
Automat ic Photograph

Orientat ion

Hugo King

Candidate Number: 91103

Multimedia & Digital Systems,
The Department of Informatics.

Supervisor : Dr Paul Newbury

April 2007

Automatic Photograph Orientation! April 2007

 Page 1 of 94

Statement of Originality

This report is submitted as part requirement for the degree of Multimedia

& Digital Systems at the University of Sussex. It is the product of my
own labour, except where indicated in the text. The report may be freely
copied and distributed, provided the source is acknowledged.

Signed:

Date:

Automatic Photograph Orientation! April 2007

 Page 2 of 94

Acknowledgements
I would like to thank the following people:

• Dr. Paul Newbury
For his supervision and direction throughout this project;

• David Tschumperlé - Developer of the CImg C++ library
For the extremely useful CImg library and his help and assistance;

• Members of the following forums:

i. Ars Technica Programmers Symposium;

ii. CImg Help (English);

iii. CocoaBuilder.com;

iv. CocoaDev.com.

For all the technical advice they gave;

• My fellow Multimedia & Digital Systems students
For their advice, and for having to suffer through such projects as well;

• My parents
For their advice, support, and proof-reading;

• All the parties referenced in this report
For their work, and for publishing that work.

Counts
Total words 11,839

Summary words 117

Total pages 94

Appendices pages 20

Automatic Photograph Orientation! April 2007

 Page 3 of 94

Summary

This project details research into feature extraction of digital images with

the goal of automatically orientating images. An application was
developed towards this goal to correctly orientate images of two
categories - indoor, and outdoor. An iterative approach was taken to

development, incorporating research, requirements analysis, detailed
design diagrams, implementation, and user-testing.

The application was implemented using C++, and Objective-C++ with the
Apple Cocoa windowing system. The image processing, written in C++,
utilises the CImg library and comprises of custom written orientation

determination algorithms, based on several areas of research.

The system is shown to achieve a 92% success rate for orientating

outdoor images, with an average success rate of 66% for both indoor
and outdoor images.

