue = val
 put val into member pMember
 sendAllSprites(#getSpeed, val)--This send the value of the field to the handler
responsible for the plate movement
 end if
end

on getPropertyDescriptionList
 descr = [:]
 addProp descr, #pSetHandler, [#format:#symbol, #default:#SetValue, #comment:"handler
name"]
 RETURN descr
end

39 Update convection force value
-- update value 2
property pMember
property pSetHandler
property pGetHandler
property pValue

on beginSprite me
 pMember = sprite(me.spriteNum).member
 h = pSetHandler
 put "g" into char 1 of h
 pGetHandler = symbol(h)
 me.updateValue()
end

on UpdateValue me
 val = sendAllSprites(pGetHandler)
 val = integer(val) -- just for this demo :-)

Page 85

 if val <> pValue or voidP(pValue) then
 pValue = val
 put pValue into member pMember
 end if
end

on deactivateElement me
 val = integer(the text of member pMember)
 if integerP(val) then
 pValue = val
 sendAllSprites(pSetHandler, pValue)
 sendAllSprites(#updateValue)
 end if
end

on DisplayValue2 me, val
 -- only for #SetValue/#GetValue
 if pGetHandler = #GetValue and val <> pValue then
 pValue = val
 put val into member pMember
 sendAllSprites(#getForce, val)
 end if
end

on getPropertyDescriptionList
 descr = [:]
 addProp descr, #pSetHandler, [#format:#symbol, #default:#SetValue, #comment:"handler
name"]
 RETURN descr
end

40 Update rock density value
-- update value 3

property pMember
property pSetHandler
property pGetHandler
property pValue

on beginSprite me
 pMember = sprite(me.spriteNum).member
 h = pSetHandler
 put "g" into char 1 of h
 pGetHandler = symbol(h)
 me.updateValue()
end

on UpdateValue me
 val = sendAllSprites(pGetHandler)
 val = integer(val) -- just for this demo :-)
 if val <> pValue or voidP(pValue) then
 pValue = val
 put pValue into member pMember
 end if
end

on deactivateElement me
 val = integer(the text of member pMember)
 if integerP(val) then
 pValue = val
 sendAllSprites(pSetHandler, pValue)
 sendAllSprites(#updateValue)
 end if
end

on DisplayValue3 me, val
 -- only for #SetValue/#GetValue
 if pGetHandler = #GetValue and val <> pValue then
 pValue = val
 put val into member pMember
 sendAllSprites(#getDensity, val)
 end if
end

on getPropertyDescriptionList
 descr = [:]

Page 86

 addProp descr, #pSetHandler, [#format:#symbol, #default:#SetValue, #comment:"handler
name"]
 RETURN descr
end

41 Set rate of Movement slider
-- This has been modified and added too. The original script was taken from
http://www.ullala.at/experiments/ilwidgets/index.html reference number[21]
only the modified code is shown below.

--some code

on getCurrent1 me, val—receives value from val, if already set, so that slider can be
adjusted to value
 if pValue = val then exit
 pValue = min(max(val, pMinValue), pMaxValue)
 pThumbOffset = GetButtonOffset(pValue)
 me.DrawElement()
 sendSprite(me.spriteNum, #ChangeValue, pValue, 1)—-Send value to Change value handler
 updateStage

end

end

on SetValue me, val
 if pValue = val then exit—sets slider to the values received
 pValue = min(max(val, pMinValue), pMaxValue)
 pThumbOffset = GetButtonOffset(pValue)
 me.DrawElement()
end

--some code
42 Set rate of movement feedback
--sets the feed back field
on ChangeValue me, val
 sendAllSprites(#DisplayValue, val)
end

43 Set convection force slider
-- This has been modified and added too. The original script was taken from
http://www.ullala.at/experiments/ilwidgets/index.html reference number[21]
only the modified code is shown below.

--some code

on getCurrent2 me, val—receives value from val, if already set, so that slider can be
adjusted to value
 if pValue = val then exit
 pValue = min(max(val, pMinValue), pMaxValue)
 pThumbOffset = GetButtonOffset(pValue)
 me.DrawElement()
 sendSprite(me.spriteNum, #ChangeValue, pValue, 1)—-Send value to Change value handler
 updateStage

end

end

on SetValue me, val
 if pValue = val then exit—sets slider to the values received
 pValue = min(max(val, pMinValue), pMaxValue)
 pThumbOffset = GetButtonOffset(pValue)
 me.DrawElement()
end

--some code
44 Set convection force feedback
--sets the feed back field
on ChangeValue me, val
 sendAllSprites(#DisplayValue2, val)
end

45 Set rock density slider
-- This has been modified and added too. The original script was taken from
http://www.ullala.at/experiments/ilwidgets/index.html reference number[21]

Page 87

only the modified code is shown below.

