
Final Year CSAI Project Thesis

- On Pseudo-Rhythmic Asynchronous Random Boolean Networks -

submitted by

Philipp Rohlfshagen
(Candidate number: 20001083)

for the

BSc in Computer Science and Artificial Intelligence Joint,

School of Cognitive Science, University of Sussex,

on

May 06, 2003

Project supervisor: Ezequiel A. Di Paolo

12000 words

`This report is submitted as part requirement for the BSc in Computer Science and
Artificial Intelligence Joint at the University of Sussex, Brighton, UK. It is the product
of my own labour except where indicated in the text. The report may be freely copied
and distributed provided the source is acknowledged.'

Philipp Rohlfshagen
Final Year CSAI Project

- 2 -

Abstract

Recent results obtained from the study of asynchronous random Boolean networks (ARBNs)
will be completed and compared with synchronous random Boolean networks (SRBNs) to
highlight the intrinsic differences between the generic classes of networks. ARBNs do not
naturally exhibit rhythm but instances of pseudo-rhythmic asynchronous networks are found
using a simple genetic algorithm (GA) as suggested by Di Paolo (2001). These networks are
analysed to determine how rhythm can emerge and be maintained given the indeterminism
(randomness) of the updating scheme. It is suggested that ARBNs may be viewed to have strict
cyclic attractors given a well defined topology which locally keeps track of time. A general
theoretic framework is presented that seemingly fits the data of this and previous studies;
mathematical proof has yet to be established. It is assumed the origin of rhythm in pseudo-
rhythmic ARBNs is grounded in a carefully constructed physical architecture which only allows
deterministic trajectories through the state space. The simplest such architecture has been
identified as a chain of nodes with wrapping around at the edges; each node contains relational
information about the state to its inputs which ensures the network is locally in order and
globally synchronised. Further it will be suggested that the versatility of rhythm is proportional
to the quantity of connections found in a network but that only simple architectures are likely to
emerge. As the number of connections increases, more sophisticated topologies are possible but
the network’s complexity grows disproportional and seems to prevent this.

Philipp Rohlfshagen
Final Year CSAI Project

- 3 -

Table of Contents

I. Introduction 4

II. Dynamical systems 4

III. Boolean networks 4

IV. Attractors in Boolean networks 5

V. Synchrony versus asynchrony 6

VI. Review and comparison of Boolean networks 6

VII. Pseudo-periodicity 10

VIII. The genetic algorithm 10

IX. The target correlation 11

X. Single lesion analysis 11

XI. The software 11

XII. Contribution analysis 13

XIII. A chain of nodes 16

XIV. Strict cycles in asynchronous networks 20

XV. Boolean interaction 27

XVI. The emergence of rhythm 32

XVII. Other studies 34

XVIII. Rhythm and the degree of coupling 35

XIX. Biological plausibility 36

XX. Conclusion 37

XXI. Appendix 39

1. Supervision log 39
2. Functional architectures 40
3. Contribution analysis 41
4. Different types of Boolean networks 43
5. Screen shots and annotated Java code 44

Philipp Rohlfshagen
Final Year CSAI Project

- 4 -

Introduction

The aim of this project is find the mechanisms underlying the emergence of rhythm in
pseudo-rhythmic asynchronous random Boolean networks (ARBNs) and to provide a tool for
the analysis and visualisation of these networks. This has been attempted in a variety of
approaches, including analytical methods such as single lesion analysis, and behavioural
methods including analysis of output and pseudo-periodicity using software specifically
developed for this purpose.
 The project will first review and extend the work done on the generic properties of ARBNs
and compare them to synchronous random Boolean networks (SRBNs). It will be shown that
rhythmic behaviour is not a generic property of ARBNs but that networks exhibiting marked
rhythm may easily be found using a simple genetic algorithm. These networks are subsequently
analysed to determine the cause of their rhythmic behaviour given the non-determinism of the
updating scheme. The results of all experiments concurred nicely and lead to the conclusion that
rhythm is maintained by the coupling between nodes. A pruning algorithm is suggested that can
be used to identify the functional architecture underlying the generation of rhythm. Care has
been taken to find as much support as possible, but a mathematical proof remains to be found.
The empirical data looks promising, however, and further research along the lines should reveal
whether or not this framework scales up.

Dynamical systems

Dynamical systems theory is the most natural way to describe the behaviour of an integrated
system (Kauffman, 1993). A dynamical system consists of an initial state and a dynamic law
which describes the rate of change of the system’s variables and as a result the behaviour of the
system as a whole. A dynamical system may be continuous or discrete and it is believed that
latter suffices in modelling most biological situations (Nowak and May, 1995). The dynamical
law of discrete dynamical systems expresses a constant relationship between the state at time t
and t + 1. All possible states describe the state space of the system and a succession of states
over time defines a trajectory through this space; each initial state will dictate the unique course
of the trajectory. These trajectories, however, may converge towards a single state which does
not change in time, a steady state. Such a point is called an attractor which can either be a point
attractor consisting of only a singe state or a cycle attractor consisting of a (normally small) sub-
set of states. A group of states all of whose trajectories lead to such an attractor define the basin
of attraction for that particular attractor. Each state situated in this basin will eventually reach
the same attractor as every other state lying in the same basin. It can be shown that not all
dynamical systems have attractors but if they do the state space can sensibly be divided into
their disjoint basins of attraction. Boolean networks are an example of discrete dynamical
systems as they have discrete time, space and values (Gershenson, 2002).

Boolean networks

Boolean networks are generally classified by the updating scheme used to move the network
through the state space; these schemes will be discussed throughout the report. Within such a
class, networks are distinguished by the number of nodes n and the number of incoming
connections k to each node. The number of inputs to each node is assumed the same for each
node albeit a more general case allows k to be an average number of inputs. In the case of
random Boolean networks, the connections and Boolean functions are assigned at random
without any prior knowledge about possible architectural configurations. If the Boolean
function is identical for each node, the network is said to be homogenous. Once connections and
Boolean functions are established they normally remain static throughout the networks
execution. A Boolean network moves through the state space by changing the values of
individual nodes according to their Boolean functions.

Philipp Rohlfshagen
Final Year CSAI Project

- 5 -

The mathematical properties of Boolean networks is summarised in Harvey & Bossomaier
(1997) and recited here for completeness:
The truth table is of size 2k and there are k22 such tables in total. The total number of possible
arrangements for a network is:

n

kn
n 





−)!(
! , giving a total of

n

kn
nk







−)!(
!22

random Boolean networks, but many of them being identical given labelling constraints.
 Kauffman (1993) proposes the use of random Boolean networks as simplified models of
complex dynamical systems containing rich numbers of coupled variables such as genetic
regulatory networks. This abstraction requires many simplifications, two of which have been the
Boolean idealisation and the use of synchrony. The Boolean idealisation replaces a continuous
range of values with a step function which can only be in a state of 1 or 0, on or off. This
abstraction has generally been accepted as it can be shown that coupled systems governed by
sigmoidal functions can be sufficiently approximated by the step function. Variables
representing physical quantities typically have a floor value of negative saturation and a
maximum ceiling value of positive saturation (Harvey & Bossomaier, 1997). Criticism of the
synchrony idealisation was raised by Harvey and Bossomaier (1997) and further analysed by Di
Paolo (2001) and Gershenson (2002). This will be discussed in great detail later on as it forms
the core of this project. Kauffman (1993) lists 7 reasons for the plausibility of Boolean
networks and their idealisation, does not, however, discuss the issue of synchrony.
 Some terminology will be introduced to highlight different aspects of Boolean networks and
to clarify the discussion. The network will be divided into three layers as follows:

� Topological (physical) layer

- Nodes and links (connections)
� Boolean layer

- Boolean functions of each node
� Behavioural layer

- Output patterns given the update scheme.

The network undergoes change over time by producing different states: A network’s output
is determined by its nodes, either stationary (constant value) or active (changes values); at each
state transition, a subset of active nodes, the changing nodes, change their values and contribute
towards the new state encountered.

Attractors

Several different kinds of attractors have been identified for the general class of Boolean
networks. If such an attractor should be reached throughout the history of a network, the run-in
is referred to as transient. Three attractors relevant for this report are as follows:

• Point attractor: The system settles in a single state. This is found in all classes of
Boolean networks but with different characteristics (e.g. basin of attraction and number
of attractors).

• Cyclic attractor: The system loops through a (usually) small subset of states. These

cyclic attractors are found in deterministic systems.

• Loose attractor: Defined by Harvey and Bossomaier (1997) to describe the state of a
system that traverses a subset of states in no specific order. Similar to cyclic attractors
but non-deterministic; corresponds to strongly directed components within the network.

Philipp Rohlfshagen
Final Year CSAI Project

- 6 -

Synchrony versus asynchrony

The synchrony idealisation has been criticised by Harvey and Bossomaier (1997) as being
biologically implausible; it is indeed unlikely for biological systems to operate in such a
coordinated lock-step fashion. Kauffman (1969) expresses doubt that rhythm could be the
property of carefully evolved networks with highly ordered circuits. Yet, Kauffman does not
seem to question the existence of a perfect timing device dictating the overall behaviour of the
network. If one assumes each node in the network has got an internal timing device which
dictates the point of update then all the nodes in the network would have to adapt to each other
in order to have the exact same time constant (i.e. synchrony). This not only seems implausible
but also impossible in some cases where individual connected components are not inter-
connected.
 Synchrony has been used for its simplicity and determinism: Determinism implies that two
distinct states of the network may converge onto the same successor but a single state may
never diverge onto two distinct successors. Gershenson (2002) points out that the characteristics
of networks seem to be dictated by the degree of determinism rather than the updating scheme
itself. There are several asynchronous updating schemes, some of which are deterministic. This
report will solely focus on the non-deterministic scheme which does not assume any prior
knowledge of individual time delays. It updates all nodes in a random fashion, allowing for
multiple updates of the same node in a single time step. It has been shown (Harvey and
Bossomaier, 1997) that this updating scheme results in very different behaviour of the network,
most notably a large number of point attractors (see next section).
 Kauffman tested several cyclic networks for robustness when disturbed by a single bit flip.
This was done to verify how the network would move among different attractors once disturbed.
There seems no evidence, however, that Kauffman tested for a low but persistent level of noise
in the updating scheme itself, which cast further doubt upon its validity. Random asynchrony on
the other hand is inherently noisy and there is no reliable source of order in the sequence of
updates. Viewing asynchrony as a noisy updating scheme enables one to use synchrony as an
idealised tool of analysis for ARBNs.
 It should be clarified that the only difference between distinct classes of Boolean networks is
the update scheme. The topological and Boolean layers are equally probable throughout. This
stresses the power of the update scheme but also highlights the possibility of comparisons
between different update schemes as they function on the same construct.