Automatic Photograph Orientation! April 2007

 Page 4 of 94

Table of Contents
1.0 Introduction! 7

1.1 Digital Imaging! 7

1.2 Report Structure! 8

2.0 Professional Considerations! 9

3.0 Requirements Analysis! 10

3.1 The Problem! 10

3.2 Existing Solutions! 10

3.2.1 Hardware! 10

3.2.2 Research! 11

3.2.3 Critical Analysis! 11

3.3 User Needs! 13

3.4 Requirements! 13

3.5 Programming Language Justification! 14

3.6 Project Scope! 15

4.0 Research Theories! 16

4.1 Feature Extraction! 16

4.1.1 Colour Analysis! 16

4.1.2 Complexity Analysis! 17

4.1.3 Edge Analysis! 18

4.2 The Application of Analysis! 19

4.3 Inconsistencies! 20

4.4 Alternative Methods! 20

5.0 Development Plan! 21

6.0 System Design! 22

6.1 High Level System Diagram! 22

6.2 Image Processing Execution! 23

6.3 User Interaction! 25

7.0 Implementation! 29

7.1 The Interface! 29

7.1.1 Usability Principles! 29

7.1.2 The Interface Controller! 32

7.2 Image Processing! 37

7.2.1 Methods of Analysis! 37

7.2.2 The Main Method! 38

7.2.3 Other Methods! 38

7.2.4 Colour Determination! 39

7.2.5 Complexity Determination! 40

7.2.6 Edge Determination! 41

7.2.7 Decision Merging! 42

7.3 Program Interconnection! 43

Automatic Photograph Orientation! April 2007

 Page 5 of 94

8.0 Testing and Improvement! 45

8.1 Initial Testing! 45

8.1.1 Usability Testing! 45

8.1.2 White-box Testing! 46

8.2 Improvements from Initial Testing! 47

8.3 Application Release! 49

9.0 Final Testing! 54

9.1 User Requirements Testing! 54

9.2 System Performance! 56

9.2.1 Image Processing Time! 56

9.2.2 CPU and Memory Usage! 57

10.0 Experiments! 58

10.1 Rotation Performance! 58

10.1.1 Indoor! 59

10.1.2 Outdoor! 61

10.2 Confidence Performance! 62

10.3 Collaborative Performance! 64

11.0 Conclusions! 68

11.1 Meeting the Objectives! 68

11.2 Improvements and Extensions! 69

11.2.1 Improvements! 69

11.2.2 Extensions! 70

11.3 Alternative Methodologies! 70

11.4 Overall Success of the Project! 70

12.0 Bibliography! 72

13.0 References! 73

14.0 Appendices" " " " " " " " " " " "

14.1 Appendix A - Testing Results" " " " " " " " "

14.1.1 Usability Surveys" " " " " " " " " "

14.1.2 Time Performance" " " " " " " " " "

14.1.3 CPU Performance" " " " " " " " " "

14.1.4 Memory Performance" " " " " " " " "

14.2 Appendix B - Experiment Results" " " " " " " "

14.2.1 Rotation Results" " " " " " " " " "

14.2.2 Confidence Results" " " " " " " " " "

14.2.3 Collaborative Results"" " " " " " " " "

14.3 Appendix C - Source Code" " " " " " " " "

14.3.1 Interface Controller" " " " " " " " " "

14.3.2 Image Processing" " " " " " " " " "

14.3.3 Header Files" " " " " " " " " " "

Automatic Photograph Orientation! April 2007

 Page 6 of 94

75

75

75

79

79

79

80

80

85

88

89

89

92

94

1.0 Introduction
This project aims to research into feature extraction of digital images, with the
objective of automatically determining a correct orientation for images where the
orientation is incorrect. The ultimate goal is to create a stand-alone application with
the functionality to open, process, and save images, correcting their orientation.

Digital images - especially digital photographs - are often incorrectly orientated, a
good example of this being digital photographs which have been taken in a portrait
orientation but when displayed are in a landscape orientation by default. To a human
the orientation of an image is often obvious, because we have the ability to easily
recognise shapes and patterns within an image deriving from these the correct
orientation of the image. The challenge is mimicking these natural feature extraction
methods in a computer as, unlike the human brain, a computer has no natural ability
to recognise such features.

The intention in this project is to construct an algorithmic approach to extracting
features from an image, and making a determination from these features as to the
correct orientation. This functionality will be built into a simple application, although
the emphasis of the project is that of research into feature extraction.

1 . 1 D i g i t a l I m a g i n g

Digital imaging holds several advantages over traditional analogue imaging. Storing
an image digitally allows for faster access and indexing, quicker editing - even for
complex tasks, and the ability to shares images - i.e. making digital copies and
sending these over networks. These advantages have lead to the proliferation of
digital imaging, demonstrated by the fact that the market share of digital cameras
overtook that of traditional cameras in the U.S. in 20031.

It is now possible for the average consumer to touch-up digital photographs, where
only fifteen years ago this was the realm of only the photographic studio. The
proliferation of consumer grade digital cameras, sales of which are expected to hit 82
million units by 20082, has given access to digital photography on a budget. This
area has developed so fast however that some problem areas with digital
photography have been overlooked.

The question of image orientation is one of these problem areas. This problem is
commonly caused when shooting digital photographs - as many cameras orientate
the image in landscape view irrespective of whether the camera was held to take a
portrait photograph, i.e. on its end. The result of this is a mixture of portrait and
landscape photographs, with no determination of which is which. Traditionally a user
will cycle through images in a photo-management application, rotating individual
photographs as appropriate, but this is a time consuming task.

Automatic Photograph Orientation! April 2007

 Page 7 of 94

The motivation for this project is to explore whether there is a more efficient way of
conducting this process, perhaps automating a large portion of it, and whether such a
method would produce satisfactory results.

