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Abstract 
 

Recent results obtained from the study of asynchronous random Boolean networks (ARBNs) 
will be completed and compared with synchronous random Boolean networks (SRBNs) to 
highlight the intrinsic differences between the generic classes of networks. ARBNs do not 
naturally exhibit rhythm but instances of pseudo-rhythmic asynchronous networks are found 
using a simple genetic algorithm (GA) as suggested by Di Paolo (2001). These networks are 
analysed to determine how rhythm can emerge and be maintained given the indeterminism 
(randomness) of the updating scheme. It is suggested that ARBNs may be viewed to have strict 
cyclic attractors given a well defined topology which locally keeps track of time. A general 
theoretic framework is presented that seemingly fits the data of this and previous studies; 
mathematical proof has yet to be established. It is assumed the origin of rhythm in pseudo-
rhythmic ARBNs is grounded in a carefully constructed physical architecture which only allows 
deterministic trajectories through the state space. The simplest such architecture has been 
identified as a chain of nodes with wrapping around at the edges; each node contains relational 
information about the state to its inputs which ensures the network is locally in order and 
globally synchronised. Further it will be suggested that the versatility of rhythm is proportional 
to the quantity of connections found in a network but that only simple architectures are likely to 
emerge. As the number of connections increases, more sophisticated topologies are possible but 
the network’s complexity grows disproportional and seems to prevent this. 
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Introduction 
 

The aim of this project is find the mechanisms underlying the emergence of rhythm in 
pseudo-rhythmic asynchronous random Boolean networks (ARBNs) and to provide a tool for 
the analysis and visualisation of these networks. This has been attempted in a variety of 
approaches, including analytical methods such as single lesion analysis, and behavioural 
methods including analysis of output and pseudo-periodicity using software specifically 
developed for this purpose.  
 The project will first review and extend the work done on the generic properties of ARBNs 
and compare them to synchronous random Boolean networks (SRBNs). It will be shown that 
rhythmic behaviour is not a generic property of ARBNs but that networks exhibiting marked 
rhythm may easily be found using a simple genetic algorithm. These networks are subsequently 
analysed to determine the cause of their rhythmic behaviour given the non-determinism of the 
updating scheme. The results of all experiments concurred nicely and lead to the conclusion that 
rhythm is maintained by the coupling between nodes. A pruning algorithm is suggested that can 
be used to identify the functional architecture underlying the generation of rhythm. Care has 
been taken to find as much support as possible, but a mathematical proof remains to be found. 
The empirical data looks promising, however, and further research along the lines should reveal 
whether or not this framework scales up. 
 
Dynamical systems 
 

Dynamical systems theory is the most natural way to describe the behaviour of an integrated 
system (Kauffman, 1993). A dynamical system consists of an initial state and a dynamic law 
which describes the rate of change of the system’s variables and as a result the behaviour of the 
system as a whole. A dynamical system may be continuous or discrete and it is believed that 
latter suffices in modelling most biological situations (Nowak and May, 1995). The dynamical 
law of discrete dynamical systems expresses a constant relationship between the state at time t
and t + 1. All possible states describe the state space of the system and a succession of states 
over time defines a trajectory through this space; each initial state will dictate the unique course 
of the trajectory. These trajectories, however, may converge towards a single state which does 
not change in time, a steady state. Such a point is called an attractor which can either be a point 
attractor consisting of only a singe state or a cycle attractor consisting of a (normally small) sub-
set of states. A group of states all of whose trajectories lead to such an attractor define the basin 
of attraction for that particular attractor. Each state situated in this basin will eventually reach 
the same attractor as every other state lying in the same basin. It can be shown that not all 
dynamical systems have attractors but if they do the state space can sensibly be divided into 
their disjoint basins of attraction. Boolean networks are an example of discrete dynamical 
systems as they have discrete time, space and values (Gershenson, 2002). 
 
Boolean networks 
 

Boolean networks are generally classified by the updating scheme used to move the network 
through the state space; these schemes will be discussed throughout the report. Within such a 
class, networks are distinguished by the number of nodes n and the number of incoming 
connections k to each node. The number of inputs to each node is assumed the same for each 
node albeit a more general case allows k to be an average number of inputs. In the case of 
random Boolean networks, the connections and Boolean functions are assigned at random 
without any prior knowledge about possible architectural configurations. If the Boolean 
function is identical for each node, the network is said to be homogenous. Once connections and 
Boolean functions are established they normally remain static throughout the networks 
execution. A Boolean network moves through the state space by changing the values of 
individual nodes according to their Boolean functions. 
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The mathematical properties of Boolean networks is summarised in Harvey & Bossomaier 
(1997) and recited here for completeness: 
The truth table is of size 2k and there are k22 such tables in total.  The total number of possible 
arrangements for a network is: 
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random Boolean networks, but many of them being identical given labelling constraints. 
 Kauffman (1993) proposes the use of random Boolean networks as simplified models of 
complex dynamical systems containing rich numbers of coupled variables such as genetic 
regulatory networks. This abstraction requires many simplifications, two of which have been the 
Boolean idealisation and the use of synchrony. The Boolean idealisation replaces a continuous 
range of values with a step function which can only be in a state of 1 or 0, on or off. This 
abstraction has generally been accepted as it can be shown that coupled systems governed by 
sigmoidal functions can be sufficiently approximated by the step function. Variables 
representing physical quantities typically have a floor value of negative saturation and a 
maximum ceiling value of positive saturation (Harvey & Bossomaier, 1997). Criticism of the 
synchrony idealisation was raised by Harvey and Bossomaier (1997) and further analysed by Di 
Paolo (2001) and Gershenson (2002). This will be discussed in great detail later on as it forms 
the core of this project.  Kauffman (1993) lists 7 reasons for the plausibility of Boolean 
networks and their idealisation, does not, however, discuss the issue of synchrony. 
 Some terminology will be introduced to highlight different aspects of Boolean networks and 
to clarify the discussion. The network will be divided into three layers as follows: 

 
� Topological (physical) layer 

- Nodes and links (connections) 
� Boolean layer 

- Boolean functions of each node 
� Behavioural layer 

- Output patterns given the update scheme. 
 

The network undergoes change over time by producing different states: A network’s output 
is determined by its nodes, either stationary (constant value) or active (changes values); at each 
state transition, a subset of active nodes, the changing nodes, change their values and contribute 
towards the new state encountered. 
 
Attractors 
 

Several different kinds of attractors have been identified for the general class of Boolean 
networks. If such an attractor should be reached throughout the history of a network, the run-in 
is referred to as transient. Three attractors relevant for this report are as follows:  
 

• Point attractor: The system settles in a single state. This is found in all classes of 
Boolean networks but with different characteristics (e.g. basin of attraction and number 
of attractors). 

 
• Cyclic attractor: The system loops through a (usually) small subset of states. These 

cyclic attractors are found in deterministic systems. 
 

• Loose attractor: Defined by Harvey and Bossomaier (1997) to describe the state of a 
system that traverses a subset of states in no specific order. Similar to cyclic attractors 
but non-deterministic; corresponds to strongly directed components within the network. 
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Synchrony versus asynchrony 
 

The synchrony idealisation has been criticised by Harvey and Bossomaier (1997) as being 
biologically implausible; it is indeed unlikely for biological systems to operate in such a 
coordinated lock-step fashion. Kauffman (1969) expresses doubt that rhythm could be the 
property of carefully evolved networks with highly ordered circuits. Yet, Kauffman does not 
seem to question the existence of a perfect timing device dictating the overall behaviour of the 
network. If one assumes each node in the network has got an internal timing device which 
dictates the point of update then all the nodes in the network would have to adapt to each other 
in order to have the exact same time constant (i.e. synchrony). This not only seems implausible 
but also impossible in some cases where individual connected components are not inter-
connected.  
 Synchrony has been used for its simplicity and determinism: Determinism implies that two 
distinct states of the network may converge onto the same successor but a single state may 
never diverge onto two distinct successors. Gershenson (2002) points out that the characteristics 
of networks seem to be dictated by the degree of determinism rather than the updating scheme 
itself. There are several asynchronous updating schemes, some of which are deterministic. This 
report will solely focus on the non-deterministic scheme which does not assume any prior 
knowledge of individual time delays. It updates all nodes in a random fashion, allowing for 
multiple updates of the same node in a single time step. It has been shown (Harvey and 
Bossomaier, 1997) that this updating scheme results in very different behaviour of the network, 
most notably a large number of point attractors (see next section). 
 Kauffman tested several cyclic networks for robustness when disturbed by a single bit flip. 
This was done to verify how the network would move among different attractors once disturbed. 
There seems no evidence, however, that Kauffman tested for a low but persistent level of noise 
in the updating scheme itself, which cast further doubt upon its validity. Random asynchrony on 
the other hand is inherently noisy and there is no reliable source of order in the sequence of 
updates. Viewing asynchrony as a noisy updating scheme enables one to use synchrony as an 
idealised tool of analysis for ARBNs. 
 It should be clarified that the only difference between distinct classes of Boolean networks is 
the update scheme. The topological and Boolean layers are equally probable throughout. This 
stresses the power of the update scheme but also highlights the possibility of comparisons 
between different update schemes as they function on the same construct. 
 
