
Music Visualisation Program

Project Report

Author Nicholas Martin

Candidate Number XXXX

Submission Year 2004

Degree Programme BSc Multimedia & Digital Systems

Department Informatics

Project Supervisor Dr P. Newbury

Word Count 7565

“This report is submitted as part requirement for the degree of BSc in Multimedia &

Digital Systems at the University of Sussex. It is the product of my own labour except

where indicated in the text. The report may be freely copied and distributed provided

the source is acknowledged.”

Summary

This project shows the development of an application which produces a

graphical representation of sound. Implemented using Java and Java 3D, an object-

orientated approach using detailed design diagrams. The application works using a

live audio input. The frequency spectrum of the audio data is calculated using a Fast

Fourier Transform, forming the source of control for each of the four visualisation

themes. Graphical content is 3D and utilises mechanical equations for motion

characteristics by implementing custom interpolator classes.

The graphical content and audio input correlate successfully, outputting

between 90 and 210 frames per second with a latency figure of approximately 80ms.

Issues were found within the Java 3D API when implementing advanced

transparency.

The application confirms that Java is capable of carrying out an FFT in real

time from a live audio input with minimal latency. Transparency with Java 3D is

possible but its usage must be limited. Resource leaks may occur within the

scenegraph if its elements are not manually removed.

1

Contents

Contents

Contents..1

1 Introduction..4

2 Current Visualisation Implementations ..5

2.1 iTunes by Apple®..5

2.2 Windows Media Player by Microsoft® ..6

2.3 Audition by Adobe®..7

3 Requirements Analysis ...8

3.1 Target Users and Deployment ...8

3.2 Functional Requirements ..8

4 Specifications ..9

4.1 Execution Speed ...9

4.2 Graphical Content...9

4.3 Deployment ..9

5 Implementation Technologies ..10

5.1 C++ ..10

5.2 OpenGL..10

5.3 Java ..10

5.4 Java 3D...10

5.4 Choice of Technology...11

6 Application Development ...12

6.1 The Development Framework...12

6.1.1 The Overall Plan ...12

6.1.2 Baseline Points..13

6.2 Development Techniques..13

6.2.1 Design Diagrams...14

6.2.2 Graphing Mathematical Expressions ...14

6.2.3 Analysis of Music ...14

7 High Level System Design ..16

7.1 Execution Cycle Flowchart ...16

7.2 System Interaction ..17

7.3 Design Class Diagram...18

8 Principals of the System ...20

8.1 Audio Data Structure ..20

8.1.1 The nature of digital audio ..20

8.1.2 Audio input using the Java Sound API ..20

8.1.3 Fast Fourier Transform..21

8.1.4 Calculating Frequency Band Coefficients..22

8.2 Scenegraph Elements in Java 3D...23

8.2.1 View Side of the SceneGraph..24

8.2.2 Content Side of the SceneGraph..24

8.3 Simulation of Mechanics ..25

8.3.1 Implementing Custom Interpolators ..25

8.3.2 Modelling a Bouncing Ball ...26

8.3.3 Modelling a Flocking Particle ...28

8.3.4 Modelling Spiral Motion ...29

2

Contents

8.4 Resource Handling..30

8.5 Final Release ..31

9 Testing...34

9.1 Iteration Testing..34

9.1.1 Audio System Testing ...34

9.1.2 Graphical Content Testing...34

9.2 Final Testing...34

9.2.1 Visualisation Frame Rate ..35

9.2.2 Audio / Visual Latency ...37

9.2.3 System Resource Demands ...37

9.2.4 The Influence of Different Musical Styles ...39

9.2.5 User Feedback...40

10 Conclusion ..41

10.1 Assessment of Success..41

10.2 Improvements and Future Work..41

11 References...42

12 Acknowledgments...43

Appendix A: System Design..44

A.1 Execution Cycle Flowcharts..44

A.2 Design Class Diagrams ...51

A.3 Scenegraph Designs..56

Appendix B: Simulation of Mechanics ...59

B.1 Flowchart for a Flocking Particle ..59

B.2 Calculation for Alpha Offset Value...60

Appendix C: Iteration Breakdown ...62

C.1 Iteration 1 ...62

C.1.1 Iteration 1a..62

C.1.2 Iteration 1b..62

C.1.3 Iteration 1c..62

C.2 Iteration 2 ...63

C.2.1 Iteration 2a..63

C.3 Iteration 3 ...63

C.3.1 Iteration 3a..63

C.3.2 Iteration 3b..64

C.3.3 Iteration 3c..64

C.3.4 Iteration 3d..66

C.3.5 Iteration 3e..68

C.4 Iteration 4 ...70

C.4.1 Iteration 4a..70

C.4.2 Iteration 4b..70

C.4.3 Iteration 4c..70

C.5 Iteration 5 ...71

C.5.1 Iteration 5a..71

C.5.2 Iteration 5b..71

C.6 Iteration 6 ...72

C.6.1 Iteration 6a..72

C.6.2 Iteration 6b..72

C.6.3 Iteration 6c..73

C.7 Iteration 7 ...74

C.7.1 Iteration 7a..74

3

Contents

C.7.2 Iteration 7b..76

C.8 Iteration 8 ...77

C.8.1 Iteration 8a..77

C.8.2 Iteration 8b..77

C.8.3 Iteration 8c..77

C.8.4 Iteration 8d..78

C.8.5 Iteration 8e..79

C.9 Iteration 9 ...81

C.9.1 Iteration 9a..81

C.9.2 Iteration 9b..81

C.9.3 Iteration 9c..81

C.9.4 Iteration 9d..82

C.10 Iteration 10 ...82

C.10.1 Iteration 10a..82

C.11 Iteration 11 ...83

C.11.1 Iteration 11a..83

A.11.2 Iteration 11b..84

C.12 Window Iterations ..85

C.12.1 Window Iteration 1 ...85

C.12.2 Window Iteration 2 ...85

C.12.3 Window Iteration 3 ...86

Appendix D: Source Code...88

D.1 AudioController.java ..88

D.2 Fft.java ...91

D.2 MainWindow.java ..93

D.3 PulsingBoxes.java...97

D.4 Waveform.java ...103

D.5 BouncingParticle.java ...109

D.6 BouncingLights.java ...116

D.7 GravityInterpolator.java..123

D.8 FpsBehavior.java ..125

4

1 Introduction

1 Introduction

In a live music event the presence of a graphical accompaniment can add great

impact. The idea of combining live visuals and music is not new; even before the

times of computers, bands such as Pink Floyd have had live visuals at their concerts.

Currently there are many software packages which can create real time graphics in

time with music on a standard desktop PC. This includes both mp3 players and

software dedicated to VJing, the term used for creating dynamic live visuals. All

perform a frequency analysis of sound and manipulate graphical content accordingly.

The accommodation of a live audio input is restricted to select packages which

often require a high level of expertise to use. The range of “plug and play” software

available is narrow and follows standard themes. Using objects to represent elements

of musical structure has been attempted but based on beats per minute calculations.

However, the implementation of a live form of frequency abstraction using 3D objects

has been limited.

This report investigates the development of such a visualisation program. It is

known that an audio signal’s frequency structure can act as the stimulus for graphical

content, so this will form the primary line of investigation. Multi-track audio is

possible but requires hardware beyond the resources of this project. Visual content

will be confined to 3D graphics only.

The report is Structured as follows. Initial research of existing applications,

implementation technologies and target user requirements are discussed. A set of

specifications are laid out from this research and the development framework realised.

The high-level system design is documented, with more detailed work in the

appendix. The underlying principals within the application are explained, ending in

example screenshots of the final release. Results of the final testing are shown and

their significance discussed so that an evaluation may be made. The appendix

contains documentation of every iteration, including methodology and iteration

testing.

5

2 Current Visualisation Implementations

2 Current Visualisation Implementations

The following section introduces some current applications which express

sound in graphical form.

2.1 iTunes by Apple®

Apple’s iTunes [1] is an mp3 player with a visualisation feature (see Figure

2.1). The graphics are implemented using OpenGL, although the visualisation does

not have a 3D style. The strongest feature of its visualisations is the fact that the

structure and content of the graphics are constantly changing so that the same thing is

never seen twice; themes and devices are used more than once, but its creation is

spontaneous and the result is always unique. The sound’s spectral waveform is the

basis for most of the graphical content, with everything else reacting to it.

This is a very advanced visualisation program and consequently requires a

high level of computational power to run in full screen mode. The ability to

implement visuals which develop so freely and independently are beyond the scope of

this project, but inspiration can be gained from some of the techniques used.

Figure 2.1 a sample of iTunes in action

6

2 Current Visualisation Implementations

2.2 Windows Media Player by Microsoft®

Another media player [2] which features visualisation capabilities, here

different styles may be chosen, each with a different technique for reacting to music.

However the styles are very prescriptive, preventing the visualisation from

developing. Again much of the visualisation is based on the spectral waveform with

swirls of colour being effected by it. As with iTunes, the visualisations may only be

based on music played from file.

Figure 2.2 Windows Media Player

7

2 Current Visualisation Implementations

2.3 Audition by Adobe®

Formerly known as Cooledit this is a digital audio editing environment which

allows for audio recording, mixing, editing and effects processing [3]. Although not

directly linked to music visualisation it does in fact utilise the most fundamental

graphical representation of sound - the audio waveform (Figure 2.3). Not only does it

create a visual representation of sound in the time domain, but it can also perform a

frequency analysis, spectral analysis or spectral view of a wave in real time; a

technique used by both iTunes and Windows Media Player.

Aside from its visual techniques, Audition can also find and mark musical

beats automatically; something which could prove powerful in trying to create

synchronised graphics.

Figure 2.3 Audition’s main editing window

8

3 Requirements Analysis

3 Requirements Analysis

3.1 Target Users and Deployment

The program is intended to be used for real time visuals at a concert either by

a live band or DJ. The master out from a mixer which the audience hears is the

source for the visuals and the resulting graphics would be projected onto a screen. As

the venue will have its own PA system there is no need for any sound to be output

from the program.

Most visualisation implementations currently used by performers are

projections of pre-produced video and graphical content; there is no direct correlation

between what is seen and heard, other than possibly style or mood. A more elaborate

and effective technique used is Vjing; the art of mixing together visual content in real

time, much like a DJ mixes together records. Here the VJ may react to the tempo and

mood of the music in a more complementary fashion. Although this does create a

more interesting visual experience to a live event, the performer is faced with the

problem of finding someone who possesses what is an eclectic skill.

3.2 Functional Requirements

Real time execution of the software is essential to the visualisations being

effective, but whether this may be achieved in the timescale and using the available

technologies is not certain. With testing the degree of acceptable latency can be

assessed.

The software will need to run “straight out of the box” without the need for

any composition beforehand. It is certainly possible to create a program which is

executed and left to produce a graphical output. However, the issue of independent

development is more difficult to address, and any audience is going to get tired of

seeing the same thing for even 10 minutes. The level of independence seen in iTunes

is beyond the scope of this project, but the merging of different themes into each other

is something which may be achievable.

A target system for the software is a normal desktop PC without any specialist

hardware other than a reasonable soundcard which allows for analogue input and a

graphics card with 3D capabilities. It must be seen to what degree full screen

graphics can be executed in real time.

9

4 Specifications

4 Specifications

A set of specifications acts as both a blueprint and reference point for the

project. Derived from the requirements analysis, they set out the goals of the

development like a set of guidelines. By sticking to them the progress of the project

may be kept in check. However, this is not a rigid set of rules which indicate the

success or failure of the application.

4.1 Execution Speed

• Graphical content must correlate with the audio input in real time

• A frame rate of 30 fps should be aimed for as iTunes (see Section 2.1) allows

for its visualisations to be capped at this value without any detriment to quality

4.2 Graphical Content

• The nature of the graphics should allow an obvious reaction to the music

• There must be some variation in the visual content in the form of different

visualisation techniques

• The user should not be required to compose any graphical content

4.3 Deployment

• Maximum hardware requirements

• Intel® Pentium® II or higher, AMD Athlon! processor,

Macintosh® G4 or higher

• Hardware-Accelerated OpenGL® graphics card

• 16-bit soundcard capable of analogue input

• Maximum software requirements

• Microsoft® Windows XP

• Apple® Mac®OS X (10.3.*)

• Additional software requirements may only include freely available packages

• Once set up the software should require minimal operation to change themes

• No technical knowledge of the software should be expected from the user

10

5 Implementation Technologies

5 Implementation Technologies

The technology chosen to implement the project is extremely important; it has

a bearing on the quality, complexity and viability of the final result. Here the main

available choices are investigated; the two languages C++ and Java and their

respective 3D graphics APIs, OpenGL and Java 3D.

5.1 C++

Speed of execution is the major factor in this development as the graphics

must react so closely to the music. This makes C++ the ideal language of choice due

to its speed relative to other languages. C++ also has the most extensive amount of

third-party libraries of extension code for routines such as the FFT. To its

disadvantage C++ does lack the portability of Java, so compatibility with the different

operating systems in the specification (see Section 4.3) would require separate

implementations. Also, the extra load required to learn C++ would impact on the

possibility to extend the functionality of the application.

5.2 OpenGL

For the graphics side of the application OpenGL would offer the highest level

of quality and content. Being one of the most advanced real time graphics libraries

available, it offers the programmer a large amount of freedom and power. OpenGL is

not a language but a set of graphics libraries which may be used in order to produce

graphical content. It is possible to implement OpenGL in C, C++ and Java using the

appropriate wrapping APIs. However, regardless of the language used, it is a

complex language to implement with many low level elements to accommodate.

5.3 Java

There are many speed issues associated with Java which make it a less popular

choice for high performance programs. However, recent releases of the API have

shown great improvements, so much so that some newsgroups claim it is as fast as, if

not faster than C++ for many applications [4]. Regardless of the accuracy of this

claim, Java is a well established programming language which I have tested using

Sun’s own Java Sound Demo [5] and found to perform without any problems. Java

has a dedicated sound API which provides methods for the input of audio data

through a computer’s ports.

5.4 Java 3D

Although implemented entirely in Java, Java 3D is not part of the Core API

but rather a supplementary package which may be used to implement interactive 3D

11

5 Implementation Technologies

graphics. Java 3D uses a scenegraph, which is a higher level screen descriptor than

that used for OpenGL, allowing for easier manipulation of a scene’s elements [6]. It

should be noted that Java 3D still uses OpenGL for the rendering of a scene but the

programmer need never know as this is handled by the API; instead a more object-

orientated approach to programming may be taken, rather than dealing with the low-

level parameters of directly accessing OpenGL itself. Being 100% Java allows it to

be seamlessly integrated with core Java classes within an application.

5.4 Choice of Technology

The primary factor in making a choice of implementation technology is the

amount of functionality that may be achieved. C++ and OpenGL offer the most in

terms of power, but their low level complexities would hinder the progress of the

application. Although Java and Java 3D are possibly lesser programming languages

in terms of power, the conceptual approach to programming they offer would allow

the functionality of the application to be pushed further. Therefore, the application

will be implemented in Java and Java 3D

12

6 Application Development

6 Application Development

6.1 The Development Framework

A development framework will define the tasks and objectives for the life of a

project [7]. Spending time on planning the project lifecycle saves time in the long run

through properly directed development.

6.1.1 The Overall Plan

The project was undergone using an iterative, incremental lifecycle. The

development process is carried out in stages instead of a single large release; evidence

of functionality can be achieved quicker, allowing for baseline code (see Section

6.1.2) and the fixing of bugs as soon as they happen [8].

Figure 6.1 The project time plan

The main constraint upon the project is time, as the completion date is

unalterable. Figure 6.1 shows the duration of each stage in the project. Although

from the time plan it appears that research, design, coding and testing are all being

carried out at the same time, Figure 6.2 illustrates how they are broken down into

separate iterative stages.

13

6 Application Development

Figure 6.2 The project’s iterative, incremental lifecycle

6.1.2 Baseline Points

The risk of serious errors late in the development of the application could

jeopardise the success of the project. Having a fully functioning and tested section of

code that represents a conceptual milestone ensures that this risk of errors is reduced

[9]. The baseline points are ordered such that the highest risks are tackled first. The

application may be divided into two main risk areas – audio processing and graphic

generation. The point of the graphical content is to react to the audio input signal,

making the audio processing the higher risk area. The ordered baseline points are

based on the success of,

1. Audio input

2. Frequency spectrum calculation

3. Generation of the “pulsing boxes” 3D scene

4. Coefficient calculation (this comes later as it is a low risk audio process)

5. Updating the visualisation using coefficients derived from the audio data

6. Implementation of a GUI

7. Export of application into an executable file

Baseline point 5 is repeated for each of the visualisation themes developed. The

iterations where the points were signed off may be seen in Appendix C.

6.2 Development Techniques

In order to develop the application’s functionality various techniques were

used; mainly based on visualising the execution and dataflow of the system, their aim

is to achieve more effective development, rather than simply relying on trial and error

coding.

14

6 Application Development

6.2.1 Design Diagrams

By coding from designs time is saved by not encountering deep running

errors; the combination of class and interaction diagrams enables the architecture of

the system to be laid out before development becomes too advanced for any changes

to be made.

The goal of creating design diagrams is to maintain good software engineering

principals; an advanced level of abstraction, encapsulation and information hiding

will lead to a system which executes to its full potential. Just as the application’s aim

is to create an abstraction of sound, so an abstraction must be made of the

application’s architecture.

6.2.2 Graphing Mathematical Expressions

A graph gives a clear view of the nature of a mathematical function; when

dealing with complex expressions it is not possible to know its detailed shape without

first plotting its values. This is especially true if a defined set of values must be

interpreted – simply using trial and error at the coding stage is not sufficient.

An example of this is the creation of the coefficient scaling function (details in

Appendix C.12.2). The aim was to find an expression which would generate a

coefficient output between 0 and 1 from a set of decibel values between -" and 0.

Through the use of Curvus Pro X, parameters in the expression could quickly be

changed and the effects seen until the desired characteristics were achieved. At this

point the function may be tested in the code.

6.2.3 Analysis of Music

To be able to visualise music effectively its properties must be known. There

are two main attributes which are of interest – frequency content and amplitude. The

way in which an audio signal is handled must be based what is required from it; the

purpose of the application is not to faithfully represent every nuance of sound in

visual form, but for this visual form to be influenced by the sound’s overall makeup.

The frequency range which a musical instrument functions at corresponds to

the fundamental tones it can generate [10]. Figure 6.3 shows the ranges for common

acoustic instruments, along with the musical notes it represents. However, the

fundamental frequencies an instrument produces span further into harmonics. These

overtones give an instrument its own unique timbre – an identity that distinguishes it

from similar sounding instruments. This identity is of no interest to the application,

which is only concerned with what is being played. The harmonic content of music is

important in terms of fidelity, but is always based on the fundamental frequencies

present.

15

6 Application Development

Figure 6.3 A chart showing the fundamental frequencies of common

musical instruments [11]

The amplitude of an audio signal determines how loud it is perceived to be. In

terms of visualisation, the greater the amplitude of a frequency range, the greater its

impact should be upon the scene. To find the amplitude range which is to be

considered for the visualisation tests must be run using the application itself. Details

of these tests may be seen in Appendix C.12.2

16

7 High Level System Design

7 High Level System Design

7.1 Execution Cycle Flowchart

The basic execution of the application may be broken down into three stages,

once the system resources have been initialised (Figure 7.1). Firstly, the audio data is

fetched from the line in port and saved in a buffer. The fast Fourier transform routine

then analyses the frequency content of the signal and using the data a graphical output

may be displayed.