1 . 2 R e p o r t S t r u c t u r e

The structure of this report is as follows:

2. An introduction to the professional considerations that were involved in this
project;

3. A discussion of the requirements of the project, including an examination of
existing solutions in this field, and research that has previously been conducted;

4. Detailed discussion of the theories of feature extraction;

5. A plan of the development process;

6. An explanation of the program design;

7. A discussion of the program implementation process;

8. Explanation of the testing and improvements made;

9. Explanation of the final testing;

10.Discussion of the experiments conducted;

11.Conclusions drawn from the results found;

12.A bibliography;

13.References.

At all points throughout this report where information has been gathered from other
sources credit is made to the source, which is also listed in the references section.

Automatic Photograph Orientation! April 2007

 Page 8 of 94

2.0 Professional Considerations
There are relatively few professional issues to consider in this project, due to the fact
that it is largely research based, without expectation to implement a software
application for retail. There are however the following considerations, as set out by
the British Computer Society (BCS)3, that apply to the scope of the project:

• Code of Conduct, Section 34 - “You shall have regard to the legitimate rights of
third parties.”
This project gives consideration to the rights of any parties from which information
is gathered through research, by correctly referencing and attributing any
knowledge to such parties. This project is also aware of any copyright attached to
any photographs used as test subjects.

• Code of Conduct, Section 155 - “You shall not claim any level of competence that
you do not possess. You shall only offer to do work or provide a service that is
within your professional competence.”
This project undertakes work of an appropriate level in all aspects. This project
does however strive to implement new technologies that are involved in its scope,
where it is felt that they are relevant.

• Code of Practice, Section 26 - “Maintain Your Technical Competence”, “Manage
Your Workload Efficiently”
This project undertakes to use new skills and to keep up to date with
technological advances, in order to implement a more efficient and innovative
system. It also undertakes to use time efficiently with respect to the
requirements, and to not over-burden the workload.

• Code of Practice, Section 3.17 - “Programme/Project Management”
The project adheres to the code laid out in this section when defining, planning,
and closing the project.

• Code of Practice, Section 4.28 - “Research”
The project undertakes to only proceed with research into areas which can be
justified, acknowledge the contribution to the project of research of other people
and organisations, and share the results at the discretion of the author through
published papers.

Automatic Photograph Orientation! April 2007

 Page 9 of 94

3.0 Requirements Analysis
The following chapter describes the process of determining the requirements of this
project.

3 . 1 T h e P r o b l e m

In recognising the orientation of an image the human brain is performing a very
complicated series of deductions relying on natural recognition of shapes and
patterns, and the importance which we associate to them. The natural approach
when designing a system to mimic this process is to perform the same analysis -
looking for features in an image - and then basing a judgement on those found. The
problem is extracting the patterns from an image and relating these to image
orientation.

In different categories of images different feature patterns emerge, for instance in an
image of a group of people there will be many oval shapes - the heads - whose
longest dimension will be orientated vertically. However, in an image of a landscape
scene we might expect there to be a lighter shade at the top of the image. These two
rules may converge but as with most patterns will not hold true in every instance.

Most images will fall into a category where one or more approach will provide a
strong answer, therefore, the implementation of detecting the correct orientation of an
image must use several approaches to extracting patterns

3 . 2 E x i s t i n g S o l u t i o n s

There are no commercial applications which perform automatic image rotation,
including plug-ins for applications such as Adobe Photoshop 9 or GNU GIMP10. The
likely reason for this is that there is no guarantee with such automatic rotation
solutions of a 100% success rate - this would be required in a commercial application
of such technology to achieve marketability.

3 . 2 . 1 H a r d w a r e

In the growing digital camera market a solution to the orientation problem is
becoming increasingly implemented in the hardware. Digital cameras - especially
those at the higher end of the market - are now being fitted with a tilt switch to detect
the orientation of the camera when shooting a photograph, this is then stored as the
orientation of the image.

While this feature is becoming more widespread in digital cameras the problem of
orientation is still present in lower end digital cameras, legacy digital images, and
digitised traditional images.