Review and comparison of Boolean networks 
 

Synchronous Boolean networks have had a long history of statistical analysis and have been 
used in various models of biological systems, most notably genetic regulatory networks. Only 
recent criticism about the synchrony idealisation has caused the study of alternative, non-
deterministic update schemes. A classification of different networks and update schemes is 
given by Gershenson (2002), see appendix. 
 The results that have been obtained from various studies will be compared and completed to 
gain a better understanding about the intrinsic properties individual classes of networks have. 
Kauffman tested networks using all possible Boolean functions and networks which omitted 
both tautology and contradiction. Since there has been no mention about the use of tautology or 
contradiction for the asynchronous case, it is assumed they have been included. 
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Synchrony: 
 
Cyclic attractors: The number and length of cyclic attractors for different value of k are as 
follows: 

k state cycle length number of cyclic attractors 
k = n 0.5 x 2n/2 n / e
k > 5 0.5 x 2Bn 
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k = 1 √(πn/2) exponential in n

Table 1: The properties of cyclic attractors in SRBNs given k (Kaufman, 1993; pp 193). 
 
Activity: The number of changing elements at the first state transition is about 0.4n. This number 
decreases by a negative exponential with a half-decay of 3-4 states to a minimum activity of 0 - 
0.25n within a cycle. The number of active nodes is said to be up to 35% in a net with n=100 
(Kauffman, 1969). 
 
Transients: The length of the transient seems uncorrelated to the length of the cyclic attractor 
encountered. The distribution of transients is highly skewed towards short lengths (Kauffman, 
1969). 
 
Asynchrony: 

Point attractors: The expected number of point attractors, independent of the value of k, is 1 
though with a skewed distribution. It has been found that if a point attractor exists, there are 
often 2 or 3 of them and their basin of attraction covers most of the state space (Harvey and 
Bossomaier, 1997). 
 

One experiment shows how many networks (n = 8, 16) out of 100 reach a point attractor 
within 10000 single node updates for different values of k: 

 
k 1 2 3 4 5 6 7 8

50 40 28 34 34 41 41 41 
(a) 

 
k 1 2 3 4 5 6 7 8

41 31 28 30 34 32 36 34 
k 9 10 11 12 13 14 15 16 

37 36 37 35 34 30 33 34 
(b) 

 
Table 2. Number of point attractors reached for (a) n = 8 and k = 1 to 8; (b) n = 16 and k = 1 to 16 

(Harvey and Bossomaier, 1997). 
 

It has been found that k = 3 has the least probability of reaching a point attractor (Harvey and 
Bossomaier, 1997). These experiments are repeated to verify the workings of the software suite 
(taking the average of 5 runs over 100 networks each): 
 

k 1 2 3 4 5 6 7 8
71 54 43 47 51 50 57 59 

(a) 
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k 1 2 3 4 5 6 7 8
71 51 37 42 50 54 52 59 

k 9 10 11 12 13 14 15 16 
62 61 61 63 61 59 57 57 

(b) 
 

Table 3. Number of point attractors reached for (a) n = 8 and k = 1 to 8; (b) n = 16 and k = 1 to 16. 
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(b) 

 
Fig. 1: Comparison of data from Harvey & Bossomaier (1997) and this project for (a) n = 8 and (b) n = 

16 and k = 1 to n.
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The general form the graph is very similar, especially the reported low at k = 3 is evident. 
The data from this project, however, has a higher average of reaching a point attractor in 
general. The reason for this has not been found. 
 Two other measurements conducted by Kauffman (1967) analyse the activity and the length 
of transients. The author is unaware of any published work having included such a measure. 
 

k 1 2 3 4 5 6
1 3 15 62 203 551 

k 7 8 9 10 11 12 
911 796 1176 1675 1329 1459 

k 13 14 15 16 
1833 1959 1980 1981 

 

Table 4: Length of transients before a point attractor is reached for n = 16 and k = 1 to 16. 
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Fig. 2: Transients for n = 16 and k = 1 to 16.  

The graph almost resembles a sigmoidal curve; the transient increases proportionally to k,
meaning longer transients with increasing complexity of network architectures.  
 The activity of ARBNs is more difficult to establish given the non-determinism of the 
updating scheme. In cases where a point attractor is reached, the number of changing nodes per 
state transition does decrease, but in a non-uniform matter. An average is difficult to obtain 
given the different transients. 
 Another attempt to investigate the generic properties of ARBNs addressed the length of 
transients. Very long running times have been allowed before checking for rhythm using the 
measure of pseudo-rhythm. This approach made the assumption that asynchrony has a longer 
ordering phase due to its indeterminism. The networks have been tested for pseudo-rhythm after 
30 000 time steps have elapsed without success.  
 The data that has been obtained verifies the workings of the software suite and completes the 
picture of the generic class of ARBNs. It is evident that the generic class of ARBNs does not 
exhibit rhythmic properties. 
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Pseudo-periodicity 
 

Pseudo-periodicity was defined by Di Paolo (2001) in order to show relational properties of a 
state sequence in non-deterministic networks. It indicates the degree to which a given state of n
nodes approximately recurs after approximately p x n single node updates. One step in time is 
defined a n random updates and the similarity between states at time t and t+1 is defined as: 

∑
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** )1()(1)1,( ,

where )(* tsi is the scaling of )(tsi into [-1, 1]. A global measure of state correlation is obtained 
by an average correlation between a state and its successors over M successive states: 
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with k = 0,1,2,… and M being sufficiently large. This measure, called autocorrelation, will 
return an estimate of how well each state is correlated to any state occurring k time steps 
afterwards. In the case of rhythmic networks, there will be a distinct peak at values k close to p.

It should be made clear, that the correlation is an approximation and identical scores of 
similarity need not mean identical pairs of states. This holds true in all cases except 1 and -1 
which indicate identical and opposite states respectively. The pseudo-rhythmic scale ranges 
from 1 to -1 with 0 being the state of neutrality as exactly half the nodes are different. For the 
purpose of discussion, we shall call the upper half positive correlation and the lower half 
negative correlation with the two states of 1 and -1 as identity and inverse identity respectively. 
 Pseudo-periodicity provides a measure of similarity and as such gives an indication about 
the Hamming distance between states; the state of neutrality for example is a distance of n/2 
from the initial state, independent of how the individual nodes differ. 
 Di Paolo (2001) describes an example network which scores high on pseudo-rhythmic scale. 
This network will be discussed briefly as it serves as an illustrative example later on in this 
project and also help to visualise the concept of pseudo-periodicity. The network is homogenous 
and each node is connected to itself, the previous and succeeding node with wrapping around at 
the end. The network as a whole thus represents a chain of nodes. If any of the nodes is in the 
state 0, it remains there unless the preceding node is 1 and the succeeding node is 0. If a node is 
in state 1 it only changes if there is a 0 in the previous node and a 1 und the following node. 
This network produces travelling waves with period p = n when updated synchronously and 
pseudo-periodic waves at p ≈ n when updated asynchronously. The start is all nodes being 1, 
only one node being 0. 
 
The Genetic Algorithm 
 

The genetic algorithm (GA) used to search for pseudo-rhythmic ARBNs has been 
implemented as suggested by Di Paolo (2001). It had been attempted to use real numbers in 
hope to increase the efficiency of the algorithm but with only little success. The original 
implementation uses a genome of length 
 

( )k
L nknG 2'log2 +=

where n’ is the first power of 2 greater or equal to n. For each node, the k inputs and 
corresponding Boolean function are expressed as binary strings. The genetic algorithm is one of 
the reasons not to simulate networks with non-uniform values for k as genotypes of increasing 
length would be needed. Also, the number of nodes n corresponds to a power of 2 (e.g. 8, 16, 
32) as that makes the implementation inherently easier. Otherwise illegal encodings would be 
possible which either require careful validation or longer execution times. 
 Each network is simulated for around 500 – 1000 time steps over 4 – 10 trials, measuring the 
autocorrelation after each trial. The autocorrelation is taken for k = 0, 1, 2, …, 2n-1 and 
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averaged over all but the last 2n states of the run. The fitness is determined by the difference 
between the autocorrelation and the target function and is averaged over the number of trials. A 
standard deviation is deducted to benefit networks with a low variance between trials. The size 
of the population is normally around 90 and the rate of mutation is kept around 20% per 
genotype. The cross-over is uniform and the entire population is replaced at once.  
 
The target correlation 
 

The target correlation as used by Di Paolo (2001) has been defined using steps between 0 
and 1: The values of 1 are used around the chosen pseudo-period p and its multiples such that 
the network will show high correlation around that period. Values of 1 are assigned to values of 
k in [np – e, np + e], with n = 0, 1, 2, … . The value of 0 is assigned to all other value of k (Di 
Paolo, 2001). It has been found that the search process is very sensitive to the target correlation 
such that a small bias towards 1 or 0 may render the search useless. The width of the steps has 
to be well balanced for networks to evolve rhythm. The fitness of a network is given by 1 – D
where D is the normalised distance between the networks autocorrelation and the target 
function. The subtraction of a standard deviation is used as networks may have variable pseudo-
rhythmic outputs from trial to trial given different initial states. As it will be shown later, 
different target correlations have been identified causing different network attributes to emerge. 
A target function compromised only of 0’s may be used to evolve de-correlated networks that 
have non-stationary, non-rhythmic output. These networks will be used later for reasons of 
comparison. 
 