Figure 7.1 The execution cycle

It is here that the importance of speed can be seen; performing the FFT and

calculating the graphical output must take less time than it takes to fill the audio

buffer. The speed of the whole cycle may be impeded should a single stage be too

slow. For the detailed set of low level designs see Appendix A.1.

17

7 High Level System Design

7.2 System Interaction

There are two system interaction scenarios; audio input (Figure 7.2) and the

user interfacing with the GUI (Figure 7.3). An actor is generally restricted to human

users or other systems [12]. However, as this application contains only one human

interaction the effects of the audio input have been considered a valid actor upon the

system.

Figure 7.2 Interaction diagram for audio input

Low coupling exists between the classes as method calls are kept to a

minimum. There is tight cohesion, maintaining low class responsibilities which are

tightly related and sharply focused on their abstracted roles; each class is only

involved to an appropriate level in an activity, not taking on technical responsibility

for actions which belong to other classes. For example, the GUI may receive the final

frequency data results from the Audio Controller, but cohesion would be lost if the

GUI had to call the FFT routine itself.

Figure 7.3 Interaction diagram for a button click

18

7 High Level System Design

7.3 Design Class Diagram

The application is made up of 8 main classes (Figure 7.4) which may be

abstracted into three sections; the classes AudioController and FFT deal with

audio input and manipulation, outputting the data to be visualised; MainWindow is

the front-end to the application, housing the controls and graphical content; the

remaining classes generate the 3D graphics content. Aside from low-level system

issues the conceptual flow of data is from the top downwards.

Figure 7.4 High level system design class diagram with association
multiplicity and naming

The class structure is an abstraction of the flowchart (Figure 7.5), where each

of the stages is dealt with individually with an object-orientated approach. There are

five classes concerned with calculating the graphical output, but as they are not used

simultaneously may be considered a single entity. Each generates a different type of

visualisation with only one being displayed at a time.

19

7 High Level System Design

Figure 7.5 Correlation between the flowchart and classes

20

8 Principals of the System

8 Principals of the System

8.1 Audio Data Structure

The main input to the system is analogue (or possibly digital if an optical or

S/PDIF line in were used) audio data from the computer’s soundcard. This

information must be read, analysed and the results passed on (Figure 7.1). There are

many concepts and considerations involved in this process.

8.1.1 The nature of digital audio

Once the audio signal has travelled through the soundcard it is represented in

digital form. Although made up of a series of bits, it is organised into a particular

audio format definition. Briefly, there are two major factors in a digital audio format:

• Sampling Rate, measured in Hz, expresses the number of samples recorded

per second. The maximum frequency which can be represented is double the

sampling rate [13].

• Sample Size, indicates how many bits are used to store each sample’s

amplitude. This determines both the maximum dynamic range and the signal

to noise ratio.

The audio format chosen for the application effects both the speed and results;

the higher the quality of format used, the more accurate the results, at the cost of

execution speed. As the application is predominantly concerned with the frequency

content of the input, sampling rate is kept at the CD quality of 44100Hz. Initially a

sample size of 16 bits was used, but extra implementation is required for handling the

data, as is discussed in Section 8.1.2. As sample size bears its greatest impact on the

quality of sound, a factor that does not affect this application, 8 bits was seen as

sufficient to express the amplitude of the signal. This also reduces the computational

load.

8.1.2 Audio input using the Java Sound API

There are many ways of implementing an audio input routine using the variety

of classes provided. Sun’s Sound Programmer Guide [14] provides an example of

how this may be achieved (Figure 8.1).

Figure 8.1 Sun’s suggested design for an audio input system

21

8 Principals of the System

It is the Port object which represents the hardware audio line in, fetching audio data

when the TargetDataLine calls its read method. However, after implementing

this design (see Appendix C.1.1) it was found that the Port class is not scheduled for

implementation until version 1.5.0 [15]. Instead, the TargetDataLine was

requested directly from the AudioSystem class without any further implementation

required for audio input to be achieved.

Using a 16 bit audio format for the TargetDataLine requires extra

implementation. As is illustrated in Figure 8.2, when a 16 bit sample is placed into a

byte buffer it is split in two. A 16 bit sample’s contents is not linear, such that when

split, only the combination of both 8 bits has meaning. If a sample size of 16 bits is to

be used the 8 bit pairs must be combined before processing.

Figure 8.2 Sample splitting

By using an 8 bit sample size, bytes may be read straight out of the buffer, reducing

the computation load. This reduction is twofold as both half the amount of bytes are

passing through the system and the additional implementation is not required.

8.1.3 Fast Fourier Transform

The graphical visualisation uses the audio signal’s frequency content as its

source. In order to extract this frequency data from the linear byte stream a Fast

Fourier Transform (FFT) routine is used. A specified number of samples are taken by

the routine and their overall frequency spectrum returned. Figure 8.3 shows the

correlation between the sample amplitude and frequency data, the details of which

may be seen in Appendix C.3.4.

The implementation of an FFT routine’s code is beyond the scope of this

project, but as it forms such a fundamental element to the operation of the program, a

conceptual understanding of its operation is still necessary. There are two directions

in which an FFT may be performed; a forward transform takes the time dependant

amplitudes of a waveform and converts them into frequency dependant amplitudes, as

used in this application; the backward transform works in exactly the opposite

direction, going from a frequency to time dependant waveform.

22

8 Principals of the System

-80

-60

-40

-20

0

20

40

60

80

time (samples)

a
m

p
li
tu

d
e
 (

b
it

s
)

-250

-200

-150

-100

-50

0

1
0
.7
7

1
0
8
7

2
1
6
4

3
2
4
1

4
3
1
7

5
3
9
4

6
4
7
1

7
5
4
7

8
6
2
4

9
7
0
1

1
0
7
7
7

1
1
8
5
4

1
2
9
3
1

1
4
0
0
7

1
5
0
8
4

1
6
1
6
1

1
7
2
3
7

frequency (Hz)

p
o

w
e
r
 (

d
B

)

Figure 8.3 The waveform and frequency content graphs for a 1000Hz sine
wave extracted from the application

As frequency is an expression based on time, a series of samples must be used

by the FFT. The input consists of both the real set of numbers prescribed by the audio

signal and a set of imaginary numbers. As only real numbers are being used the

resulting output from the FFT routine will only contain frequency data in the first half

of the sample set. The output must be interpreted into decibel values for a correlation

to be found with the audio input signal.

In order to determine the power spectrum of the wave in decibels at a

frequency x the squared values of the real and imaginary components are added

together:

(8.1)

To translate the power spectrum into decibels 10 is multiplied by log base 10 of

Power(x). Normalising the power spectrum will give a more even range of values and

is achieved by dividing by the maximum power value first:

(8.2)

In order to plot the results of Equation 8.2 the frequency values for which each of the

entries in the series corresponds must be found. The frequency multiplier (8.3)

specifies the frequency difference between individuals in the series.

(8.3)

8.1.4 Calculating Frequency Band Coefficients

In order to maintain tight cohesion within the system, the frequency spectrum

must be translated into a set of coefficients by the AudioController in a way that

does not require any technical knowledge from the graphics classes.

23

8 Principals of the System

Frequency is an exponential unit and so must be divided accordingly; the

octave is a unit used to define a frequency range, specified by a doubling in

frequency. Hardware devices such as graphic equalisers split an audio signal into

octave bands (Figure 8.4), or fractions thereof [16].

31 63 125 250 500 1000 2000 4000 8000 16000

Figure 8.4 Centre frequency values often used by hardware devices

Such divisions are generic and may be adapted for the task at hand. It was

decided that 5 frequency bands (Figure 8.5) would give the best range of values,

whilst not being too computationally expensive. An increase in the number of bands

creates extra computation not only in the AudioController class but also in the

extra visualisation required. These values were chosen as they cover the frequency

range specified by the table in Figure 6.3.

Band 1 Band 2 Band 3 Band 4 Band 5

31 ! 125 125 ! 250 250 ! 500 500 ! 1000 1000 ! 2000

Figure 8.5 The 5 frequency bands used

The average value for the results of Equation 8.2 are found for each of the

frequency bands, giving a set of five decibel values. These values must be converted

into a coefficient ranging between 0 and 1 for use by the graphics classes; this both

scales the decibel values more expressively and maintains good encapsulation. Much

investigation went into finding the right mathematical function to perform the

translation, the details of which can be found in Appendix C.12.2. The final scaling

function chosen for calculating the coefficients is shown in Figure 8.6.

Figure 8.6 The scaling function for calculating the coefficient k, where p is
the normalised decibel value from equation 7.2. Values of k are limited to

no more than 1.0

8.2 Scenegraph Elements in Java 3D

The scenegraph is a hierarchical data structure which specifies the

relationships between instances within a 3D scene; an element in the scenegraph may

have any number of children and a single parent. In the application there are two

main scenegraph branches – the view and content BranchGroups.

24

8 Principals of the System

8.2.1 View Side of the SceneGraph

All elements that are responsible for rendering to the screen are contained

within the view side of the scenegraph (Figure 8.7) [17]. The class

SimpleUniverse defined in the com.sun.j3d.utils package contains all the

view elements within itself, but at the cost of easy access to control. In order to be

able to have freer control over the view elements the VirtualUniverse class was

used instead and the hierarchy built manually.

Figure 8.7 The view side of the scenegraph

8.2.2 Content Side of the SceneGraph

The physical objects within a scene and the elements that control and define

them are contained under the content side of the scenegraph. Each visualisation’s

scenegraph is shown in Appendix A.3, as their details are different. However, the

techniques used are similar, in particular the use of hierarchy when manipulating

objects. Figure 8.8 shows a typical structure used in the application to apply a

transformation to an object.

25

8 Principals of the System

Figure 8.8 A simple scenegraph structure

The structure above specifies a Box object, its position, and the

ScaleInterpolator attached to it. A TransformGroup is manipulated by a

single Transform3D object contained directly below it, the effects of which have a

knock-on effect upon every child element. Therefore, in the scenegraph above,

upperTransform3D can be used to position the box and will not be effected by any

further manipulation using lowerTransform3D.

The Interpolator class contains an array of subclasses for interpolating an

object between states; a gradient of values is applied to a target element associated

with a physical object, over a period of time. This time period is specified to the

Alpha class, of which a parameterised version between 0 and 1 is returned to the

interpolator.

8.3 Simulation of Mechanics

Although the visualisation does not bear any resemblance to reality, the

simulation of real-world motion using mechanical functions gives greater effect to the

graphics. By extending the abstract TransformInterpolator class and overriding

the computeTransform method, custom interpolator classes could be implemented.

8.3.1 Implementing Custom Interpolators

The Alpha class provides parameters for the attenuation of increments

between 0 and 1. However, as can be seen in Figure 8.9, the acceleration and

deceleration parameters are paired up for increasing and decreasing phases, limiting

the motion which can be simulated. Therefore, a custom interpolator must be

implemented in order to interpret a linear set of Alpha values into a more advanced

function.

26

8 Principals of the System

Figure 8.9 Attenuation regions within the Alpha class

The computeTransform method in a TransformInterpolator subclass

gets called every frame for an update to the accompanying Transform3D object.

The method still gets values between 0 and 1 from an Alpha object to give a time

parameter for the transformation, but this only specifies the overall pace of the

motion.

8.3.2 Modelling a Bouncing Ball

Two visualisations in the final release of the application utilise the

GravityInterpolator class, which models the motion of a sphere being struck

vertically up into the air and moving under the influence of gravity. The displacement

of an object is defined by the equation:

(8.4)

u = initial velocity

t = time

a = acceleration

The only acceleration acting on the sphere is gravity, thus making a = -9.8

m/s2. The initial velocity directly influences not only the height at which the ball will

peak but also the duration of elevation. As the Alpha values run between 0 and 1, a

27

8 Principals of the System

value of 4.9 is used for the initial velocity, giving a base relationship between time

and displacement (Figure 8.10).

Figure 8.10 The function s = ut +
1
/2 at

2

The most mechanically correct way to change the peak height would be to

alter the initial velocity at which the ball is projected, with the relationship shown in

Figure 8.10 being the maximum achievable height. This leads to some issues

concerning updating the graphics; calculating the initial velocity required to reach a

certain peak height is not possible within the application as the dynamic manipulation

of polynomials would be necessary. A linear relationship between peak height and

initial velocity is possible but, as half the initial velocity results in a quarter of the

peak height, a visual imbalance would be created.

The more computationally efficient method of changing the peak height is to

apply a multiplier to the calculated displacement. This is not mechanically correct as

the total time in elevation is the same, regardless of the peak height. However, the

regularity of motion between all five spheres lends itself well to visualising music and

the idea of it being a “glorified graphic equaliser”. The intention of using mechanical

equations was to add an element of realism to the motion.

When the flight of a ball is reset by the update method whilst in descent,

seemingly being struck from below, the reset state must be changed. The Alpha

object is reset back to zero, but the initial displacement value must not be set to zero

as well. By offsetting the Alpha value the initial displacement can be changed whilst

maintaining the correct motion characteristics, as can be seen in Figure 8.11. A single

check must be made to ensure that the displacement does not fall below zero.

28

8 Principals of the System

Figure 8.11 The function s = u(t+0.25) +
1
/2 a(t+0.25)

2

If the offset value is to be calculated then Equation 8.4 must be re-arranged.

The working out is included in Appendix B.2, but the result can be seen here:

(8.5)

a = -4.9

s = displacement

8.3.3 Modelling a Flocking Particle

The aim of the ParticleInterpolator class was to create a flocking

particle which would follow a ball, similar to if it were attached to be piece of elastic.

Applying an acceleration proportional to the distance away from its natural position –

the point of attraction – would create such an effect.

The use of Equation 8.4 with an ever incrementing time value, fuelled by an

Alpha object, is not possible as it only applies to constant acceleration. In such cases

where acceleration is not constant, calculations using this equation must be carried out

using differentiation, which is not possible in software.

Simple harmonic motion describes the motion of a particle towards a fixed

point, where its acceleration is proportional to the distance away from that point [18]

(Equation 8.6). However, this is dependant on the point of oscillation remaining

stationary.

(8.6)

where is a real number

29

8 Principals of the System

To overcome these issues the motion of the particle is calculated incrementally

on every call to the computeTransform method, using the final velocity and

displacement values from the last call to find the new position. The acceleration of

the particle is changed, based on a set of conditional statements. More than 1.5 units

below the particle’s natural position counts as under the influence of elasticity,

otherwise moving freely under the force of gravity. To prevent the particle from

oscillating uncontrollably its deceleration value when within the elastic region is

much greater than both its acceleration due to elasticity and the force of gravity.

 Appendix B.1 illustrates the flow of execution for the computeTransform

method. There are 6 values which must be calculated:

1. The “natural position” of the particle

2. The time value since the last method

3. The displacement from the natural position

4. The acceleration

5. The new displacement value

6. The final velocity, for use as next call’s initial velocity

This is computationally expensive, such that a mass of particles would not be

possible to generate in real time. A more sophisticated flocking algorithm would be

required to allow for a large scale particle system.

8.3.4 Modelling Spiral Motion

The SpiralInterpolator class utilises Equation 8.7 to specify a spiral

path, where t is time. The x, y and z parameters correlate to the fields within the

Transform3D class, such that the transform may be applied directly. By updating

the field the path is followed by the object. Plotting the equation gives the graph

shown in Figure 8.12.

(8.7)

30

8 Principals of the System

Figure 8.12 The spiral function, where D = 6

The graph above specifies the range , creating 6 full revolutions.

However, Alpha values range from 0 to 1, providing less revolutions. The spirals are

created by the oscillations of the sine and cosine functions in the y and z coordinates.

The variable D increases the frequency of oscillations, thus specifying the density of

spirals so that when increased more revolutions are added to the path. The length of

traversal is determined by the x coordinate. The variable L magnifies the motion

across the x-axis, hence controlling the length of traversal.

8.4 Resource Handling

The Java runtime system carries out memory management tasks

asynchronously. When an object no longer has a reference the garbage collector picks

it up and frees the memory and process time it occupies [19]. Sun suggest that the

object be dropped by assigning it a null value [20]. When changing between

visualisation themes this method was attempted but, as may be seen from Figure 9.1,

the garbage collector failed to pick up the object. An attempt was made to manually

invoke the garbage collector to clean up any unused objects, as follows:

pulsingBoxes = null;

// assign a new object to pulsing boxes

31

8 Principals of the System

pulsingBoxes = new PulsingBoxes();

add("Center", pulsingBoxes.getCanvas3D());

// force the garbage collector to run

System.gc();

However, the same resource leak occurred, causing the application’s performance to

decline as more and more objects execute concurrently. To solve this issue a new

method kill was added to each of the graphics classes:

public void kill() {

universe.removeAllLocales();

}

This tells the VirtualUniverse object to remove all of the Locale objects

attached to it. As can be seen in Figure 8.7, the effect of this clears away the entire

contents of the scene, clearing up the resource leak.

8.5 Final Release

The following screen shots show the deployed application visualising a piece

of music. Each visualisations appeared as the result of pressing the highlighted

button. The first screenshot shows the application when first launched.

Figure 8.13 The introductory screen

32

8 Principals of the System

Figure 8.14 The pulsing boxes visualisation theme

Figure 8.15 The bouncing balls with lights visualisation theme

33

8 Principals of the System

Figure 8.16 The bouncing balls with a particle visualisation theme

Figure 8.17 The 3D waveform visualisation theme

34

9 Testing

9 Testing

9.1 Iteration Testing

The lifecycle diagram in Figure 6.2 specifies that each iteration ends by testing

the developed code. This allows for errors to be caught before they become too

ingrained in the system. As discussed Section 6.1.2 in the application may be divided

into two main sections – the audio processing and graphic generation.

9.1.1 Audio System Testing

The purpose of the audio system is to accept and process an input signal and

produce a set of coefficients. The execution occurs invisibly within the operating

system and so must be tapped into for its activity to be seen. As the nature of the

audio system is one of calculation, a defined set of results will be expected from a

specific input signal.

The amount of data being processed for audio is vast – 44100 bytes per second

is far too much information to be analysed by printing to screen. Instead, a

“snapshot” of the data may be written to file using the FileWriter class. This can

then be copied and pasted into Microsoft Excel, allowing for the data to be plotted in a

graph. Comparisons can be made between result sets, such as the effects of different

FFT buffer sizes (see Appendix C.3.5).

It is difficult to prove the working of the audio system when using music as an

input signal; not only does music contain wide and irregular signal content,

comparing results against a source is difficult as coordinating both snapshots would

be impossible. By using Felt Tip Sound Studio a sine wave of a specific frequency

was generated and used as the input signal, making it easier to analyse and confirm

results. This could be used to test both the successful input and frequency analysis of

the audio.

9.1.2 Graphical Content Testing

The graphics generation classes create a visual output based on the coefficient

values input from the AudioController class. Therefore, providing that the input

values are known, the graphical output is sufficient for testing. By making the array

of coefficients fixed the input values may be correlated with the rendered output.