Automatic Photograph Orientation! April 2007

 Page 10 of 94

3 . 2 . 2 R e s e a r c h

There have been several research projects conducted into the area of automatic
image orientation, and feature extraction of digital images. Several of the research
papers in these areas are summarised below:

• Z. Su (Z. Su, 2004) - Automatic Image Orientation Detection 11

This paper details the extensive use of peripheral block segmentation of images,
along with the colour moment (CM) system of analysis. An edge Detection
Histogram (EDH) method is also explored here, and the effectiveness of the use
of the RGB, HSV, and LUV colour spaces in these methods is outlined.

• S. Lyu (S. Lyu et al, 2005) - Automatic Image Orientation Detection with Natural
Image Statistics 12

This paper takes a new approach to feature extraction using decomposition of
colour channel data with a single internal block at the centre of the image - this is
to accommodate for varying image sizes. The paper deals mainly with neural
networking classifiers.

• Vailaya et al (Vailaya 1999d) - Automatic Image Orientation Detection 13

This paper primarily explores a Bayesian Learning framework approach to neural
networking for this problem, but does describe a colour moment segmentation
process. The paper describes the group!s use of CM in LUV space, Colour
Histogram in HSV space, EDH, and “MRSAR texture features”.

• Zhang (Zhang et al 2001) - Boosting Image Orientation Detection with Indoor vs.
Outdoor Classification 14

This paper details the CM and EDH feature extraction methods but also looks at
comparisons between using larger amounts of segments in the implementation of
these methods. It finds that - when division is made into NxN blocks - for CM N=5
“has almost the same accuracy as N=9 and N=10”, and for EDH “12 directions
also yielded a good result compared to 36 directions”.

• Vailaya (Vailaya and Jain 2000) - Automatic Image Orientation Detection 15

This paper expands on the 1999 paper - Vailaya et al (Vailaya 1999d) - and
details more thoroughly the neural networking methods outlined in the previous
paper.

3 . 2 . 3 C r i t i c a l A n a l y s i s

One approach that is common to the automatic orientation problem is that of neural
networking - using a learning framework to mimic intelligence in the system - in this
way an application can be developed to orientate images by being "taught! with
example sets. This project has chosen not to pursue this path of research as it is felt

Automatic Photograph Orientation! April 2007

 Page 11 of 94

that there is not adequate time for such an approach to be implemented, given the
skill set available. For this reason this section only analyses algorithmic solutions.

In the paper Automatic Image Orientation Detection (Z. Su, 2004)16 the method of
colour moment (CM) analysis is used throughout as an efficient way to classify
images. This method makes use of the pattern of colours in an image which can
denote the arrangement of features, for example it is common for the area at the top
of an image to be predominantly of a blue colour - the sky. This paper describes the
process of determining colour moments - which involves segmenting the image and
extracting the predominant colour in the respective segments, each of these being
colour moments.

This paper describes the use of colour moments taken from only the periphery of the
image - from the top, bottom, left, and right - looking for a predominance of blue.
Both the RGB and HSV colour spaces are used in the colour moment method here,
and the paper mentions that these methods proved superior in comparison to using
the LUV colour space.

An edge detection histogram (EDH) method is also used in this papers approach.
The paper describes that in EDH an edge determination algorithm is run at each pixel
location of the image to determine if there is (and in which direction) an edge at that
location. Several bins are used - depending on the EDH complexity - to count for
each increment of direction about 360º, plus one bin for any location not determined
to be of an edge. The particular type of edge detection algorithm is not elaborated on
in the paper, but it is concluded that the use of 13 bins is close in effectiveness to the
use of 37 bins.

In the paper Boosting Image Orientation Detection with Indoor vs. Outdoor
Classification (Zhang et al 2001)17 particular attention is paid to results for indoor and
outdoor images, with the aim of improving the balance of orientation determination
between these two distinct groups. The methods used are again CM and EDH and
the paper determines that in both CM and EDH a segmentation of 5x5 blocks is
sufficient, and that for EDH 13 bins are sufficient for each of these blocks. This
paper considers all blocks within the image, making no distinction between periphery
blocks and internal blocks.