Single lesion analysis 
 

One of the initial proposals for this project was to implement a multi-lesion analysis to 
determine the functional distribution of the network’s behaviour. An algorithm is given by 
Aharonov, Segev, Meilijson and Ruppin (2002) which the authors successfully applied to neural 
networks to determine the contributions of individual nodes. This idea had to be abandoned, 
however, given the complexity of the mathematical framework required for a proper 
implementation. Nevertheless, some ideas of the paper have been carried forward and have been 
used to verify certain results. A network may have a single node lesioned and the difference in 
performance may be analysed using the numerical or graphical output or the measure of pseudo-
periodicity. This has been done despite the criticism by the above authors on the use of single-
lesion analysis and has given results that did confirm other experimental data as described later. 
 There are several different methods that may be employed in lesioning a single element in 
the network. One attempt is to cut off individual input / output links to from / to other nodes or 
to lesion the node itself. The latter approach has been taken and a node is lesioned by replacing 
its output with a random value of 1 and 0 of equal probability. It is not advisable to replace the 
output with a stationary value as that had an affect on neighbouring nodes as well, spreading the 
lesion itself. This had also been pointed out by Aharonov et al. (2002).  
 
The software 
 

The software lab has been constructed to evolve and analyse Boolean networks. Despite the 
initial planning, large proportions have been added during the time of this project according to 
new insights gained. It has been tried to maintain a structural approach which allows for 
extension of further modules and methods in the future. 
 
Similar Programs 
 

A few software suites are available that deal with Boolean networks or, more general, 
discrete dynamical systems: DDLab from Wuensche (1994) and RBN-Lab from Gershenson 
(2002) are two such programs, both publicly accessible. They can be used for the study and 
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analysis of Boolean networks whereas the first one covers a wide rage of dynamical systems 
including cellular automata. RBN-Lab deals explicitly with Boolean networks and several 
different update schemes including deterministic and non-deterministic asynchronous ones. The 
program provides several methods for basic analysis with emphasis on attractors and also 
provides visualisations of network structure and output. There are no possible modes of real 
time interaction or extensive statistical methods for detailed analysis. In some aspects, the 
software developed for this project could be seen as an extension of RBN-Lab and will mainly 
focus on the internal workings of asynchronous networks. Some aspects, such as the dynamical 
graphics or the possibility to simulate the output in single steps have been inspired by RBN-
Lab; the code is, however, independently written. Several features found in RBN-Lab have been 
omitted due the computational requirements and long execution times (e.g. finding all attractors 
for a particular network). Despite several similarities between these two software suits, it should 
be pointed out, however, that they are both tools of analysis for rather different studies and as 
such should not be compared directly. 
 
Users 
 

The software provides a very specific tool of analysis for a restricted area of dynamical 
systems and has been written primarily for this project. Nevertheless, it has been tried to make 
the program as accessible as possible to other users. The target user group is expected to be a 
small number of researchers with background in biology, chemistry, mathematics, computer 
science or artificial intelligence. A familiarity with the topic may be assumed, computer literacy, 
however, may not. Comparing DDLab and RBN-Lab, for example, it appears that latter one is 
more intuitive to use given its graphical user interface (GUI). A GUI may introduce a large 
overhead and may introduce additional errors, especially caused by parsing user supplied 
numerical values. Nevertheless, a GUI has been provided, using a clean and simple design and 
intuitive layout to make the programs functions accessible to the user. 
 
How the program works 
 

The entire software suite has been written in Java 1.4 using Swing as the Graphical User 
Interface (GUI) design component. There has been a hybrid approach also, attempting to 
combine the use of Java and Mathworks Matlab but without success: The interface between the 
languages is still too pre-mature to establish a stable suite. Therefore, almost all analytical and 
behavioural methods have been implemented in Java except the Fast Fourier Transform (FFT) 
analysis which has been done in Matlab. The main emphasis of this project was the research 
aspect using software as a tool of analysis and not to provide a industrial piece of software such 
as an office tool. Nevertheless, care has been taken to ensure modularity and extensibility such 
that new aspects may be added with ease as the research area grows. This gave reason to a 
floating panel approach as that utilises the integration of new components without the need to 
change the entire graphical layout. A central controller class has been established which serves 
as interface between all classes but a few, establishing a two way communication that enables 
any class to use whatever methods provided by other classes. The design is not the most 
efficient which raises doubt, especially in such computational demanding tasks such as a genetic 
algorithm. This approach, however, easily allows for a feature that has been thought very 
important: the user is able to change update schemes, apply lesions or noise on the fly while the 
network executes. This enables the user to observe the effect of new attributes much more 
explicitly. Another important aspect has been the emphasis on visualisation aspects as complex 
dynamical systems are often best understood on an observational basis. Unfortunately there was 
no time for real-time interaction modes such as the visual construction of networks (in a drag 
and drop manner). Also, it had been attempted to implement an optimal network layout design 
component (equal spread between nodes with minimal amount of crossing edges) using 
simulated annealing. This had not been completed in time but considering the pruning algorithm 
described later, this is not thought of major significance.  



Philipp Rohlfshagen 
Final Year CSAI Project 

 

- 13 -

Some of the analytical parts have been done by hand and the pruning algorithm has not yet 
been implemented but these aspects are to be included in subsequent versions of this software. 
Due to the large degree of functionality provided in the software suite, an explanation and 
manual-like script has been placed in the appendix (including screen shots). Once again it is 
noted that the research aspects remains the focus of this project. The rest of the report will focus 
on the individual analytical components and experiments carried out. 
 
Contribution analysis 
 

Several networks exhibiting marked rhythm around their target period have been evolved. 
Most attention has been given to networks with k = 2 as these constitute the most interesting 
case in the synchronous class of networks. Nevertheless, other networks with k = 3 and 4 have 
been evolved also. The main aspect of the rest of this project is to determine the origin of 
rhythm and to verify whether or not general principles regarding rhythm in ARBNs can be 
obtained. 
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(b) 
 

Fig. 3: Evolved network for n = 16 and k = 2; (a) graphical output, (b) autocorrelation. 
 

The behaviour of the network is due to the interaction of the topological and Boolean layer 
subject to the update scheme. It is therefore of primary interest to investigate the network 
behaviour on the level of nodes and their Boolean functions, to determine if their individual 
behaviours are rhythmic themselves and if they operate upon different frequencies. The simplest 
approach is the utilisation of the pseudo-rhythmic measure applied to individual nodes. This is 
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done for every node and the resulting rhythmic functions can be compared in a graph. Most 
nodes do have very similar rhythms, marked around the target period. It is striking to see that 
almost all nodes are centred on y = 0. This is because a single flip implies inversed identity as 
the Hamming distance for single nodes can at most be 1. Stationary nodes, however, show flat 
lines close to y = 1. They score extremely high on the measure of similarity as they are a 
constant reflection of themselves. 

Individual autocorrelations
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Fig. 4: Autocorrelations for individual nodes for n = 16 and k = 2. 
 

As stationary nodes are not rhythmic themselves, it has been wondered how their omission 
may effect the overall behaviour of the network. Running the network with each stationary node 
lesioned in turn surprisingly revealed that most stationary nodes have a profound effect on the 
difference between the autocorrelation and the target function. Despite initial scepticism, 
stationary nodes seem to be of high importance to the workings of rhythmic networks. On closer 
inspection, however, another theory is more likely: stationary nodes score extremely high on the 
pseudo-rhythmic scale and shift the networks correlation, which is merely the summation of all 
the individual rhythms, along the y-axis and thus closer to the target correlation. Indeed, 
networks with stationary nodes necessarily have states which are more similar to each other. A 
network with a single active node, for example, only has two states with a Hamming distance of 
at most 1. In general, the Hamming distance is proportional to the number of active nodes. 
 This has led to the formulation of different target functions. The aim was to find out whether 
or not networks without stationary nodes may obtain higher degrees of rhythm. The different 
target functions were as follows: 
 

• [-1,1] 
• [-0.5,0.5] 
• Cosine function 
• Relative distance between peak and trough 

 
It has also been tried to evolve rhythm for each node independently by adjusting the fitness 

evaluation accordingly. The results were mixed with the target function of [-1,1] not generating 
very promising results. The reason for this is probably the duration of the evolutionary process, 
requiring a longer execution times than a target function which is less extreme in turns of the 
Hamming distance covered. The function is probably more difficult to approximate as it 
incorporates both states of identity and inverse identity, the only cases that do not allow any 



Philipp Rohlfshagen 
Final Year CSAI Project 

 

- 15 -

freedom for variations. The less extreme [-0.5,0.5] target function did work much better and 
showed networks approximating the target function rather well. Of course, the use of a target 
function which does not require identical states to re-occur every period p is questionable. A 
cosine curve has been implemented to see if a more natural target function would improve or 
accelerate the evolutionary process. The results were slightly but not significantly better than the 
previous results. The measure of relative distance defines the fitness of a network as the distance 
between its trough at period p/2 and peak at p. This function is assumed the least constraining 
one and has been the most successful producing good results. Trying to evolve rhythm for each 
node separately has produced only insignificant results. This could be due to the fact that the 
focus on individual nodes somewhat neglects the interaction between nodes and each node acts 
more or less in isolation. Nevertheless, this set of experiments showed that stationary nodes are 
by no means necessary as none of the above had any stationary nodes (except in one case which 
had a single stationary node). The effect of stationary nodes is the graph’s location along the y-
axis and networks with stationary nodes did in general approximate the score of 1 better that 
those networks without. Stationary nodes are the only reliable components in asynchronous 
networks as they are deterministic and thus help to stabilise the overall behaviour of the 
network. Kauffman (1969) also pointed out the large proportion of stationary nodes within 
cyclic attractors of synchronous networks. 
 SRBNs with a value of k = 2 either terminate in a point attractor or a cyclic attractor of 
normally short length. Evaluating the behaviour of the evolved networks when updated 
synchronously may uncover some intrinsic properties as the topological and Boolean layer are 
identical in both cases. This has been done for all networks and it is striking to see that the 
shapes of their autocorrelations are almost identical. The asynchronous autocorrelation is near-
identical in all cases due to the target correlation and the genetic algorithm used. This need not 
hold true for the synchronous case, however, but most graphs have a perfectly triangular 
structure with amplitude little greater than 1. 
 