--some code

on getCurrent3 me, val—receives value from val, if already set, so that slider can be
adjusted to value
 if pValue = val then exit
 pValue = min(max(val, pMinValue), pMaxValue)
 pThumbOffset = GetButtonOffset(pValue)
 me.DrawElement()
 sendSprite(me.spriteNum, #ChangeValue, pValue, 1)—-Send value to Change value handler
 updateStage

end

end

on SetValue me, val
 if pValue = val then exit—sets slider to the values received
 pValue = min(max(val, pMinValue), pMaxValue)
 pThumbOffset = GetButtonOffset(pValue)
 me.DrawElement()
end

--some code

46 Set density feedback
--sets the feed back field
on ChangeValue me, val
 sendAllSprites(#DisplayValue3, val)
end

47 Set values Button
-- check which plate is selected and sets up input values

property vertexToGo, v_cnt, myplane
property box1
property box2
property cnt
property cntup
property pMember

property pspeed
property pforce
property pDensity
property pSelectedPlate

property pOceanicspeed
property pOceanicforce
property pOceanicDensity

property pContspeed
property pContforce
property pContDensity

on mousedown me
 pSelectedPlate = word 2 of member("Display Selection").text
 sendallsprites(#setupVariables, pspeed, pdensity,pforce, pselectedplate)
end

--Get speed information from slider
on getSpeed me, speed
 pspeed = speed
end

--Get Force information From slider
on getForce me, forces
 pforce = forces
end

--get Density of Rock
on getDensity me, Densities
 pDensity = Densities
end

Page 88

48 Reset Button
-- re-initialises 3d Scene, and re-sets all input values.
global scene
property val

on mousedown
 initialize
 val = 0
 sendallsprites(#getCurrent1, val)
 sendallsprites(#getCurrent2, val)
 sendallsprites(#getCurrent3, val)
 go to "run"

end

49 Step Button
--most important code for simulation, loads input variables into algorithms, and deals with
collsion detection and deforms model geometry and
global scene -- we will reference the SW3D in this script
property vertexToGo, v_cnt, myplane
property box1
property box2
property cnt
property cntup
property pMember

property pspeed
property pforce
property pDensity
property pSelectedPlate

property pOceanicspeed
property pOceanicforce
property pOceanicDensity

property pContspeed
property pContforce
property pContDensity

--Set up specific variables for plate selection--
on setupVariables(a,inspeed,indensity,inforce,inplate)
 --nothing has been selected, default vaulues are needed

 if inplate ="Oceanic" then

 pOceanicspeed = inspeed
 pOceanicDensity = 4.5 - inDensity
 pOceanicforce = inforce * (4.5-inDensity)

 if pOceanicforce >10 then
 pOceanicforce = 10
 end if

 if pContDensity < pOceanicDensity then
 alert "Remember that the oceanic plate is always more dense than the continental this
is why is subducts, you must adjust the setting so the continental plate is less dense"
 exit
 end if

 put pOceanicspeed into member("oeanicSpeedField")
 put pOceanicForce into member("oceanicForceField")
 put ((4.5 + inDensity) - pOceanicDensity)/2 into member("oceanicDensity")

 else if inplate ="continental" then
 pContspeed = inspeed
 pContDensity = 4.5 - inDensity
 pContforce = inforce * (4.5-inDensity)

 if pContforce >10 then
 pContforce = 10
 end if

 if pContDensity < pOceanicDensity then
 alert "Remember that the oceanic plate is always more dense than the continental this
is why is subducts, you must adjust the setting so the continental plate is less dense"
 exit

Page 89

 end if

 put pContspeed into member("continentalSpeedField")
 put pContForce into member("continentalForceField")
 put ((4.5 + inDensity) - pContDensity)/2 into member("continentalDensityField")

 end if

end

on mousedown(me)