This paper makes an interesting deduction from the target source of images. The
paper recognises that in most cases images are acquired from a digital camera.
“When taking photos, peoples often hold the cameras in the normal way, i.e. they
hold the cameras in 0° to take horizontal photos, or rotate the camera by 90° or 270°
to take vertical photos. But they seldom rotate the camera by 180°. This
phenomenon results in that the images uploaded from digital cameras are seldom in
the wrong orientation of 180°.” This observation can refine the precision of the

Automatic Photograph Orientation! April 2007

 Page 12 of 94

classification of image orientations by counting any determined orientation of 180º as
incorrect and so setting it as 0º.

Both papers comment on the performance of comparative analysis methods, in final
testing they conclude that no single method is more accurate for a range of image
types, and that any combined method will not produce 100% accurate results in any
situation. Both papers however claim to achieve a success rate of over 90% on
combined analysis methods.

Both of these papers thoroughly explore the use of both CM and EDH, with promising
results, this can then be taken as an indication of CM and EDH being viable options
when implementing an automatic orientation detection method in this project. With
further research these analysis methods could be implemented in the manners
described above, or simplified for this project. The possible implementation of these
methods will be explored in a later chapter.

3 . 3 U s e r N e e d s

The intention behind the project is that user input should be extremely limited - in so
much that the application!s core should be fully automated, leaving the only user
input to be to specify the images to process.

The interface provided for the application should follow basic human-computer
interaction principles as follows:

• The system status should be clearly visible - when processing images this should
be made clear, possibly through a progress indicator;

• The system should be flexible and efficient to use - the system design should
allow various image file-types to be processed and the number of actions that
must be performed from application launch to processing should be low;

• The interface should be aesthetically pleasing and of a minimalist design - the
user should not be presented with unneeded options and a cluttered interface;

• The system should contain useful help and documentation - this will facilitate the
ease of use and help recovery from errors.

3 . 4 R e q u i r e m e n t s

The objective of this project is to create a simple application to process batches of
digital images, orientating them correctly, and saving them to disk with the new
orientation.

The scope of this project is extremely broad, with many categories of images to be
potentially processed, each requiring different approaches to analyse their correct

Automatic Photograph Orientation! April 2007

 Page 13 of 94

orientation. Due to time constraints therefore the requirements of the project are as
follows:

R.1 To develop a software package with a complete graphical user interface following
 human computer interaction principles, to facilitate ease of use and efficiency.
 The software package should provide the following functionality:

i. The ability to select a series of images to process;

ii. Save the processed images to a directory;

iii. Progress indication of this process;

iv. A measure of confidence in the returned rotation for each image.

R.2 To implement an effective automatic rotation algorithm for:

i. Outdoor photographs;

ii. Indoor photographs.

This allows for several techniques of image analysis to be researched;

R.3 To achieve a success rate of roughly 80% for such a complete algorithm.

These requirements are realistically achievable, but also challenging. There are
several directions in which this project can be extended, including the following:

A.1 Broadening the application to process more categories of images, and so
 increasing its usefulness;

A.2 Porting the application to multiple platforms - as the intended operating
 environment is a UNIX-based system;

A.3 Increasing the algorithm success rate.

These extensions are time dependant and as such will only be undertaken if time
constraints allow.

3 . 5 P r o g r a m m i n g L a n g u a g e J u s t i f i c a t i o n

The language chosen for development of the application is C++, this is as a basis for
the image processing. The interface to the application is developed for the Apple OS
using the Cocoa18 system with Objective-C++, although the back-end image
processing algorithms are written fully in C++. The advantages of using C++ are as
follows:

Automatic Photograph Orientation! April 2007

 Page 14 of 94

• The language is cross platform compatible, allowing the core of the application to
be developed on the available Apple19 system and facilitating adaptation of the
application to run on multiple systems;

• The language has many constructs and classes provided for image analysis and
manipulation across a range of systems. Use will be made of the CImg open
source class library, provided by David Tschumperlé20;

• The language is widely used in industry and it is felt that it will be a useful skill to
learn.