Review and comparison of Boolean networks

Synchronous Boolean networks have had a long history of statistical analysis and have been
used in various models of biological systems, most notably genetic regulatory networks. Only
recent criticism about the synchrony idealisation has caused the study of alternative, non-
deterministic update schemes. A classification of different networks and update schemes is
given by Gershenson (2002), see appendix.
 The results that have been obtained from various studies will be compared and completed to
gain a better understanding about the intrinsic properties individual classes of networks have.
Kauffman tested networks using all possible Boolean functions and networks which omitted
both tautology and contradiction. Since there has been no mention about the use of tautology or
contradiction for the asynchronous case, it is assumed they have been included.

Philipp Rohlfshagen
Final Year CSAI Project

- 7 -

Synchrony:

Cyclic attractors: The number and length of cyclic attractors for different value of k are as
follows:

k state cycle length number of cyclic attractors
k = n 0.5 x 2n/2 n / e
k > 5 0.5 x 2Bn

,2
5.0

1log













 



±≈ αn

5.0)(−= kpα
k = 2 √n √n
k = 1 √(πn/2) exponential in n

Table 1: The properties of cyclic attractors in SRBNs given k (Kaufman, 1993; pp 193).

Activity: The number of changing elements at the first state transition is about 0.4n. This number
decreases by a negative exponential with a half-decay of 3-4 states to a minimum activity of 0 -
0.25n within a cycle. The number of active nodes is said to be up to 35% in a net with n=100
(Kauffman, 1969).

Transients: The length of the transient seems uncorrelated to the length of the cyclic attractor
encountered. The distribution of transients is highly skewed towards short lengths (Kauffman,
1969).

Asynchrony:

Point attractors: The expected number of point attractors, independent of the value of k, is 1
though with a skewed distribution. It has been found that if a point attractor exists, there are
often 2 or 3 of them and their basin of attraction covers most of the state space (Harvey and
Bossomaier, 1997).

One experiment shows how many networks (n = 8, 16) out of 100 reach a point attractor
within 10000 single node updates for different values of k:

k 1 2 3 4 5 6 7 8

50 40 28 34 34 41 41 41
(a)

k 1 2 3 4 5 6 7 8

41 31 28 30 34 32 36 34
k 9 10 11 12 13 14 15 16

37 36 37 35 34 30 33 34
(b)

Table 2. Number of point attractors reached for (a) n = 8 and k = 1 to 8; (b) n = 16 and k = 1 to 16

(Harvey and Bossomaier, 1997).

It has been found that k = 3 has the least probability of reaching a point attractor (Harvey and
Bossomaier, 1997). These experiments are repeated to verify the workings of the software suite
(taking the average of 5 runs over 100 networks each):

k 1 2 3 4 5 6 7 8
71 54 43 47 51 50 57 59

(a)

Philipp Rohlfshagen
Final Year CSAI Project

- 8 -

k 1 2 3 4 5 6 7 8
71 51 37 42 50 54 52 59

k 9 10 11 12 13 14 15 16
62 61 61 63 61 59 57 57

(b)

Table 3. Number of point attractors reached for (a) n = 8 and k = 1 to 8; (b) n = 16 and k = 1 to 16.

n = 8, k = 0 to 8

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8
k

Po
int

att
ra

cto
rs

re
ac

he
d

Harvey and Bossomaier, 1997

Project's data

(a)

n = 16, k = 1 to 16

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k

Po
int

att
ra

cto
rs

re
ac

he
d

Harvey and Bossomaier, 1997

Project's data

(b)

Fig. 1: Comparison of data from Harvey & Bossomaier (1997) and this project for (a) n = 8 and (b) n =

16 and k = 1 to n.

Philipp Rohlfshagen
Final Year CSAI Project

- 9 -

The general form the graph is very similar, especially the reported low at k = 3 is evident.
The data from this project, however, has a higher average of reaching a point attractor in
general. The reason for this has not been found.
 Two other measurements conducted by Kauffman (1967) analyse the activity and the length
of transients. The author is unaware of any published work having included such a measure.

k 1 2 3 4 5 6
1 3 15 62 203 551

k 7 8 9 10 11 12
911 796 1176 1675 1329 1459

k 13 14 15 16
1833 1959 1980 1981

Table 4: Length of transients before a point attractor is reached for n = 16 and k = 1 to 16.

Transient length

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k

Tim
es

tep
s

Fig. 2: Transients for n = 16 and k = 1 to 16.

The graph almost resembles a sigmoidal curve; the transient increases proportionally to k,
meaning longer transients with increasing complexity of network architectures.
 The activity of ARBNs is more difficult to establish given the non-determinism of the
updating scheme. In cases where a point attractor is reached, the number of changing nodes per
state transition does decrease, but in a non-uniform matter. An average is difficult to obtain
given the different transients.
 Another attempt to investigate the generic properties of ARBNs addressed the length of
transients. Very long running times have been allowed before checking for rhythm using the
measure of pseudo-rhythm. This approach made the assumption that asynchrony has a longer
ordering phase due to its indeterminism. The networks have been tested for pseudo-rhythm after
30 000 time steps have elapsed without success.
 The data that has been obtained verifies the workings of the software suite and completes the
picture of the generic class of ARBNs. It is evident that the generic class of ARBNs does not
exhibit rhythmic properties.

Philipp Rohlfshagen
Final Year CSAI Project

- 10 -

Pseudo-periodicity

Pseudo-periodicity was defined by Di Paolo (2001) in order to show relational properties of a
state sequence in non-deterministic networks. It indicates the degree to which a given state of n
nodes approximately recurs after approximately p x n single node updates. One step in time is
defined a n random updates and the similarity between states at time t and t+1 is defined as:

∑
=

+=+
N

i
ii tstsNttC

1

**)1()(1)1,(,

where)(* tsi is the scaling of)(tsi into [-1, 1]. A global measure of state correlation is obtained
by an average correlation between a state and its successors over M successive states:

∑
=

+=
M

j
kttCMkAC

1
),(1)(,

with k = 0,1,2,… and M being sufficiently large. This measure, called autocorrelation, will
return an estimate of how well each state is correlated to any state occurring k time steps
afterwards. In the case of rhythmic networks, there will be a distinct peak at values k close to p.

It should be made clear, that the correlation is an approximation and identical scores of
similarity need not mean identical pairs of states. This holds true in all cases except 1 and -1
which indicate identical and opposite states respectively. The pseudo-rhythmic scale ranges
from 1 to -1 with 0 being the state of neutrality as exactly half the nodes are different. For the
purpose of discussion, we shall call the upper half positive correlation and the lower half
negative correlation with the two states of 1 and -1 as identity and inverse identity respectively.
 Pseudo-periodicity provides a measure of similarity and as such gives an indication about
the Hamming distance between states; the state of neutrality for example is a distance of n/2
from the initial state, independent of how the individual nodes differ.
 Di Paolo (2001) describes an example network which scores high on pseudo-rhythmic scale.
This network will be discussed briefly as it serves as an illustrative example later on in this
project and also help to visualise the concept of pseudo-periodicity. The network is homogenous
and each node is connected to itself, the previous and succeeding node with wrapping around at
the end. The network as a whole thus represents a chain of nodes. If any of the nodes is in the
state 0, it remains there unless the preceding node is 1 and the succeeding node is 0. If a node is
in state 1 it only changes if there is a 0 in the previous node and a 1 und the following node.
This network produces travelling waves with period p = n when updated synchronously and
pseudo-periodic waves at p ≈ n when updated asynchronously. The start is all nodes being 1,
only one node being 0.

The Genetic Algorithm

The genetic algorithm (GA) used to search for pseudo-rhythmic ARBNs has been
implemented as suggested by Di Paolo (2001). It had been attempted to use real numbers in
hope to increase the efficiency of the algorithm but with only little success. The original
implementation uses a genome of length

()k
L nknG 2'log2 +=

where n’ is the first power of 2 greater or equal to n. For each node, the k inputs and
corresponding Boolean function are expressed as binary strings. The genetic algorithm is one of
the reasons not to simulate networks with non-uniform values for k as genotypes of increasing
length would be needed. Also, the number of nodes n corresponds to a power of 2 (e.g. 8, 16,
32) as that makes the implementation inherently easier. Otherwise illegal encodings would be
possible which either require careful validation or longer execution times.
 Each network is simulated for around 500 – 1000 time steps over 4 – 10 trials, measuring the
autocorrelation after each trial. The autocorrelation is taken for k = 0, 1, 2, …, 2n-1 and

Philipp Rohlfshagen
Final Year CSAI Project

- 11 -

averaged over all but the last 2n states of the run. The fitness is determined by the difference
between the autocorrelation and the target function and is averaged over the number of trials. A
standard deviation is deducted to benefit networks with a low variance between trials. The size
of the population is normally around 90 and the rate of mutation is kept around 20% per
genotype. The cross-over is uniform and the entire population is replaced at once.