 --setupVariables
 -- initialise plates
 repeat with i = 1 to 4
 if scene.model[i].name = "box02" then
 box2 = scene.model[i]
 end if
 if scene.model[i].name = "box01" then
 box1 = scene.model[i]
 end if
 if scene.model[i].name = "water" then
 water = scene.model[i]
 end if
 end repeat

 box1.collision.mode = #sphere --Assign bounding sphere for collision detection
 box2.collision.mode = #sphere
 water.collision.mode = #sphere

 box1.translate(-pOceanicspeed,0,0) –-load in speed input
 box2.translate(pContspeed,0,0)
 water.translate(-pOceanicspeed,0,0)

 box1.collision.resolve = true) –-Resolve collsion
 box2.collision.resolve = true
 water.collision.resolve = true

 box1.collision.resolve = false –-Turn off collsion detector so plate can more again
 box2.collision.resolve = false
 water.collision.resolve = false

 box2.collision.setcollisioncallback(#myhandler, me) –-call handler when collision is
found

end

-- when collsion is found

on myhandler(me,data)

 whichmodelmade = data.modela
 whichmodelcrash = data.modelB
 where = data.pointofcontact
 datanormal = data.collisionNormal

 targetpos = whichmodelmade.getworldtransform().position
 modellist = scene.modelsunderray(vector(where.X, 10000, where.Z,), vector(0,-1,0),
#detailed)

 --make sure that a model has been hit
 if modellist <> [] then
 modelsInvolved = modellist.count
 repeat with l =1 to modelsInvolved

 ------------FOR BOX 1 (the oceanic Plate)--------------
 if modellist[l][#model].name = "box01" then
 --## getting the face out of the "modellist"
 whichface = modellist[l][#faceID]
 --## getting the list of vertices that belong to the face

Page 90

 vertlist =
modellist[l][#model].meshdeform.mesh[modellist[l][#meshID]].face[whichface]

--## storing the complete vertexlist into "vertex_list"
 vertex_list=modellist[l][#model].meshDeform.mesh[modellist[l][#meshID]].vertexlist
 --## how many entrys are in the vertexlist
 cnt=vertex_list.count
 --## going through the vertices of the clicked face, allways 3 points for each face
 repeat with i = 1 to vertlist.count
 --## set the "vert" to the right entry of the vertexlist
 vert =
modellist[l][#model].meshdeform.mesh[modellist[l][#meshID]].vertexlist[vertlist[i]]

--## select all points from the mesh that are equal to "vert",this can be more than 3.
 vertexToGo=[]
 repeat with n=1 to vertex_list.count
 if vertex_list[n] = vert then
 vertexToGo.add(n)
 end if
 end repeat

--## now all points of the mesh that share the 3 points of the face are selected
--## and count then entrys of the list
 v_cnt=vertexToGo.count

 --## now setting all points from the vertexToGo list to a different place
 repeat with m=1 to v_cnt
 --## storing the old position of the vertex
 oldvert =
modellist[l][#model].meshDeform.mesh[modellist[l][#meshID]].vertexlist[vertexToGo[m]]
 --## calculating some new position
 --## this here will calculate a vector that shows from the pivot of the mesh (centre)
 --## into the direction of the vertex and brings it 2.5 units away from the old position
 newvert = vert + vector(-pOceanicDensity,0,-pOceanicforce)
 --## now set the vertex to the new position
modellist[l][#model].meshdeform.mesh[modellist[l][#meshID]].vertexlist[vertexToGo[m]] =
newvert
 end repeat
 end repeat
 end if

 ----------------FOR BOX 2, (The Continental Plate) -----------------
 if modellist[l][#model].name = "box02" then
 -- make sure it was the other plate that caused the collsion with the water--
 if whichmodelcrash.name = "box01" then
 --## getting the face out of the "modellist"
 whichface = modellist[l][#faceID]
 --## getting the list of vertices that belong to the face
 vertlist =
modellist[l][#model].meshdeform.mesh[modellist[l][#meshID]].face[whichface]

 --## storing the complete vertexlist into "vertex_list"

vertex_list=modellist[l][#model].meshDeform.mesh[modellist[l][#meshID]].vertexlist
 --## how many entrys are in the vertexlist
 cnt=vertex_list.count

 --## going throug the vertices of the clicked face, allways 3 points for each
face
 repeat with i = 1 to vertlist.count
 --## set the "vert" to the right entry of the vertexlist
 vert =
modellist[l][#model].meshdeform.mesh[modellist[l][#meshID]].vertexlist[vertlist[i]]

--## select all points from the mesh that are equal to "vert", this can be more than 3
 vertexToGo=[]
 repeat with n=1 to vertex_list.count
 if vertex_list[n] = vert then
 vertexToGo.add(n)
 end if
 end repeat