There were other languages that were considered in the approach to this project, in
particular Java21 and C. Despite previous experience using Java22, and the extreme
flexibility of C, the use of C++ proved to be the sensible choice. Since as well as
providing an object-orientated approach, C++ provides a great deal of flexibility,
especially through the use of open source libraries such as the CImg23 library, giving
greater reign to tune the language to the needs of the project, as well as experience
of a new language.

3 . 6 P r o j e c t S c o p e

A foreseen problem area is the existence of abstract photographs such as macro
photographs, and aerial photographs - these having the property of an almost
indiscernible orientation, rendering the possibility of designing an algorithm to
orientate them correctly extremely unlikely. Due to this the project does not explore
the possibility of analysis of these images.

The project will also only look at image rotations of a simple set - meaning that the
only orientations considered will be on the vertical and horizontal planes, at 0º, 90º,
180º, and 270º.

As previously commented this project will only pursue algorithmic solutions to the
problem of automatic image orientation, and not look to develop a neural networked
system.

Automatic Photograph Orientation! April 2007

 Page 15 of 94

4.0 Research Theories
This chapter expands on the theories proposed in other research projects, critical
analysis of which can be found in section 3.2.3, discussing the principles and ideas
within this research. These theories contribute towards the approach that this project
takes in determining image orientation.

4 . 1 F e a t u r e E x t r a c t i o n

The process of feature extraction is that which, through analysis of an image,
determines the specific properties of that image - its features - which are then used to
make some judgement about the image in question. In the case of this project the
judgement to be made is that of the image!s correct orientation.

Through extracting the features of an image the process of contextual recognition
that the human brain performs on making judgements about images can be
mimicked. This is done through determining patterns in the features extracted from
the image, and comparing these to "real-life! patterns, from these results a judgement
can be made on the image.

There are several methods of feature extraction that are possible, the following
described methods are pertinent to this project.

4 . 1 . 1 C o l o u r A n a l y s i s

The colours within an image can hold a lot of information about that image. Patterns
are often formed in colours, for instance areas of predominant colour can indicate a
certain feature. Through analysing the colours within an image, and the relative
spread of these, features can be extracted.

A common method of feature extraction from colour information is that of colour
moments. In colour moment analysis the image is segmented and the colour of
several of these segments analysed, each segment result being a colour moment,
these colour moments can highlight patterns in the image - features.

There are several methods of segmentation that can be employed in colour moment
analysis, each having advantages and disadvantages:

• Complete segmentation

In this method the entire image is segmented into NxN blocks. The advantage of
this is that a more complete analysis is made of the image, increasing the accuracy
of the feature extraction. The disadvantage is that the entire image must be
analysed, and much of the data gathered could be redundant.

• 4-sides segmentation

In this method each edge of the image is taken as a colour moment - i.e. the top,

Automatic Photograph Orientation! April 2007

 Page 16 of 94

right, left, and bottom Nth of the image. The advantage of this is that the processing
time is reduced - as less of the image is being analysed. The disadvantage is that
some accuracy in the pattern analysis may be lost, this however depends on the
segmentation level - the size of N.

• Central segmentation

In this method the central 4 segments are analysed, after segmentation into NxN
blocks, these are taken as the colour moments. The advantage of this method is
that the processing time is greatly reduced due to the smaller analysis area. The
disadvantage is that if features are not present in the central area of the image they
will be missed.

Figure 4.1 - The different methods of colour moment segmentation

The method of colour moment analysis can be applied in measurement of the
intensity of the moment rather than colour, for instance measuring in the HSV colour
space - using V (or intensity) as the measurement parameter - different patterns, of
intensity, can be found. This approach can be useful and is often used in parallel
with colour moment analysis in the RGB colour space to find common patterns in
both colour and intensity.