Autocorellation: synchronous and asynchronous
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Fig. 5: Autocorrelations for network with n = 16 and k = 2 after synchronous and a synchronous 

updating. 
 

This distinct feature is produced by a network that traverses the distance of period p in 
uniform steps covering an amplitude A of 1. In other words, the network moves from one state 
to the next with a (usually small) uniform number of changes. Some graphs exhibited slightly 
different shapes but it was found, that these networks too produced a triangular shape limited to 
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certain initial states. Interestingly, if the network was initially updated synchronously, the 
resulting pseudo-rhythmic function did not automatically resemble the triangular structure but if 
the network was updated asynchronously first the network ended up displaying the before 
mentioned form. Synchrony seems to result in the idealised behaviour of the network (i.e. 
without decay) given the lack of randomness or noise. 
 To evaluate the effect of the number of changing nodes per state transition, a hypothetical 
network had been set up which simply consisted of a Boolean look-up table that recorded the 
node changed last. A node changes its state only if its preceding node had changed in the 
previous state transition. Consequently only one change per state transition is possible in the 
synchronous case producing a rhythm of period 2n. The probability of disturbing the marked 
rhythm in the asynchronous case grows exponentially: Each node has the probability of 1/n
being updated per state transition. As a time step is normally defined as n updates, this implies a 
node is updated once per state transition on average (the actual probabilities have been obtained 
from a network’s execution and found to be in the range of 0.97 and 1.03). Therefore, if node a
had been changed during the last state transition, node b is due to change next with a high 
probability. However, changing node b followed by c, which should be changed during the next 
state transition, is rather unlikely as the probability is 1/(2n). This unlikelihood grows 
proportional in n, also implying that large networks are more stable than smaller ones.  
 The hypothetical network shows above average pseudo-rhythm, producing waves of 
amplitude 1.2, oscillating between the values 0.51 and -0.51 for n = 16. Repeating this test with 
larger networks gave amplitudes up to 1.6, reaching 0.8 on the scale of similarity. 
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Fig. 6: Autocorrelation for hypothetical network with n = 16. 
 

A Chain of Nodes 
 

The low number of changing nodes is the result of a chain architecture in which each node is 
connected to its preceding node and itself, with wrapping around at the edges. Characteristics of 
this architecture can be found in the properties of the evolved networks. 
 The outputs of the evolved ARBNs only have a low number of nodes changing at each state 
transition. The number of changes are counted and averaged over a several time steps for 
several networks. These numbers are not uniform but have a low variance. This conforms well 
given the indeterminism of the update scheme and the fact that networks can only be an 
approximation to a perfect architecture. Table 5 lists some statistics obtained from networks 
evolved with a target function of [0,1]. 
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active nodes changes / 
transition 

variance of 
changes 

12 1.630 1.138 
12 1.606 1.117 
13 1.831 1.199 
10 1.457 0.998 
16 2.285 1.342 

Table 5: Statistics for evolved networks using a target function of [0,1]. 
 

The next section will determine a couple of equations that describe the theoretical properties 
of a chain architecture. The applicability of these formulae is then tested on the real networks. It 
should be pointed out that these equations describe a deterministic system and as such provide 
either an upper or lower bound. The data from the asynchronous networks is therefore only 
expected to approximate these equations. 
 

1.)  
aAn =2 ,

where A is the amplitude of the pseudo-rhythmic graph, n is the number of nodes and a is the 
number of active nodes. The amplitude describes the lower bound on the active nodes: It is 
possible for a 16 node network with 16 active nodes to exhibit an amplitude of 1 if two sets of 8 
nodes change in sequence back and forth. The lower bound is given as there needs to be at least 
1 active node for an amplitude to exist and the size of the amplitude grows proportional to the 
number of active nodes. The maximum amplitude of 2 is only possible with 100% network 
activity. This also implies a tight relationship between the amplitude and period given a certain 
number of active nodes. 
 
2.)  

2×= p
ac ,

where c is the average number of changing nodes per state transition, a the number of active 
nodes and p the period as previously. 
 

Other equations may be used but most include the use of the amplitude which is a very 
uncertain component and given the maximum value of 2, the margin of error may be too great. 
The formulae are applied to a selection of data from 10 networks (n = 16, k = 2, period = n)
which have been evolved using different target correlations.  
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active 
nodes 

changes / 
transition 

variance 
of changes 

period amplitude 

12 1.630 1.138 15 0.468 
12 1.606 1.117 16 0.475 
13 1.831 1.199 15 0.509 
10 1.457 0.998 14 0.456 
16 2.285 1.342 16 0.575 
16 2.175 1.280 15 0.769 
15 1.987 1.173 16 0.554 
12 1.596 1.073 16 0.449 
12 1.551 1.161 17 0.602 
13 1.765 1.139 16 0.487 

(a) 
 

02 =− aAn  02 =−× cp
a

-8.3 -0.030 
-8.2 -0.106 
-8.9 -0.090 
-6.3 -0.028 

-11.4 -0.285 
-9.8 -0.041 

-10.6 -0.112 
-8.4 -0.096 
-7.2 -0.139 
-9.1 -0.140 

Mean -8.8200 -0.1067 
Variance 2.2973 0.0056 

Std. 1.5157 0.0751 
(b) 

 
Table 6: (a) Data from 10 evolved networks updated asynchronously and (b) the results obtained from 

the equations. 
 

Equation 2 seems to apply but equation 1 does not indicate the relationship holds. The reason 
for this could be the deterministic nature of the equation and the indeterminism of the update 
scheme. The data obtained from synchrony is similar except in the case of the amplitude which 
is generally higher. If the data obtained from synchronous updating is applied to the first 
equation the relation seems to hold. 
 

active 
nodes 

changes / 
transition 

variance 
of changes 

period amplitude 

12 1.600 0.640 16 1.360 
12 1.498 0.561 17 1.453 
13 1.624 0.701 17 1.296 
10 1.332 0.443 16 1.166 
16 2.372 0.966 17 1.719 
16 2.135 0.580 16 1.815 
15 1.873 0.328 17 1.687 
12 1.499 0.625 17 1.296 
12 1.497 0.685 17 1.484 
13 1.732 0.488 16 1.233 

(a) 
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02 =− aAn  
-1.12 
-0.37 
-2.63 
-0.67 
-2.24 
-1.48 
-1.50 
-1.63 
-0.12 
-3.13 

Mean -1.4890 
Variance 0.9458 

Std. 0.9725 
(b) 

 
Table 7: (a) Data from 10 evolved networks updated synchronously and (b) the results obtained from the 

equation. 
 

The data approximates the equation sufficiently considering that evolved networks are not 
clean architectures. The nature of this relationship is twofold as all networks have not just a 
similar topology but also identical pseudo-periodicity. To determine if the equations apply to a 
wider set of networks which are rhythmic, 5 synchronous networks are evolved using the same 
genetic algorithm and target function1.
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Fig. 7: Evolved synchronous network (n = 16, k = 2) with period n and amplitude 1.  
 

1 It is striking to note that mutation plays a much more important role than cross-over and large plateaus of neutrality 
seem to dictate the search space. A solution is normally found in less than 20 epochs, or the search continues for 
much longer, often without any increase of fitness over many epochs. 
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active 
nodes 

changes / 
transition 

variance of 
changes 

period amplitude 

15 6.66 2.22 16 1 
14 4.85 1.32 16 1 
15 7.60 2.77 16 1 
15 5.88 2.13 16 1 
16 7.47 1.64 16 1 

(a) 
 

02 =− aAn  02 =−× cp
a

-7 -4.785 
-6 -3.100 
-7 -5.725 
-7 -4.005 
-8 -5.470 

Mean -7 -4.6170 
Variance 0.5000 1.1648 

Std. 0.7071 1.0793 
(b) 

 
Table 8: (a) Data obtained from evolved synchronous networks (n = 16, k = 2, period = 1) and (b) the 

results obtained from the equations. 

The results of both equations seem to validate previous results but a more extensive 
mathematical framework is needed. This is difficult to establish as the data components rely 
solely on the behavioural features of the network and can not make use of any structural 
information. This problem is also highlighted in the fact that there are many cases of 
synchronous networks which seemingly obey the equations but do not exhibit any marked 
rhythm in the case of asynchrony.  The rest of this project will therefore focus on the structural 
properties. In particular, the pruning algorithm presented later can be used to prune a network 
and to uncover its functional architecture which is thought responsible for the behaviour of the 
network as a whole. This has been done for pseudo-rhythmic and de-correlated ARBNs and the 
SRBNs with period n and amplitude 1. The resulting topologies are very different, indicating 
the validity of the equations. 
 
Strict cycles in asynchronous networks 
 

The cases of synchronous networks whose attributes coincide with the relational properties 
of a chain architecture are thought to be the result of synchrony itself and not internal structure. 
A concept that will try to explain the role of local timekeeping describes the physical 
relationship between nodes in the form of coupling. 
 The nodes in a chain architecture are all coupled to their preceding/succeeding node, 
establishing a tight overall coupling with allows only one node to change per state transition; 
The network mentioned in Di Paolo’s (2001) study also had a coupling between neighbouring 
nodes, but did allow for multiple nodes to change per state transition. Since there has been no 
feedback between the changing nodes, they may easily get out of sync, reducing the rhythmic 
performance. 
 A chain architecture has been implemented, using n = 16 and k = 2. Each node is connected 
to its previous node and itself and all nodes but one have the same Boolean function which says 
that the node is identical to its preceding node. The only function that is different, the driving 
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function, is the exact opposite. This network can be further reduced (using the pruning 
algorithm) to k = 1 which can be shown sufficient to produce maximum pseudo-rhythm.  
 