The target correlation

The target correlation as used by Di Paolo (2001) has been defined using steps between 0
and 1: The values of 1 are used around the chosen pseudo-period p and its multiples such that
the network will show high correlation around that period. Values of 1 are assigned to values of
k in [np – e, np + e], with n = 0, 1, 2, … . The value of 0 is assigned to all other value of k (Di
Paolo, 2001). It has been found that the search process is very sensitive to the target correlation
such that a small bias towards 1 or 0 may render the search useless. The width of the steps has
to be well balanced for networks to evolve rhythm. The fitness of a network is given by 1 – D
where D is the normalised distance between the networks autocorrelation and the target
function. The subtraction of a standard deviation is used as networks may have variable pseudo-
rhythmic outputs from trial to trial given different initial states. As it will be shown later,
different target correlations have been identified causing different network attributes to emerge.
A target function compromised only of 0’s may be used to evolve de-correlated networks that
have non-stationary, non-rhythmic output. These networks will be used later for reasons of
comparison.

Single lesion analysis

One of the initial proposals for this project was to implement a multi-lesion analysis to
determine the functional distribution of the network’s behaviour. An algorithm is given by
Aharonov, Segev, Meilijson and Ruppin (2002) which the authors successfully applied to neural
networks to determine the contributions of individual nodes. This idea had to be abandoned,
however, given the complexity of the mathematical framework required for a proper
implementation. Nevertheless, some ideas of the paper have been carried forward and have been
used to verify certain results. A network may have a single node lesioned and the difference in
performance may be analysed using the numerical or graphical output or the measure of pseudo-
periodicity. This has been done despite the criticism by the above authors on the use of single-
lesion analysis and has given results that did confirm other experimental data as described later.
 There are several different methods that may be employed in lesioning a single element in
the network. One attempt is to cut off individual input / output links to from / to other nodes or
to lesion the node itself. The latter approach has been taken and a node is lesioned by replacing
its output with a random value of 1 and 0 of equal probability. It is not advisable to replace the
output with a stationary value as that had an affect on neighbouring nodes as well, spreading the
lesion itself. This had also been pointed out by Aharonov et al. (2002).

The software

The software lab has been constructed to evolve and analyse Boolean networks. Despite the
initial planning, large proportions have been added during the time of this project according to
new insights gained. It has been tried to maintain a structural approach which allows for
extension of further modules and methods in the future.

Similar Programs

A few software suites are available that deal with Boolean networks or, more general,
discrete dynamical systems: DDLab from Wuensche (1994) and RBN-Lab from Gershenson
(2002) are two such programs, both publicly accessible. They can be used for the study and

Philipp Rohlfshagen
Final Year CSAI Project

- 12 -

analysis of Boolean networks whereas the first one covers a wide rage of dynamical systems
including cellular automata. RBN-Lab deals explicitly with Boolean networks and several
different update schemes including deterministic and non-deterministic asynchronous ones. The
program provides several methods for basic analysis with emphasis on attractors and also
provides visualisations of network structure and output. There are no possible modes of real
time interaction or extensive statistical methods for detailed analysis. In some aspects, the
software developed for this project could be seen as an extension of RBN-Lab and will mainly
focus on the internal workings of asynchronous networks. Some aspects, such as the dynamical
graphics or the possibility to simulate the output in single steps have been inspired by RBN-
Lab; the code is, however, independently written. Several features found in RBN-Lab have been
omitted due the computational requirements and long execution times (e.g. finding all attractors
for a particular network). Despite several similarities between these two software suits, it should
be pointed out, however, that they are both tools of analysis for rather different studies and as
such should not be compared directly.

Users

The software provides a very specific tool of analysis for a restricted area of dynamical
systems and has been written primarily for this project. Nevertheless, it has been tried to make
the program as accessible as possible to other users. The target user group is expected to be a
small number of researchers with background in biology, chemistry, mathematics, computer
science or artificial intelligence. A familiarity with the topic may be assumed, computer literacy,
however, may not. Comparing DDLab and RBN-Lab, for example, it appears that latter one is
more intuitive to use given its graphical user interface (GUI). A GUI may introduce a large
overhead and may introduce additional errors, especially caused by parsing user supplied
numerical values. Nevertheless, a GUI has been provided, using a clean and simple design and
intuitive layout to make the programs functions accessible to the user.

How the program works

The entire software suite has been written in Java 1.4 using Swing as the Graphical User
Interface (GUI) design component. There has been a hybrid approach also, attempting to
combine the use of Java and Mathworks Matlab but without success: The interface between the
languages is still too pre-mature to establish a stable suite. Therefore, almost all analytical and
behavioural methods have been implemented in Java except the Fast Fourier Transform (FFT)
analysis which has been done in Matlab. The main emphasis of this project was the research
aspect using software as a tool of analysis and not to provide a industrial piece of software such
as an office tool. Nevertheless, care has been taken to ensure modularity and extensibility such
that new aspects may be added with ease as the research area grows. This gave reason to a
floating panel approach as that utilises the integration of new components without the need to
change the entire graphical layout. A central controller class has been established which serves
as interface between all classes but a few, establishing a two way communication that enables
any class to use whatever methods provided by other classes. The design is not the most
efficient which raises doubt, especially in such computational demanding tasks such as a genetic
algorithm. This approach, however, easily allows for a feature that has been thought very
important: the user is able to change update schemes, apply lesions or noise on the fly while the
network executes. This enables the user to observe the effect of new attributes much more
explicitly. Another important aspect has been the emphasis on visualisation aspects as complex
dynamical systems are often best understood on an observational basis. Unfortunately there was
no time for real-time interaction modes such as the visual construction of networks (in a drag
and drop manner). Also, it had been attempted to implement an optimal network layout design
component (equal spread between nodes with minimal amount of crossing edges) using
simulated annealing. This had not been completed in time but considering the pruning algorithm
described later, this is not thought of major significance.

Philipp Rohlfshagen
Final Year CSAI Project

- 13 -

Some of the analytical parts have been done by hand and the pruning algorithm has not yet
been implemented but these aspects are to be included in subsequent versions of this software.
Due to the large degree of functionality provided in the software suite, an explanation and
manual-like script has been placed in the appendix (including screen shots). Once again it is
noted that the research aspects remains the focus of this project. The rest of the report will focus
on the individual analytical components and experiments carried out.

Contribution analysis

Several networks exhibiting marked rhythm around their target period have been evolved.
Most attention has been given to networks with k = 2 as these constitute the most interesting
case in the synchronous class of networks. Nevertheless, other networks with k = 3 and 4 have
been evolved also. The main aspect of the rest of this project is to determine the origin of
rhythm and to verify whether or not general principles regarding rhythm in ARBNs can be
obtained.

(a)

Autocorrelation

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
k

AC
(k)

(b)

Fig. 3: Evolved network for n = 16 and k = 2; (a) graphical output, (b) autocorrelation.

The behaviour of the network is due to the interaction of the topological and Boolean layer
subject to the update scheme. It is therefore of primary interest to investigate the network
behaviour on the level of nodes and their Boolean functions, to determine if their individual
behaviours are rhythmic themselves and if they operate upon different frequencies. The simplest
approach is the utilisation of the pseudo-rhythmic measure applied to individual nodes. This is

Philipp Rohlfshagen
Final Year CSAI Project

- 14 -

done for every node and the resulting rhythmic functions can be compared in a graph. Most
nodes do have very similar rhythms, marked around the target period. It is striking to see that
almost all nodes are centred on y = 0. This is because a single flip implies inversed identity as
the Hamming distance for single nodes can at most be 1. Stationary nodes, however, show flat
lines close to y = 1. They score extremely high on the measure of similarity as they are a
constant reflection of themselves.

Individual autocorrelations

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
k

AC
(k)

Fig. 4: Autocorrelations for individual nodes for n = 16 and k = 2.

As stationary nodes are not rhythmic themselves, it has been wondered how their omission
may effect the overall behaviour of the network. Running the network with each stationary node
lesioned in turn surprisingly revealed that most stationary nodes have a profound effect on the
difference between the autocorrelation and the target function. Despite initial scepticism,
stationary nodes seem to be of high importance to the workings of rhythmic networks. On closer
inspection, however, another theory is more likely: stationary nodes score extremely high on the
pseudo-rhythmic scale and shift the networks correlation, which is merely the summation of all
the individual rhythms, along the y-axis and thus closer to the target correlation. Indeed,
networks with stationary nodes necessarily have states which are more similar to each other. A
network with a single active node, for example, only has two states with a Hamming distance of
at most 1. In general, the Hamming distance is proportional to the number of active nodes.
 This has led to the formulation of different target functions. The aim was to find out whether
or not networks without stationary nodes may obtain higher degrees of rhythm. The different
target functions were as follows:

• [-1,1]
• [-0.5,0.5]
• Cosine function
• Relative distance between peak and trough

It has also been tried to evolve rhythm for each node independently by adjusting the fitness

evaluation accordingly. The results were mixed with the target function of [-1,1] not generating
very promising results. The reason for this is probably the duration of the evolutionary process,
requiring a longer execution times than a target function which is less extreme in turns of the
Hamming distance covered. The function is probably more difficult to approximate as it
incorporates both states of identity and inverse identity, the only cases that do not allow any

Philipp Rohlfshagen
Final Year CSAI Project

- 15 -

freedom for variations. The less extreme [-0.5,0.5] target function did work much better and
showed networks approximating the target function rather well. Of course, the use of a target
function which does not require identical states to re-occur every period p is questionable. A
cosine curve has been implemented to see if a more natural target function would improve or
accelerate the evolutionary process. The results were slightly but not significantly better than the
previous results. The measure of relative distance defines the fitness of a network as the distance
between its trough at period p/2 and peak at p. This function is assumed the least constraining
one and has been the most successful producing good results. Trying to evolve rhythm for each
node separately has produced only insignificant results. This could be due to the fact that the
focus on individual nodes somewhat neglects the interaction between nodes and each node acts
more or less in isolation. Nevertheless, this set of experiments showed that stationary nodes are
by no means necessary as none of the above had any stationary nodes (except in one case which
had a single stationary node). The effect of stationary nodes is the graph’s location along the y-
axis and networks with stationary nodes did in general approximate the score of 1 better that
those networks without. Stationary nodes are the only reliable components in asynchronous
networks as they are deterministic and thus help to stabilise the overall behaviour of the
network. Kauffman (1969) also pointed out the large proportion of stationary nodes within
cyclic attractors of synchronous networks.
 SRBNs with a value of k = 2 either terminate in a point attractor or a cyclic attractor of
normally short length. Evaluating the behaviour of the evolved networks when updated
synchronously may uncover some intrinsic properties as the topological and Boolean layer are
identical in both cases. This has been done for all networks and it is striking to see that the
shapes of their autocorrelations are almost identical. The asynchronous autocorrelation is near-
identical in all cases due to the target correlation and the genetic algorithm used. This need not
hold true for the synchronous case, however, but most graphs have a perfectly triangular
structure with amplitude little greater than 1.