4 . 1 . 2 C o m p l e x i t y A n a l y s i s

Complexity analysis, sometimes referred to as texture analysis, is a technique
whereby the variance of pixel complexity is measured. Each pixel is compared to its
neighbours and from this the level of complexity at that point in the image is

1 2 3 4 5

7 8 9 10 11

13 14 15 16 17

19 20 21 22 23

25 26 27 28 29

6

12

18

24

30

31 32 33 34 35 36

1

3

4

2

1 2

3 4

Complete

segmentation

4-side

segmentation

Central

segmentation

Automatic Photograph Orientation! April 2007

 Page 17 of 94

measured. Through this method the complexity of the image in different segments is
determined, highlighting possible patterns.

The complexity level in a segment of an image can indicate various features. In a
typical image it is expected that the lower half will be more complex than the upper
half, a small area of complexity in an image could indicate the presence of a person
at that location (especially if the background is solid), or an area of complexity could
indicate any feature that a user may be interested in - this can be useful in scientific
imaging.

The method of measuring complexity can be approached in several ways, in a colour
image each colour channel can be analysed at each point - giving a measurement of
the complexity at each point on each colour channel, or the intensity values can be
taken and the complexity at each point derived from these. The first method can be
useful if complexity is being examined in a specific colour, i.e. complexity in foliage -
the green channel. The second method is a more generic approach which looks for
any complexity in the image.

4 . 1 . 3 E d g e A n a l y s i s

Edge analysis is a method by which an image is processed for distinct edges -
indicated by a change in pixel intensity in a certain direction. From the results of
edge detection features are highlighted, such as distinct shapes, or horizon lines.

There are various methods of edge detection including sobel, roberts-cross, and
compass24. The principles of these algorithms is the same - the image is analysed
each pixel location at a time, using a convolution matrix covering the surrounding
pixels, the algorithm is then run giving a reading of the edge direction at that pixel
location. Figure 4.2 shows the application of a sobel edge detection using
convolution matrices.

Automatic Photograph Orientation! April 2007

 Page 18 of 94

Figure 4.2 - Applying convolution matrices to an image for sobel edge detection

The method shown in figure 4.2 sums all the products of the convolution grid with its
respective pixel value, to give the convolution result at that pixel location - Gx and
Gy. These are then used to determine # with the given algorithm, # is a
measurement of the edge direction at that pixel location.

A common application of edge detection is to count the number of edges found in
each orientation over the entirety of the image - indicating the predominant edge
orientation - and comparing this to that of the expected predominant edge orientation.
By this process the orientation of the image can be deduced as correct or incorrect.

4 . 2 T h e A p p l i c a t i o n o f A n a l y s i s

When looking at determining the correct orientation of an image using the analysis
techniques described above the results must be compared to expected patterns were
the image orientated correctly. The following patterns are expected in a correctly
orientated image:

• The predominant colour at the top of the image will be blue and of a greater
intensity;

• The lower half of the image will be more complex than the upper half;

• The predominant edge orientation will be vertical.

These patterns do not hold true for every image but are a good basis when
determining the correct orientation. If the patterns found when analysing an image

-1 0 +1

-2 0 +2

-1 0 +1

+1 +2 +1

0 0 0

-1 -2 -1

Gx

Gy

! = arctan()Gy

Gx

-2! " ! " 2!

Image Convolution
matrices

Algorithm

Automatic Photograph Orientation! April 2007

 Page 19 of 94

differ from these it can be inferred that the image is incorrectly orientated, and based
on the actual pattern the image can be rotated to match the expected pattern.

4 . 3 I n c o n s i s t e n c i e s

The patterns described above are not true for every image but do commonly work on
certain categories of images. It is common for strong vertical edges to be found in
architectural images and indoor images, however it is less common in outdoor
images. It is common for there to be a predominance of blue at the top of a daytime
landscape image but not in a night-time landscape image, or an indoor image. It is
common in most images for the lower half to be more complex than the upper half,
but this does not hold true for aerial images.