--## now all points of the mesh that share the 3 points of the face are selected
--## and count then entrys of the list
 v_cnt=vertexToGo.count

 --## now setting all points from the vertexToGo list to a different place
 repeat with m=1 to v_cnt

Page 91

 --## storing the old position of the vertex
 oldvert =
modellist[l][#model].meshDeform.mesh[modellist[l][#meshID]].vertexlist[vertexToGo[m]]

--## calculating some new position
--## this here will calculate a vector that shows from the pivot of the mesh (center)
--## into the direction of the vertex and brings it 2.5 units away from the old position
 newvert = vert + vector(pContDensity,0,pContforce)
 --## now set the vertex to the new position

modellist[l][#model].meshdeform.mesh[modellist[l][#meshID]].vertexlist[vertexToGo[m]] =
newvert
 end repeat
 end repeat
 end if
 end if

 -- -----------WATER---------------------------------------
 if modellist[l][#model].name = "water" then
 --## getting the face out of the "modellist"
 whichface = modellist[l][#faceID]
 --## getting the list of vertices that belong to the face
 vertlist =
modellist[l][#model].meshdeform.mesh[modellist[l][#meshID]].face[whichface]

 --## storing the complete vertexlist into "vertex_list"
 vertex_list=modellist[l][#model].meshDeform.mesh[modellist[l][#meshID]].vertexlist
 --## how many entrys are in the vertexlist
 cnt=vertex_list.count

--## going throug the vertices of the clicked face, allways 3 points for each face
 repeat with i = 1 to vertlist.count
 --## set the "vert" to the right entry of the vertexlist
 vert =
modellist[l][#model].meshdeform.mesh[modellist[l][#meshID]].vertexlist[vertlist[i]]

--## select all points from the mesh that are equal to "vert", this can be more than 3
 vertexToGo=[]
 repeat with n=1 to vertex_list.count
 if vertex_list[n] = vert then
 vertexToGo.add(n)
 -- deleteVertex(member("3dworld"), n)
 -- modellist[l][#model].deletevertex(n) -- doesn’t work yet

 end if
 end repeat

--## now all points of the mesh that share the 3 points of the face are selected
--## and count then entrys of the list
 v_cnt=vertexToGo.count
 end repeat
 end if
 end repeat
 end if
end if
end

50 Simulate Button
-- Jumps player head, to frame called ‘Sim’
on mouseUp me
 deletecast –- delete old images
 go "sim"
end

51 ‘Sim’ Frame
global scene
on exitFrame me
 repeat with x=1 to 20
 go "sim" --stay on this frame
 scene.model[2].translate(2,0,0) – move model
 scene.model[3].translate(-2,0,0) – move model
 scene.model[4].translate(-2,0,0) – move model

Page 92

 sprite(56).loc = sprite(56).loc +point(20,0)
 makeBitmap –- create a screen shot
 end repeat
 go to "endSim"
end

52 Making a screen shot of simulation

on makeBitmap

 NewBitmap = new(#bitmap, castLib "StagePictures")—-saves bitmap in new movie cast library
 NewBitmap.picture = the stage.picture

 if the keyPressed = RETURN then
 castLib("StagePictures").save()
 halt
 end if

 if the timer > 180 then
 castLib("StagePictures").save()—prevents deadlock
 end if

end
-- erases previous images, so the can be re-written
on deletecast
 finish = 21
 repeat with i = 2 to finish
 erase member i of castLib "StagePictures"
 end repeat
end on deletecast

53 Change texture to Basalt

global scene-- we will reference the SW3D in this script
property PSelectedPlate

on mouseDown
 pSelectedPlate = word 2 of member("Display Selection").text --Check which plate is
selected
 ChangeShaderBasult
end

end

on ChangeShaderBasult
repeat with i = 1 to 4
if scene.model[i].name = "box02" then
obj2 = scene.model[i]
end if

if scene.model[i].name = "Box01" then
obj1 = scene.model[i]
end if
end repeat

---set Oceanic plate--
if PSelectedPlate = "Oceanic" then

shd = scene.shader[7]
obj1.shaderlist = shd
end if

--Set Continental Plate--
if PSelectedPlate = "continental" then
shd = scene.shader[7]
obj2.shaderlist = shd
end if
end
end