Autocorellation: synchronous and asynchronous

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
k

AC
(k)

synchronous

asynchronous

Fig. 5: Autocorrelations for network with n = 16 and k = 2 after synchronous and a synchronous

updating.

This distinct feature is produced by a network that traverses the distance of period p in
uniform steps covering an amplitude A of 1. In other words, the network moves from one state
to the next with a (usually small) uniform number of changes. Some graphs exhibited slightly
different shapes but it was found, that these networks too produced a triangular shape limited to

Philipp Rohlfshagen
Final Year CSAI Project

- 16 -

certain initial states. Interestingly, if the network was initially updated synchronously, the
resulting pseudo-rhythmic function did not automatically resemble the triangular structure but if
the network was updated asynchronously first the network ended up displaying the before
mentioned form. Synchrony seems to result in the idealised behaviour of the network (i.e.
without decay) given the lack of randomness or noise.
 To evaluate the effect of the number of changing nodes per state transition, a hypothetical
network had been set up which simply consisted of a Boolean look-up table that recorded the
node changed last. A node changes its state only if its preceding node had changed in the
previous state transition. Consequently only one change per state transition is possible in the
synchronous case producing a rhythm of period 2n. The probability of disturbing the marked
rhythm in the asynchronous case grows exponentially: Each node has the probability of 1/n
being updated per state transition. As a time step is normally defined as n updates, this implies a
node is updated once per state transition on average (the actual probabilities have been obtained
from a network’s execution and found to be in the range of 0.97 and 1.03). Therefore, if node a
had been changed during the last state transition, node b is due to change next with a high
probability. However, changing node b followed by c, which should be changed during the next
state transition, is rather unlikely as the probability is 1/(2n). This unlikelihood grows
proportional in n, also implying that large networks are more stable than smaller ones.
 The hypothetical network shows above average pseudo-rhythm, producing waves of
amplitude 1.2, oscillating between the values 0.51 and -0.51 for n = 16. Repeating this test with
larger networks gave amplitudes up to 1.6, reaching 0.8 on the scale of similarity.

Autocorrelation

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
k

AC
(k)

Fig. 6: Autocorrelation for hypothetical network with n = 16.

A Chain of Nodes

The low number of changing nodes is the result of a chain architecture in which each node is
connected to its preceding node and itself, with wrapping around at the edges. Characteristics of
this architecture can be found in the properties of the evolved networks.
 The outputs of the evolved ARBNs only have a low number of nodes changing at each state
transition. The number of changes are counted and averaged over a several time steps for
several networks. These numbers are not uniform but have a low variance. This conforms well
given the indeterminism of the update scheme and the fact that networks can only be an
approximation to a perfect architecture. Table 5 lists some statistics obtained from networks
evolved with a target function of [0,1].

Philipp Rohlfshagen
Final Year CSAI Project

- 17 -

active nodes changes /
transition

variance of
changes

12 1.630 1.138
12 1.606 1.117
13 1.831 1.199
10 1.457 0.998
16 2.285 1.342

Table 5: Statistics for evolved networks using a target function of [0,1].

The next section will determine a couple of equations that describe the theoretical properties
of a chain architecture. The applicability of these formulae is then tested on the real networks. It
should be pointed out that these equations describe a deterministic system and as such provide
either an upper or lower bound. The data from the asynchronous networks is therefore only
expected to approximate these equations.

1.)
aAn =2 ,

where A is the amplitude of the pseudo-rhythmic graph, n is the number of nodes and a is the
number of active nodes. The amplitude describes the lower bound on the active nodes: It is
possible for a 16 node network with 16 active nodes to exhibit an amplitude of 1 if two sets of 8
nodes change in sequence back and forth. The lower bound is given as there needs to be at least
1 active node for an amplitude to exist and the size of the amplitude grows proportional to the
number of active nodes. The maximum amplitude of 2 is only possible with 100% network
activity. This also implies a tight relationship between the amplitude and period given a certain
number of active nodes.

2.)

2×= p
ac ,

where c is the average number of changing nodes per state transition, a the number of active
nodes and p the period as previously.

Other equations may be used but most include the use of the amplitude which is a very
uncertain component and given the maximum value of 2, the margin of error may be too great.
The formulae are applied to a selection of data from 10 networks (n = 16, k = 2, period = n)
which have been evolved using different target correlations.

Philipp Rohlfshagen
Final Year CSAI Project

- 18 -

active
nodes

changes /
transition

variance
of changes

period amplitude

12 1.630 1.138 15 0.468
12 1.606 1.117 16 0.475
13 1.831 1.199 15 0.509
10 1.457 0.998 14 0.456
16 2.285 1.342 16 0.575
16 2.175 1.280 15 0.769
15 1.987 1.173 16 0.554
12 1.596 1.073 16 0.449
12 1.551 1.161 17 0.602
13 1.765 1.139 16 0.487

(a)

02 =− aAn 02 =−× cp
a

-8.3 -0.030
-8.2 -0.106
-8.9 -0.090
-6.3 -0.028

-11.4 -0.285
-9.8 -0.041

-10.6 -0.112
-8.4 -0.096
-7.2 -0.139
-9.1 -0.140

Mean -8.8200 -0.1067
Variance 2.2973 0.0056

Std. 1.5157 0.0751
(b)

Table 6: (a) Data from 10 evolved networks updated asynchronously and (b) the results obtained from

the equations.

Equation 2 seems to apply but equation 1 does not indicate the relationship holds. The reason
for this could be the deterministic nature of the equation and the indeterminism of the update
scheme. The data obtained from synchrony is similar except in the case of the amplitude which
is generally higher. If the data obtained from synchronous updating is applied to the first
equation the relation seems to hold.

active
nodes

changes /
transition

variance
of changes

period amplitude

12 1.600 0.640 16 1.360
12 1.498 0.561 17 1.453
13 1.624 0.701 17 1.296
10 1.332 0.443 16 1.166
16 2.372 0.966 17 1.719
16 2.135 0.580 16 1.815
15 1.873 0.328 17 1.687
12 1.499 0.625 17 1.296
12 1.497 0.685 17 1.484
13 1.732 0.488 16 1.233

(a)

Philipp Rohlfshagen
Final Year CSAI Project

- 19 -

02 =− aAn
-1.12
-0.37
-2.63
-0.67
-2.24
-1.48
-1.50
-1.63
-0.12
-3.13

Mean -1.4890
Variance 0.9458

Std. 0.9725
(b)

Table 7: (a) Data from 10 evolved networks updated synchronously and (b) the results obtained from the

equation.

The data approximates the equation sufficiently considering that evolved networks are not
clean architectures. The nature of this relationship is twofold as all networks have not just a
similar topology but also identical pseudo-periodicity. To determine if the equations apply to a
wider set of networks which are rhythmic, 5 synchronous networks are evolved using the same
genetic algorithm and target function1.

Autocorrelation

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
k

AC
(k)

Fig. 7: Evolved synchronous network (n = 16, k = 2) with period n and amplitude 1.

1 It is striking to note that mutation plays a much more important role than cross-over and large plateaus of neutrality
seem to dictate the search space. A solution is normally found in less than 20 epochs, or the search continues for
much longer, often without any increase of fitness over many epochs.

Philipp Rohlfshagen
Final Year CSAI Project

- 20 -

active
nodes

changes /
transition

variance of
changes

period amplitude

15 6.66 2.22 16 1
14 4.85 1.32 16 1
15 7.60 2.77 16 1
15 5.88 2.13 16 1
16 7.47 1.64 16 1

(a)

02 =− aAn 02 =−× cp
a

-7 -4.785
-6 -3.100
-7 -5.725
-7 -4.005
-8 -5.470

Mean -7 -4.6170
Variance 0.5000 1.1648

Std. 0.7071 1.0793
(b)

Table 8: (a) Data obtained from evolved synchronous networks (n = 16, k = 2, period = 1) and (b) the

results obtained from the equations.

The results of both equations seem to validate previous results but a more extensive
mathematical framework is needed. This is difficult to establish as the data components rely
solely on the behavioural features of the network and can not make use of any structural
information. This problem is also highlighted in the fact that there are many cases of
synchronous networks which seemingly obey the equations but do not exhibit any marked
rhythm in the case of asynchrony. The rest of this project will therefore focus on the structural
properties. In particular, the pruning algorithm presented later can be used to prune a network
and to uncover its functional architecture which is thought responsible for the behaviour of the
network as a whole. This has been done for pseudo-rhythmic and de-correlated ARBNs and the
SRBNs with period n and amplitude 1. The resulting topologies are very different, indicating
the validity of the equations.

Strict cycles in asynchronous networks

The cases of synchronous networks whose attributes coincide with the relational properties
of a chain architecture are thought to be the result of synchrony itself and not internal structure.
A concept that will try to explain the role of local timekeeping describes the physical
relationship between nodes in the form of coupling.
 The nodes in a chain architecture are all coupled to their preceding/succeeding node,
establishing a tight overall coupling with allows only one node to change per state transition;
The network mentioned in Di Paolo’s (2001) study also had a coupling between neighbouring
nodes, but did allow for multiple nodes to change per state transition. Since there has been no
feedback between the changing nodes, they may easily get out of sync, reducing the rhythmic
performance.
 A chain architecture has been implemented, using n = 16 and k = 2. Each node is connected
to its previous node and itself and all nodes but one have the same Boolean function which says
that the node is identical to its preceding node. The only function that is different, the driving

Philipp Rohlfshagen
Final Year CSAI Project

- 21 -

function, is the exact opposite. This network can be further reduced (using the pruning
algorithm) to k = 1 which can be shown sufficient to produce maximum pseudo-rhythm.