After the graphics have been confirmed to be correct using fixed coefficient levels the

visualisation may be run using music.

9.2 Final Testing

With the application in its finishing stages, final testing allows for the

assessment and investigation of its performance as a whole. More advanced testing

35

9 Testing

techniques analyse the workings of the system, quantifying its performance rather

than simply confirming it. The opinions of target users ensure that a rounded

evaluation may be made.

9.2.1 Visualisation Frame Rate

The benchmark test for a graphical application is its frame rate. The greater

the number of frames per second (fps), the better the quality of animation. Should the

frame rate fall lower than 30 fps, as laid out in the Specifications, then the

visualisations’ impact will be affected.

To test the application’s frame rate a custom Behavior class is added.

FpsBehavior (see Appendix D.8) prints to terminal the fps of the scenegraph it is

added to. By using the WakeupOnElapsedFrames subclass of WakeupCondition

the fps may be calculated.

An FpsBehavior object was added to the PulsingBoxes class and the

application run, initially with no audio input, to test the output of the fps. The

terminal showed an output of frame rate values around 150 for the pulsing boxes

theme. However, when another button was pressed the output continued, the frame

rate dropping considerably. This is in spite of the FpsBehavior only being added to

the PulsingBoxes class. The application was run again and the pulsing boxes

button pressed at intervals so that the effect on frame rate could be seen (Figure 9.1).

0

50

100

150

200

250

1 2 3 4 5 6

Number of button presses

A
v
e
r
a
g

e
 f

p
s

Figure 9.1 The effect of button presses on the frame rate

36

9 Testing

This depletion of frame rate is caused by scenes being unsuccessfully

discarded, despite references to them being severed. A discussion of this, and the

steps taken to solve it, are shown in Section 8.4.

With the resource leak fixed the application’s frame rates could be tested fully.

Figure 9.2 shows the frame rates for each of the themes, with and without an audio

input.

0

50

100

150

200

250

Pulsing Boxes Bouncing Ball with Lights Bouncing Ball with Particle 3D Waveform

A
v
e
r
a
g

e
 f

p
s

Average fps without audio Average fps with audio

Figure 9.2 Comparison of frame rates with and without audio

The frame rate of all themes remains above 90 fps, even with the audio input

running. The greatest drop in frame rate occurred with the pulsing boxes theme, in

keeping with discussions made about the computational power required for

transparency in Appendix C.8.5. The lowest frame rate appeared with the bouncing

spheres with lights theme, because of the large amount of lighting implemented.

Contrary to other themes the 3D waveform increased its frame rate when an audio

input was used, probably due to the increased activity it demanded. Overall, the

performance of the graphics is in keeping with the Specifications laid out in Section

4.1.

So that a bearing on the application’s performance may be made the same test

is carried out on Apple’s iTunes, a similar piece of software discussed in Section 2.1.

Within the application’s options it is possible to display the frame rate of the

visualisation. These values fluctuate greatly between 25 and 60 fps, although the

complexity of iTunes’ graphical content must be borne in mind.

37

9 Testing

9.2.2 Audio / Visual Latency

In order for the visualisation to be effective there must be minimal latency

between the audio input and resulting graphical output. By taking two separate audio

channels containing the same audio pulse this latency value can be compensated for

when they are played simultaneously (Figure 9.3). The delay value is increased until

the pulsing sound matches the visualisation. This makes the latency difficult to

measure accurately as it is based on human perception. When carried out on the

application the latency value was found to be # 80ms.

Figure 9.3 Method for measuring latency figure

9.2.3 System Resource Demands

Although when in deployment the application will almost certainly have all of

a computer’s resources available to it, an analysis of CPU and memory demands is

still important. Again, iTunes is used as a comparative application so that the results

may be gauged. In order to monitor CPU usage App Monitor is observed for each of

the visualisations, as may be seen from Figures 9.4 to 9.8. The red line plots the

average CPU usage, not the blue numerical value.

38

9 Testing

Figure 9.4 Comparison of CPU usage with and without audio for the
pulsing boxes theme

Figure 9.5 Comparison of CPU usage with and without audio for the
bouncing spheres with lights theme

Figure 9.6 Comparison of CPU usage with and without audio for the
bouncing spheres with particles theme

39

9 Testing

Figure 9.7 Comparison of CPU usage with and without audio for the 3D
waveform theme

Figure 9.8 Comparison of CPU usage with and without audio for iTunes

What is important to ascertain from this test is that the CPU is not under full

capacity, allowing the application to execute to its full potential. For all themes the

CPU usage is around 75% when an audio input is used, as opposed to the 80% used

by iTunes. Therefore, the application runs within the scope of the system.

9.2.4 The Influence of Different Musical Styles

There is a set of criteria that lends itself to better visualisation results; the

presence of a distinct beat and a simplistic structure create the separate peaks which

the application is suited to. The visualisation works best when emulating pulsing in

an audio signal.

Music that uses a large amount of distortion, such as rock, floods the

visualisation as a mass of frequencies are contained across the entire spectrum.

However, electronic music contains a more minimal structure where the individual

elements are easier to separate as the sampled sounds used do not have to same

frequency spread as acoustic instruments.

40

9 Testing

9.2.5 User Feedback

The opinions of users are important when assessing a developed application,

their views giving an insight into the success of the project. Users were shown the

application with a suitable musical input playing and asked to give their opinions. No

prior information was given about the software, other than its intended use.

The feedback received was very positive. Most users commented that they

had never seen such a program used in live venues and thought it would match the

“kitsch” style of some electronic music. It was noted how the application used the

same graphical style that may be seen being used by many “electronica” record labels,

such as Warp Records [21].

When asked about how the music correlated with the graphics a mixed

response was given. The general consensus was that the pulsing boxes and 3D

waveform both fitted the music well. The music’s rhythmic characteristics were most

apparent when viewing the pulsing boxes theme, but the differentiation between

different frequencies not as strong as in the 3D waveform. Users found it more

difficult to find a correlation in the two bouncing sphere themes, although all said that

it would still look good at a live event.

The greatest threat to the quality of the visualisation is its latency value – if it

becomes too large the effect of the graphical content will be lost. Users were asked to

what degree the visualisation was in time with the music. Although a slight delay in

the graphical output was perceived, they did not think that this was to the detriment of

the application.

41

10 Conclusion

10 Conclusion

With development over, the deployed application may be assessed using the

research material and test information produced. From this assessment suggestions

for further development can be made.

10.1 Assessment of Success

Overall, the application carries out its intended purpose – it successfully takes

an audio input and produces a correlating graphical output. Elements of mechanics

have been included to add an element of realism. The specifications laid out in

Section 4 have all been fulfilled and justified within this document.

Research and development have lead to the discoveries that:

• The implementation of a real time FFT with minimal latency is possible using

Java

• Transparency issues within Java 3D still produce volatile results, despite the

improvements made in version 1.3 (see Appendix C.8.5)

• A simple flocking algorithm may be achieved by knowing its position and

velocity vector

• Mechanical functions and custom motion characteristics are most efficiently

carried out by extending the TransformInterpolator class

• Audio input is most efficiently carried out using a TargetDataLine rather

than a Port and Mixer.

• Resource collection of Java 3D scenegraph elements must be carried out

manually to ensure no memory leaks occur.

10.2 Improvements and Future Work

So that the application could be viewed using a projector the implementation

of a full screen mode would be essential. To complement this some form of keyboard

control would be required to change the graphical content. With a more advanced set

of graphical styles this keyboard control could be extended further to allow an

operator to dynamically control the visual content. Instead of simple switching

between scenes, graphical elements could be seamlessly integrated and manipulated.

The utilisation of MIDI parameters would allow for the use of audio hardware such as

the Korg Kaoss Pad [22] to control the graphical content of the visualisation.

These more advanced implementations would require a change of technology.

C++ and OpenGL are capable of producing such dynamic content in real time. With

this increase in speed the ability for more advanced particle systems could be

achieved, as well as an extension of the audio processing system. By calculating the

beats per minute of the audio signal an improvement on the “bouncing ball” style

visualisation could be made. An advantage of C++ over Java is that multi-track audio

input can be achieved using the correct hardware and drivers, allowing for an even

greater abstraction of music.

42

11 References

11 References

1. http://www.apple.com/uk/ilife/itunes

2. http://www.microsoft.com/windows/windowsmedia/default.aspx

3. http://www.adobe.com/products/audition/main.html

4. http://archives.java.sun.com/archives/javasound-interest.html

5. http://java.sun.com/products/java-media/sound/samples/JavaSoundDemo/

6. Selman, D (2002) Java 3D Programming, Manning Publications Co.

7. Global Knowledge Inc (2000) Software Engineering with Ada, Global

Knowledge Inc

8. Ambler, Scott W. (2001) The Object Primer, Cambridge University Press p.435

9. see 8, p.103

10. http://www.psbspeakers.com/FrequenciesOfMusic.html

11. see 10

12. Alhir, Sinan Si (1998) UML in a Nutshell, O’Reilly p71

13. Lindley, Criag A. (1999) Digital Audio With Java, p114

14. http://java.sun.com/j2se/1.4.2/docs/guide/sound/programmer_guide/contents.html

15. http://www.jsresources.org/faq_audio.html#no_ports

16. http://sound.westhost.com/project64.htm

17. see 6

18. John Hebborn & Jean Littlewood (1995) Heinemann Modular Mathematics for

London AS and A-Level: Mechanics 2, Heinemann Publishers Ltd.

19. http://java.sun.com/docs/books/tutorial/essential/system/garbage.html

20. http://java.sun.com/docs/books/tutorial/java/data/garbagecollection.html

21. http://www.warprecords.co.uk

22. http://www.korg.com

23. http://www.pressurewave.com/~stoltz/Fft.html

24. http://www.nauticom.net/www/jdtaft/JavaFFT.htm

25. see 13

26. http://java.sun.com/products/java-

media/3D/forDevelopers/J3D_1_3_API/j3dapi/index.html

27. java.sun.com/products/java-media/3D/java3d-features.html

28. see 6

43

12 Acknowledgments

12 Acknowledgments

Project supervisor: Dr P. Newbury

Proofreader: Dr P. Newbury

44

Appendix A: System Design

Appendix A: System Design

A.1 Execution Cycle Flowcharts

The following flowcharts illustrate the more detailed design concepts behind

the workings of the application. Although the diagrams contain Java specific details,

they could be used as the basis for an implementation in another language.

All the 3D graphics generator classes set up the scenegraph elements in much

the same way (Figure A.1); the scenegraph elements are created and then linked

together. The first two parts which are concerned with the view elements are the

same for all of the graphics models, except for minor viewPlatform positioning.

The content side of the scenegraph varies for each of the models, but the same process

is followed.

Figure A.1 Flowchart for initialising each of the 3D graphics generators

45

Appendix A: System Design

The AudioController can be split into two main sections – initialisation

and execution loop. The while loop contains no exit route on the flowchart as the

MainFrame deals with closing the application.

Figure A.2 Flowchart for the AudioController class

46

Appendix A: System Design

The MainFrame constructor (Figure A.3) carries out the initialisation of the

GUI, meaning that it appears as soon as the application is run. The update method

(Figure A.3) passes on the frequency data according to the option set when the button

was pressed. Should no graphical content be currently displayed, i.e. when the

application is first run, then the method returns without doing anything.

Figure A.3 Flowchart for the MainFrame constructor and update method

47

Appendix A: System Design

By placing the boxes in an array of TransformGroups the update method

can be optimised to a single for loop (Figure A.4). Three separate checks are made

with the validity of each depending on the previous one, thus avoiding the

unnecessary execution of code. All checks are to ensure that visual consistency is

maintained, preventing the flow of the object’s motion from being disturbed unless a

progressive action is to be taken.

Figure A.4 Flowchart for the PulsingBoxes update method

48

Appendix A: System Design

All of the principles used in the PulsingBoxes update method are used here;

the balls are placed in a TransformGroup array which is traversed using a for loop.

In order to speed up execution a check is first made to see if the ball is falling as no

updating is allowed unless this condition holds true.

Figure A.5 Flowchart for a bouncing balls update method

49

Appendix A: System Design

As a set of six VU elements are applied to each ball the VU elements could be

controlled by placing them in a 2-dimensional array; one dimension determines the

ball and the other specifies the element. Figure A.6 illustrates how this may be

achieved. Within a single for loop which specifies the assigned ball there are two for

loops; one for the VU elements at or below the ball level and another for the VU

elements above. By casting the current height of the ball it is possible to get the

integer value of the VU element’s index. The use of dynamic for loops enables more

streamlined execution.

Figure A.6 Flowchart for the VU elements update method

50

Appendix A: System Design

The waveform is made up of six Shape3D objects, each governed by a

QuadArray that specifies its geometry characteristics. By updating the vectors that

specify the positional characteristics of the QuadArray the waveform’s shape can be

changed.

Figure A.7 Flowchart for the Waveform update method

51

Appendix A: System Design

A.2 Design Class Diagrams

As an augmentation to the design class diagram show in Figure 7.4, this

section contains details concerning the individual classes’ attributes and methods

which could not be contained within a single diagram.

Figure A.8 AudioController class

Figure A.9 FFT class

Figure A.10 Waveform class

52

Appendix A: System Design

Figure A.11 PulsingBoxes class

Figure A.12 BouncingParticle class

53

Appendix A: System Design

Figure A.13 BouncingLights class

Figure A.14 GravityInterpolator class

54

Appendix A: System Design

Figure A.15 MainWindow class

Figure A.16 ParticleInterpolator class

55

Appendix A: System Design

Figure A.17 SpiralInterpolator class

56

Appendix A: System Design

A.3 Scenegraph Designs

The following diagrams show the structure of elements within the four

visualisation themes deployed in the final application build. In Figure A.18 the red

TransformGroup elements are all the same in structure.

Figure A.18 Scenegraph for the BouncingLights class

57

Appendix A: System Design

Figure A.19 Scenegraph for the PulsingBoxes class

Figure A.20 Scenegraph for the BouncingParticle class

58

Appendix A: System Design

Figure A.21 Scenegraph for the Waveform class

59

Appendix B: Simulation of Mechanics

Appendix B: Simulation of Mechanics

B.1 Flowchart for a Flocking Particle

Figure B.1 Flowchart for the ParticleInterpolator computeTransform method

60

Appendix B: Simulation of Mechanics

B.2 Calculation for Alpha Offset Value

By taking Equation 8.4 the working out for Equation 8.5 is shown.

Equation 8.4,

The offset values are added,

Making and ,

Taking the offset values to one side,

Arrange into a quadratic equation,

Using the quadratic formula where

By order of substitution,

as (see Figure 7.9) we eliminate it,

(B.1)

61

Appendix B: Simulation of Mechanics

It must be found whether the ± should be a plus or minus. The peak height reached

when there is no offset is at . Therefore, to find the peak height,

If we substitute the value and into Equation B.1 the offset value

should be 0.5. Replacing ± with a plus,

Therefore, the equation must contain a plus:

(B.2)

62

Appendix C: Iteration Breakdown

Appendix C: Iteration Breakdown

This section contains the breakdown of every iteration of code, showing the

development of the application. Every iteration begins with a set of objectives to be

achieved. The development of these goals is discussed and the results achieved are

shown.

C.1 Iteration 1

C.1.1 Iteration 1a

• Attempt data input through a Port object

• Investigate available lines

• Attempt data handling using a ByteArrayInputStream object

This first iteration attempts the conventional method of audio input by

requesting a Port object from the Mixer as specified in Figure 8.1. However, as

discussed in Section 8.1.2, implementation of the Port class is not due until version

1.5.0. This was found to be true on execution of the following code,

lineInInfo = new Line.Info(Port.class);

TargetDataLine targetDataLine = (TargetDataLine)mixer.getLine(lineInInfo);

where an IllegalArgumentException is thrown,

Line unsupported: interface Port (in com.sun.media.sound.SimpleInputDevice)

C.1.2 Iteration 1b

• Implement the class as an extension of a Thread

• Initialisation of the audio system will be carried out in a constructor

• Audio input will be attempted without using a Mixer object

The iteration was unsuccessful in providing an audio input. The use of both

the Thread and ByteArrayInputStream was cumbersome, so its development was

put on hold.

C.1.3 Iteration 1c

• Use a while loop to input data

• Use the TargetDataLine.read() method to get the bytes

• Pass the audio data captured to a FFT routine which was adapted for Java by

Ben Stoltz [23]

63

Appendix C: Iteration Breakdown

A simpler solution than Iteration 1b was sought after; a TargetDataLine

was created and its read method placed in an indefinite while loop, providing

constant handling of the audio input signal data. By using a SourceDataLine

object the audio data could be written straight back out again and heard from the

computer’s audio output. This confirmed that the audio data was being successfully

inputted into the system, the requirement of BASELINE POINT 1.

However, the FFT routine was not producing any intelligible results. The

output was in the form of a primitive textual graph that was printed to the terminal.

Although this could be disabled and the raw data handled manually, the poor

documentation of code made modification difficult.

C.2 Iteration 2

C.2.1 Iteration 2a

• Implementation using an FFT class by Jeffrey D. Taft, PhD [24]

In order to test the results of the FFT a set of results was printed to screen to

inspect the values being produced. The output is a stream of meaningless data,

Element 0 = [D@7b6643

Element 1 = [D@76e8a7

Element 2 = [D@a45536

Element 3 = [D@d66426

Element 4 = [D@490eb5

Element 5 = [D@64b09c

Element 6 = [D@86f247

Element 7 = [D@8c4a77

Element 8 = [D@6d0040

Element 9 = [D@2b9406

Such a serious problem with the data meant that no more time was spent on this FFT

routine as other alternatives were available.

C.3 Iteration 3

C.3.1 Iteration 3a

• Implement an FFT routine created by Jef Pokanzer and adapted for Java by

Craig A. Lindley [25]

• Utilise equations (see Section 8.1.3) to convert the output of the FFT into

decibels

By implementing the equations to convert the FFT data into decibels,

interpreting the results is made easier. A 1000 Hz sine wave is input into the system

and the frequency content results are printed to screen,

Frequency = 947 dB = -72

Frequency = 958 dB = -60

64

Appendix C: Iteration Breakdown

Frequency = 968 dB = -59

Frequency = 979 dB = -98

Frequency = 990 dB = -84

Frequency = 1001 dB = -55

Frequency = 1012 dB = -92

Frequency = 1022 dB = -69

Frequency = 1033 dB = -58

Frequency = 1044 dB = -79

The decibel values should peak at 1000Hz, but instead the same random pattern as

shown above occurs across the entire frequency range. This is not what is expected,

but as the code is from a reliable source its usage is investigated further.

C.3.2 Iteration 3b

• Investigate the raw data being read by the TargetDataLine

In order to analyse the audio data being read from the audio input the byte

values are printed to screen. A 1000 Hz sine wave is used again so that the sample

pattern may be easily recognised. The program was allowed to run for 30 seconds to

ensure that any starting glitches are avoided. This is a sample of the output,

Sample 0 = -91

Sample 1 = -28

Sample 2 = 44

Sample 3 = -35

Sample 4 = 105

Sample 5 = -42

Sample 6 = 123

Sample 7 = -48

Sample 8 = -125

Sample 9 = -53

Sample 10 = -101

Sample 11 = -57

Sample 12 = -36

Sample 13 = -60

Sample 14 = 74

Sample 15 = -61

Sample 16 = -10

Sample 17 = -62

Sample 18 = -33

Sample 19 = -61

Sample 20 = -8

There is no discernible pattern in this extract, or the rest of the output. The fact that

printing to screen is so slow may affect the resulting values being output. A faster

way of extracting the data must be found to ensure that the speed issue is ruled out.