(a) 
 

(b) 
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Fig. 8: Output of chain architecture asynchronous network with all nodes (a) follow (b) oppose each other 
and (c) the autocorrelation of this network. 

 

There are two reasons for synchronous networks to exist that conform to the identified 
equations but are non-rhythmic given asynchrony: 
 

• The output is solely due to the synchrony and not the architecture of the network. 
Examples are de-correlated ARBNs which still exhibit rhythm given synchrony.  

 
• The networks do produce rhythm but the discrete time steps for measuring state 

transitions is too insensitive to detect this rhythm. 
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The simplest case is a synchronous network with one active node which changes at each 
state transition. This is only possible if the node is coupled to itself. Given the tight coupling, 
the network would be expected to exhibit rhythm in asynchronous updating but produces a flat 
line on the pseudo-rhythmic scale. The network’s behaviour has to be cyclic as the network can 
only be in exactly two states which differ a Hamming distance of 1. Asynchrony allows 
remaining in the same state for several time steps due to 0 or multiple updates of the active node 
which leads to non-rhythmic behaviour over time. The reason for this behaviour is not, 
however, the non-existence of strict cycles but the measure of duration between states. The idea 
that ARBNs may have strict cyclic attractors does not imply the possibility of perfect rhythm as 
rhythm is defined as a behaviour over time. This network is an example of a much more general 
phenomenon as any perfect chain architecture exhibits strict cycles and in fact, any tightly 
coupled system can be expected to do the same. The discrete time steps that are chosen as a 
measure for the rhythmic activity, however, may be too coarse to detect subtle change. Di Paolo 
(2001) suggests the use of the external clock as a measuring and not driving device which lead 
to the formulation of pseudo-periodicity. The network’s overall rhythmic behaviour is more the 
result of the operational relationship between states instead of the externally measured duration 
of states. This relaxation can be taken a step further by taking the clock out completely, or more 
specifically, by assuming the network and clock are one and the same thing. This, of course, 
raises the question how to detect new states and to verify a network is rhythmic. In the simple 
case above, a new state of the network is encountered whenever the value of a single node has 
been changed. An independent counter is used as timer and is incremented once every update. 
In doing so, the output of a network is strictly cyclic and a time line is obtained that indicates 
the degree of rhythm. This approach thus separates the aspect of rhythm into cyclic behaviour 
and time. The time line may then be compared to the time line that would correspond to fixed 
discrete time intervals (incremented by n updates) and it can be shown that they are very 
similar. An example is given in figure 9. 
 

(a) 
 

(b) 
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Fig. 9: The output of an almost stationary network with (a) synchronous updating and (b) asynchronous 

updating. (c) Autocorrelation for the asynchronous updating, (d) states traversed after each change and (d) 
timeline produced by the network. 

 
The time line of the network (Fig. 9e) is compared to the time line obtained from discrete 

time intervals being n updates. The network’s timeline diverges over subsequent state 
transitions, is, nevertheless, almost linear. 
 The same measure can be applied to larger chain-like networks which exhibit the same cyclic 
behaviour with a time line very closely related to the discrete one. This measure is easily 
applicable given knowledge about the number of changing nodes needed to encounter a new 
state. Normally this is not the case. Synchrony may be used to obtain the sequence of changing 
nodes but still leaves the problem at which point in the networks history this sequence starts. 
This is a problem of its own but it can be shown that a crude approximation suffices to illustrate 
the effect. Taking the average number of changing nodes as indicator works in the cases of 
evolved networks as the underlying architecture is known. This has been done for one of the 
evolved networks. The network’s timeline diverges but is almost linear; the state sequence 
produced in almost perfectly cyclic. 
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Fig. 10: Evolved pseudo-rhythmic network with n = 16 and k = 2. (a) Autocorrelation, (b) states traversed 

after a single update and (c) time line produced by the network. 
 

The same technique may be applied to a perfect chain architecture which highlights the high 
degree of similarity of the time line produced. 
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Fig 11: Perfect chain architecture network. (a) States traversed each single node change and (b) the time 
line produced by the network.  
 

To identify the exact architecture that is responsible for the emergence of rhythm, a simple 
pruning algorithm has been developed. This algorithm is subsequently used to uncover the 
functional architecture of several networks. 
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Boolean interaction 
 

The following algorithm presents a simple technique to prune a network by deleting 
redundant links and nodes. It will be shown that the method is reliable and there is no reason to 
assume that a more complicated procedure is needed as natural systems would be likely to 
utilise the least costly method themselves (e.g. Ockams razor). A more complicated technique 
had been employed earlier, but with less success. It is included in the appendix for 
completeness. 
 Each Boolean function is classified as being determined, biased or neutral. If all the values 
are identical (i.e. all 1’s or 0’s) then the function is determined as its outcome is always known. 
If the function is exactly divided between the two values, then it is neutral as it does not have a 
natural tendency to be in one state or the other. If one value is dominant, the function is biased 
as it is statistically more likely to be in the state of the more frequent value. Examples are: 0000 
(determined), 1010 (neutral), 1000 (biased). It will be shown that using the concept of natural 
tendencies suffices to approximate the networks determining structure (which we will call 
functional architecture) to a satisfactory degree. 
 
1.) All the Boolean functions are examined and nodes whose function is either tautology or 
contradiction are labelled as ‘stationary’. The inputs to these nodes can be pruned as they make 
no difference to the outcome of the node. 
 
For each node in turn … 
 
2.) If the Boolean function of the node in question co-insides with one of the columns of its 
truth table, the input node corresponding to that column is kept and all other inputs to this node 
may be pruned. 
 
3.) The Boolean functions of the input nodes are examined: If all are neutral, none can be 
pruned. If any of the functions is biased, the effect of this bias is used to determine how the 
influences of all inputs are affected: If one node has a natural tendency towards the value 1, for 
example, all inputs are measured against the part of the Boolean function where the value of the 
identified input is 1 in the truth table. This is done for every node (i.e. if two nodes are biased, 
the focus is shifted towards the part in the Boolean function that corresponds to the bias 
expressed by both inputs). If one input turns out to be determining the output while none of the 
others do, all other inputs are pruned. If several inputs have identical influences but some have 
none, they may be pruned. 
 
4.) Special attention has to be given if the same node serves as input multiple times. In these 
cases, only columns which have identical values need to be considered. This may lead to 
pruning despite all inputs being neutral. 
 

This concept can, of course, be formalised with the concept of information theory but unless 
the algorithm is to be implemented or used in conjunction with larger values of k, there is no 
need in doing so.  
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input 1 input 2 truth 
table 

prune label 

0101 
(node 4) 

0011 
(node 10) 

00 0 
01 0 
10 1 
11 1 

input 2 same 

1010 
(node 2) 

0000 
(node 8) 

00 1 
01 0 
10 0 
11 1 

input 2 opposite 

0001 
(node 9) 

1100 
(node 6) 

00 0 
01 1 
10 1 
11 1 

input 1 same 

1001 
(node 1) 

0110 
(node 13) 

00 0 
01 1 
10 1 
11 1 

- -

(a) 
 

input 1 input 2 input 3 truth 
table 

prune label 

10101010 
(node 3) 

00101111 
(node 5) 

00101111 
(node 5) 

000 0 
001 0 
010 0 
011 0 
100 1 
101 1 
110 0 
111 1 

input 2 
input 3 

same 

01011101 
(node 1) 

10101010 
(node 3) 

01001101 
(node 4) 

000 0 
001 0 
010 1 
011 0 
100 1 
101 1 
110 1 
111 1 

input 2 
input 3 

same 

10101010 
(node 3) 

10101010 
(node 3) 

10101010 
(node 3) 

000 0 
001 1 
010 0 
011 0 
100 0 
101 1 
110 0 
111 0 

input 1 
input 2 
input 3 

(stationary) 

01011101 
(node 1) 

00010111 
(node 2) 

00101111 
(node 5) 

000 0 
001 0 
010 0 
011 1 
100 0 
101 1 
110 1 
111 1 

input 2 - 

(b) 
 

Table 9: Examples of the application of the pruning algorithm for (a) k = 2 and (b) k = 3. 
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The method has been applied to several pseudo-rhythmic networks of size n = 16. The 
resultant graphs all had similar properties: A circular structure incorporating the majority of 
nodes with some links to single nodes and sometimes what seemed to be feedback loops. In the 
case of k = 2, it is evident that many links may be pruned leaving a structure similar to k = 1. 
Indeed, it can be shown that k = 1 suffices to construct rhythmic asynchronous networks. 
Evolving asynchronous networks with k = 1 has not shown very successful. The space of 
possible topologies is probably too constrained as the number of possible (and successful) 
approximations is reduced. Examples of functional architectures are given in figure 12. 
 

(a)       (b) 
 

Fig. 12: The functional architectures of two distinct pseudo-rhythmic networks with n = 16 and k = 2 
(stationary nodes omitted). 