(a)

(b)

Autocorrelation

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
k

AC
(k)

(c)

Fig. 8: Output of chain architecture asynchronous network with all nodes (a) follow (b) oppose each other
and (c) the autocorrelation of this network.

There are two reasons for synchronous networks to exist that conform to the identified
equations but are non-rhythmic given asynchrony:

• The output is solely due to the synchrony and not the architecture of the network.
Examples are de-correlated ARBNs which still exhibit rhythm given synchrony.

• The networks do produce rhythm but the discrete time steps for measuring state

transitions is too insensitive to detect this rhythm.

Philipp Rohlfshagen
Final Year CSAI Project

- 22 -

The simplest case is a synchronous network with one active node which changes at each
state transition. This is only possible if the node is coupled to itself. Given the tight coupling,
the network would be expected to exhibit rhythm in asynchronous updating but produces a flat
line on the pseudo-rhythmic scale. The network’s behaviour has to be cyclic as the network can
only be in exactly two states which differ a Hamming distance of 1. Asynchrony allows
remaining in the same state for several time steps due to 0 or multiple updates of the active node
which leads to non-rhythmic behaviour over time. The reason for this behaviour is not,
however, the non-existence of strict cycles but the measure of duration between states. The idea
that ARBNs may have strict cyclic attractors does not imply the possibility of perfect rhythm as
rhythm is defined as a behaviour over time. This network is an example of a much more general
phenomenon as any perfect chain architecture exhibits strict cycles and in fact, any tightly
coupled system can be expected to do the same. The discrete time steps that are chosen as a
measure for the rhythmic activity, however, may be too coarse to detect subtle change. Di Paolo
(2001) suggests the use of the external clock as a measuring and not driving device which lead
to the formulation of pseudo-periodicity. The network’s overall rhythmic behaviour is more the
result of the operational relationship between states instead of the externally measured duration
of states. This relaxation can be taken a step further by taking the clock out completely, or more
specifically, by assuming the network and clock are one and the same thing. This, of course,
raises the question how to detect new states and to verify a network is rhythmic. In the simple
case above, a new state of the network is encountered whenever the value of a single node has
been changed. An independent counter is used as timer and is incremented once every update.
In doing so, the output of a network is strictly cyclic and a time line is obtained that indicates
the degree of rhythm. This approach thus separates the aspect of rhythm into cyclic behaviour
and time. The time line may then be compared to the time line that would correspond to fixed
discrete time intervals (incremented by n updates) and it can be shown that they are very
similar. An example is given in figure 9.

(a)

(b)

Philipp Rohlfshagen
Final Year CSAI Project

- 23 -

Autocorrelation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
k

AC
(k)

(c)

State ID's

5600

5800

6000

6200

6400

6600

6800

7000

7200

7400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iteration

St
ate

ID

(d)

Philipp Rohlfshagen
Final Year CSAI Project

- 24 -

Time over state Transitions

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97
State transition

Ti
me

int
er

va
l(c

ou
nt

er
) Discrete time

Network's time

(e)

Fig. 9: The output of an almost stationary network with (a) synchronous updating and (b) asynchronous

updating. (c) Autocorrelation for the asynchronous updating, (d) states traversed after each change and (d)
timeline produced by the network.

The time line of the network (Fig. 9e) is compared to the time line obtained from discrete

time intervals being n updates. The network’s timeline diverges over subsequent state
transitions, is, nevertheless, almost linear.
 The same measure can be applied to larger chain-like networks which exhibit the same cyclic
behaviour with a time line very closely related to the discrete one. This measure is easily
applicable given knowledge about the number of changing nodes needed to encounter a new
state. Normally this is not the case. Synchrony may be used to obtain the sequence of changing
nodes but still leaves the problem at which point in the networks history this sequence starts.
This is a problem of its own but it can be shown that a crude approximation suffices to illustrate
the effect. Taking the average number of changing nodes as indicator works in the cases of
evolved networks as the underlying architecture is known. This has been done for one of the
evolved networks. The network’s timeline diverges but is almost linear; the state sequence
produced in almost perfectly cyclic.

Autocorrelation

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
k

AC
(k)

(a)

Philipp Rohlfshagen
Final Year CSAI Project

- 25 -

State ID's

0

10000

20000

30000

40000

50000

60000

70000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Time intervall

St
ate

ID

(b)
Time lines

0

200

400

600

800

1000

1200

1400

1600

1800

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105
State transition

Ti
me

(co
un

ter
)

Discrete time

Networks time

(c)

Fig. 10: Evolved pseudo-rhythmic network with n = 16 and k = 2. (a) Autocorrelation, (b) states traversed

after a single update and (c) time line produced by the network.

The same technique may be applied to a perfect chain architecture which highlights the high
degree of similarity of the time line produced.

Philipp Rohlfshagen
Final Year CSAI Project

- 26 -

State ID's

0

10000

20000

30000

40000

50000

60000

70000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97
State transitions

St
ate

ID

(a)

Time lines

0

1000

2000

3000

4000

5000

6000

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253 262 271 280 289 298
State transitions

Tim
e(

co
un

ter
)

(b)

Fig 11: Perfect chain architecture network. (a) States traversed each single node change and (b) the time
line produced by the network.

To identify the exact architecture that is responsible for the emergence of rhythm, a simple
pruning algorithm has been developed. This algorithm is subsequently used to uncover the
functional architecture of several networks.

Philipp Rohlfshagen
Final Year CSAI Project

- 27 -

Boolean interaction

The following algorithm presents a simple technique to prune a network by deleting
redundant links and nodes. It will be shown that the method is reliable and there is no reason to
assume that a more complicated procedure is needed as natural systems would be likely to
utilise the least costly method themselves (e.g. Ockams razor). A more complicated technique
had been employed earlier, but with less success. It is included in the appendix for
completeness.
 Each Boolean function is classified as being determined, biased or neutral. If all the values
are identical (i.e. all 1’s or 0’s) then the function is determined as its outcome is always known.
If the function is exactly divided between the two values, then it is neutral as it does not have a
natural tendency to be in one state or the other. If one value is dominant, the function is biased
as it is statistically more likely to be in the state of the more frequent value. Examples are: 0000
(determined), 1010 (neutral), 1000 (biased). It will be shown that using the concept of natural
tendencies suffices to approximate the networks determining structure (which we will call
functional architecture) to a satisfactory degree.

1.) All the Boolean functions are examined and nodes whose function is either tautology or
contradiction are labelled as ‘stationary’. The inputs to these nodes can be pruned as they make
no difference to the outcome of the node.

For each node in turn …

2.) If the Boolean function of the node in question co-insides with one of the columns of its
truth table, the input node corresponding to that column is kept and all other inputs to this node
may be pruned.

3.) The Boolean functions of the input nodes are examined: If all are neutral, none can be
pruned. If any of the functions is biased, the effect of this bias is used to determine how the
influences of all inputs are affected: If one node has a natural tendency towards the value 1, for
example, all inputs are measured against the part of the Boolean function where the value of the
identified input is 1 in the truth table. This is done for every node (i.e. if two nodes are biased,
the focus is shifted towards the part in the Boolean function that corresponds to the bias
expressed by both inputs). If one input turns out to be determining the output while none of the
others do, all other inputs are pruned. If several inputs have identical influences but some have
none, they may be pruned.

4.) Special attention has to be given if the same node serves as input multiple times. In these
cases, only columns which have identical values need to be considered. This may lead to
pruning despite all inputs being neutral.

This concept can, of course, be formalised with the concept of information theory but unless
the algorithm is to be implemented or used in conjunction with larger values of k, there is no
need in doing so.

Philipp Rohlfshagen
Final Year CSAI Project

- 28 -

input 1 input 2 truth
table

prune label

0101
(node 4)

0011
(node 10)

00 0
01 0
10 1
11 1

input 2 same

1010
(node 2)

0000
(node 8)

00 1
01 0
10 0
11 1

input 2 opposite

0001
(node 9)

1100
(node 6)

00 0
01 1
10 1
11 1

input 1 same

1001
(node 1)

0110
(node 13)

00 0
01 1
10 1
11 1

- -

(a)

input 1 input 2 input 3 truth
table

prune label

10101010
(node 3)

00101111
(node 5)

00101111
(node 5)

000 0
001 0
010 0
011 0
100 1
101 1
110 0
111 1

input 2
input 3

same

01011101
(node 1)

10101010
(node 3)

01001101
(node 4)

000 0
001 0
010 1
011 0
100 1
101 1
110 1
111 1

input 2
input 3

same

10101010
(node 3)

10101010
(node 3)

10101010
(node 3)

000 0
001 1
010 0
011 0
100 0
101 1
110 0
111 0

input 1
input 2
input 3

(stationary)

01011101
(node 1)

00010111
(node 2)

00101111
(node 5)

000 0
001 0
010 0
011 1
100 0
101 1
110 1
111 1

input 2 -

(b)

Table 9: Examples of the application of the pruning algorithm for (a) k = 2 and (b) k = 3.

Philipp Rohlfshagen
Final Year CSAI Project

- 29 -

The method has been applied to several pseudo-rhythmic networks of size n = 16. The
resultant graphs all had similar properties: A circular structure incorporating the majority of
nodes with some links to single nodes and sometimes what seemed to be feedback loops. In the
case of k = 2, it is evident that many links may be pruned leaving a structure similar to k = 1.
Indeed, it can be shown that k = 1 suffices to construct rhythmic asynchronous networks.
Evolving asynchronous networks with k = 1 has not shown very successful. The space of
possible topologies is probably too constrained as the number of possible (and successful)
approximations is reduced. Examples of functional architectures are given in figure 12.

(a) (b)

Fig. 12: The functional architectures of two distinct pseudo-rhythmic networks with n = 16 and k = 2
(stationary nodes omitted).