54 change texture to Grid

Page 93

global scene-- we will reference the SW3D in this script
property PSelectedPlate

on mouseDown
 pSelectedPlate = word 2 of member("Display Selection").text --Check which plate is
selected
 ChangeShaderBasult
end

end

on ChangeShaderBasult
repeat with i = 1 to 4
if scene.model[i].name = "box02" then
obj2 = scene.model[i]
end if

if scene.model[i].name = "Box01" then
obj1 = scene.model[i]
end if
end repeat

---set Oceanic plate--
if PSelectedPlate = "Oceanic" then

shd = scene.shader[8]
obj1.shaderlist = shd
end if

--Set Continental Plate--
if PSelectedPlate = "continental" then

shd = scene.shader[8]
obj2.shaderlist = shd
end if
end
end

55 change texture to obsidian

global scene-- we will reference the SW3D in this script
property PSelectedPlate

on mouseDown
 pSelectedPlate = word 2 of member("Display Selection").text --Check which plate is
selected
 ChangeShaderBasult
end

end

on ChangeShaderBasult

repeat with i = 1 to 4
if scene.model[i].name = "box02" then
obj2 = scene.model[i]
end if

if scene.model[i].name = "Box01" then
obj1 = scene.model[i]
end if
end repeat

---set Oceanic plate--
if PSelectedPlate = "Oceanic" then

shd = scene.shader[4]
obj1.shaderlist = shd
end if

--Set Continental Plate--
if PSelectedPlate = "continental" then

shd = scene.shader[4]
obj2.shaderlist = shd
end if
end

Page 94

end

56 change texture to Basalt

global scene-- we will reference the SW3D in this script
property PSelectedPlate

on mouseDown
 pSelectedPlate = word 2 of member("Display Selection").text --Check which plate is
selected
 ChangeShaderBasult
end

end

on ChangeShaderBasult
repeat with i = 1 to 4
if scene.model[i].name = "box02" then
obj2 = scene.model[i]
end if

if scene.model[i].name = "Box01" then
obj1 = scene.model[i]
end if
end repeat

---set Oceanic plate--
if PSelectedPlate = "Oceanic" then

shd = scene.shader[6]
obj1.shaderlist = shd
end if

--Set Continental Plate--
if PSelectedPlate = "continental" then

shd = scene.shader[6]
obj2.shaderlist = shd
end if
end
end

57 Initialisation script

--set’s up camera, 3D images, Textures, Shaders, and modifiers

global scene -- we will reference the SW3D in this script
property init

on initialize
 clearworld(scene) -- call the custom handler clearworld to reset the world to its
default values

 -- initialise plates
 repeat with i = 1 to 4
 if scene.model[i].name = "box02" then
 obj1 = scene.model[i]
 end if
 if scene.model[i].name = "Box01" then
 obj2 = scene.model[i]
 end if
 if scene.model[i].name = "water" then
 obj3 = scene.model[i]
 end if
 end repeat

 --create a new shader
 shd1 = scene.newshader("gridshader1", #standard)
 shd2 = scene.newshader("gridshader2", #standard)
 shd3 = scene.newshader("gridshader3", #standard)

 --create 1st new texture
 txt1 = scene.newtexture("gridtexture1", #fromcastmember, member("basalt"))

Page 95

 txt1.nearfiltering = false
 txt1.quality = #low
 txt1.renderformat = #rgba4444-- to optimise performance we allow render format not to
store alpha information
 --apply the texture to shader1
 shd1.texture = txt1
 --create 2nd new texture
 txt2 = scene.newtexture("gridtexture2", #fromcastmember, member("granite"))
 txt2.nearfiltering = false
 txt2.quality = #low
 txt2.renderformat = #rgba4444
 --apply the texture to shader2
 shd2.texture = txt2

 --create 3rd new texture
 txt3 = scene.newtexture("gridtexture3", #fromcastmember, member("grid"))
 txt3.nearfiltering = false
 txt3.quality = #low
 txt3.renderformat = #rgba4444
 shd3.renderstyle = #wire
 --apply the texture to shader3
 shd3.texture = txt3

 --create backdrop--
 bg = scene.newtexture("bgimg", #fromcastmember, member ("mountic"))

 -----Set up water motion---
 Waves = scene.motion[1].name
 obj3.addmodifier(#keyframeplayer)
 obj3.keyframeplayer.play(Waves)

 ---------------------box1---
 -- add the collsiondetect modifier
 obj1.addmodifier(#collision)