C.3.3 Iteration 3c

• Take a “snapshot” of the audio data and store in a Vector

• After the audio inputting stops the Vector is written to a text file using the

FileWriter class

• Channel the audio back out through a SourceDataLine

A high speed method of storing a snapshot of audio data was required.

Writing a buffer-full of data to a Vector keeps the data handling internal, ensuring

65

Appendix C: Iteration Breakdown

that no speed issues are incurred. The following code deals with capturing the audio

data in the Vector,

int index = 0;

while(index < 50) {

bytesRead = targetDataLine.read(buffer, 0, BUFFER_SIZE);

if (index > 43) {

store.add(buffer);

}

sourceDataLine.write(buffer, 0, bytesRead);

index++;

}

The Vector’s add method is used to copy the entire buffer. Notice that the audio is

also channelled back out through a SourceDataLine, just to make sure that the

audio is being inputted properly. As in Iteration 1c the audio input can be heard being

outputted from the system. The Vector is then written to file,

FileWriter fileWriter = new FileWriter("output.txt");

String output = new String();

buffer = (byte[])store.elementAt(0);

for (int j = 0; j < buffer.length; j++) {

output = String.valueOf((byte)buffer[j] + "\n");

fileWriter.write(output);

}

The data is written as a single columned series of decibel values, such that the data

could be copied and pasted into Excel. The values were plotted onto a graph, shown

in Figure C.1.

66

Appendix C: Iteration Breakdown

-150

-100

-50

0

50

100

150

time (samples)

a
m

p
li

tu
d

e
 (

b
it

s
)

Figure C.1 Audio waveform extracted from 1000Hz input signal

What can be seen from the plotted waveform is a distorted pattern of a sine wave.

This confirms that the audio is being inputted, but that the way it is being processed

may be incorrect.

C.3.4 Iteration 3d

• Change the TargetDataLine’s audioFormat properties so that the sample

size is 8 bits long

The application was tested in exactly the same way as in Iteration 3c with the

extracted signal data plotted in Excel (Figure C.2).

67

Appendix C: Iteration Breakdown

-80

-60

-40

-20

0

20

40

60

80

time (samples)

a
m

p
li

tu
d

e
 (

b
it

s
)

Figure C.2 Audio waveform extracted from a 1000Hz input signal

As was discussed in Section 8.1.2, if 16 bit audio data is handled then the 8 bit

pairs it occupies must not be split. By inputting the audio signal in 8 bit format the

byte buffer may be accessed directly, allowing for the successful handling of the

audio byte data. This may appear to be where baseline point 1 is achieved, but this is

an issue dealing with the processing, rather than input, of an audio signal

The problems of sample size handling becomes apparent when trying to

implement a SourceDataLine to output the audio for monitoring purposes. As

most modern soundcards do not support 8 bit audio output a 16 bit audio format must

be used. However, Java does not support such audio format conversions, preventing

the use of a SourceDataLine.

The same principal of writing to file was used to create a snapshot of the

frequency spectrum data. By using Equation 8.3 the rows can be correlated to

frequency values.

68

Appendix C: Iteration Breakdown

-250

-200

-150

-100

-50

0

1
1

1
0
8
7

2
1
6
4

3
2
4
1

4
3
1
7

5
3
9
4

6
4
7
1

7
5
4
7

8
6
2
4

9
7
0
1

1
0
7
7
7

1
1
8
5
4

1
2
9
3
1

1
4
0
0
7

1
5
0
8
4

1
6
1
6
1

1
7
2
3
7

frequency (Hz)

p
o

w
e
r
 (

d
B

)

Figure C.3 Frequency content extracted from a 1000Hz input signal

Figure C.3 shows the correct frequency spectrum with a peak forming at 1000Hz. In

theory only a spike should appear at 1000Hz; however, the noise generated through

the digital to analogue and analogue to digital conversions creates the imperfections

within the spectrum. Therefore, the successful frequency spectrum calculation allows

for BASELINE POINT 2 to be signed off.

C.3.5 Iteration 3e

• Investigate the effects of changing the size of the FFT sample set

The application was run using a 1000Hz sine wave as an audio input, like in

Iteration 3d. The size of the sample set used to create Figure C.3 is 4096, so the two

possible lower values of 2048 and 1024 were attempted, the results plotted in Figures

C.4 and C.5.

69

Appendix C: Iteration Breakdown

-300

-250

-200

-150

-100

-50

0

2
2

2
1
7
5

4
3
2
8

6
4
8
1

8
6
3
5

1
0
7
8
8

1
2
9
4
1

1
5
0
9
5

1
7
2
4
8

1
9
4
0
1

2
1
5
5
5

frequency (Hz)

p
o

w
e
r
 (

d
B

)

Figure C.4 Frequency content of a 1000Hz sine wave extracted from 2048
sample set

-160

-140

-120

-100

-80

-60

-40

-20

0

4
3

4
3
5
0

8
6
5
6

1
2
9
6
3

1
7
2
7
0

2
1
5
7
6

frequency (Hz)

p
o

w
e
r
 (

d
B

)

Figure C.5 Frequency content of a 1000Hz sine wave extracted from 1024
sample set

70

Appendix C: Iteration Breakdown

Using a 2048 sample set increased the amount of noise in the frequency

spectrum, which may effect the accuracy of the resulting coefficients. However,

using the lowest value of 1024 samples creates a simplified version of the spectrum

without loosing important information. As discussed in Section 6.2.3 a detailed, high-

fidelity frequency spectrum of the input signal is not required – the spectrum need

only contain the necessary information for generating the frequency coefficients.

C.4 Iteration 4

C.4.1 Iteration 4a

• Create a simple 3D scenegraph hierarchy using a SimpleUniverse

• Place a box within the scene

• Make the box expand and contract (not reactively)

The box was successfully created and an interpolator used to make it expand

and contract. A simple Frame was used to view the result, as may be seen in Figure

C.6.

Figure C.6 Contracting box

C.4.2 Iteration 4b

• Implement a ViewingPlatform to access the current ViewPlatform

• Move the current ViewPlatform

In order to change the view, the ViewPlatform must have a transformation

applied to it. Access through using a ViewingPlatform was not possible, the result

remaining like Figure C.6.

C.4.3 Iteration 4c

• Request a ViewingPlatform from the SimpleUniverse object

71

Appendix C: Iteration Breakdown

• Request a ViewPlatform’s TransformGroup from the
ViewingPlatform

• Attempt to move the requested ViewPlatform

The SimpleUniverse class contains a method getViewingPlatform

which returns the current ViewingPlatform object. By accessing the

ViewPlatform’s TransformGroup an attempt was made to apply a movement

vector. However, the resulting output showed only a blank screen, even when a

vector of (0, 0, 0) was applied.

C.5 Iteration 5

C.5.1 Iteration 5a

• Implement the view branch manually using a VirtualUniverse

• Make the class an extension of Frame

• Attempt to move the ViewPlatform

The scenegraph was changed to the design that can be seen in Figure 8.7. By

extending the class from a Frame the Canvas3D object may be added to itself. The

view point was successfully moved and a rotating box placed within the scene (Figure

C.7).

Figure C.7 The repositioned view point

C.5.2 Iteration 5b

• Assign a ScaleInterpolator to the box

• Trigger the ScaleInterpolator through the update method

72

Appendix C: Iteration Breakdown

The aim of this iteration is to get the box to pulse when the update method is

called. By using Alpha.setStartTime(System.currentTimeMillis()) the

interpolator is in effect restarted. As the Alpha’s loop count is set to 1 the box only

performs a single pulse on every update.

C.6 Iteration 6

C.6.1 Iteration 6a

• Create a more extensive scenegraph containing 5 boxes

This forms the basis of the first visualisation theme. The boxes are arranged in

a curved shape, ready for the frequency coefficients (Figure C.8). This fulfils the

requirement of BASELINE POINT 3.

Figure C.8 The basic pulsing boxes theme

C.6.2 Iteration 6b

• Calculate the average amplitude value for each of the frequency bands

• Create a set of coefficients from the average amplitudes

The frequency bands specified in Figure 8.5 were used to divide the spectrum.

In order to verify the calculated average values Excel was used to produce a

correlating set of results.

As discussed in Section 8.1.4, the decibel values must be converted into a

coefficient value between 0 and 1. The concept of suppressing the frequency

73

Appendix C: Iteration Breakdown

averages to prevent loud frequencies from flooding the graphical output was

employed. Equation C.1 was used to create such an effect.

(C.1)

Being an exponential equation the expression reaches at , and as the

signal power values may only reach a maximum of 0 dB there is no need for

conditional statements. Again, Excel was used to produce a set of correlating results

to verify the calculations, allowing for BASELINE POINT 4 to be signed off.

Figure C.9 The expression k = e
0.006p

C.6.3 Iteration 6c

• Update the boxes using the frequency coefficients

The following lines of code were placed in the update method for each of the

boxes:

pulseInterpolator1.setMinimumScale((float)(frequencyBands[0]+1));

alpha1.setStartTime(System.currentTimeMillis());

The scale of the interpolator is set to the coefficient value + 1, the coefficient in effect

setting the transformation percentage. The application was run using a 1000 Hz sine

wave input signal and the successful reaction to the input signal observed (Figure

C.10). This allows for BASELINE POINT 5 to be written off.

74

Appendix C: Iteration Breakdown

Figure C.10 The pulsing boxes theme reacting to an input signal

C.7 Iteration 7

C.7.1 Iteration 7a

• As an extension to the pulsing boxes theme create ghost boxes at the peaks of

expansion

The implementation was carried out on a single box first to simplify

development. For testing purposes instead of using an audio input coefficient values

were hard coded,

private double[] frequencyBands = {0.0, 0.9, 0.0, 0.0, 0.0};

However the positioning of the ghost box is incorrect (Figure C.11), despite the clear

positioning data given to it.

75

Appendix C: Iteration Breakdown

Figure C.11 The incorrect positioning of the ghost box

As the positioning data given to the ghost box was verified, the application was tested

to see if the positioning was correct before any calls to the update method were made.

The enlarged box’s opacity was set to 50% so that it may be seen and the update

method disabled (Figure C.12).

Figure C.12 Confirmation of the correct positioning data

The fact that the positioning is correct before any transformations occur suggests that

there may be an issue with the scenegraph hierarchy.

76

Appendix C: Iteration Breakdown

C.7.2 Iteration 7b

• Place the scenegraph elements in arrays for easier management

• Create another level of TransformGroup objects, solely to be used for

positioning the ghost boxes

The implementation of arrays is designed to streamline the code, placing

repeated sections of code in for loops. As a result of Iteration 7a another layer of

TransformGroup objects were used to ensure that the positional data was not being

distorted by the scaling factor. Results of the successful 5 box implementation may

be seen in Figure C.13.

Figure C.13 Successful implementation of the ghost boxes

The reasoning behind the positioning problems is illustrated in Figure C.14;

the TransformGroup in red separates the positional and scaling transformation

factors, preventing the merging of the two. Without it the scaling factor effects both

the positioning and dimensions of the ghost box, causing the problem seen in Figure

C.11. This theme may be signed off as BASELINE POINT 5.

77

Appendix C: Iteration Breakdown

Figure C.14 The TransformGroup in red is necessary to preserve the
positioning

C.8 Iteration 8

C.8.1 Iteration 8a

• Implement a scene containing 5 bouncing balls

• The motion under gravity should be achieved using the Alpha parameters

As discussed in Section 8.3.1, the parameters provided by the Alpha class are

insufficient for simulating motion under gravity. This was evident in the observations

made in this iteration.

C.8.2 Iteration 8b

• Create a GravityInterpolator class which extends

TransformInterpolator to implement the expression

The GravityInterpolator class may be used in exactly the same way as

the PositionInterpolator (see Section 8.3.1 for more about custom

interpolators). The motion of the ball within the scene became more realistic and

could be updated with the frequency coefficients. The technique used is discussed

further in Section 8.3.2.

C.8.3 Iteration 8c

• Create transparent VU meter elements which fade in when the ball is at or

above them, much like on a conventional parametric VU meter.

78

Appendix C: Iteration Breakdown

Using the methodology shown in Appendix A.1 the VU meters’ transparency

levels were set. The key is the conversion of the spheres’ height into an indexing

value for the for loops. However, the results did not appear as expected.

Figure C.15 VU meter implementation showing missing elements

As can be seen in Figure C.15 there are elements missing from the VU stacks. The

same routine is used for every meter, clearing any errors in the update method.

C.8.4 Iteration 8d

• Remove fading of elements

• Experiment with alternative transparency modes

In order to reduce processing power the VU elements are switched rather than

faded. However, the same effects as shown in Figure C.15 still occur so as a further

investigation the transparency modes are altered. In Iteration 8c the mode NICEST

was used, demanding the most processing power. Two other modes that require less

processing power were tested; the mode FASTEST (Figure C.16) uses the fastest

available method of rendering, but provides no improved results. Neither does the

mode SCREEN_DOOR (Figure C.17) which utilises an on/off stipple pattern [26]

79

Appendix C: Iteration Breakdown

Figure C.16 VU meter implementation using the mode FASTEST

Figure C.17 VU meter implementation using the mode SCREEN_DOOR

C.8.5 Iteration 8e

• Create a separate method for updating the VU elements

• Implement the GravityInterpolator class as an inner class

• Call the new method from within the GravityInterpolator’s

computeTransform method

To ensure that the elements are being updated as regularly as possible, the VU

meter’s update routine is called every time the balls’ positional data is altered. This

80

Appendix C: Iteration Breakdown

too leads to erratic results, as may be seen by the differing outputs in Figures C.18 and

C.19.

Figure C.18 Erratic results in the VU meters

Figure C.19 Differing errors to the above

These transparency issues are not uncommon in implementing such

applications. Using transparency makes rendering significantly slower due to the

complex blending operations which must take place. Despite version 1.3

implementing depth-sorted transparency [27], is it still difficult to know what the

rendered result will be. As the low-level functionality is performed using OpenGL,

issues which occur with transparency are not the fault of Java 3D. However, Sun

81

Appendix C: Iteration Breakdown

have not done enough to shield the developer such problems [28]. At this point the

development of the theme was ended.

C.9 Iteration 9

C.9.1 Iteration 9a

• Continue from Iteration 8b

• Implement a particle which moves as though attached to an elastic string

The principals employed in Iterations 9a to 9d are explained in Section 8.3.3.

Here, the acceleration is controlled using the expression , where k is a constant

and s is the distance away from its target. The displacement is calculated using the

expression , where u is the initial velocity and t is time.

A particle is applied to a single sphere for testing. When run the particle

follows the ball with the correct motion. However, its displacement resets at regular

intervals due to the Alpha values returning to 0 as they loop.

C.9.2 Iteration 9b

• Employ constant acceleration which changes polarity when it passes the

target.

This is more of a basic flocking system, directing the particle to accelerate in

either direction. When the Alpha begins a new loop the initial velocity and position

offset (which is added to the displacement) are updated using the previous final

velocity and displacement values. However, the same resetting problems occur as in

Iteration 9a.

C.9.3 Iteration 9c

• Calculate the displacement according to the time difference between

computeTransform calls

• Calculate the acceleration relative to the distance from its target

To overcome the resetting of displacement an incrementing total of time was

maintained. The resulting output did not reset as before and follows the target’s

movements. After approximately 20 seconds the particle entered into high frequency

oscillations, the amplitude widening until eventually invisible within the scene. This

behaviour was caused by the slowly increasing acceleration and time values, despite

attempts to limit the acceleration when it rises too high.

82

Appendix C: Iteration Breakdown

C.9.4 Iteration 9d

• Recalculate all values, including time, on every method call

To overcome the high frequency oscillations that occur when using cumulative

values, the approach of recalculation was employed. A detailed structure of program

flow is shown in Appendix A.2.1 and is further discussed in Section 8.3.3. The

resulting particle motion remains stable and is more visually realistic. The scene was

signed off as BASELINE POINT 5.

C.10 Iteration 10

C.10.1Iteration 10a

• Continue from Iteration 8b

• Increase dimensions of the spheres

• Implement orbiting lights which follow the spheres’ movement

The working scene from Iteration 8b was taken and the dimensions of the

spheres increased. The same technique as discussed in Section 8.2.2 was used to make

the orbiting lights follow the motion of the bouncing balls.

Only the effects of a light are visible within a scene, so dummy glowing

satellites were created to give the impression that they are creating the illumination.

To increase this effect the orbiting objects’ emissive and specular colour fields are

increased, removing any dark shading and giving the impression that they are self

illuminating.

On first testing, the scene ran very slowly with a low frame rate. It was

considered that the large number of lights within the scene were adding an

unreasonable load upon the system. This was overcome by reducing the lights’

BoundingSphere objects so that their rays impact only the ball they are orbiting. At

this point the scene could be signed off as BASELINE POINT 5.

83

Appendix C: Iteration Breakdown

Figure C.20 Bouncing balls with lights

C.11 Iteration 11

C.11.1Iteration 11a

• Implement a 3D waveform which plots the frequency coefficients

The waveform is constructed from a set of six Shape3D objects, the geometry

of which is specified by a QuadArray. Each of the frequency bands correlates to a

Point3d object that controls the QuadArray positioning. On every update call the

new positioning data is applied to the Point3d objects and the coordinates of the

QuadArray elements set. Figure A.7 shows a flowchart for the update method.

84

Appendix C: Iteration Breakdown

Figure C.21 The 3D waveform from a 1000Hz sine wave

A.11.2Iteration 11b

• Add two small Sphere objects which follow a spiral path

The Sphere’s motion is controlled by the custom interpolator discussed in

detail in Section 8.3.4. The result may be seen in Figure C.22. The theme was signed

off as BASLINE POINT 5.

Figure C.22 The 3D waveform with additional Spheres

85

Appendix C: Iteration Breakdown

C.12 Window Iterations

C.12.1Window Iteration 1

• Create the MainFrame class to house all four successful visualisations

The class MainFrame is a simple GUI containing a set of buttons which

control the displayed visualisation. The buttons have MouseListener objects added

to them which contain the necessary code to achieve this. The details of initialisation

are shown in Figure A.3. With the graphics contained within a GUI the iteration

could be signed off as BASELINE POINT 6.

Figure C.23 Clicking on a button displays the visualisation

C.12.2Window Iteration 2

• Investigate other frequency coefficient expressions and frequency band ranges

With the perspective of four visualisation themes, more work could be done on

achieving the best frequency coefficient expression. The application was run and a

variety of different music played into the audio input. Coefficient values were written

to the terminal and observations made of the visual output. The range of different

86

Appendix C: Iteration Breakdown

coefficient values produced spanned from around 0.45 to 0.65 and dropping sharply

down to 0 when the volume is lowered.