 
The labels indicate the relationship between neighbouring nodes. The output of the network 

is then analysed and it can indeed be shown that the relational features of the output are 
captured by the graphs. Some output parings of the nodes shown in graph (b) are listed for 
verification in table 10. 
 

nodes 4 & 1 
same 

9 & 14 
same 

14 & 15 
opposite 

15 & 11 
opposite 

1 1 0 0 0 0 0 1
1 1 0 0 0 1 1 0
1 1 0 0 0 1 1 0
1 1 0 0 0 1 1 0
0 1 0 0 0 1 1 0
0 1 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
1 0 0 0 0 1 1 0

Table 10: Output form network (b) to compare the relationship between nodes. 
 

Additional information that can be used, especially in cases which seem unclear, is the 
probabilities of each node being in one state or another. Another example for the validity of the 
method can be illustrated with the first graph: node 2 seems to be of more importance than any 
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other node as it is connected to 4 other nodes. Indeed, the lesion analysis of node 2 results in the 
complete loss of rhythm whereas lesions applied to nodes 4, 10 and 14 had hardly any 
noticeable effect on the rhythm produced by the network. In the case of the second graph, a new 
network has been constructed using the graph as a guideline. The new network with n = 16 and 
k = 1 tried to implement the graph as accurately as possible (e.g. node 8 has 2 inputs but with k
being 1, one of the input has to be omitted as k has to be uniform throughout). Despite the 
absence of a few links as indicated in the graph, which itself is a cut-down version of the 
original network, it has been shown that the output of the newly constructed network was very 
similar to original network’s output. 
 Given this algorithm, it would be valuable to compare rhythmic networks with de-correlated 
ones to compare their functional architectures. 
 

Autocorrelation

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
k

AC
(k)

(a) 

(b) 
 

Fig. 13: De-correlated network with n = 16, k = 2. (a) Autocorrelation; (b) functional network. 
 

De-correlated networks usually drain their inputs from one half of the nodes such that about 
50% of nodes has an out degree of 0. The above architecture illustrates this and the lack of 
circles (except [1,5,6]) suggests the total lack of rhythmic behaviour. This gives another strong 
indication towards the origin of rhythm as pseudo-rhythmic networks seem widely distributed 
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(every node is identical in the chain architecture) whereas de-correlated networks are localised 
by focusing on a sub-group of nodes and often a single node has a very dominant out-degree. 
Also, the Boolean functions of a node seem to coincide with one of the columns of the truth 
table more frequently and allows decoupled units of nodes normally not found in rhythmic 
networks. Nodes are often connected in both ways, one being the input to the other and vice 
versa. Such local coupling is purely local and necessarily leads to chaotic long term behaviour. 
 It might be helpful to have some quantitive measure on the distribution of Boolean function 
to verify whether or not some input pairs occur more frequently than statistically likely. Such a 
measure can be easily obtained but would not serve its purpose as the Boolean functions of the 
actual node needs to be considered to the same degree as the inputs. In other words, if the 
Boolean function of a node is identical to one of the columns in the truth table, then it is already 
indicated that this input will be determined no matter what the configuration of inputs is. 
Therefore it should not be expected that certain groups of function occur more frequently than 
others in general; this is in accord with the analysis of several networks, not showing any 
statistical irregularities. A more sophisticated approach may be able to establish a mathematical 
relationship for the distribution of Boolean functions in pseudo-rhythmic networks. 
 Another valuable comparison can be made between the synchronous and asynchronous 
networks which both have a period of n and amplitude of 1. The topological difference is 
striking: The functional architecture of the synchronous network has significant similarities with 
the de-correlated architectures of the asynchronous case. The reason for this has not been 
concluded. 

 

(a)        (b) 
 

Fig 14: Networks with period n and amplitude 1: (a) asynchronous network and (b) synchronous network 
 

A plate of further graphs may be found in the appendix. 
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The emergence of rhythm 
 

Evidence has been brought forward to suggest the use of local time keeping in its simplest 
form of the chain architecture. Further support includes: 
 
• Pseudo-rhythmic networks have rapid transients. This could be due to the target function 

used in the GA which does favour networks of rapid transients. Nevertheless, as Harvey and 
Bossomaier (1997) pointed out, the asynchronous updating scheme produces the shortest 
transients. The short transients would correspond to the phase in which the network 
establishes the relational order among nodes. Once each node has been updated, it is in the 
correct relational state to its inputs.  

 
• It has been shown (Di Paolo, 2001) that the basin of attraction covers most of the state space 

if a loose attractor exists. This could be explained by the fact that almost any initial state can 
be ‘converted’ to obey the relational properties imposed by the Boolean interaction. The 
relationships between nodes, as indicated by the output (the patterns produced are 
reflections of the relational attributes of the functional architecture) are always similar, 
independent of the initial state indicating the existence of a single attractor. 

 
• The diversity of output patterns produced by the distinct networks given can easily be 

explained. As has been shown with the graphs of pruned networks, a single link may suffice 
to dictate the state of the connecting node, either identical or opposite. Given a network of 
size n, there are n effective links, each of which can take on one of the two labels. This 
allows for 65534 different output patterns (given n = 16) given the exact same topology but 
different Boolean functions. In addition, the evolved networks are all approximations which 
increases the number of possible topologies by magnitudes. On the other hand, the 
relatively small number of possible networks can be used to explain other findings made by 
Di Paolo (2001). Di Paolo investigated the widespread of rhythmic attractors among the 
class of non-stationary attractors and found that rhythmic attractors are much less frequent. 

 
If the emergence of rhythm is purely topological, the evolved networks should be robust 

towards different sequences of updates. It can be shown that this is the case: Each time step (n-
updates), some of the active nodes change their values. In the deterministic case, this leads to a 
sequence of changing nodes which repeats itself each period. Random asynchrony is non-
deterministic and the order of nodes chosen for update differs each time step. If there are a
active nodes and c changes per state transition (where c ≤ a) then there are a possible ac

different combinations of update sequences. This is the upper bound as every active node is 
considered every time step which is normally not the case. If, for example, a network has 3 
active nodes and typically 2 changes per state transition then there are 32 = 9 different 
combinations. Assume nodes 1, 2 and 3: 11, 12, 13, 21, 22, 23, 31, 32, 33. The length of the 
sequence increases exponentially in a and c. Some sequences will be redundant once higher 
numbers of active and changing nodes are encountered as a sequence of odd length involving 
only one node is identical to a single update: 1 = 111 = 11111, etc.. The average number of 
changing nodes has been used to this measure as exploiting all possible sequences is clearly 
computational infeasible (E.g. a = 12 would theoretically imply 1212 different sequences).  
 The network is executed as usual but at each state transition within the cycle, all possible 
update sequences are applied to the same state and their individual outputs are collected. The 
measure has been applied to 10 pseudo-rhythmic networks and it has been found that at each 
state, the likelihood of diverging onto different states is close to 0. Almost all states throughout 
the cycle are very robust with some exceptions where a state may diverge onto several distinct 
successors. This measure provides strong evidence for the purely structural emergence of 
rhythm. The likelihood of divergence as indicated by the Hamming distance for the run of 5 
networks is shown in table 11. 
 



Philipp Rohlfshagen 
Final Year CSAI Project 

 

- 33 -

1 # 2 # 3 # 4 # 5 #
19517 0 17828 1 52797 0 28147 1 9656 1
19493 0 21925 2 20029 0 58739 1 1464 1
23589 0 21669 1 20025 0 37235 2 1336 0
56357 1 46245 0 20027 0 37171 0 4920 0
56421 0 46693 0 18043 2 37683 0 21304 0
64868 0 46691 0 18267 1 5043 1 21052 1
47520 1 46658 0 17243 1 7091 0 21044 0
10680 0 34370 1 17235 1 15283 0 53812 0
10425 0 50754 0 50134 2 27571 1 65205 1
2233 0 17540 1 50116 2 28659 1 61109 1

54437 1 54220 1 28023 0 60597 0
62693 1 52909 1 60791 1 44213 0
46177 1 20153 1 50551 0 44469 2
46689 0 20155 1 34167 0 9657 2
46659 0 18259 1 38199 1

22355 0 37175 0
54099 0
54212 1
54148 1
52140 1
52908 0

Table 11. The number of additional states that may lead to divergence of the loose attractor (the 
maximum Hamming distances has been 1 in all cases). 
 
An example of this procedure is given in figure 15 which shows the states reached after all 
different update sequences. Only 2 states differ from the initial state, one of which is divergent. 
 

Fig 15: Possible outcomes of pseudo-rhythmic network after all possible update sequences. 
 

It should be noted that this is merely an approximation and results vary from trial to trial but 
the average number of divergent states is normally constant. In cases with more active nodes, it 
frequently happens that the same state may be reached by several update sequences. The 
relationship between the number of active and changing nodes does illustrates that a low 

Mean number of changing nodes: 1 
Number of active nodes: 12 
Initial state ID:  63780 (111101000010) 
 
Outcome of all combinations: 
 

111101000010 
111101000010 
111101000010 
111101000010 
111111000010 
111101000010 
111101100010 
111101000010 
111101000010 
111101000010 
111101000010 
111101000010 

 
SCORE: 1 
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number of changing nodes only allows a low number of possible update sequences and 
therefore reduces the chance of diversion. 
 The fact that only one architecture has been identified so far that seems suitable for 
topological constraints robust enough to withstand the non-determinism of the update scheme, 
allows for the formulation of generic properties of pseudo-rhythmic networks. If each node has 
identical frequencies with change of a single node per state transition, only a period of 2n is 
possible. After each node has been updated once, the network reached its inversed identity and 
it takes another n changes, to re-encounter the initial state. Shorter periods may be obtained by 
changing a larger, but still uniform number of nodes at each time step. If, for example, two 
nodes are changed during each transition, the period is cut in half. This, however, degrades the 
degree of rhythm unless individual nodes are conditioned on at least two distinct nodes. Another 
way to achieve shorter periods is by using stationary nodes: if s nodes are stationary, the 
network is effectively reduced implying a cycle of n-s nodes. Longer periods are much more 
difficult to achieve: the sequence of changes is more complex, with some nodes changing 
multiple times over a short period of time whereas other nodes change during subsequent time 
steps. It should also be pointed out that the size of the network is important as larger networks 
are generally more robust given the lower probabilities of state diversion. 
 