The labels indicate the relationship between neighbouring nodes. The output of the network

is then analysed and it can indeed be shown that the relational features of the output are
captured by the graphs. Some output parings of the nodes shown in graph (b) are listed for
verification in table 10.

nodes 4 & 1
same

9 & 14
same

14 & 15
opposite

15 & 11
opposite

1 1 0 0 0 0 0 1
1 1 0 0 0 1 1 0
1 1 0 0 0 1 1 0
1 1 0 0 0 1 1 0
0 1 0 0 0 1 1 0
0 1 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
1 0 0 0 0 1 1 0

Table 10: Output form network (b) to compare the relationship between nodes.

Additional information that can be used, especially in cases which seem unclear, is the
probabilities of each node being in one state or another. Another example for the validity of the
method can be illustrated with the first graph: node 2 seems to be of more importance than any

Philipp Rohlfshagen
Final Year CSAI Project

- 30 -

other node as it is connected to 4 other nodes. Indeed, the lesion analysis of node 2 results in the
complete loss of rhythm whereas lesions applied to nodes 4, 10 and 14 had hardly any
noticeable effect on the rhythm produced by the network. In the case of the second graph, a new
network has been constructed using the graph as a guideline. The new network with n = 16 and
k = 1 tried to implement the graph as accurately as possible (e.g. node 8 has 2 inputs but with k
being 1, one of the input has to be omitted as k has to be uniform throughout). Despite the
absence of a few links as indicated in the graph, which itself is a cut-down version of the
original network, it has been shown that the output of the newly constructed network was very
similar to original network’s output.
 Given this algorithm, it would be valuable to compare rhythmic networks with de-correlated
ones to compare their functional architectures.

Autocorrelation

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
k

AC
(k)

(a)

(b)

Fig. 13: De-correlated network with n = 16, k = 2. (a) Autocorrelation; (b) functional network.

De-correlated networks usually drain their inputs from one half of the nodes such that about
50% of nodes has an out degree of 0. The above architecture illustrates this and the lack of
circles (except [1,5,6]) suggests the total lack of rhythmic behaviour. This gives another strong
indication towards the origin of rhythm as pseudo-rhythmic networks seem widely distributed

Philipp Rohlfshagen
Final Year CSAI Project

- 31 -

(every node is identical in the chain architecture) whereas de-correlated networks are localised
by focusing on a sub-group of nodes and often a single node has a very dominant out-degree.
Also, the Boolean functions of a node seem to coincide with one of the columns of the truth
table more frequently and allows decoupled units of nodes normally not found in rhythmic
networks. Nodes are often connected in both ways, one being the input to the other and vice
versa. Such local coupling is purely local and necessarily leads to chaotic long term behaviour.
 It might be helpful to have some quantitive measure on the distribution of Boolean function
to verify whether or not some input pairs occur more frequently than statistically likely. Such a
measure can be easily obtained but would not serve its purpose as the Boolean functions of the
actual node needs to be considered to the same degree as the inputs. In other words, if the
Boolean function of a node is identical to one of the columns in the truth table, then it is already
indicated that this input will be determined no matter what the configuration of inputs is.
Therefore it should not be expected that certain groups of function occur more frequently than
others in general; this is in accord with the analysis of several networks, not showing any
statistical irregularities. A more sophisticated approach may be able to establish a mathematical
relationship for the distribution of Boolean functions in pseudo-rhythmic networks.
 Another valuable comparison can be made between the synchronous and asynchronous
networks which both have a period of n and amplitude of 1. The topological difference is
striking: The functional architecture of the synchronous network has significant similarities with
the de-correlated architectures of the asynchronous case. The reason for this has not been
concluded.

(a) (b)

Fig 14: Networks with period n and amplitude 1: (a) asynchronous network and (b) synchronous network

A plate of further graphs may be found in the appendix.

Philipp Rohlfshagen
Final Year CSAI Project

- 32 -

The emergence of rhythm

Evidence has been brought forward to suggest the use of local time keeping in its simplest
form of the chain architecture. Further support includes:

• Pseudo-rhythmic networks have rapid transients. This could be due to the target function

used in the GA which does favour networks of rapid transients. Nevertheless, as Harvey and
Bossomaier (1997) pointed out, the asynchronous updating scheme produces the shortest
transients. The short transients would correspond to the phase in which the network
establishes the relational order among nodes. Once each node has been updated, it is in the
correct relational state to its inputs.

• It has been shown (Di Paolo, 2001) that the basin of attraction covers most of the state space

if a loose attractor exists. This could be explained by the fact that almost any initial state can
be ‘converted’ to obey the relational properties imposed by the Boolean interaction. The
relationships between nodes, as indicated by the output (the patterns produced are
reflections of the relational attributes of the functional architecture) are always similar,
independent of the initial state indicating the existence of a single attractor.

• The diversity of output patterns produced by the distinct networks given can easily be

explained. As has been shown with the graphs of pruned networks, a single link may suffice
to dictate the state of the connecting node, either identical or opposite. Given a network of
size n, there are n effective links, each of which can take on one of the two labels. This
allows for 65534 different output patterns (given n = 16) given the exact same topology but
different Boolean functions. In addition, the evolved networks are all approximations which
increases the number of possible topologies by magnitudes. On the other hand, the
relatively small number of possible networks can be used to explain other findings made by
Di Paolo (2001). Di Paolo investigated the widespread of rhythmic attractors among the
class of non-stationary attractors and found that rhythmic attractors are much less frequent.

If the emergence of rhythm is purely topological, the evolved networks should be robust

towards different sequences of updates. It can be shown that this is the case: Each time step (n-
updates), some of the active nodes change their values. In the deterministic case, this leads to a
sequence of changing nodes which repeats itself each period. Random asynchrony is non-
deterministic and the order of nodes chosen for update differs each time step. If there are a
active nodes and c changes per state transition (where c ≤ a) then there are a possible ac

different combinations of update sequences. This is the upper bound as every active node is
considered every time step which is normally not the case. If, for example, a network has 3
active nodes and typically 2 changes per state transition then there are 32 = 9 different
combinations. Assume nodes 1, 2 and 3: 11, 12, 13, 21, 22, 23, 31, 32, 33. The length of the
sequence increases exponentially in a and c. Some sequences will be redundant once higher
numbers of active and changing nodes are encountered as a sequence of odd length involving
only one node is identical to a single update: 1 = 111 = 11111, etc.. The average number of
changing nodes has been used to this measure as exploiting all possible sequences is clearly
computational infeasible (E.g. a = 12 would theoretically imply 1212 different sequences).
 The network is executed as usual but at each state transition within the cycle, all possible
update sequences are applied to the same state and their individual outputs are collected. The
measure has been applied to 10 pseudo-rhythmic networks and it has been found that at each
state, the likelihood of diverging onto different states is close to 0. Almost all states throughout
the cycle are very robust with some exceptions where a state may diverge onto several distinct
successors. This measure provides strong evidence for the purely structural emergence of
rhythm. The likelihood of divergence as indicated by the Hamming distance for the run of 5
networks is shown in table 11.

Philipp Rohlfshagen
Final Year CSAI Project

- 33 -

1 # 2 # 3 # 4 # 5 #
19517 0 17828 1 52797 0 28147 1 9656 1
19493 0 21925 2 20029 0 58739 1 1464 1
23589 0 21669 1 20025 0 37235 2 1336 0
56357 1 46245 0 20027 0 37171 0 4920 0
56421 0 46693 0 18043 2 37683 0 21304 0
64868 0 46691 0 18267 1 5043 1 21052 1
47520 1 46658 0 17243 1 7091 0 21044 0
10680 0 34370 1 17235 1 15283 0 53812 0
10425 0 50754 0 50134 2 27571 1 65205 1
2233 0 17540 1 50116 2 28659 1 61109 1

54437 1 54220 1 28023 0 60597 0
62693 1 52909 1 60791 1 44213 0
46177 1 20153 1 50551 0 44469 2
46689 0 20155 1 34167 0 9657 2
46659 0 18259 1 38199 1

22355 0 37175 0
54099 0
54212 1
54148 1
52140 1
52908 0

Table 11. The number of additional states that may lead to divergence of the loose attractor (the
maximum Hamming distances has been 1 in all cases).

An example of this procedure is given in figure 15 which shows the states reached after all
different update sequences. Only 2 states differ from the initial state, one of which is divergent.

Fig 15: Possible outcomes of pseudo-rhythmic network after all possible update sequences.

It should be noted that this is merely an approximation and results vary from trial to trial but
the average number of divergent states is normally constant. In cases with more active nodes, it
frequently happens that the same state may be reached by several update sequences. The
relationship between the number of active and changing nodes does illustrates that a low

Mean number of changing nodes: 1
Number of active nodes: 12
Initial state ID: 63780 (111101000010)

Outcome of all combinations:

111101000010
111101000010
111101000010
111101000010
111111000010
111101000010
111101100010
111101000010
111101000010
111101000010
111101000010
111101000010

SCORE: 1

Philipp Rohlfshagen
Final Year CSAI Project

- 34 -

number of changing nodes only allows a low number of possible update sequences and
therefore reduces the chance of diversion.
 The fact that only one architecture has been identified so far that seems suitable for
topological constraints robust enough to withstand the non-determinism of the update scheme,
allows for the formulation of generic properties of pseudo-rhythmic networks. If each node has
identical frequencies with change of a single node per state transition, only a period of 2n is
possible. After each node has been updated once, the network reached its inversed identity and
it takes another n changes, to re-encounter the initial state. Shorter periods may be obtained by
changing a larger, but still uniform number of nodes at each time step. If, for example, two
nodes are changed during each transition, the period is cut in half. This, however, degrades the
degree of rhythm unless individual nodes are conditioned on at least two distinct nodes. Another
way to achieve shorter periods is by using stationary nodes: if s nodes are stationary, the
network is effectively reduced implying a cycle of n-s nodes. Longer periods are much more
difficult to achieve: the sequence of changes is more complex, with some nodes changing
multiple times over a short period of time whereas other nodes change during subsequent time
steps. It should also be pointed out that the size of the network is important as larger networks
are generally more robust given the lower probabilities of state diversion.