This sudden drop in the coefficient suggests that the decibel range is smaller

than the expression accommodates for. To investigate this the frequency band power

averages were printed to screen for monitoring. The audio input was taken from a

muted volume where the output reads –Infinity and increased to the maximum level

possible. These values were copied into Excel where they cold be numerically sorted,

thus giving the maximum and minimum achievable decibel values, -25dB and –200db

respectively. Inspection of Figure C.24 provides an explanation for the sudden drop

in the coefficient for this decibel range. In sight of this research the expression

 was modified to Equation C.2, which covers a more appropriate decibel

range, as can be seen in Figure C.24.

(C.2)

Figure C.24 The expression from Figure A.3.7 plus two alternatives, the
one chosen being k = 1.5e

0.02p

C.12.3Window Iteration 3

• Implement the kill method to fix the resource leak which occurs when

button presses are made.

• Place a title graphic when the application is first opened

87

Appendix C: Iteration Breakdown

• Export the application as a single executable file.

The resource leak discussed in Section 8.4 was remedied. The introductory

graphic was also inserted, as may be seen in Figure 8.13.

88

Appendix D: Source Code

Appendix D: Source Code

D.1 AudioController.java

/*

 * This is class handles the input of data into the program

 *

 * Nicholas Martin

 * April 2004

 */

import javax.sound.sampled.*;

import java.io.*;

class AudioController {

 private MainWindow mainWindow;

 private AudioFormat audioFormat;

 private Line.Info lineInInfo;

 private TargetDataLine targetDataLine;

 // create a buffer to store the audio data

 private final int BUFFER_SIZE = 1024;

 private final int HALF_BUFFER_SIZE = BUFFER_SIZE/2;

 private byte[] buffer = new byte[BUFFER_SIZE];

 private Fft fft = new Fft(10);

 private double[] realArray = new double[BUFFER_SIZE];

 private double[] imaginaryArray = new double[BUFFER_SIZE];

 private double maxPower = 0.0;

 private double[] frequencyBands = new double[5];

 /*

 * constructor which contains the initialisation code to set up the system

 */

 public AudioController() throws LineUnavailableException, IOException{

 // create the GUI

 mainWindow = new MainWindow();

 // initialise variables to specify the TargetDataLine

 audioFormat = new AudioFormat(44100.0F, 8, 1, true, false);

 DataLine.Info targetDataLineInfo = new DataLine.Info(TargetDataLine.class, audioFormat);

 // create a TargetDataLine with the specifications above and open it

 targetDataLine = (TargetDataLine)AudioSystem.getLine(targetDataLineInfo);

 targetDataLine.open(audioFormat);

 // start the TargetDataLine

 targetDataLine.start();

 // MAIN PROGRAM LOOP

 int bytesRead = 0;

 while(true) {

 bytesRead = targetDataLine.read(buffer, 0, BUFFER_SIZE);

 analyseAudio();

 mainWindow.update(frequencyBands);

 }

 }

89

Appendix D: Source Code

 /*

 * this method calculates the frequency coefficients from the audio data

 */

 private void analyseAudio() {

 // copy bytes aquired into realArray and place zero in imaginaryArray

 for (int i = 0; i < BUFFER_SIZE; i++) {

 realArray[i] = (double)buffer[i];

 imaginaryArray[i] = 0.0;

 }

 // calculate the FFT of the signal

 fft.doFFT(realArray, imaginaryArray, false);

 // find the maximum power frequency

 for(int i = 0; i < HALF_BUFFER_SIZE; i++) {

 double power = Math.pow(realArray[i], 2) + Math.pow(imaginaryArray[i], 2);

 // Record the largest power value

 if (power > maxPower) maxPower = power;

 realArray[i] = power;

 }

 // normalise the values and then calculate the normalised power spectrum in dB

 for (int i = 0; i < HALF_BUFFER_SIZE; i++) {

 realArray[i] = 10 * Math.log(realArray[i] / maxPower);

 }

 // find the average amplitude of the different bands

 // realArray[1 to 3] gives the frequencies for 25 to 125 Hz

 double total = 0;

 int iterations = 0;

 for (int i = 1; i <= 3; i++) {

 total = total + realArray[i];

 iterations++;

 }

 frequencyBands[0] = total/iterations;

 // realArray[4 to 6] gives the frequencies for 125 to 250 Hz

 total = 0;

 iterations = 0;

 for (int i = 4; i <= 6; i++) {

 total = total + realArray[i];

 iterations++;

 }

 frequencyBands[1] = total/iterations;

 // realArray[7 to 11] gives the frequencies for 250 to 500 Hz

 total = 0;

 iterations = 0;

 for (int i = 7; i <= 11; i++) {

 total = total + realArray[i];

 iterations++;

 }

 frequencyBands[2] = total/iterations;

 // realArray[12 to 23] gives the frequencies for 500 to 1000 Hz

 total = 0;

 iterations = 0;

 for (int i = 12; i <= 23; i++) {

 total = total + realArray[i];

 iterations++;

 }

 frequencyBands[3] = total/iterations;

 // realArray[24 to 46] gives the frequencies for 1000 to 2000 Hz

 total = 0;

 iterations = 0;

90

Appendix D: Source Code

 for (int i = 24; i <= 46; i++) {

 total = total + realArray[i];

 iterations++;

 }

 frequencyBands[4] = total/iterations;

 // from the average bands calculate a co-efficient

 for (int i = 0; i < frequencyBands.length; i++) {

 frequencyBands[i] = 1.5*Math.exp(0.02*frequencyBands[i]);

 // ensure that the co-efficient is never greater than 1

 if (frequencyBands[i] > 1.0) {

 frequencyBands[i] = 1.0;

 }

 }

 }

 public static void main(String[] args) {

 AudioController audioController;

 try {

 audioController = new AudioController();

 }

 catch (LineUnavailableException e){

 System.out.println(e);

 System.exit(1);

 }

 catch (IOException e) {

 System.out.println(e);

 System.exit(1);

 }

 }

}

91

Appendix D: Source Code

D.2 Fft.java

// Fast Fourier Transform (FFT) Code

// Java implementation by: Craig A. Lindley

// Last Update: 02/27/99

//package craigl.spectrumanalyzer;

/* libfft.c - fast Fourier transform library

**

** Copyright (C) 1989 by Jef Poskanzer.

**

** Permission to use, copy, modify, and distribute this software and its

** documentation for any purpose and without fee is hereby granted, provided

** that the above copyright notice appear in all copies and that both that

** copyright notice and this permission notice appear in supporting

** documentation. This software is provided "as is" without express or

** implied warranty.

*/

public class Fft {

 /**

 * This is a Java implementation of the fast Fourier transform

 * written by Jef Poskanzer. The copyright appears above.

 */

 private static final double TWOPI = 2.0 * Math.PI;

 // Limits on the number of bits this algorithm can utilize

 private static final int LOG2_MAXFFTSIZE = 15;

 private static final int MAXFFTSIZE = 1 << LOG2_MAXFFTSIZE;

 /**

 * FFT class constructor

 * Initializes code for doing a fast Fourier transform

 *

 * @param int bits is a power of two such that 2^b is the number

 * of samples.

 */

 public Fft(int bits) {

 this.bits = bits;

 if (bits > LOG2_MAXFFTSIZE) {

 System.out.println("" + bits + " is too big");

 System.exit(1);

 }

 for (int i = (1 << bits) - 1; i >= 0; --i) {

 int k = 0;

 for (int j = 0; j < bits; ++j) {

 k *= 2;

 if ((i & (1 << j)) != 0)

 k++;

 }

 bitreverse[i] = k;

 }

 }

 /**

 * A fast Fourier transform routine

 *

 * @param double [] xr is the real part of the data to be transformed

 * @param double [] xi is the imaginary part of the data to be transformed

 * (normally zero unless inverse transofrm is effect).

 * @param boolean invFlag which is true if inverse transform is being

 * applied. false for a forward transform.

 */

 public void doFFT(double [] xr, double [] xi, boolean invFlag) {

 int n, n2, i, k, kn2, l, p;

92

Appendix D: Source Code

 double ang, s, c, tr, ti;

 n2 = (n = (1 << bits)) / 2;

 for (l = 0; l < bits; ++l) {

 for (k = 0; k < n; k += n2) {

 for (i = 0; i < n2; ++i, ++k) {

 p = bitreverse[k / n2];

 ang = TWOPI * p / n;

 c = Math.cos(ang);

 s = Math.sin(ang);

 kn2 = k + n2;

 if (invFlag)

 s = -s;

 tr = xr[kn2] * c + xi[kn2] * s;

 ti = xi[kn2] * c - xr[kn2] * s;

 xr[kn2] = xr[k] - tr;

 xi[kn2] = xi[k] - ti;

 xr[k] += tr;

 xi[k] += ti;

 }

 }

 n2 /= 2;

 }

 for (k = 0; k < n; k++) {

 if ((i = bitreverse[k]) <= k)

 continue;

 tr = xr[k];

 ti = xi[k];

 xr[k] = xr[i];

 xi[k] = xi[i];

 xr[i] = tr;

 xi[i] = ti;

 }

 // Finally, multiply each value by 1/n, if this is the forward

 // transform.

 if (!invFlag) {

 double f = 1.0 / n;

 for (i = 0; i < n ; i++) {

 xr[i] *= f;

 xi[i] *= f;

 }

 }

 }

 // Private class data

 private int bits;

 private int [] bitreverse = new int[MAXFFTSIZE];

}

93

Appendix D: Source Code

D.2 MainWindow.java

/*

 * This is class creates a GUI for the graphics to be displayed

 *

 * Nicholas Martin

 * April 2004

 */

import java.awt.*;

import java.awt.event.*;

public class MainWindow extends Frame {

 private PulsingBoxes pulsingBoxes;

 private BouncingLights bouncingLights;

 private BouncingParticle bouncingParticle;

 private Waveform waveform;

 private int option = 0;

 /*

 * initialise the GUI

 */

 public MainWindow() {

 super("Music Visualisation Program",

 com.sun.j3d.utils.universe.SimpleUniverse.getPreferredConfiguration());

 // create two Panels: one for the buttons and one for the graphics

 Panel buttonPanel = new Panel();

 // add buttons to the buttonPanel

 Button pulsingBoxesButton = new Button("Pulsing Boxes");

 pulsingBoxesButton.addMouseListener(new Option1Listener());

 Button bouncingLightsButton = new Button("Bouncing Balls With Lights");

 bouncingLightsButton.addMouseListener(new Option2Listener());

 Button bouncingParticleButton = new Button("Bouncing Balls With A Particle");

 bouncingParticleButton.addMouseListener(new Option3Listener());

 Button waveformButton = new Button("3D Waveform");

 waveformButton.addMouseListener(new Option4Listener());

 // add the buttons to the button panel

 buttonPanel.setLayout(new GridLayout(2,2));

 buttonPanel.add(pulsingBoxesButton);

 buttonPanel.add(bouncingLightsButton);

 buttonPanel.add(bouncingParticleButton);

 buttonPanel.add(waveformButton);

 // create the layout for the Frame

 setLayout(new BorderLayout());

 setSize(900,650);

 // add the buttonPanel to the Frame

 add("North", buttonPanel);

 // add the intro graphic to the GUI

 //IntroGraphic introGraphic = new IntroGraphic();

 add("Center", new IntroGraphic());

 // allow the Window to be closed

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 dispose();

 System.exit(0);

 }

94

Appendix D: Source Code

 });

 // show the Frame

 show();

 }

 /*

 * this passes on the frequency band coefficients

 */

 public void update(double[] frequencyBands) {

 if (option == 1) pulsingBoxes.update(frequencyBands);

 if (option == 2) bouncingLights.update(frequencyBands);

 if (option == 3) bouncingParticle.update(frequencyBands);

 if (option == 4) waveform.update(frequencyBands);

 else return;

 }

 /*

 * this is for the pulsing boxes option

 */

 private class Option1Listener implements MouseListener {

 public void mouseClicked(MouseEvent e) {

 // to prevent a NullPointerException in update() make the option = 0

 option = 0;

 cleanup();

 pulsingBoxes = new PulsingBoxes();

 add("Center", pulsingBoxes.getCanvas3D());

 option = 1;

 }

 public void mouseReleased(MouseEvent e) {}

 public void mouseEntered(MouseEvent e) {}

 public void mouseExited(MouseEvent e) {}

 public void mousePressed(MouseEvent e) {}

 }

 /*

 * this is for the bouncing balls and lights option

 */

 private class Option2Listener implements MouseListener {

 public void mouseClicked(MouseEvent e) {

 option = 0;

 cleanup();

 bouncingLights = new BouncingLights();

 add("Center", bouncingLights.getCanvas3D());

 option = 2;

 }

 public void mouseReleased(MouseEvent e) {}

 public void mouseEntered(MouseEvent e) {}

 public void mouseExited(MouseEvent e) {}

 public void mousePressed(MouseEvent e) {}

 }

 /*

 * this is for the bouncing balls and particle option

 */

 private class Option3Listener implements MouseListener {

 public void mouseClicked(MouseEvent e) {

 option = 0;

 cleanup();

 bouncingParticle = new BouncingParticle();

 add("Center", bouncingParticle.getCanvas3D());

 option = 3;

 }

95

Appendix D: Source Code

 public void mouseReleased(MouseEvent e) {}

 public void mouseEntered(MouseEvent e) {}

 public void mouseExited(MouseEvent e) {}

 public void mousePressed(MouseEvent e) {}

 }

 /*

 * this is for the 3D waveform option

 */

 private class Option4Listener implements MouseListener {

 public void mouseClicked(MouseEvent e) {

 option = 0;

 cleanup();

 waveform = new Waveform();

 add("Center", waveform.getCanvas3D());

 option = 4;

 }

 public void mouseReleased(MouseEvent e) {}

 public void mouseEntered(MouseEvent e) {}

 public void mouseExited(MouseEvent e) {}

 public void mousePressed(MouseEvent e) {}

 }

 /*

 * clear up all graphics objects

 */

 private void cleanup() {

 if (pulsingBoxes != null) {

 pulsingBoxes.kill();

 }

 pulsingBoxes = null;

 if (bouncingLights != null) {

 bouncingLights.kill();

 }

 bouncingLights = null;

 if (bouncingParticle != null) {

 bouncingParticle.kill();

 }

 bouncingParticle = null;

 if (waveform != null) {

 waveform.kill();

 }

 waveform = null;

 System.gc();

 }

 // inner class for creating the intro screen

 private class IntroGraphic extends Canvas {

 private Image image;

 public IntroGraphic() {

 // set up the image handling elements

 Toolkit toolkit = Toolkit.getDefaultToolkit();

 image = toolkit.getImage("Intro graphic.jpg");

 MediaTracker mediaTracker = new MediaTracker(this);

 mediaTracker.addImage(image, 0);

 try {

 mediaTracker.waitForID(0);

 }

 catch (InterruptedException e) {

 System.out.println(e);

 }

 }

96

Appendix D: Source Code

 public void paint(Graphics graphics) {

 graphics.drawImage(image, 0, 0, null);

 }

 }

}

97

Appendix D: Source Code

D.3 PulsingBoxes.java

/*

 * This is class creates a 3D scene with 5 pulsing boxes

 *

 * Nicholas Martin

 * April 2004

 */

import java.awt.*;

import java.awt.event.*;

import java.util.Enumeration;

import javax.media.j3d.*;

import javax.vecmath.*;

import com.sun.j3d.utils.universe.*;

import com.sun.j3d.utils.geometry.*;

class PulsingBoxes {

 // initialise the scenegraph objects for the boxes

 private TransformGroup[] boxes = new TransformGroup[5];

 private ScaleInterpolator[] pulseInterpolator = new ScaleInterpolator[5];

 private Alpha[] alpha = new Alpha[5];

 // initialise the scenegraph objects for the ghost boxes

 private TransformGroup[] ghostBoxes = new TransformGroup[5];

 private TransparencyInterpolator[] transInterpolator = new TransparencyInterpolator[5];

 private Alpha[] ghostAlpha = new Alpha[5];

 private Canvas3D canvas;

 private VirtualUniverse universe;

 /*

 * GraphicsController constructor method which contains the initialisation

 * routine for creating the scene

 */

 PulsingBoxes() {

 // set up the GraphicsConfiguration and Canvas3D objects for the

 // rendering of the scene and make it visible

 canvas = new Canvas3D(SimpleUniverse.getPreferredConfiguration());

 // call the createView method which sets up the View objects contents

 View view = createView(canvas);

 // create the view side of the scenegraph

 Locale locale = createViewBranch(view);

 // create the content side of the scenegraph

 createContentBranch(locale);

 }

 /*

 * return the Canvas3D object for viewing in the GUI

 */

 public Canvas3D getCanvas3D() {

 return canvas;

 }

 /*

 * removes all the Locales from the scene

 */

 public void kill() {

 universe.removeAllLocales();

 }

98

Appendix D: Source Code

 /*

 * method which creates a View object and adds to it the Canvas3D, PhysicalBody

 * and PhysicalEnvironment objects

 */

 private View createView(Canvas3D canvas) {

 View view = new View();

 view.addCanvas3D(canvas);

 view.setPhysicalBody(new PhysicalBody());

 view.setPhysicalEnvironment(new PhysicalEnvironment());

 view.setFieldOfView(1.3);

 return(view);

 }

 /*

 * method which sets up the view side of the scenegraph as well as the Locale

 * and VirtualUniverse

 */

 private Locale createViewBranch(View view) {

 // create scenegraph objects from the top downwards

 universe = new VirtualUniverse();

 Locale locale = new Locale(universe);

 BranchGroup viewBranch = new BranchGroup();

 TransformGroup viewTransform = new TransformGroup();

 ViewPlatform viewPlatform = new ViewPlatform();

 // set capability bits to allow modification at runtime

 viewTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 viewTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

 viewPlatform.setCapability(ViewPlatform.ALLOW_POLICY_WRITE);

 viewPlatform.setViewAttachPolicy(View.RELATIVE_TO_FIELD_OF_VIEW);

 viewPlatform.setActivationRadius(100.0f);

 // link together the scenegraph from the bottom upwards

 viewTransform.addChild(viewPlatform);

 viewBranch.addChild(viewTransform);

 locale.addBranchGraph(viewBranch);

 // complete the chain by adding the ViewPlatform to the View

 view.attachViewPlatform(viewPlatform);

 // move the view

 Transform3D viewTransform3D = new Transform3D();

 viewTransform3D.rotX(Math.PI*0.2);

 viewTransform3D.setTranslation(new Vector3d(0.0, -1.8, -10.0));

 viewTransform3D.invert();

 viewTransform.setTransform(viewTransform3D);

 // return the Locale which contains a link to the whole chain

 return locale;

 }

 /*

 * create the content side of the scenegraph and attach it to the locale

 */

 private void createContentBranch(Locale locale) {

 BranchGroup contentBranch = new BranchGroup();

 // create TransformGroups which allow the boxes to be generically

 // created and then moved

 for (int i = 0; i < boxes.length; i++) {

 boxes[i] = new TransformGroup();

 boxes[i].setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 boxes[i].setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

 }

 // assign positioning values to the Transform3D objects

99

Appendix D: Source Code

 Transform3D[] boxt3D = new Transform3D[boxes.length];

 for (int i = 0; i < boxt3D.length; i++) {

 boxt3D[i] = new Transform3D();