Other Studies 
 

It is important to see how this framework copes with data obtained in other studies. There are 
only four studies known to the author that deal with random asynchronous networks, only two 
of which deal with pseudo-rhythm explicitly.  
 
• Di Paolo (2000) evolved networks of size n = 16, 32, 64 with k = 2, 3, 4 and target periods p

= n/2, n, 2n. Di Paolo reports that shorter or longer target periods have been attempted only 
with minor success. He used the target function [0, 1] which, given the identified structure, 
implies almost half the nodes being stationary while the active nodes change one at a time. 
For the sake of simplicity, let us assume that 50% of all nodes are stationary and exactly one 
node changes at a time. This is natural rhythm of n. The smaller period may be achieved by 
changing two nodes at a time, probably involving k > 2. The longer period of 2n is more 
difficult and probably involved higher values of k. In any case, it has not been possible to 
produce longer rhythms for the reasons given earlier. Shorter rhythms would be possible but 
not given the amplitude of 1 (by the target function). 

 
• Another study from Adams (2002) includes a table (see table 12) which in part indicates the 

relationship between stationary nodes and fitness of the network (using the [0,1] target 
function, networks n = 16, k = 3). There is a correlation between the number of stationary 
nodes and the fitness of the network. It is estimated that little less than half the nodes are 
stationary in an optimum network, and the data indicates the tendency towards this. 

 
Network Fitness # stationary nodes 

1 65.0% 4 
2 64.1% 5 
3 63.6% 3 
4 61.3% 3 
5 60.8% 2 

Table 12: A summary of a table given by Adams (2002) of evolved ARBNs with increasing fitness and 
number of stationary nodes. 

 
• The fitness of an asynchronous pseudo-rhythmic network is proportional to its similarity 

with the synchronous updating scheme as indicated with the network’s timeline. This 
complies well with the findings by Gershenson (2002) who concluded that the differences 
between network behaviours arise from the degree of determinism rather than the update 
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scheme itself. A carefully constructed architecture that locally keeps track of time is in itself 
deterministic. Therefore, the higher the degree of coupling given certain values of n and k,
the networks behaviours will become more and more similar in both a determined and non-
determined update scheme. 

 
Rhythm and the degree of coupling 
 

It has been shown that the natural period of a chain architecture is 2n if all nodes are active. 
Shorter periods are achieved by the use of stationary nodes or multiple changes per state 
transition. In any case, there is a relationship between period, amplitude and active nodes which 
should be applicable to all networks such that similar rhythms will exhibit similar graphs of 
rhythm. Longer periods are more difficult to obtain as they require more sophisticated coupling 
using higher values of k. As k increases, however, Boolean functions and tables become much 
more complex. While it is believed that k is proportional to the amount of coupling that may be 
achieved it is shown that this is exponentially unlikely to occur. Many different topologies are 
imaginable: consider a network with a large chain of nodes, a smaller chain of nodes and a 
sufficient amount of feedback links at appropriate locations. The smaller chain traverses 
normally and thereby dictating the progress made by the larger chain using the feedback links. 
Given variations in the size of these two chains, different rhythms could be obtained. High 
values of k could also lead to networks of short rhythms without the typical characteristics of 
the chain architecture. That these networks are unlikely to emerge can be demonstrated with a 
simple experiment which evaluates the space of non-stationary attractors for different values of 
k.

Di Paolo (2001) used a target correlation of [0] to evolve de-correlated asynchronous 
networks to get an idea about the distribution and quantity of pseudo-rhythmic attractors in the 
space of non-stationary attractors for ARBNs. Di Paolo showed that de-correlated networks 
could be evolved much faster, suggesting that they occupy most the attractor space.  This 
measure can be used to examine the distribution of de-correlated attractors proportional to k as 
the size of the state of non-stationary attractors is fairly constant for any k (Harvey and 
Bossomaier, 1997; this project). If de-correlated attractors are easier to find as k increases would 
suggests that sophisticated rhythmic ARBNs are very rare. This experiments used identical 
settings for the GA throughout the trials, using the elite selection scheme as deemed most 
appropriate for this comparison. The trial is aborted as soon as a network reaches the fitness 
score of 0.92. 

k = 2 k = 3 k = 4
18 0.920 20 0.920 6 0.93 
30 0.921 6 0.922 11 0.921 
14 0.924 24 0.920 3 0.923 
15 0.921 10 0.926 4 0.920 
16 0.923 13 0.922 10 0.920 

k = 5 k = 6
10 0.921 2 0.922 
4 0.921 1 0.920 
4 0.921 2 0.920 
3 0.924 1 0.926 
6 0.920 3 0.925 

Table 13: The number of epochs needed to evolve a de-correlated network with at least a score of 0.92 
and the score reached. 

Comparison: 
 

k 2 3 4 5 6
mean 18.6 14.6 6.8 5.4 1.8 
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The data clearly shows that de-correlated attractors populate an area of growing proportions 
in the space of all non-stationary attractors and thus provide good support for the assumption 
made earlier. Also, it had been shown that the transients of point attractors is much longer for 
higher values of k indicating that any stable behaviour is more difficult to establish with an 
increasing number of connections. It is striking to see that the number of de-correlated attractors 
is seemingly higher for k = 3 than it is for k = 2; it had been shown earlier that k = 3 has the 
largest space of non-stationary attractors but it seems that k = 3 is the value most suitable for de-
correlated and not pseudo-rhythmic networks. As had been shown, k = 2 suffices to produce 
pseudo-rhythmic behaviour and it is assumed that this is merely due to the simpler space of 
topologies. 
 
Biological plausibility 
 

The fact that long cycles (> 2n) seem difficult to obtain is of little relevance if ARBNs were 
to be used as models of biological system as a cycle length of 2n is too great. As a matter of 
fact, it was the existence of small cyclic attractors has given reason to use Boolean networks as 
biological models in the first place. Kaufman (1969) showed that synchronous random Boolean 
networks with k = 2 can be used as models for genetic regulatory networks. First, the number of 
genes that makes up a cell in the human body is estimated 100 000 the root of which is 
approximately 300, more or less the number of cells in the human body. Also, the typical cycle 
length of √n can be used to predict cell replication times. The size of the cycles is extremely 
small given the number of possible states the network may traverse through, especially 
considering networks of size more than 100 000 nodes. Kauffman did report on the high number 
of stationary nodes (approx. 70 %). This would not work in the case of asynchronous networks. 
It has been shown that a low k seems essential for pseudo-rhythmic networks to exist in the first 
case. A low k, however, is bound to period and amplitude requiring a larger amount of 
stationary nodes if small cycles are to be obtained. Also, having multiple nodes changing per 
state transition is not an option as anything more than two changing nodes would loose rhythm 
unless there are enough feedback loops. At the beginning it has been stated that one of 
Kauffman’s reason to believe that genetic regulatory networks are random is the careful 
evolutionary selection required for topologically refined nets to emerge. If one believes that this 
evolutionary process is no more unlikely than a perfectly synchronous updating scheme, random 
asynchrony may be used as model for these networks even though it seems, they do not fit the 
data projected by Kauffman.  
 It is also biologically plausible that the emergence of rhythm is uniformly distributed among 
the nodes. Such a distribution normally ensures robustness towards outside perturbations but the 
chain architecture itself is very brittle (see figure 16) as the lesion of a single node has 
devastating effects. Therefore it is interesting to note that the evolutionary process has produced 
networks which only approximate the chain architecture to some degree. These networks are 
much more stable towards outside perturbation. A comparison to synchronous networks may be 
valuable also. 
 

Fig. 16: A perfect chain architecture has a single node lesioned (marker), showing the transition from 
order to chaos (output goes from left to right). 
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Conclusion 
 

This work suggests the origin of rhythm in ARBNs as the result of well defined topological 
relations between nodes. Ultimate proof can not be obtained from the small subset of networks 
tested and a larger quantitive analysis is needed. Only further verification and mathematical 
proof can determine the validity of the results obtained, but the data gathered in this project 
looks promising. Larger networks need to be tested and the relation between attractor-space and 
rhythm needs to be analysed. The most important results of this project are as follows: 
 
• Rhythm seems to emerge from the topological organisation of the network whereas tight 

coupling between nodes establishes order. 
 
• The chain architecture has been identified as the single most important structure so far given 

low values of k.

• An algorithm has been identified that can be used to prune the network and uncover the 
functional architecture of the network. 

 
• The value of k dictates the amount of coupling in the network. High values are thought to 

allow the emergence of any rhythmic behaviour. Low values seem to allow any rhythm 
equal or below a period of 2n. These networks have a functional relationship between their 
period, amplitude and stationary nodes. 

 
• More versatile networks are unlikely to emerge given the constraints upon the value of k:

the number of rhythmic networks decreases as k increases. Chaotic de-correlated attractors 
occupy almost the entire space of non-stationary attractors. 