Other Studies

It is important to see how this framework copes with data obtained in other studies. There are
only four studies known to the author that deal with random asynchronous networks, only two
of which deal with pseudo-rhythm explicitly.

• Di Paolo (2000) evolved networks of size n = 16, 32, 64 with k = 2, 3, 4 and target periods p

= n/2, n, 2n. Di Paolo reports that shorter or longer target periods have been attempted only
with minor success. He used the target function [0, 1] which, given the identified structure,
implies almost half the nodes being stationary while the active nodes change one at a time.
For the sake of simplicity, let us assume that 50% of all nodes are stationary and exactly one
node changes at a time. This is natural rhythm of n. The smaller period may be achieved by
changing two nodes at a time, probably involving k > 2. The longer period of 2n is more
difficult and probably involved higher values of k. In any case, it has not been possible to
produce longer rhythms for the reasons given earlier. Shorter rhythms would be possible but
not given the amplitude of 1 (by the target function).

• Another study from Adams (2002) includes a table (see table 12) which in part indicates the

relationship between stationary nodes and fitness of the network (using the [0,1] target
function, networks n = 16, k = 3). There is a correlation between the number of stationary
nodes and the fitness of the network. It is estimated that little less than half the nodes are
stationary in an optimum network, and the data indicates the tendency towards this.

Network Fitness # stationary nodes

1 65.0% 4
2 64.1% 5
3 63.6% 3
4 61.3% 3
5 60.8% 2

Table 12: A summary of a table given by Adams (2002) of evolved ARBNs with increasing fitness and
number of stationary nodes.

• The fitness of an asynchronous pseudo-rhythmic network is proportional to its similarity

with the synchronous updating scheme as indicated with the network’s timeline. This
complies well with the findings by Gershenson (2002) who concluded that the differences
between network behaviours arise from the degree of determinism rather than the update

Philipp Rohlfshagen
Final Year CSAI Project

- 35 -

scheme itself. A carefully constructed architecture that locally keeps track of time is in itself
deterministic. Therefore, the higher the degree of coupling given certain values of n and k,
the networks behaviours will become more and more similar in both a determined and non-
determined update scheme.

Rhythm and the degree of coupling

It has been shown that the natural period of a chain architecture is 2n if all nodes are active.
Shorter periods are achieved by the use of stationary nodes or multiple changes per state
transition. In any case, there is a relationship between period, amplitude and active nodes which
should be applicable to all networks such that similar rhythms will exhibit similar graphs of
rhythm. Longer periods are more difficult to obtain as they require more sophisticated coupling
using higher values of k. As k increases, however, Boolean functions and tables become much
more complex. While it is believed that k is proportional to the amount of coupling that may be
achieved it is shown that this is exponentially unlikely to occur. Many different topologies are
imaginable: consider a network with a large chain of nodes, a smaller chain of nodes and a
sufficient amount of feedback links at appropriate locations. The smaller chain traverses
normally and thereby dictating the progress made by the larger chain using the feedback links.
Given variations in the size of these two chains, different rhythms could be obtained. High
values of k could also lead to networks of short rhythms without the typical characteristics of
the chain architecture. That these networks are unlikely to emerge can be demonstrated with a
simple experiment which evaluates the space of non-stationary attractors for different values of
k.

Di Paolo (2001) used a target correlation of [0] to evolve de-correlated asynchronous
networks to get an idea about the distribution and quantity of pseudo-rhythmic attractors in the
space of non-stationary attractors for ARBNs. Di Paolo showed that de-correlated networks
could be evolved much faster, suggesting that they occupy most the attractor space. This
measure can be used to examine the distribution of de-correlated attractors proportional to k as
the size of the state of non-stationary attractors is fairly constant for any k (Harvey and
Bossomaier, 1997; this project). If de-correlated attractors are easier to find as k increases would
suggests that sophisticated rhythmic ARBNs are very rare. This experiments used identical
settings for the GA throughout the trials, using the elite selection scheme as deemed most
appropriate for this comparison. The trial is aborted as soon as a network reaches the fitness
score of 0.92.

k = 2 k = 3 k = 4
18 0.920 20 0.920 6 0.93
30 0.921 6 0.922 11 0.921
14 0.924 24 0.920 3 0.923
15 0.921 10 0.926 4 0.920
16 0.923 13 0.922 10 0.920

k = 5 k = 6
10 0.921 2 0.922
4 0.921 1 0.920
4 0.921 2 0.920
3 0.924 1 0.926
6 0.920 3 0.925

Table 13: The number of epochs needed to evolve a de-correlated network with at least a score of 0.92
and the score reached.

Comparison:

k 2 3 4 5 6
mean 18.6 14.6 6.8 5.4 1.8

Philipp Rohlfshagen
Final Year CSAI Project

- 36 -

The data clearly shows that de-correlated attractors populate an area of growing proportions
in the space of all non-stationary attractors and thus provide good support for the assumption
made earlier. Also, it had been shown that the transients of point attractors is much longer for
higher values of k indicating that any stable behaviour is more difficult to establish with an
increasing number of connections. It is striking to see that the number of de-correlated attractors
is seemingly higher for k = 3 than it is for k = 2; it had been shown earlier that k = 3 has the
largest space of non-stationary attractors but it seems that k = 3 is the value most suitable for de-
correlated and not pseudo-rhythmic networks. As had been shown, k = 2 suffices to produce
pseudo-rhythmic behaviour and it is assumed that this is merely due to the simpler space of
topologies.

Biological plausibility

The fact that long cycles (> 2n) seem difficult to obtain is of little relevance if ARBNs were
to be used as models of biological system as a cycle length of 2n is too great. As a matter of
fact, it was the existence of small cyclic attractors has given reason to use Boolean networks as
biological models in the first place. Kaufman (1969) showed that synchronous random Boolean
networks with k = 2 can be used as models for genetic regulatory networks. First, the number of
genes that makes up a cell in the human body is estimated 100 000 the root of which is
approximately 300, more or less the number of cells in the human body. Also, the typical cycle
length of √n can be used to predict cell replication times. The size of the cycles is extremely
small given the number of possible states the network may traverse through, especially
considering networks of size more than 100 000 nodes. Kauffman did report on the high number
of stationary nodes (approx. 70 %). This would not work in the case of asynchronous networks.
It has been shown that a low k seems essential for pseudo-rhythmic networks to exist in the first
case. A low k, however, is bound to period and amplitude requiring a larger amount of
stationary nodes if small cycles are to be obtained. Also, having multiple nodes changing per
state transition is not an option as anything more than two changing nodes would loose rhythm
unless there are enough feedback loops. At the beginning it has been stated that one of
Kauffman’s reason to believe that genetic regulatory networks are random is the careful
evolutionary selection required for topologically refined nets to emerge. If one believes that this
evolutionary process is no more unlikely than a perfectly synchronous updating scheme, random
asynchrony may be used as model for these networks even though it seems, they do not fit the
data projected by Kauffman.
 It is also biologically plausible that the emergence of rhythm is uniformly distributed among
the nodes. Such a distribution normally ensures robustness towards outside perturbations but the
chain architecture itself is very brittle (see figure 16) as the lesion of a single node has
devastating effects. Therefore it is interesting to note that the evolutionary process has produced
networks which only approximate the chain architecture to some degree. These networks are
much more stable towards outside perturbation. A comparison to synchronous networks may be
valuable also.

Fig. 16: A perfect chain architecture has a single node lesioned (marker), showing the transition from
order to chaos (output goes from left to right).

Philipp Rohlfshagen
Final Year CSAI Project

- 37 -

Conclusion

This work suggests the origin of rhythm in ARBNs as the result of well defined topological
relations between nodes. Ultimate proof can not be obtained from the small subset of networks
tested and a larger quantitive analysis is needed. Only further verification and mathematical
proof can determine the validity of the results obtained, but the data gathered in this project
looks promising. Larger networks need to be tested and the relation between attractor-space and
rhythm needs to be analysed. The most important results of this project are as follows:

• Rhythm seems to emerge from the topological organisation of the network whereas tight

coupling between nodes establishes order.

• The chain architecture has been identified as the single most important structure so far given

low values of k.

• An algorithm has been identified that can be used to prune the network and uncover the
functional architecture of the network.

• The value of k dictates the amount of coupling in the network. High values are thought to

allow the emergence of any rhythmic behaviour. Low values seem to allow any rhythm
equal or below a period of 2n. These networks have a functional relationship between their
period, amplitude and stationary nodes.

• More versatile networks are unlikely to emerge given the constraints upon the value of k:

the number of rhythmic networks decreases as k increases. Chaotic de-correlated attractors
occupy almost the entire space of non-stationary attractors.

Future work includes automatic construction of asynchronous networks displaying any

degree of rhythm. The software suite is modular and should be extended to cover all update
schemes as identified by Gershenson (2002). This has not been done to date given time
constraints but could reveal interesting properties about other classes of networks. As the
analysis of complex dynamical system is often more successful on an observational basis, more
sophisticated graphical tools would be a useful addition. Especially modes of real time
interaction, such as lesioning, could prove useful in generating the overall picture needed to
conclude about the usefulness of ARBNs as biological models. The biological relevance of
ARBNs may be judged upon the results but is a matter of its own. One has to decide if a
carefully selected topology is more plausible than a perfectly synchronised updating scheme.

Philipp Rohlfshagen
Final Year CSAI Project

- 38 -

References

Adams, J. (2002). On asynchronous random Boolean networks. Submitted as dissertation for
MSc EASy, University of Sussex, Brighton, UK.

Aharonov, R., Segev, L., Meiilijson, E., Ruppin, E. (2003). Localisation of Function via lesion
analysis. Neural computation, 15(4), 885-914.

Di Paolo, E. A., (2001). Rhythmic and non-rhythmic attractors in asynchronous random
Boolean networks BioSystems, 59(3), 185 - 195.

Di Paolo, E. A., (2000). Searching for rhythms in asynchronous Boolean networks. Artificial Life
VII: The Seventh International Conference on the Simulation and Synthesis of Living Systems,
Reed College, Portland, Oregon, USA.