 }

 boxt3D[0].rotY(Math.PI*0.2);

 boxt3D[0].setTranslation(new Vector3d(-7.0, 0.0, -3.0));

 boxt3D[1].rotY(Math.PI*0.2);

 boxt3D[1].setTranslation(new Vector3d(-3.5, 0.0, -1.2));

 boxt3D[3].rotY(Math.PI*0.2);

 boxt3D[3].setTranslation(new Vector3d(3.5, 0.0, -1.2));

 boxt3D[4].rotY(Math.PI*0.2);

 boxt3D[4].setTranslation(new Vector3d(7.0, 0.0, -3.0));

 // set the ScaleInterpolator objects created at the top of the class

 // as well as their assigned Alpha objects this allows access during the

 // update method

 for (int i = 0; i < pulseInterpolator.length; i++) {

 pulseInterpolator[i] = createBox(boxes[i], boxt3D[i]);

 alpha[i] = pulseInterpolator[i].getAlpha();

 }

 // in order to allow the ghost boxes to be correctly scaled in the update method

 // another TransformGroup is created to house the current ghost box's TransformGroup

 // and its contents

 TransformGroup[] upperGhostBoxes = new TransformGroup[5];

 for (int i = 0; i < ghostBoxes.length; i++) {

 ghostBoxes[i] = new TransformGroup();

 ghostBoxes[i].setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 ghostBoxes[i].setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

 upperGhostBoxes[i] = new TransformGroup();

 }

 // assign positioning values to the ghost boxes' Transform3D objects

 Transform3D[] ghostBoxt3D = new Transform3D[boxes.length];

 for (int i = 0; i < boxt3D.length; i++) {

 ghostBoxt3D[i] = new Transform3D();

 }

 ghostBoxt3D[0].rotY(Math.PI*0.2);

 ghostBoxt3D[0].setTranslation(new Vector3d(-7.0, 0.0, -3.0));

 ghostBoxt3D[1].rotY(Math.PI*0.2);

 ghostBoxt3D[1].setTranslation(new Vector3d(-3.5, 0.0, -1.2));

 ghostBoxt3D[3].rotY(Math.PI*0.2);

 ghostBoxt3D[3].setTranslation(new Vector3d(3.5, 0.0, -1.2));

 ghostBoxt3D[4].rotY(Math.PI*0.2);

 ghostBoxt3D[4].setTranslation(new Vector3d(7.0, 0.0, -3.0));

 // create the ghost boxes with the same positions as the normal boxes

 for (int i = 0; i < transInterpolator.length; i++) {

 transInterpolator[i] = createGhostBox(upperGhostBoxes[i], ghostBoxes[i],

ghostBoxt3D[i]);

 ghostAlpha[i] = transInterpolator[i].getAlpha();

 }

 // finally, add the TransformGroups to the contentBranch

 for (int i = 0; i < boxes.length; i++) {

 contentBranch.addChild(boxes[i]);

 contentBranch.addChild(upperGhostBoxes[i]);

 }

 // add the lights to the scene

 contentBranch.addChild(addLights());

 // perform optimisations on the contentBranch

 contentBranch.compile();

100

Appendix D: Source Code

 // add the contentBranch to the locale object to complete the tree

 locale.addBranchGraph(contentBranch);

 }

 /*

 * method called to update the contents of the scene with new coefficients

 */

 public void update(double[] frequencyBands) {

 for (int i = 0; i < boxes.length; i++) {

 // this is where the current Scale Factor will be copied into

 Transform3D currentTransform = new Transform3D();

 boxes[i].getTransform(currentTransform);

 if (currentTransform.getScale() < frequencyBands[i]+1) {

 pulseInterpolator[i].setMinimumScale((float)(frequencyBands[i]+1));

 // allow this alpha to go first

 alpha[i].setStartTime(System.currentTimeMillis());

 Transform3D ghostBoxSize = new Transform3D();

 ghostBoxes[i].getTransform(ghostBoxSize);

 if (ghostAlpha[i].finished() == true ||

 ghostBoxSize.getScale() < frequencyBands[i]+1) {

 ghostBoxSize.setScale(frequencyBands[i]+1);

 ghostBoxes[i].setTransform(ghostBoxSize);

 ghostAlpha[i].setStartTime(System.currentTimeMillis());

 }

 }

 }

 }

 /*

 * return the ScaleInterpolator which is attached to the sent TransformGroup Box object

 */

 private ScaleInterpolator createBox(TransformGroup upperTransformGroup,

 Transform3D transform3D) {

 // set an extra TransformGroup to attach the Box and Interpolator to

 TransformGroup lowerTransformGroup = new TransformGroup();

 lowerTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 // create an Appearance object to hold information on the

 // box's appearance in the scene

 Appearance appearance = new Appearance();

 // set two colours to create the Material object

 Color3f objectColor = new Color3f(0.9f, 0.1f, 0.1f);

 Color3f darkColor = new Color3f(0.0f, 0.0f, 0.0f);

 Material material = new Material(objectColor, darkColor,

 objectColor, darkColor, 80.0f);

 // this may then be assigned to the Appearance

 appearance.setMaterial(material);

 // the box may now be created using the Primitive Box class

 Box box = new Box(0.5f, 0.5f, 0.5f, appearance);

 // add the lower TransformGroup to the upper TransformGroup

 // then the box can be added to the lower TransformGroup

 upperTransformGroup.addChild(lowerTransformGroup);

 lowerTransformGroup.addChild(box);

 // position the box in the scene

 upperTransformGroup.setTransform(transform3D);

 // apply a ScaleInterpolator to the box

 Transform3D interpolatorTransform3D = new Transform3D();

101

Appendix D: Source Code

 Alpha alpha = new Alpha(1,0,0,200,150,0);

 ScaleInterpolator pulseInterpolator =

 new ScaleInterpolator(alpha, lowerTransformGroup, interpolatorTransform3D,

 2.0f, 1.0f);

 BoundingSphere bounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

 pulseInterpolator.setSchedulingBounds(bounds);

 lowerTransformGroup.addChild(pulseInterpolator);

 return pulseInterpolator;

 }

 /*

 * create the ghost box

 */

 private TransparencyInterpolator createGhostBox(TransformGroup upperTransformGroup,

 TransformGroup lowerTransformGroup,

 Transform3D transform3D) {

 // create an Appearance object to hold information on the

 // box's appearance in the scene

 Appearance appearance = new Appearance();

 appearance.setCapability(Appearance.ALLOW_TRANSPARENCY_ATTRIBUTES_WRITE);

 // set two colours to create the Material object

 Color3f objectColor = new Color3f(1.0f, 0.0f, 0.0f);

 Color3f darkColor = new Color3f(0.0f, 0.0f, 0.0f);

 Material material = new Material(objectColor, darkColor,

 objectColor, darkColor, 80.0f);

 // this may then be assigned to the Appearance

 appearance.setMaterial(material);

 // apply transparency to the appearance

 TransparencyAttributes transparency =

 new TransparencyAttributes(TransparencyAttributes.NICEST, 1.0f);

 transparency.setCapability(TransparencyAttributes.ALLOW_VALUE_WRITE);

 appearance.setTransparencyAttributes(transparency);

 // the box may now be created using the Primitive Box class

 Box box = new Box(0.5f, 0.5f, 0.5f, appearance);

 // add the lower TransformGroup to the upper TransformGroup

 // then the box can be added to the lower TransformGroup

 upperTransformGroup.addChild(lowerTransformGroup);

 lowerTransformGroup.addChild(box);

 // position the box within the scene

 upperTransformGroup.setTransform(transform3D);

 // add the interpolator

 Alpha alpha = new Alpha(1,0,0,1000,0,0);

 TransparencyInterpolator transInterpolator =

 new TransparencyInterpolator(alpha, transparency, 0.5f, 1.0f);

 BoundingSphere bounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

 transInterpolator.setSchedulingBounds(bounds);

 lowerTransformGroup.addChild(transInterpolator);

 return transInterpolator;

 }

 /*

 * add many lights to the scene

 */

 private BranchGroup addLights() {

102

Appendix D: Source Code

 BranchGroup lightBranch = new BranchGroup();

 // create a color and direction for the light

 Color3f color = new Color3f(0.8f, 0.8f, 0.8f);

 Vector3f direction1 = new Vector3f(-1.0f, -2.0f, -1.0f);

 Vector3f direction2 = new Vector3f(1.0f, -1.0f, -1.0f);

 // create a DirectionalLight using the color and direction specified

 DirectionalLight light1 = new DirectionalLight(color, direction1);

 DirectionalLight light2 = new DirectionalLight(color, direction2);

 // create the influencing bounds of the light

 BoundingSphere bounds =

 new BoundingSphere(new Point3d(0.0,0.0,0.0), 200.0);

 light1.setInfluencingBounds(bounds);

 light2.setInfluencingBounds(bounds);

 // add the light to the scene

 lightBranch.addChild(light1);

 lightBranch.addChild(light2);

 return lightBranch;

 }

}

103

Appendix D: Source Code

D.4 Waveform.java

/*

 * This is class creates a 3D scene with a 3D waveform

 *

 * Nicholas Martin

 * April 2004

 */

import java.awt.*;

import java.awt.event.*;

import java.util.Enumeration;

import javax.media.j3d.*;

import javax.vecmath.*;

import com.sun.j3d.utils.universe.*;

import com.sun.j3d.utils.geometry.*;

class Waveform {

 // two arrays of Point3d information to speed up execution

 private Point3d[] frontPoint3d = new Point3d[5];

 private Point3d[] backPoint3d = new Point3d[5];

 // the array of QuadArrays which contain the relevant Geometry for the waveform

 private QuadArray[] quadArray = new QuadArray[6];

 // the array of Shape3d objects which make up the waveform

 private Shape3D[] shape3D = new Shape3D[6];

 private Canvas3D canvas;

 private VirtualUniverse universe;

 /*

 * GraphicsController constructor method which contains the initialisation

 * routine for creating the scene

 */

 Waveform() {

 // set up the GraphicsConfiguration and Canvas3D objects for the

 // rendering of the scene

 canvas = new Canvas3D(SimpleUniverse.getPreferredConfiguration());

 // call the createView method which sets up the View objects contents

 View view = createView(canvas);

 // create the view side of the scenegraph

 Locale locale = createViewBranch(view);

 // create the content side of the scenegraph

 createContentBranch(locale);

 }

 /*

 * return the Canvas3D object for viewing in the GUI

 */

 public Canvas3D getCanvas3D() {

 return canvas;

 }

 /*

 * removes all the Locales from the scene

 */

 public void kill() {

 universe.removeAllLocales();

 }

104

Appendix D: Source Code

 /*

 * method which creates a View object and adds to it the Canvas3D, PhysicalBody

 * and PhysicalEnvironment objects

 */

 private View createView(Canvas3D canvas) {

 View view = new View();

 view.addCanvas3D(canvas);

 view.setPhysicalBody(new PhysicalBody());

 view.setPhysicalEnvironment(new PhysicalEnvironment());

 view.setFieldOfView(1.0);

 return(view);

 }

 /*

 * method which sets up the view side of the scenegraph as well as the Locale

 * and VirtualUniverse

 */

 private Locale createViewBranch(View view) {

 // create scenegraph objects from the top downwards

 universe = new VirtualUniverse();

 Locale locale = new Locale(universe);

 BranchGroup viewBranch = new BranchGroup();

 TransformGroup viewTransform = new TransformGroup();

 ViewPlatform viewPlatform = new ViewPlatform();

 // set capability bits to allow modification at runtime

 viewTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 viewTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

 viewPlatform.setCapability(ViewPlatform.ALLOW_POLICY_WRITE);

 viewPlatform.setViewAttachPolicy(View.RELATIVE_TO_FIELD_OF_VIEW);

 viewPlatform.setActivationRadius(100.0f);

 // link together the scenegraph from the bottom upwards

 viewTransform.addChild(viewPlatform);

 viewBranch.addChild(viewTransform);

 locale.addBranchGraph(viewBranch);

 // complete the chain by adding the ViewPlatform to the View

 view.attachViewPlatform(viewPlatform);

 // move the view

 Transform3D viewTransform3D = new Transform3D();

 viewTransform3D.rotX(Math.PI*0.11);

 viewTransform3D.setTranslation(new Vector3d(0.0, -3.7, -23.0));

 viewTransform3D.invert();

 viewTransform.setTransform(viewTransform3D);

 // return the Locale which contains a link to the whole chain

 return locale;

 }

 /*

 * create the content side of the scenegraph and attach it to the locale

 */

 private void createContentBranch(Locale locale) {

 BranchGroup contentBranch = new BranchGroup();

 createWaveform(contentBranch);

 addParticles(contentBranch);

 // add the lights to the scene

 contentBranch.addChild(addLights());

105

Appendix D: Source Code

 // perform optimisations on the contentBranch

 contentBranch.compile();

 // add the contentBranch to the locale object to complete the tree

 locale.addBranchGraph(contentBranch);

 }

 public void update(double[] frequencyBands) {

 // convert the frequencyBands data into Point3d values

 for (int i = 0; i < frontPoint3d.length; i++) {

 frontPoint3d[i].y = 6*frequencyBands[i];

 backPoint3d[i].y = frontPoint3d[i].y;

 }

 // apply the new values to the Shape3D objects

 quadArray[0].setCoordinate(2, frontPoint3d[0]);

 quadArray[0].setCoordinate(3, backPoint3d[0]);

 for (int i = 1; i < 5; i++) {

 quadArray[i].setCoordinate(0, backPoint3d[i-1]);

 quadArray[i].setCoordinate(1, frontPoint3d[i-1]);

 quadArray[i].setCoordinate(2, frontPoint3d[i]);

 quadArray[i].setCoordinate(3, backPoint3d[i]);

 }

 quadArray[5].setCoordinate(0, backPoint3d[4]);

 quadArray[5].setCoordinate(1, frontPoint3d[4]);

 }

 /*

 * method which creates a 3D waveform and places it in the contentBranch

 */

 public void createWaveform(BranchGroup contentBranch) {

 // create the appearance information for the Shape3D objects

 Appearance appearance = new Appearance();

 Color3f objectColor = new Color3f(1.0f, 0.0f, 0.0f);

 Color3f darkColor = new Color3f(0.0f, 0.0f, 0.0f);

 Material material = new Material(objectColor, darkColor,

 objectColor, darkColor, 80.0f);

 appearance.setMaterial(material);

 // set the appearance's PolygonAttributes

 PolygonAttributes polygonAttributes = new PolygonAttributes();

 polygonAttributes.setCullFace(PolygonAttributes.CULL_NONE);

 appearance.setPolygonAttributes(polygonAttributes);

 // intialise the QuadArray objects

 for (int i = 0; i < quadArray.length; i++) {

 quadArray[i] = new QuadArray(4, QuadArray.COORDINATES | QuadArray.COLOR_3);

 quadArray[i].setCapability(GeometryArray.ALLOW_COORDINATE_WRITE);

 }

 // intialise the Point3d arrays

 for (int i = 0; i < frontPoint3d.length; i++) {

 frontPoint3d[i] = new Point3d();

 backPoint3d[i] = new Point3d();

 }

 // initialise the positions of the Shape3D objects. the end point don't

 // move and are never changed

 // quadArray[0]

 Point3d endPoints = new Point3d();

 endPoints.set(-9.0, 0.0, -5.0);

 quadArray[0].setCoordinate(0, endPoints);

 endPoints.set(-9.0, 0.0, 0.0);

 quadArray[0].setCoordinate(1, endPoints);

 frontPoint3d[0].set(-6.0, 0.0, 0.0);

 quadArray[0].setCoordinate(2, frontPoint3d[0]);

 backPoint3d[0].set(-6.0, 0.0, -5.0);

 quadArray[0].setCoordinate(3, backPoint3d[0]);

106

Appendix D: Source Code

 // quadArray[1]

 quadArray[1].setCoordinate(0, backPoint3d[0]);

 quadArray[1].setCoordinate(1, frontPoint3d[0]);

 frontPoint3d[1].set(-3.0, 0.0, 0.0);

 quadArray[1].setCoordinate(2, frontPoint3d[1]);

 backPoint3d[1].set(-3.0, 0.0, -5.0);

 quadArray[1].setCoordinate(3, backPoint3d[1]);

 // quadArray[2]

 quadArray[2].setCoordinate(0, backPoint3d[1]);

 quadArray[2].setCoordinate(1, frontPoint3d[1]);

 frontPoint3d[2].set(0.0, 0.0, 0.0);

 quadArray[2].setCoordinate(2, frontPoint3d[2]);

 backPoint3d[2].set(0.0, 0.0, -5.0);

 quadArray[2].setCoordinate(3, backPoint3d[2]);

 // quadArray[3]

 quadArray[3].setCoordinate(0, backPoint3d[2]);

 quadArray[3].setCoordinate(1, frontPoint3d[2]);

 frontPoint3d[3].set(3.0, 0.0, 0.0);

 quadArray[3].setCoordinate(2, frontPoint3d[3]);

 backPoint3d[3].set(3.0, 0.0, -5.0);

 quadArray[3].setCoordinate(3, backPoint3d[3]);

 // quadArray[4]

 quadArray[4].setCoordinate(0, backPoint3d[3]);

 quadArray[4].setCoordinate(1, frontPoint3d[3]);

 frontPoint3d[4].set(6.0, 0.0, 0.0);

 quadArray[4].setCoordinate(2, frontPoint3d[4]);

 backPoint3d[4].set(6.0, 0.0, -5.0);

 quadArray[4].setCoordinate(3, backPoint3d[4]);

 // quadArray[5]

 quadArray[5].setCoordinate(0, backPoint3d[3]);

 quadArray[5].setCoordinate(1, frontPoint3d[3]);

 endPoints.set(9.0, 0.0, 0.0);

 quadArray[5].setCoordinate(2, endPoints);

 endPoints.set(9.0, 0.0, -5.0);

 quadArray[5].setCoordinate(3, endPoints);

 for (int i = 0; i < quadArray.length; i++) {

 for (int j = 0; j < 4; j++) {

 quadArray[i].setColor(j, objectColor);

 }

 }

 // Apply the QuadArrays and appearance to the Shape3D objects and add

 // to the BranchGraph object

 for (int i = 0; i < shape3D.length; i++) {

 shape3D[i] = new Shape3D(quadArray[i], appearance);

 contentBranch.addChild(shape3D[i]);

 }

 }

 /*

 * create a particle object which spirals around the waveform

 */

 private void addParticles(BranchGroup contentBranch) {

 // create the appearance information for the sphere objects

 Appearance appearance = new Appearance();

 Color3f objectColor = new Color3f(0.0f, 0.0f, 1.0f);

 Color3f darkColor = new Color3f(0.0f, 0.0f, 0.0f);

 Material material = new Material(objectColor, darkColor,

 objectColor, darkColor, 80.0f);

 appearance.setMaterial(material);

 // create the sphere objects

 Sphere sphere1 = new Sphere(0.2f, Primitive.GENERATE_NORMALS, 10, appearance);

 Sphere sphere2 = new Sphere(0.2f, Primitive.GENERATE_NORMALS, 10, appearance);

 // create the TransformGroups to house the sphere and interpolator objects

 TransformGroup transformGroup1 = new TransformGroup();

 transformGroup1.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 transformGroup1.addChild(sphere1);