 -- add the mesh deform modifier
 obj1.addmodifier(#meshdeform)

 -- ----------------------box2---
 -- add the collsiondetect modifier
 obj2.addmodifier(#collision)

 -- add the mesh deform modifier
 obj2.addmodifier(#meshdeform)

 -- WATER--
 -- add the collsiondetect modifier
 obj3.addmodifier(#collision)

 -- add the mesh deform modifier
 obj3.addmodifier(#meshdeform)

 obj1.translate(0,50,0)
 obj2.translate(0,50,0)
 obj3.translate(0,50,0)

 --------Level of detail needs to be concidered for performance issues----
 obj1.addmodifier(#lod)
 obj2.addmodifier(#lod)
 obj3.addmodifier(#lod)

 obj1.lod.bias =10
 obj2.lod.bias =10
 obj3.lod.bias =10

 ------- camera1--
 scene.camera[1].transform.identity()
 scene.model("box01").addchild(scene.camera[1], #preserveparent)
 scene.camera[1].fieldofview = 50

 scene.camera[1].translate(-5,0,150,#parent)
 scene.camera[1].rotate(50,-0,0,#parent)
 scene.camera[1].clone("dummy")
 scene.camera[1].parent = scene.group("world")
 scene.camera[1].pointat(scene.model("sphere01"))
 scene.camera[1].addbackdrop(bg, point(100,0),0)--add the backdrop
 --------camera 2---
 cam2 = scene.newcamera("top")

Page 96

 cam2.fieldofview = 70
 cam2.transform.identity()
 scene.model("box01").addchild(cam2, #preserveparent)
 cam2.translate(0,0,100)
 cam2.pointat(scene.model("box01"))

 ------camera3--
 cam3 = scene.newcamera("sideview")
 cam3.fieldofview = 15
 cam3.transform.identity()
 scene.model("box01").addchild(cam3, #preserveparent)
 cam3.translate(0,-20,300)
 cam3.rotate(85,0,0,#parent)
 cam3.pointat(scene.model("box01"))

 sprite(2).addcamera(cam2)
 sprite(2).addcamera(cam3)
 rr = sprite(1).rect
 scene.camera[3].rect = rect(5,200,390,350)
 scene.camera[4].rect = rect(320,200,680,350)

end

58 Play head script to call initialisation

on exitFrame me
 initialize --call the initialize custom handler
 go to "run" -- after initialization, go to "run"
end

59 Check 3DScene

global scene -- we are going to reference the 3D castmember at least once in this
script

on exitFrame me
 if check3Dready(scene) then
 -- call custom handler: is the SW3D castmember ready?
 go "init" -- if it is ready, go to the "init" marker
 else
 go the frame -- if it is not ready, wait here
 end if
end
-- There are two handlers in this script:

-- check3Dready called with: check3Dready(member("which3Dcastmember"))
-- returns true if the SW3D state is ready (downloaded & ready to operate)

-- clearworld called with: clearworld(member("which3Dcastmember"))
-- resets the world to its default values & returns true

-- check3Dready is designed to be called either from a repeat loop
-- or at a single instance. It was created to be able to return
-- whether a SW3D castmember's state = 4 (ready), if the SW3D is
-- in any other state, you should not perform operations on it (script error if you do)

on check3Dready whichSW3D -- takes one argument in the form of
member("which3Dcastmember")
 if whichSW3D.state = 4 then -- a state of 4 tells you the media is ready
 return true -- if it is ready, return true (for error checking &
debugging)
 else
 return false --if it isn't ready return false (for error checking &
debugging)
 end if
end

-- clearworld is designed to be used on SW3D castmembers that you want to

Page 97

-- contain no data. The resetworld() function resets any 3D castmember
-- to its defaults: 1 camera, 2 lights, 1 modelresource, 1 shader, 1 texture

on clearworld whichSW3D -- takes one argument in the form of
member("which3Dcastmember")
 if check3Dready(whichSW3D) then -- checking to make sure the SW3D is ready
 whichSW3D.resetworld() -- if everything is ready, reset the world to its default
values
 return true -- return true (for error checking & debugging)
 else
 return false -- the SW3D was not ready, so return false (for error
checking & debugging)
 end if
end