Gershenson, C. (2002). Classification of Random Boolean Networks. In Standish, R. K., M. A.
Bedau, and H. A. Abbass (eds.) Artificial Life VIII: Proceedings of the Eight International
Conference on Artificial Life. . pp. 1-8. Sydney, Australia. MIT Press.

Harvey, I., Bossomaier, T., (1997). Time out of Joint: attractors in asynchronous random
Boolean networks. In: Husbands, P., Harvey, I. (eds.), Proceedings of the Fourth European
Conference on Artificial Life. MIT Press, Cambridge, MA, pp. 67 – 75.

Kauffman, S. A. (1993). The origins of order. Oxford University Press.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22, 437-467.

Nowak, M. A., May, R. M. (1992). Evolutionary games and spatial chaos. Nature, 359:826-829.

Wuensche, A. (1994). The ghost in the machine: basins of attraction of random Boolean
networks, in Artificial Life III, Langton (ed.), SFI Studies in the Sciences of Complexity, Proc.
Vol. XVII, Addison-Wesley.

Philipp Rohlfshagen
Final Year CSAI Project

- 39 -

Appendix

Log

Autumn term

1 Initial discussion and clarifications. Also looking at other options.
2 First refinement of the task. Initial outline and clarification of some details.
3 Discussion of basic program which should be completed within a week. Basic

program will simply simulate RBNs and ARBNs (3 different update methods in
total)

4 Doing analysis on the data obtained from the program to verify correct workings.
5 Analysis of Initial data shows flaws in the number of attractor found in ARBNs.

Task for next week is to debug the program and repeat analysis.
6 Program is working. Talk about implementation details. Proposal of lesion

analysis; 2 papers by Ruppin et al are suggested and to be prepared for the next
meeting.

7 Final decision on implementation detail: lesion analysis for ARBNs with evolved
pseudo-periodicity. Estimate of first executable version beginning of spring term.

Summer term

1 Examining the data produced over the Winter break as the genetic algorithm has
been fully implemented. The data seems to indicate that the program works.

2 Attempting a first approach to implement the lesion analysis after some
discussion of the details as indicated in the paper by Aharonov et. al (2003).

3 Lesion analysis will be approximated using a simpler contribution analysis given
the complexity of the mathematical framework required to properly implement a
multi-lesion analysis.

4 Discussion of the contribution analysis and the incorporation of fitness. Results
are not yet very good.

5 Changes are made to the contribution analysis. All techniques should be applied
to a single network.

6 Hypothetical network is discussed. More focus on statistical analysis.
Contribution analysis showed better results when compared to single lesion
analysis.

7 Boolean influences are discussed.
9 Discussion of biological relevance and circadian cycles. Further applicability and

work over the Easter break.

Philipp Rohlfshagen
Final Year CSAI Project

- 40 -

Functional architectures

Philipp Rohlfshagen
Final Year CSAI Project

- 41 -

Network contribution analysis

This contribution analysis was the first attempt to discover the origin of rhythm in ARBNs. It
has proven successful only to a limited degree as comparisons with lesioned networks revealed.
The approach used in the pruning algorithm has shown to be more effective despite the fact that
no numerical measure is produced. This approach has been included for reasons of
completeness:

Each network consists of nodes which directly and/or indirectly influence each other’s output as
long as there is a path between them. If a network consists of several isolated connected
components these do not interact with each other. Connections imply direct influence, otherwise
2nd, 3rd, etc. degree of influence. The network may be visualised as a weighted directed graph,
the weights being the direct influences calculated as shown below.

Step 1: Calculate the information content of each node’s Boolean function

∑
=

−
n

i
ii vPvP

1
2)(log)(, according to the occurrences of 1’s and 0’s in the Boolean function. It

follows that the information content of each node falls in between the range [0..1] where 0
indicates the output always being the same, 1 being an equal (50/50) distribution.

Step 2: For each node calculate the direct influence on neighbouring nodes

This measure is simply the number of co-in-siding input/output pairings. For example, 6/8 cases
the input from node a (to node b) and the output from node b are the same, then the influence is
simply 6/8. Equal or opposite pairings count equal as they equally constitute towards a gain in
the uncertainty of the nodes outcome. It therefore follows that the lowest influence is ½ and the
actual influence is thus linearly scaled such that ½ = 0: 2*x-1. The influence therefore ranges
between 0 and 1.

Step 3: Normalise and adjust influences

The influences on each node should add up to the information content of that node. If a node has
information content of 1 then the influences of all incoming nodes should add up to 1. If,
however, the information content of a node is below 1 then the influences add up to that
amount. This implies that the influences are relative to each other and also that the remaining
influence is coming from the node itself despite there not being a connection. If, for example, a
node has a uniform output, then, there can’t be any influence as it does not affect the node’s
output in any way. Thus the output is entirely determined by the node itself, expressed
implicitly within the Boolean function.

Step 4: Adjust the contribution values to actual outputs of the network

This step introduces how the contributions scale up to the behaviour of the network itself. The
behaviour of any network is merely the output it produces. The output of a network is analysed
as follows: Whenever a node changes, all the other nodes are checked whether or not they will
change the next time step. This is a notion of induced changes; the contrary inhibitory behaviour
is not of interest as will be shown later. It therefore follows (for example) that if node 1
influences node 2 by 0.4, say, and node 1 also causes node 2 to change for 80 times, say, then
the influence is 0.4x80=32. This is done for all nodes. This measure captures and incorporates
the network’s behaviour into the measure of analysis.

Philipp Rohlfshagen
Final Year CSAI Project

- 42 -

Step 5: Perform a modified and simplified form of transitive closure and adjust contribution
values

The idea here is that if node 1 influences node 2 which in turn influences node 3 then there is an
influence of 2nd degree of node 1 on node 3. That is also the reason that inhibitory behaviour
can’t be used to adjust the contribution values to the network behaviour: it logically follows that
higher degree influences result in later time steps during the network’s output and do not require
the original node to change while its influence percolates through the network. Therefore, if
node 1 changes but 3 doesn’t and the other way around, that does not imply that node 1 actually
has an inhibitory effect on 3 but could imply that node one’s influence percolates through the
intermediate connections. To get an estimation of these indirect effects a sort of transitive
closure is performed. This could be arbitrarily deep (depending on how many ‘layers’ are
implied by the network’s topology). So if node 1 is linked to 2 which in turn is linked to 3 then
the influence of 1 on two is multiplied by the influence of 2 on 3 (since all influences are <1 the
value degrades as it should) which is then added to the existing influence (if any) of 1 on 3.

Step 6: Finalising the contribution values

Now these values are just added together and normalised to give a single contribution value for
each node (whereby all contributions add up to one).

Philipp Rohlfshagen
Final Year CSAI Project

- 43 -

Classifications of RBNs (Gershenson, 2001)

Following the results by Harvey and Bossomaier (1997), Carlos Gershenson provides a
classification of RBNs and outlines the differences resulting from the choice of update method.
He points out that the concept of determinism and non-determinism causes greater differences
in the behaviour of RBNs than the updating scheme itself. All Boolean networks have strong
similarities (discrete time, space and values) and can be summarised under the term Discrete
Dynamical Networks (DDN), a term introduced by Wuensche (1997). As only the update
methods and implications of determinism are important to this project a brief summary is given
which only outlines theses aspects:

Network Updating scheme
Classical Random Boolean Networks (CRBNs) synchronous, deterministic

Asynchronous Random Boolean Networks (ARBNs) asynchronous, non-deterministic
Deterministic Asynchronous Random Boolean Networks

(DARBNs)
asynchronous, deterministic

Generalised Asynchronous Random Boolean Networks
(GARBNs)

semi-synchronous, non-deterministic

Deterministic Generalised Asynchronous Random Boolean
Networks (DGARBNs)

semi-synchronous, deterministic

Philipp Rohlfshagen
Final Year CSAI Project

- 44 -

Java Code

The software suite has been developed as a tool of analysis. This is an ongoing process as new
insights require the addition of new tools. The structure is modular and extensible, but some
code should be rewritten for better performance. Some user specific aspects are not fully
functional but these only include elements such as disabling fields or displaying information. In
some cases, results as mentioned in the report are output directly to the command window.
Some sections are commented out in the code below and will be incorporated in full in future
versions. Also, statistics generated can not yet be saved directly. The ongoing process of
research and software extension is sometimes difficult to follow and a full implementation of a
new module requires extensive testing afterwards, especially in the case of a software tool as
such because minor errors easily result in significant errors. A full manual has yet to be written
but there is no need for such unless the software is made publicly available which might the
case for future versions. Once again it is stressed that the primary purpose of the software is for
the purpose of analysis and not a tool for a wide group of users. The code for the file filter and
PCU monitor are not included as they are taken from Sun’s demonstration libraries. Further it is
pointed out again that some aspects have been inspired by the software suite provided by
Gershenson (2002) but the code has been independently written. To get an idea of how the
program and especially the visualisation aids look, some screenshots are included over the next
two pages followed by the annotated Java code.

Classes in alphabetical order:

Analysis.java GAInterface.java
AnalysisInterface.java GaRun.java
Attractor.java Help.java
CADisplay.java InfoMsg.java
Clock.java Net.java
Controller.java NetworkInterface.java
Correlation.java NetNumerical.java
EditNetInterface.java NetworkOutputDisplay.java
ErrorMsg.java PseudoRhythm.java
ExpActivity.java RBNLabs.java
ExpPointCycle.java RhythmInterface.java
ExpSyncAsync.java Saver.java
ExpTransient.java Score.java
Experiments.java UpdateHistogram.java
ExperimentsInterface.java Utils.java
GA.java

Not included:

RBNFileFilter.java (borrowed from Sun’s demonstration classes)
CPUMon.java (borrowed from Sun’s demonstration classes)

Philipp Rohlfshagen
Final Year CSAI Project

- 45 -

Philipp Rohlfshagen
Final Year CSAI Project

- 46 -