 TransformGroup transformGroup2 = new TransformGroup();

107

Appendix D: Source Code

 transformGroup2.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 transformGroup2.addChild(sphere2);

 // create the first interpolator

 Transform3D interpolatorTransform3D1 = new Transform3D();

 Alpha alpha = new Alpha(-1,Alpha.INCREASING_ENABLE | Alpha.DECREASING_ENABLE,

 0, 0, 20000, 0, 0, 20000, 0, 0);

 SpiralInterpolator spiralInterpolator1 =

 new SpiralInterpolator(alpha, transformGroup1, interpolatorTransform3D1);

 BoundingSphere bounds1 = new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

 spiralInterpolator1.setSchedulingBounds(bounds1);

 transformGroup1.addChild(spiralInterpolator1);

 // create the second interpolator

 Transform3D interpolatorTransform3D2 = new Transform3D();

 //Alpha alpha = new Alpha(-1,Alpha.INCREASING_ENABLE | Alpha.DECREASING_ENABLE,

 // 0, 0, 20000, 0, 0, 20000, 0, 0);

 SpiralInterpolator spiralInterpolator2 =

 new SpiralInterpolator(alpha, transformGroup2, interpolatorTransform3D2);

 BoundingSphere bounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

 spiralInterpolator2.setSchedulingBounds(bounds);

 // make the second sphere move in antiphase

 spiralInterpolator2.setSpiralDiameterCoefficient(-5.0);

 transformGroup2.addChild(spiralInterpolator2);

 contentBranch.addChild(transformGroup1);

 contentBranch.addChild(transformGroup2);

 }

 /*

 * add many lights to the scene

 */

 private BranchGroup addLights() {

 BranchGroup lightBranch = new BranchGroup();

 // create a color and direction for the light

 Color3f color = new Color3f(0.8f, 0.8f, 0.8f);

 Vector3f direction1 = new Vector3f(-1.0f, -2.0f, -1.0f);

 Vector3f direction2 = new Vector3f(1.0f, -1.0f, -1.0f);

 // create a DirectionalLight using the color and direction specified

 DirectionalLight light1 = new DirectionalLight(color, direction1);

 DirectionalLight light2 = new DirectionalLight(color, direction2);

 // create the influencing bounds of the light

 BoundingSphere bounds =

 new BoundingSphere(new Point3d(0.0,0.0,0.0), 200.0);

 light1.setInfluencingBounds(bounds);

 light2.setInfluencingBounds(bounds);

 // add the light to the scene

 lightBranch.addChild(light1);

 lightBranch.addChild(light2);

 return lightBranch;

 }

 /*

 * inner class which specifies the a spiral path to an object

 */

 private class SpiralInterpolator extends TransformInterpolator {

 private double x, y, z;

 private double xAxisOffset = -9.0;

 private double yAxisOffset = 3.5;

 private double zAxisOffset = -2.5;

108

Appendix D: Source Code

 private double lengthCoefficient = 2*Math.abs(xAxisOffset);

 private double spiralDensity = 36.0;

 private double spiralDiameterCoefficient = 5.0;

 SpiralInterpolator(Alpha alpha, TransformGroup target, Transform3D axisOfTransform) {

 super(alpha, target, axisOfTransform);

 }

 public void setSpiralDiameterCoefficient(double coefficient) {

 spiralDiameterCoefficient = coefficient;

 }

 // method which simulates the motion of the object about a spiral path

 // using the equations x = t, y = sin(6t) and z = cos(6t)

 public void computeTransform(float alphaValue, Transform3D transform) {

 // calculate the x, y and z values

 x = lengthCoefficient*alphaValue;

 y = spiralDiameterCoefficient*Math.sin(spiralDensity*alphaValue);

 z = spiralDiameterCoefficient*Math.cos(spiralDensity*alphaValue);

 // apply the calculations

 transform.setTranslation(new Vector3d(x + xAxisOffset, y + yAxisOffset, z +

zAxisOffset));

 }

 }

}

109

Appendix D: Source Code

D.5 BouncingParticle.java

/*

 * This is class creates a 3D scene with 5 bouncing spheres and particles

 *

 * Nicholas Martin

 * April 2004

 */

import java.awt.*;

import java.awt.event.*;

import java.util.Enumeration;

import javax.media.j3d.*;

import javax.vecmath.*;

import com.sun.j3d.utils.universe.*;

import com.sun.j3d.utils.geometry.*;

class BouncingParticle {

 // arrays containing the scenegraph objects for the bouncing balls

 private Alpha[] alphaArray = new Alpha[5];

 private GravityInterpolator[] gravityInterpolatorArray = new GravityInterpolator[5];

 private TransformGroup[] ballArray = new TransformGroup[5];

 private ParticleInterpolator[] particleInterpolatorArray = new ParticleInterpolator[5];

 private TransformGroup[] particleArray = new TransformGroup[5];

 private final double maxHeight = 4.9;

 private Canvas3D canvas;

 private VirtualUniverse universe;

 /*

 * GraphicsController constructor method which contains the

 * initialisation routine for creating the scene

 */

 BouncingParticle() {

 // set up the GraphicsConfiguration and Canvas3D objects for the

 // rendering of the scene and make it visible

 canvas = new Canvas3D(SimpleUniverse.getPreferredConfiguration());

 // call the createView method which sets up the View objects contents

 View view = createView(canvas);

 // create the view side of the scenegraph

 Locale locale = createViewBranch(view);

 // create the content side of the scenegraph

 createContentBranch(locale);

 }

 /*

 * return the Canvas3D object for viewing in the GUI

 */

 public Canvas3D getCanvas3D() {

 return canvas;

 }

 /*

 * removes all the Locales from the scene

 */

 public void kill() {

 universe.removeAllLocales();

 }

110

Appendix D: Source Code

 /*

 * method which creates a View object and adds to it the Canvas3D, PhysicalBody

 * and PhysicalEnvironment objects

 */

 private View createView(Canvas3D canvas) {

 View view = new View();

 view.addCanvas3D(canvas);

 view.setPhysicalBody(new PhysicalBody());

 view.setPhysicalEnvironment(new PhysicalEnvironment());

 view.setFieldOfView(1.4);

 return(view);

 }

 /*

 * method which sets up the view side of the scenegraph as well as the Locale

 * and VirtualUniverse

 */

 private Locale createViewBranch(View view) {

 // create scenegraph objects from the top downwards

 universe = new VirtualUniverse();

 Locale locale = new Locale(universe);

 BranchGroup viewBranch = new BranchGroup();

 TransformGroup viewTransform = new TransformGroup();

 ViewPlatform viewPlatform = new ViewPlatform();

 // set capability bits to allow modification at runtime

 viewTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 viewTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

 viewPlatform.setCapability(ViewPlatform.ALLOW_POLICY_WRITE);

 viewPlatform.setViewAttachPolicy(View.RELATIVE_TO_FIELD_OF_VIEW);

 viewPlatform.setActivationRadius(100.0f);

 // link together the scenegraph from the bottom upwards

 viewTransform.addChild(viewPlatform);

 viewBranch.addChild(viewTransform);

 locale.addBranchGraph(viewBranch);

 // complete the chain by adding the ViewPlatform to the View

 view.attachViewPlatform(viewPlatform);

 // move the view

 Transform3D viewTransform3D = new Transform3D();

 viewTransform3D.setTranslation(new Vector3d(0.0, 2.5, 9.0));

 viewTransform.setTransform(viewTransform3D);

 // return the Locale which contains a link to the whole chain

 return locale;

 }

 /*

 * create the content side of the scenegraph and attach it to the locale

 */

 private void createContentBranch(Locale locale) {

 BranchGroup contentBranch = new BranchGroup();

 // create TransformGroups which allow the spheres to be generically

 // created and then moved

 for (int i = 0; i < ballArray.length; i++) {

 ballArray[i] = new TransformGroup();

 }

 for (int i = 0; i < ballArray.length; i++) {

 ballArray[i].setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 ballArray[i].setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

111

Appendix D: Source Code

 }

 // assign positioning values to the Transform3D objects

 Transform3D[] ballPosition = new Transform3D[5];

 ballPosition[0] = new Transform3D();

 ballPosition[0].setTranslation(new Vector3d(-7.0, 0.0, 0.0));

 ballPosition[1] = new Transform3D();

 ballPosition[1].setTranslation(new Vector3d(-3.5, 0.0, 0.0));

 ballPosition[2] = new Transform3D(); // Sphere number 3 does not need to be moved

 ballPosition[3] = new Transform3D();

 ballPosition[3].setTranslation(new Vector3d(3.5, 0.0, 0.0));

 ballPosition[4] = new Transform3D();

 ballPosition[4].setTranslation(new Vector3d(7.0, 0.0, 0.0));

 // set the GravityInterpolator objects created at the top of the class

 // as well as their assigned Alpha objects this allows access during the

 // update method

 for (int i = 0; i < gravityInterpolatorArray.length; i++) {

 gravityInterpolatorArray[i] = createBall(ballArray[i], ballPosition[i]);

 alphaArray[i] = gravityInterpolatorArray[i].getAlpha();

 }

 // fill the particles' TransformGroups

 for (int i = 0; i < particleArray.length; i++) {

 particleArray[i] = new TransformGroup();

 }

 // assign positioning values for the particles

 Transform3D[] particleTransform3D = new Transform3D[5];

 particleTransform3D[0] = new Transform3D();

 particleTransform3D[0].setTranslation(new Vector3d(-7.0, -0.8, 0.0));

 particleTransform3D[1] = new Transform3D();

 particleTransform3D[1].setTranslation(new Vector3d(-3.5, -0.8, 0.0));

 particleTransform3D[2] = new Transform3D();

 particleTransform3D[2].setTranslation(new Vector3d(0.0, -0.8, 0.0));

 particleTransform3D[3] = new Transform3D();

 particleTransform3D[3].setTranslation(new Vector3d(3.5, -0.8, 0.0));

 particleTransform3D[4] = new Transform3D();

 particleTransform3D[4].setTranslation(new Vector3d(7.0, -0.8, 0.0));

 // create the particles

 for (int i = 0; i < particleArray.length; i++) {

 //particleInterpolatorArray[i] =

 createParticle(particleArray[i], particleTransform3D[i],

gravityInterpolatorArray[i], alphaArray[i]);

 }

 // finally, add the TransformGroups to the contentBranch

 for (int i = 0; i < ballArray.length; i++) {

 contentBranch.addChild(ballArray[i]);

 }

 for (int i = 0; i < particleArray.length; i++) {

 contentBranch.addChild(particleArray[i]);

 }

 // add the lights to the scene

 contentBranch.addChild(addLights());

 // perform optimisations on the contentBranch

 contentBranch.compile();

 // add the contentBranch to the locale object to complete the tree

112

Appendix D: Source Code

 locale.addBranchGraph(contentBranch);

 }

 /*

 * method called to update the contents of the scene with new coefficients

 */

 public void update(double[] frequencyBands) {

 for (int i = 0; i < ballArray.length; i++) {

 // check to see if the ball is falling

 if (gravityInterpolatorArray[i].isFalling(alphaArray[i].value()) == true) {

 // find the height suggested by the co-efficient. If this is greater

 // than the current value the interpolator and alpha are reset

 double suggestedHeight = frequencyBands[i]*maxHeight;

 double displacement =

 gravityInterpolatorArray[i].getDisplacement(alphaArray[i].value());

 if (suggestedHeight > displacement) {

 gravityInterpolatorArray[i].setStartDisplacement(displacement);

 gravityInterpolatorArray[i].setPeakHeight(suggestedHeight);

 alphaArray[i].setStartTime(System.currentTimeMillis());

 }

 }

 }

 }

 /*

 * return the ScaleInterpolator which is attached to the sent

 * TransformGroup Sphere object

 */

 private GravityInterpolator createBall(TransformGroup upperTransformGroup,

 Transform3D transform3D) {

 // set an extra TransformGroup to attach the Sphere and Interpolator

 TransformGroup lowerTransformGroup = new TransformGroup();

 lowerTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 // create an Appearance object to hold information on the

 // Sphere's appearance in the scene

 Appearance appearance = new Appearance();

 // set two colours to create the Material object

 Color3f objectColor = new Color3f(0.1f, 0.9f, 0.1f);

 Color3f darkColor = new Color3f(0.0f, 0.0f, 0.0f);

 Material material = new Material(objectColor, darkColor,

 objectColor, darkColor, 80.0f);

 material.setCapability(Material.ALLOW_COMPONENT_WRITE);

 // this may then be assigned to the Appearance

 appearance.setMaterial(material);

 // the Sphere may now be created using the Primitive Sphere class

 Sphere sphere = new Sphere(0.5f, Primitive.GENERATE_NORMALS, 20, appearance);

 // add the lower TransformGroup to the upper TransformGroup

 // then the Sphere can be added to the lower TransformGroup

 upperTransformGroup.addChild(lowerTransformGroup);

 lowerTransformGroup.addChild(sphere);

 // position the sphere in the scene

 upperTransformGroup.setTransform(transform3D);

 // apply a GravityInterpolator to the sphere

 Transform3D interpolatorTransform3D = new Transform3D();

 interpolatorTransform3D.rotZ(0.5 * Math.PI);

 Alpha alpha = new Alpha(1,1000);

 GravityInterpolator pulseInterpolator =

 new GravityInterpolator(alpha, lowerTransformGroup, interpolatorTransform3D);

113

Appendix D: Source Code

 BoundingSphere bounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

 pulseInterpolator.setSchedulingBounds(bounds);

 lowerTransformGroup.addChild(pulseInterpolator);

 return pulseInterpolator;

 }

 /*

 * return the ScaleInterpolator which is attached to the sent

 * TransformGroup Sphere object

 */

 private void createParticle(TransformGroup upperTransformGroup, Transform3D transform3D,

 GravityInterpolator targetInterpolator, Alpha targetAlpha) {

 // set an extra TransformGroup to attach the particle and Interpolator

 TransformGroup lowerTransformGroup = new TransformGroup();

 lowerTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 // create an Appearance object to hold information on the

 // particle's appearance in the scene

 Appearance appearance = new Appearance();

 // set two colours to create the Material object

 Color3f objectColor = new Color3f(0.1f, 0.9f, 0.1f);

 Color3f darkColor = new Color3f(0.0f, 0.0f, 0.0f);

 Material material = new Material(objectColor, darkColor,

 objectColor, darkColor, 80.0f);

 material.setCapability(Material.ALLOW_COMPONENT_WRITE);

 // this may then be assigned to the Appearance

 appearance.setMaterial(material);

 // the particle may now be created using the Primitive Box class

 Sphere sphere = new Sphere(0.1f, Primitive.GENERATE_NORMALS, 10, appearance);

 // add the lower TransformGroup to the upper TransformGroup

 // then the particle can be added to the lower TransformGroup

 upperTransformGroup.addChild(lowerTransformGroup);

 lowerTransformGroup.addChild(sphere);

 // position the particle in the scene

 upperTransformGroup.setTransform(transform3D);

 // apply a ScaleInterpolator to the particle

 Transform3D interpolatorTransform3D = new Transform3D();

 Alpha alpha = new Alpha(-1, 2000);

 ParticleInterpolator particleInterpolator =

 new ParticleInterpolator(alpha, lowerTransformGroup, interpolatorTransform3D);

 particleInterpolator.setTargetParameters(targetInterpolator, targetAlpha);

 BoundingSphere bounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

 particleInterpolator.setSchedulingBounds(bounds);

 lowerTransformGroup.addChild(particleInterpolator);

 }

 /*

 * add many lights to the scene

 */

 private BranchGroup addLights() {

 BranchGroup lightBranch = new BranchGroup();

 // create a color and direction for the light

 Color3f color = new Color3f(0.8f, 0.8f, 0.8f);

 Vector3f direction1 = new Vector3f(-1.0f, -2.0f, -1.0f);

 Vector3f direction2 = new Vector3f(1.0f, -1.0f, -1.0f);

 // create a DirectionalLight using the color and direction specified

114

Appendix D: Source Code

 DirectionalLight light1 = new DirectionalLight(color, direction1);

 DirectionalLight light2 = new DirectionalLight(color, direction2);

 // create the influencing bounds of the light

 BoundingSphere bounds =

 new BoundingSphere(new Point3d(0.0,0.0,0.0), 200.0);

 light1.setInfluencingBounds(bounds);

 light2.setInfluencingBounds(bounds);

 // add the light to the scene

 lightBranch.addChild(light1);

 lightBranch.addChild(light2);

 return lightBranch;

 }

 /*

 * inner class to specify the elastic motion of the particle

 */

 private class ParticleInterpolator extends TransformInterpolator {

 private double u = 0.0; // default value as the particle always starts at rest

 private double impact = 1.0;

 private double time = 0.0;

 private double alphaBuffer = 0.0;

 private double displacementBuffer = 0.0;

 private Alpha targetAlpha;

 private GravityInterpolator targetInterpolator;

 ParticleInterpolator(Alpha alpha, TransformGroup target,

 Transform3D axisOfTransform) {

 super(alpha, target, axisOfTransform);

 }

 public void setTargetParameters(GravityInterpolator gravityInterpolator, Alpha alpha) {

 targetInterpolator = gravityInterpolator;

 targetAlpha = alpha;

 }

 public void computeTransform(float alphaValue, Transform3D transform) {

 double a = -9.8;

 // find the value of the natural position and the vector containing

 // the current position

 double naturalPosition = targetInterpolator.getDisplacement(targetAlpha.value());

 // calculate the time since the last method call

 if (alphaValue < alphaBuffer) {

 time = alphaValue + (1.0f - alphaBuffer);

 }

 else {

 time = alphaValue - alphaBuffer;

 }

 alphaBuffer = alphaValue;

 double x = naturalPosition - displacementBuffer;

 // calculate the acceleration based on the position and direction

 // of the particle

 if (x >= 1.5 && u <= 0.0) {

 a = 15.0;

 }

 else if (x >= 1.5 && u > 0.0) {

 a = 6.0;

 }

 // calculate the new displacement

115

Appendix D: Source Code

 displacementBuffer = (u*time) + (0.5f*a*(time*time)) + displacementBuffer;

 // calculate the velocity for the update above the next time this method is called

 u = (u + a*time);

 transform.setTranslation(new Vector3d(0.0, impact*displacementBuffer, 0.0));

 }

 }

}

116

Appendix D: Source Code

D.6 BouncingLights.java

/*

 * This is class creates a 3D scene with 5 bouncing spheres with orbiting lights

 *

 * Nicholas Martin

 * April 2004

 */

import java.awt.*;

import java.awt.event.*;

import java.util.Enumeration;

import javax.media.j3d.*;

import javax.vecmath.*;

import com.sun.j3d.utils.universe.*;

import com.sun.j3d.utils.geometry.*;

class BouncingLights {

 // arrays containing the scenegraph objects for the bouncing spheres

 private Alpha[] alphaArray = new Alpha[5];

 private GravityInterpolator[] gravityInterpolatorArray = new GravityInterpolator[5];

 private TransformGroup[] ballArray = new TransformGroup[5];

 private RotationInterpolator rotationInterpolator;

 private final double maxHeight = 4.9;

 private Canvas3D canvas;

 private VirtualUniverse universe;