 
Future work includes automatic construction of asynchronous networks displaying any 

degree of rhythm. The software suite is modular and should be extended to cover all update 
schemes as identified by Gershenson (2002). This has not been done to date given time 
constraints but could reveal interesting properties about other classes of networks. As the 
analysis of complex dynamical system is often more successful on an observational basis, more 
sophisticated graphical tools would be a useful addition. Especially modes of real time 
interaction, such as lesioning, could prove useful in generating the overall picture needed to 
conclude about the usefulness of ARBNs as biological models. The biological relevance of 
ARBNs may be judged upon the results but is a matter of its own. One has to decide if a 
carefully selected topology is more plausible than a perfectly synchronised updating scheme.  
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Appendix 
 

Log 
 
Autumn term

1 Initial discussion and clarifications. Also looking at other options. 
2 First refinement of the task. Initial outline and clarification of some details. 
3 Discussion of basic program which should be completed within a week. Basic 

program will simply simulate RBNs and ARBNs (3 different update methods in 
total) 

4 Doing analysis on the data obtained from the program to verify correct workings.  
5 Analysis of Initial data shows flaws in the number of attractor found in ARBNs. 

Task for next week is to debug the program and repeat analysis. 
6 Program is working. Talk about implementation details. Proposal of lesion 

analysis; 2 papers by Ruppin et al are suggested and to be prepared for the next 
meeting. 

7 Final decision on implementation detail: lesion analysis for ARBNs with evolved 
pseudo-periodicity. Estimate of first executable version beginning of spring term. 

Summer term

1 Examining the data produced over the Winter break as the genetic algorithm has 
been fully implemented. The data seems to indicate that the program works. 

2 Attempting a first approach to implement the lesion analysis after some 
discussion of the details as indicated in the paper by Aharonov et. al (2003). 

3 Lesion analysis will be approximated using a simpler contribution analysis given 
the complexity of the mathematical framework required to properly implement a 
multi-lesion analysis. 

4 Discussion of the contribution analysis and the incorporation of fitness. Results 
are not yet very good. 

5 Changes are made to the contribution analysis. All techniques should be applied 
to a single network. 

6 Hypothetical network is discussed. More focus on statistical analysis. 
Contribution analysis showed better results when compared to single lesion 
analysis. 

7 Boolean influences are discussed.  
9 Discussion of biological relevance and circadian cycles. Further applicability and 

work over the Easter break. 
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Functional architectures 
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Network contribution analysis 
 
This contribution analysis was the first attempt to discover the origin of rhythm in ARBNs. It 
has proven successful only to a limited degree as comparisons with lesioned networks revealed. 
The approach used in the pruning algorithm has shown to be more effective despite the fact that 
no numerical measure is produced. This approach has been included for reasons of 
completeness: 
 
Each network consists of nodes which directly and/or indirectly influence each other’s output as 
long as there is a path between them. If a network consists of several isolated connected 
components these do not interact with each other. Connections imply direct influence, otherwise 
2nd, 3rd, etc. degree of influence. The network may be visualised as a weighted directed graph, 
the weights being the direct influences calculated as shown below.  
 
Step 1: Calculate the information content of each node’s Boolean function 

∑
=

−
n

i
ii vPvP

1
2 )(log)( , according to the occurrences of 1’s and 0’s in the Boolean function. It 

follows that the information content of each node falls in between the range [0..1] where 0 
indicates the output always being the same, 1 being an equal (50/50) distribution. 
 
Step 2: For each node calculate the direct influence on neighbouring nodes 
 
This measure is simply the number of co-in-siding input/output pairings. For example, 6/8 cases 
the input from node a (to node b) and the output from node b are the same, then the influence is 
simply 6/8. Equal or opposite pairings count equal as they equally constitute towards a gain in 
the uncertainty of the nodes outcome. It therefore follows that the lowest influence is ½ and the 
actual influence is thus linearly scaled such that ½ = 0: 2*x-1. The influence therefore ranges 
between 0 and 1. 
 
Step 3: Normalise and adjust influences 
 
The influences on each node should add up to the information content of that node. If a node has 
information content of 1 then the influences of all incoming nodes should add up to 1. If, 
however, the information content of a node is below 1 then the influences add up to that 
amount. This implies that the influences are relative to each other and also that the remaining 
influence is coming from the node itself despite there not being a connection. If, for example, a 
node has a uniform output, then, there can’t be any influence as it does not affect the node’s 
output in any way. Thus the output is entirely determined by the node itself, expressed 
implicitly within the Boolean function. 
 
Step 4: Adjust the contribution values to actual outputs of the network 
 
This step introduces how the contributions scale up to the behaviour of the network itself. The 
behaviour of any network is merely the output it produces. The output of a network is analysed 
as follows: Whenever a node changes, all the other nodes are checked whether or not they will 
change the next time step. This is a notion of induced changes; the contrary inhibitory behaviour 
is not of interest as will be shown later. It therefore follows (for example) that if node 1 
influences node 2 by 0.4, say, and node 1 also causes node 2 to change for 80 times, say, then 
the influence is 0.4x80=32. This is done for all nodes. This measure captures and incorporates 
the network’s behaviour into the measure of analysis.  
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Step 5: Perform a modified and simplified form of transitive closure and adjust contribution 
values 
 
The idea here is that if node 1 influences node 2 which in turn influences node 3 then there is an 
influence of 2nd degree of node 1 on node 3. That is also the reason that inhibitory behaviour 
can’t be used to adjust the contribution values to the network behaviour: it logically follows that 
higher degree influences result in later time steps during the network’s output and do not require 
the original node to change while its influence percolates through the network. Therefore, if 
node 1 changes but 3 doesn’t and the other way around, that does not imply that node 1 actually 
has an inhibitory effect on 3 but could imply that node one’s influence percolates through the 
intermediate connections. To get an estimation of these indirect effects a sort of transitive 
closure is performed. This could be arbitrarily deep (depending on how many ‘layers’ are 
implied by the network’s topology). So if node 1 is linked to 2 which in turn is linked to 3 then 
the influence of 1 on two is multiplied by the influence of 2 on 3 (since all influences are <1 the 
value degrades as it should) which is then added to the existing influence (if any) of 1 on 3. 
 
Step 6: Finalising the contribution values 
 
Now these values are just added together and normalised to give a single contribution value for 
each node (whereby all contributions add up to one). 
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Classifications of RBNs (Gershenson, 2001) 
 

Following the results by Harvey and Bossomaier (1997), Carlos Gershenson provides a 
classification of RBNs and outlines the differences resulting from the choice of update method. 
He points out that the concept of determinism and non-determinism causes greater differences 
in the behaviour of RBNs than the updating scheme itself. All Boolean networks have strong 
similarities (discrete time, space and values) and can be summarised under the term Discrete 
Dynamical Networks (DDN), a term introduced by Wuensche (1997). As only the update 
methods and implications of determinism are important to this project a brief summary is given 
which only outlines theses aspects: 
 

Network Updating scheme 
Classical Random Boolean Networks (CRBNs) synchronous, deterministic 

Asynchronous Random Boolean Networks (ARBNs) asynchronous, non-deterministic 
Deterministic Asynchronous Random Boolean Networks 

(DARBNs) 
asynchronous, deterministic 

Generalised Asynchronous Random Boolean Networks 
(GARBNs) 

semi-synchronous, non-deterministic 

Deterministic Generalised Asynchronous Random Boolean 
Networks (DGARBNs) 

semi-synchronous, deterministic 
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Java Code 
 
The software suite has been developed as a tool of analysis. This is an ongoing process as new 
insights require the addition of new tools. The structure is modular and extensible, but some 
code should be rewritten for better performance. Some user specific aspects are not fully 
functional but these only include elements such as disabling fields or displaying information. In 
some cases, results as mentioned in the report are output directly to the command window. 
Some sections are commented out in the code below and will be incorporated in full in future 
versions. Also, statistics generated can not yet be saved directly. The ongoing process of 
research and software extension is sometimes difficult to follow and a full implementation of a 
new module requires extensive testing afterwards, especially in the case of a software tool as 
such because minor errors easily result in significant errors. A full manual has yet to be written 
but there is no need for such unless the software is made publicly available which might the 
case for future versions. Once again it is stressed that the primary purpose of the software is for 
the purpose of analysis and not a tool for a wide group of users. The code for the file filter and 
PCU monitor are not included as they are taken from Sun’s demonstration libraries. Further it is 
pointed out again that some aspects have been inspired by the software suite provided by 
Gershenson (2002) but the code has been independently written. To get an idea of how the 
program and especially the visualisation aids look, some screenshots are included over the next 
two pages followed by the annotated Java code. 
 
Classes in alphabetical order: 
 
Analysis.java GAInterface.java 
AnalysisInterface.java GaRun.java 
Attractor.java Help.java 
CADisplay.java InfoMsg.java 
Clock.java Net.java 
Controller.java NetworkInterface.java 
Correlation.java NetNumerical.java 
EditNetInterface.java NetworkOutputDisplay.java 
ErrorMsg.java PseudoRhythm.java 
ExpActivity.java RBNLabs.java 
ExpPointCycle.java RhythmInterface.java 
ExpSyncAsync.java Saver.java 
ExpTransient.java Score.java 
Experiments.java UpdateHistogram.java 
ExperimentsInterface.java Utils.java 
GA.java 

Not included: 
 
RBNFileFilter.java (borrowed from Sun’s demonstration classes) 
CPUMon.java  (borrowed from Sun’s demonstration classes) 
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