60 Naming movie globals

-- In our preparemovie event we will take care of
-- naming all globals that we will use through the
-- rest of the movie
global scene

on preparemovie
 scene = member("3dworld")
end

61 Mouse over help text
on mousewithin me
 sprite(59).visible= true
end
on mouseleave me
 sprite(59).visible= false
end

62 Play animation

on exitFrame me
 -- this is on 20 frames, to produce 20 images, creating an animation
 set the member of sprite 2 to member 2 of castLib "stagePictures"
 delay 0.2 * 60
end

Mountain Sculptor Page

63 Deforming the Plate

property spritenum, origin

global scene

on beginsprite

Page 98

 origin = point(sprite(spritenum).left, sprite(spritenum).top)

on mousedown
 pt = the clickloc - origin

 -- get detailed info
 modellist = sprite(spritenum).camera.modelsUnderLoc(pt, 1, #detailed)

 --make sure that a model has been hit
 if modellist <> [] then
 -- find out which face was hit
 whichface = modellist[1][#faceID]
 -- find out the 3 vertices that face uses
 vertlist = scene.model[1].meshdeform.mesh[2].face[whichface]

 cnt = scene.model[1].meshdeform.mesh.count
 meshnum = modellist[1].meshID

 --cycle through the 3 vertices
 repeat with x = 1 to 3
 --find the exact vertex location
 vert = scene.model[1].meshdeform.mesh[meshnum].vertexlist[vertlist[x]]
 -- add a small amount to that location
 newvert = vert + vector(0,0,5)
 -- set the vertex to the modified position
 scene.model[1].meshdeform.mesh[meshnum].vertexlist[vertlist[x]] = newvert
 end repeat
 end if
end

on rightmousedown
 pt = the clickloc - origin

 -- get detailed info
 modellist = sprite(spritenum).camera.modelsUnderLoc(pt, 1, #detailed)

 --make sure that a model has been hit
 if modellist <> [] then
 -- find out which face was hit
 whichface = modellist[1][#faceID]
 -- find out the 3 vertices that face uses
 vertlist = scene.model[1].meshdeform.mesh[2].face[whichface]

 cnt = scene.model[1].meshdeform.mesh.count
 meshnum = modellist[1].meshID

 --cycle through the 3 vertices
 repeat with x = 1 to 3
 --find the exact vertex location
 vert = scene.model[1].meshdeform.mesh[meshnum].vertexlist[vertlist[x]]
 -- add a small amount to that location
 newvert = vert + vector(0,0,-5)
 -- set the vertex to the modified position
 scene.model[1].meshdeform.mesh[meshnum].vertexlist[vertlist[x]] = newvert
 end repeat
 end if
end

64 Initializing scene

global scene -- we will reference the SW3D in this script

on initialize
 clearworld(scene) -- call the custom handler clearworld to reset the world to its
default values
 --create a basic plane
 obj = createBOX("myplane", 10,70,70,rgb(100,100,100))

 --increase the length and width vertices
 -- so that there is more to click on
 obj.resource.lengthvertices = 20
 obj.resource.widthvertices = 20
 obj.resource.heightvertices = 20

Page 99

 --create a new shader
 shd1 = scene.newshader("gridshader1", #standard)
 shd2 = scene.newshader("gridshader2", #standard)
 shd3 = scene.newshader("gridshader3", #standard)

 --create 1st new texture
 txt1 = scene.newtexture("gridtexture1", #fromcastmember, member("basalt"))
 txt1.nearfiltering = false
 txt1.quality = #low
 --apply the texture to shader1
 shd1.texture = txt1

 --create 2nd new texture
 txt2 = scene.newtexture("gridtexture2", #fromcastmember, member("granite"))
 txt2.nearfiltering = false
 txt2.quality = #low
 --apply the texture to shader2
 shd2.texture = txt2

 --create 3rd new texture
 txt3 = scene.newtexture("gridtexture3", #fromcastmember, member("grid"))
 txt3.nearfiltering = false
 txt3.quality = #low
 --apply the texture to shader3
 shd3.texture = txt3

 -- apply the shader to all sides of the plane
 obj.shaderlist = shd1

 -- add the mesh deform modifier
 obj.addmodifier(#meshdeform)

 --orient the plane
 obj.rotate(-50,0,0)

 ------- camera1--
 scene.camera[1].transform.identity()
 scene.model("myplane").addchild(scene.camera[1], #preserveparent)
 scene.camera[1].fieldofview = 55

 scene.camera[1].translate(0,0,100,#parent)

 scene.camera[1].clone("dummy")
 scene.camera[1].parent = scene.group("world")