 /*

 * GraphicsController constructor method which contains the

 * initialisation routine for creating the scene

 */

 BouncingLights() {

 // set up the GraphicsConfiguration and Canvas3D objects for the

 // rendering of the scene and make it visible

 canvas = new Canvas3D(SimpleUniverse.getPreferredConfiguration());

 // call the createView method which sets up the View objects contents

 View view = createView(canvas);

 // create the view side of the scenegraph

 Locale locale = createViewBranch(view);

 // create the content side of the scenegraph

 createContentBranch(locale);

 }

 /*

 * return the Canvas3D object for viewing in the GUI

 */

 public Canvas3D getCanvas3D() {

 return canvas;

 }

 /*

 * removes all the Locales from the scene

 */

 public void kill() {

 universe.removeAllLocales();

 }

117

Appendix D: Source Code

 /*

 * method which creates a View object and adds to it the Canvas3D, PhysicalBody

 * and PhysicalEnvironment objects

 */

 private View createView(Canvas3D canvas) {

 View view = new View();

 view.addCanvas3D(canvas);

 view.setPhysicalBody(new PhysicalBody());

 view.setPhysicalEnvironment(new PhysicalEnvironment());

 view.setFieldOfView(1.4);

 return(view);

 }

 /*

 * method which sets up the view side of the scenegraph as well as the Locale

 * and VirtualUniverse

 */

 private Locale createViewBranch(View view) {

 // create scenegraph objects from the top downwards

 universe = new VirtualUniverse();

 Locale locale = new Locale(universe);

 BranchGroup viewBranch = new BranchGroup();

 TransformGroup viewTransform = new TransformGroup();

 ViewPlatform viewPlatform = new ViewPlatform();

 // set capability bits to allow modification at runtime

 viewTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 viewTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

 viewPlatform.setCapability(ViewPlatform.ALLOW_POLICY_WRITE);

 viewPlatform.setViewAttachPolicy(View.RELATIVE_TO_FIELD_OF_VIEW);

 viewPlatform.setActivationRadius(100.0f);

 // link together the scenegraph from the bottom upwards

 viewTransform.addChild(viewPlatform);

 viewBranch.addChild(viewTransform);

 locale.addBranchGraph(viewBranch);

 // complete the chain by adding the ViewPlatform to the View

 view.attachViewPlatform(viewPlatform);

 // move the view

 Transform3D viewTransform3D = new Transform3D();

 viewTransform3D.setTranslation(new Vector3d(0.0, 2.5, 11.0));

 viewTransform.setTransform(viewTransform3D);

 // return the Locale which contains a link to the whole chain

 return locale;

 }

 /*

 * create the content side of the scenegraph and attach it to the locale

 */

 private void createContentBranch(Locale locale) {

 BranchGroup contentBranch = new BranchGroup();

 // create TransformGroups which allow the spheres to be generically

 // created and then moved

 for (int i = 0; i < ballArray.length; i++) {

 ballArray[i] = new TransformGroup();

 }

 for (int i = 0; i < ballArray.length; i++) {

 ballArray[i].setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 ballArray[i].setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

 }

118

Appendix D: Source Code

 // assign positioning values to the sphere objects

 Transform3D[] ballPosition = new Transform3D[5];

 ballPosition[0] = new Transform3D();

 ballPosition[0].setTranslation(new Vector3d(-7.0, 0.0, 0.0));

 ballPosition[1] = new Transform3D();

 ballPosition[1].setTranslation(new Vector3d(-3.5, 0.0, 0.0));

 ballPosition[2] = new Transform3D(); // sphere number 3 does not need to be moved

 ballPosition[3] = new Transform3D();

 ballPosition[3].setTranslation(new Vector3d(3.5, 0.0, 0.0));

 ballPosition[4] = new Transform3D();

 ballPosition[4].setTranslation(new Vector3d(7.0, 0.0, 0.0));

 // set up the scenegraph elements for the orbiting objects

 TransformGroup[] redSpotLightsGroup = new TransformGroup[5];

 TransformGroup[] blueSpotLightsGroup = new TransformGroup[5];

 for (int i = 0; i < redSpotLightsGroup.length; i++) {

 redSpotLightsGroup[i] = new TransformGroup();

 blueSpotLightsGroup[i] = new TransformGroup();

 }

 Transform3D redSpotLightTransform3D = new Transform3D();

 redSpotLightTransform3D.setTranslation(new Vector3d(-1.0, -1.0, 0.0));

 Transform3D blueSpotLightTransform3D = new Transform3D();

 blueSpotLightTransform3D.setTranslation(new Vector3d(1.0, -1.0, 0.0));

 for (int i = 0; i < redSpotLightsGroup.length; i++) {

 createRedSpotLight(redSpotLightsGroup[i], redSpotLightTransform3D);

 createBlueSpotLight(blueSpotLightsGroup[i], blueSpotLightTransform3D);

 }

 // set the GravityInterpolator objects created at the top of the class

 // as well as their assigned Alpha objects this allows access during the

 // update method

 for (int i = 0; i < gravityInterpolatorArray.length; i++) {

 gravityInterpolatorArray[i] = createBall(ballArray[i], ballPosition[i],

 redSpotLightsGroup[i],

blueSpotLightsGroup[i]);

 alphaArray[i] = gravityInterpolatorArray[i].getAlpha();

 }

 // finally, add the TransformGroups to the contentBranch

 for (int i = 0; i < ballArray.length; i++) {

 contentBranch.addChild(ballArray[i]);

 }

 // add the lights to the scene

 contentBranch.addChild(addLights());

 // perform optimisations on the contentBranch

 contentBranch.compile();

 // add the contentBranch to the locale object to complete the tree

 locale.addBranchGraph(contentBranch);

 }

 /*

 * method called to update the contents of the scene with new coefficients

 */

 public void update(double[] frequencyBands) {

 for (int i = 0; i < ballArray.length; i++) {

 // check to see if the ball is falling

 if (gravityInterpolatorArray[i].isFalling(alphaArray[i].value()) == true) {

119

Appendix D: Source Code

 // find the height suggested by the co-efficient. If this is greater

 // than the current value the interpolator and alpha are reset

 double suggestedHeight = frequencyBands[i]*maxHeight;

 double displacement =

 gravityInterpolatorArray[i].getDisplacement(alphaArray[i].value());

 if (suggestedHeight > displacement) {

 gravityInterpolatorArray[i].setStartDisplacement(displacement);

 gravityInterpolatorArray[i].setPeakHeight(suggestedHeight);

 alphaArray[i].setStartTime(System.currentTimeMillis());

 }

 }

 }

 }

 /*

 * return the ScaleInterpolator which is attached to the sent TransformGroup sphere object

 */

 private GravityInterpolator createBall(TransformGroup upperTransformGroup,

 Transform3D transform3D,

 TransformGroup redSpotLightGroup,

 TransformGroup blueSpotLightGroup) {

 // set an extra TransformGroup to attach the sphere and Interpolator

 TransformGroup lowerTransformGroup = new TransformGroup();

 lowerTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 // create an Appearance object to hold information on the

 // sphere's appearance in the scene

 Appearance appearance = new Appearance();

 // set two colours to create the Material object

 Color3f objectColor = new Color3f(0.4f, 0.4f, 0.4f);

 Color3f darkColor = new Color3f(0.0f, 0.0f, 0.0f);

 Material material = new Material(objectColor, darkColor,

 objectColor, darkColor, 80.0f);

 material.setCapability(Material.ALLOW_COMPONENT_WRITE);

 // this may then be assigned to the Appearance

 appearance.setMaterial(material);

 // the sphere may now be created using the Primitive Box class

 Sphere sphere = new Sphere(1.0f, Primitive.GENERATE_NORMALS, 20, appearance);

 // add the lower TransformGroup to the upper TransformGroup

 // then the sphere can be added to the lower TransformGroup

 upperTransformGroup.addChild(lowerTransformGroup);

 lowerTransformGroup.addChild(sphere);

 // position the sphere in the scene

 upperTransformGroup.setTransform(transform3D);

 // apply a ScaleInterpolator to the sphere

 Transform3D interpolatorTransform3D = new Transform3D();

 interpolatorTransform3D.rotZ(0.5 * Math.PI);

 Alpha alpha = new Alpha(1,1000);

 GravityInterpolator pulseInterpolator =

 new GravityInterpolator(alpha, lowerTransformGroup, interpolatorTransform3D);

 BoundingSphere bounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

 pulseInterpolator.setSchedulingBounds(bounds);

 lowerTransformGroup.addChild(pulseInterpolator);

 lowerTransformGroup.addChild(redSpotLightGroup);

 lowerTransformGroup.addChild(blueSpotLightGroup);

 return pulseInterpolator;

 }

120

Appendix D: Source Code

 /*

 * return the ScaleInterpolator which is attached to the sent TransformGroup sphere object

 */

 private void createRedSpotLight(TransformGroup upperTransformGroup, Transform3D transform3D) {

 // set an extra TransformGroup to attach the Box and Interpolator to

 TransformGroup lowerTransformGroup = new TransformGroup();

 lowerTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 // create an Appearance object to hold information on the

 // fake spotlight's appearance in the scene

 Appearance redAppearance = new Appearance();

 // set colour to assign to the red spot light object

 Color3f redColor = new Color3f(1.0f, 0.0f, 0.0f);

 Color3f redDarkColor = new Color3f(1.0f, 0.0f, 0.0f);

 Material redMaterial = new Material(redColor, redDarkColor,

 redColor, redDarkColor, 100.0f);

 // create the red spotlight

 SpotLight redSpotLight = new SpotLight(redColor,

 new Point3f(0.0f, 0.0f, 0.0f),

 new Point3f(1.0f, 0.0f, 0.0f),

 new Vector3f(-1.0f, 0.0f, 0.0f),

 (float)Math.PI,

 10.0f);

 // keep the bounds low to prevent the slowing the system

 BoundingSphere lightBounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 1.0);

 redSpotLight.setInfluencingBounds(lightBounds);

 // create the fake red spotlight

 redAppearance.setMaterial(redMaterial);

 Sphere fakeRedSpotLight = new Sphere(0.1f, Primitive.GENERATE_NORMALS, 7, redAppearance);

 // add the lower TransformGroup to the upper TransformGroup

 // then the particle can be added to the lower TransformGroup

 upperTransformGroup.addChild(lowerTransformGroup);

 lowerTransformGroup.addChild(redSpotLight);

 lowerTransformGroup.addChild(fakeRedSpotLight);

 // position the particle in the scene

 upperTransformGroup.setTransform(transform3D);

 // apply a ScaleInterpolator to the box

 Transform3D interpolatorTransform3D = new Transform3D();

 interpolatorTransform3D.rotZ(Math.PI*0.25);

 interpolatorTransform3D.setTranslation(new Vector3d(2.0, 0.0, 0.0));

 Alpha alpha = new Alpha(-1, 800);

 rotationInterpolator =

 new RotationInterpolator(alpha, lowerTransformGroup, interpolatorTransform3D,

 0.0f, (float)Math.PI*2.0f);

 BoundingSphere bounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

 rotationInterpolator.setSchedulingBounds(bounds);

 lowerTransformGroup.addChild(rotationInterpolator);

 }

 /*

 * return the ScaleInterpolator which is attached to the sent TransformGroup Box object

 */

 private void createBlueSpotLight(TransformGroup upperTransformGroup, Transform3D transform3D)

{

 // set an extra TransformGroup to attach the Box and Interpolator to

 TransformGroup lowerTransformGroup = new TransformGroup();

 lowerTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

121

Appendix D: Source Code

 // create an Appearance object to hold information on the

 // fake spotlight's appearance in the scene

 Appearance blueAppearance = new Appearance();

 // set colour to assign to the red spot light object

 Color3f blueColor = new Color3f(0.0f, 0.0f, 1.0f);

 Color3f blueDarkColor = new Color3f(0.0f, 0.0f, 1.0f);

 Material blueMaterial = new Material(blueColor, blueDarkColor,

 blueColor, blueDarkColor, 100.0f);

 // create the red spotlight

 SpotLight blueSpotLight = new SpotLight(blueColor,

 new Point3f(0.0f, 0.0f, 0.0f),

 new Point3f(1.0f, 0.0f, 0.0f),

 new Vector3f(-1.0f, 0.0f, 0.0f),

 (float)Math.PI,

 10.0f);

 BoundingSphere lightBounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 1.0);

 blueSpotLight.setInfluencingBounds(lightBounds);

 // create the fake blue spotlight

 blueAppearance.setMaterial(blueMaterial);

 Sphere fakeBlueSpotLight = new Sphere(0.1f, Primitive.GENERATE_NORMALS, 7,

blueAppearance);

 // add the lower TransformGroup to the upper TransformGroup

 // then the particle can be added to the lower TransformGroup

 upperTransformGroup.addChild(lowerTransformGroup);

 lowerTransformGroup.addChild(blueSpotLight);

 lowerTransformGroup.addChild(fakeBlueSpotLight);

 // position the particle in the scene

 upperTransformGroup.setTransform(transform3D);

 // apply a ScaleInterpolator to the box

 Transform3D interpolatorTransform3D = new Transform3D();

 interpolatorTransform3D.rotZ(-Math.PI*0.25);

 interpolatorTransform3D.setTranslation(new Vector3d(-2.0, 0.0, 0.0));

 Alpha alpha = new Alpha(-1, 800);

 rotationInterpolator =

 new RotationInterpolator(alpha, lowerTransformGroup, interpolatorTransform3D,

 0.0f, (float)Math.PI*2.0f);

 BoundingSphere bounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

 rotationInterpolator.setSchedulingBounds(bounds);

 lowerTransformGroup.addChild(rotationInterpolator);

 }

 /*

 * add many lights to the scene

 */

 private BranchGroup addLights() {

 BranchGroup lightBranch = new BranchGroup();

 // create a color and direction for the light

 Color3f color = new Color3f(0.8f, 0.8f, 0.8f);

 Vector3f direction1 = new Vector3f(-1.0f, -2.0f, -1.0f);

 Vector3f direction2 = new Vector3f(1.0f, -1.0f, -1.0f);

 // create a DirectionalLight using the color and direction specified

 DirectionalLight light1 = new DirectionalLight(color, direction1);

 DirectionalLight light2 = new DirectionalLight(color, direction2);

 // create the influencing bounds of the light

 BoundingSphere bounds =

 new BoundingSphere(new Point3d(0.0,0.0,0.0), 200.0);

 light1.setInfluencingBounds(bounds);

 light2.setInfluencingBounds(bounds);

122

Appendix D: Source Code

 // add the light to the scene

 lightBranch.addChild(light1);

 lightBranch.addChild(light2);

 return lightBranch;

 }

}

123

Appendix D: Source Code

D.7 GravityInterpolator.java

/*

 * This class extends TransformInterpolator and provides the motion

 * characteristics of gravity

 *

 * Nicholas Martin

 * April 2004

 */

import javax.media.j3d.*;

import javax.vecmath.*;

public class GravityInterpolator extends TransformInterpolator {

 private final double a = -4.9f;

 private double impact = 4.0f;

 private double offset = 0.0f;

 private double isFallingOffset = -2.5;

 GravityInterpolator(Alpha alpha, TransformGroup target,

 Transform3D axisOfTransform) {

 super(alpha, target, axisOfTransform);

 }

 // this method sets the impact variable which governs the height of the peak

 public void setPeakHeight(double newPeakHeight) {

 impact = newPeakHeight/1.225;

 }

 // this method returns the height at which the ball will peak

 public double getPeakHeight() {

 return impact*1.225;

 }

 // get the current height displacement of the ball

 public double getDisplacement(float alphaValue) {

 double time = (double)alphaValue + offset;

 return impact*(((-a)*time) + (a*time*time));

 }

 // this method is called to change the position at which the ball starts

 public void setStartDisplacement(double newStartDisplacement) {

 double startDisplacement = newStartDisplacement/impact;

 // calculate the new offset value

 offset = (a + StrictMath.sqrt((a*a) + (4*a*startDisplacement)))/(2*a);

 }

 // by calculating the velocity of the ball it may be found out whether it is

 // falling. The equation used is v = u + at.

 public boolean isFalling(float alphaValue) {

 double velocity = 2*a*(alphaValue+offset) - a;

 // the velocity is compared to an offset value so the point at which

 // the descent of the ball may be interrputed can be gauged

 if (velocity < isFallingOffset) return true;

 else return false;

 }

124

Appendix D: Source Code

 // overwrite this method to calculate the characteristics of the motion of a

 // ball travelling through the air in a vertical line.

 public void computeTransform(float alphaValue, Transform3D transform) {

 // calculate the positioning factor with relation to the alphaValue

 // using the equation s = ut + 1/2at^2 where s is the displacement,

 // u is the initial velocity and t is the time (alphaValue+offset).

 // displacementFactor ranges from 0 to 1.225

 double displacementFactor = getDisplacement(alphaValue);

 // to prevent the ball from falling lower than y = 0 a check must be made

 // this will only be necessary when the offset is not 0.

 if (displacementFactor < 0) {

 displacementFactor = 0.0f;

 }

 // multiply the impact to scale the height at which the ball peaks

 transform.setTranslation(new Vector3d(0.0, displacementFactor, 0.0));

 }

}

125

Appendix D: Source Code

D.8 FpsBehavior.java

/**

 Copyright (C) 2001 Daniel Selman

 First distributed with the book "Java 3D Programming"

 by Daniel Selman and published by Manning Publications.

 http://manning.com/selman

 This program is free software; you can redistribute it and/or

 modify it under the terms of the GNU General Public License

 as published by the Free Software Foundation, version 2.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 The license can be found on the WWW at:

 http://www.fsf.org/copyleft/gpl.html

 Or by writing to:

 Free Software Foundation, Inc.,

 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

 Authors can be contacted at:

 Daniel Selman: daniel@selman.org

 If you make changes you think others would like, please

 contact one of the authors or someone at the

 www.j3d.org web site.

**/

import javax.media.j3d.*;

import javax.vecmath.*;

import com.sun.j3d.utils.geometry.*;

// this class implements a simple behavior that

// output the rendered Frames Per Second.

public class FpsBehavior extends Behavior

{

 // the wake up condition for the behavior

 protected WakeupCondition m_WakeupCondition = null;

 protected long m_StartTime = 0;

 private final int m_knReportInterval = 100;

 public FpsBehavior()

 {

 // save the WakeupCriterion for the behavior

 m_WakeupCondition = new WakeupOnElapsedFrames(m_knReportInterval);

 }

 public void initialize()

 {

 // apply the initial WakeupCriterion

 wakeupOn(m_WakeupCondition);

 System.out.println("initialize");

 }

 public void processStimulus(java.util.Enumeration criteria)

 {

 while(criteria.hasMoreElements())

 {

 WakeupCriterion wakeUp = (WakeupCriterion) criteria.nextElement();

126

Appendix D: Source Code

 // every N frames, update position of the graphic

 if(wakeUp instanceof WakeupOnElapsedFrames)

 {

 if(m_StartTime > 0)

 {

 final long interval = System.currentTimeMillis() - m_StartTime;

 System.out.println((m_knReportInterval * 1000) / interval);

 }

 m_StartTime = System.currentTimeMillis();

 }

 }

 // assign the next WakeUpCondition, so we are notified again

 wakeupOn(m_WakeupCondition);

 }

}