 --------camera 2---
 cam = scene.newcamera("topview")
 cam.fieldofview = 30
 cam.transform.identity()
 scene.model("myplane").addchild(cam, #preserveparent)
 cam.translate(0,0,180)
 cam.pointat(scene.model("myplane"))

 ------camera3--
 cam3 = scene.newcamera("sideview")
 cam3.fieldofview = 30
 cam3.transform.identity()
 scene.model("myplane").addchild(cam, #preserveparent)
 cam3.translate(0,-165,200)
 cam3.pointat(scene.model("myplane"))

 sprite(1).addcamera(cam)
 sprite(1).addcamera(cam3)
 rr = sprite(1).rect
 scene.camera[3].rect = rect(600,50,800,220)
 scene.camera[4].rect = rect(600,220,800,450)

end

65 Create Box and Plane Primitive with lingo
-- This code creates a box using pure lingo, by setting the width height and lengh, and
then assigning a shader and texture to the box
On createbox boxName, L,W,H, boxColor
 If check3Dready(scene) then
 If scene.model(boxname) = void then

Page 100

 Res = Scene.newmodelresource(boxName & "res", #box)
 Res.length = L
 Res.width = W
 Res.height = H
 Obj = scene.newmodel(boxName, res)
 Shd = scene.newshader(boxName & "shd", #standard)
 Shd.diffuse = boxColor
 Shd.texture = void
 Obj.shaderlist = shd
 Return scene.model(boxname)
 Else
 Return -3002
 End if
 Else
 Return -3001
 End if
End
--
-- This code crates a plane with pure lingo, using length and width settings, it is called
in the initialisation script of the 3D scene
On createplane planeName, L, W, planeColor
 If check3Dready(scene) then
 If scene.model(planename) = void then
 Res = Scene.newmodelresource(planeName & "res", #plane)
 Res.length = L
 Res.width = W
 Obj = scene.newmodel(planeName, res)
 Shd = scene.newshader(planeName & "shd", #standard)
 Shd.diffuse = planeColor
 Shd.texture = void
 Obj.shaderlist = shd
 Return scene.model(planename)
 Else
 Return -1002
 End if
 Else
 Return -1001
 End if
End

66 Changing textures, granite basalt, and grid

on mouseDown me
 ChangeShaderBack
end
global scene -- we will reference the SW3D in this script
on ChangeShaderBack
 obj = scene.model[1]
 shd = scene.shader[3]
 obj.shaderlist =shd
end

on mouseDown me
 ChangeShader
end

global scene -- we will reference the SW3D in this script

on ChangeShader
 obj2 = scene.model[1]
 shd2 = scene.shader[4]
 obj2.shaderlist =shd2
end

on mouseDown me
 ChangeShaderGranite
end

global scene -- we will reference the SW3D in this script

on ChangeGranite
 obj = scene.model[1]
 shd = scene.shader[3]
 obj.shaderlist =shd
end

Page 101

67 Set up globals for movie

-- In our preparemovie event we will take care of
-- naming all globals that we will use through the
-- rest of the movie - generally we will be setting
-- a global variable with a reference to the SW3D
-- castmember to ease our typing burden later on

global scene

on preparemovie
 scene = member("3dworld")
end

68 Check scene is ready
-- check3Dready is designed to be called either from a single instance. It was created to
be able to return whether a SW3D castmember's state = 4 (ready), if the SW3D is in any
other state, do not perform operations on it (script error if you do)

on check3Dready whichSW3D -- takes one argument in the form of
member("which3Dcastmember")
 if whichSW3D.state = 4 then -- a state of 4 tells you the media is ready
 return true -- if it is ready, return true (for error checking &
debugging)
 else
 return false --if it isn't ready return false (for error checking &
debugging)
 end if
end
-- clearworld is designed to be used on SW3D castmembers that you want to
-- contain no data. The resetworld() function resets any 3D castmember
-- to its defaults: 1 camera, 2 lights, 1 modelresource, 1 shader, 1 texture

on clearworld whichSW3D -- takes one argument in the form of
member("which3Dcastmember")
 if check3Dready(whichSW3D) then -- just some last minute double checking to make sure
the SW3D is ready
 whichSW3D.resetworld() -- if everything is ready, reset the world to its default
values
 return true -- return true (for error checking & debugging)
 else
 return false -- the SW3D was not ready, so return false (for error
checking & debugging)
 end if
end

69 Reset button
on mousedown
 initialize -- calls initialization script
end

Page 102

70 Targeted User study