The problem therefore is that these methods of analysis may produce results
contradictory to one another. To overcome this problem a method of deciding upon
an orientation, when several are indicated, is necessary. The most commonly
implemented of these being "one takes all!, in this method the most popular result
among the various options is the final output, the popularity of this option can
however be based upon many variables, varying with the application.

There is always the possibility of misleading results in image analysis, for instance in
an image consisting of a landscape with a lake in the lower half the blue colour of the
water could be interpreted as sky, by a colour analysis algorithm, and a false result
returned. This is a problem that is important when evaluating the analysis methods.

4 . 4 A l t e r n a t i v e M e t h o d s

A very common approach to the problem of image analysis, and especially that of
orientation detection, is the use of a neural network. This is where the system is
"taught! the best way to process and analyse images, and which decisions to make in
which scenarios, through a learning framework.

This method is considered a natural approach to the problem as it uses artificial
intelligence, with the desired result that it will mimic the human cognitive process as
closely as possible, therefore achieving better results than can be hoped for with an
algorithmic approach. This project has not chosen to implement a neural network
approach to this problem as it was felt that the time and experience constraints were
too great.

Automatic Photograph Orientation! April 2007

 Page 20 of 94

5.0 Development Plan
The process of developing a system can be complex, more so when the deployment
of the system must conform to a deadline, as in the case of this project. To facilitate
efficient development a careful plan must be followed, with thought given to each
stage.

A typical development will transition through four basic stages, those of research,
design, implementation, and testing. Good design will take and iterative approach to
development25, with each stage being cycled through several times.

Each phase of development should encapsulate a specific area of the system. By
developing in this way each area of the system can be more thoroughly explored -
through research and design - before being implemented, and then through testing
be refined to ensure correct operation. This iterative approach can limit errors and
inconsistencies in the system and streamline the development process enabling
deadlines to be met with greater ease.

The development plan for this project follows this iterative process and is illustrated in
figure 5.1.

Figure 5.1 - The application development process

Research

System Design

Construction Research

Design

Implementation

Testing

Final Testing

Deployment

iterations

Automatic Photograph Orientation! April 2007

 Page 21 of 94

6.0 System Design
The program design can be split into three distinct sections, those of the interface,
the interface controller, and the back-end image processing. The interface allows the
user to specify the images to process, and the parameters with which to process
these. The interface controller is an intermediary between the interface and the
image processing. The image processing back-end performs all the feature
extraction and orientation determination.

While the interface developed for this system is implemented only to facilitate
research into the image analysis techniques it!s design and implementation will be
approached as though the system is intended for distribution. For this reason the
interface must be developed with attention to user requirements and usability.

6 . 1 H i g h L e v e l S y s t e m D i a g r a m

The user will interact with the system through a graphical user interface (GUI), from
this the analysis variables will be controlled and processing initiated. The GUI will
communicate with the image processing through the interface controller to specify
the images to process and the variables with which to do so. The image processing
will run the determination algorithms and then run decision merging from the output
of these. The results will then be returned to the user.

This is illustrated in figure 6.1.

Figure 6.1 - A high level diagram of the designed system interconnections

Actor

images

GUI
Image

Processing
Controller

Complexity
Determination

Edge
Determination

Colour
Determination

Decision
Merging

Automatic Photograph Orientation! April 2007

 Page 22 of 94

6 . 2 I m a g e P r o c e s s i n g E x e c u t i o n

When the image processing is started the system transitions through 4 basic steps:

1. Fetching the list of images from the interface;

2. Extracting the features from the image;

3. Making an orientation determination upon the features found;

4. Rotating and saving the image - this is dependant upon the user specified
preferences.

Steps 2-4 being repeated for each image.

This is illustrated with the flowchart in figure 6.2.

Automatic Photograph Orientation! April 2007

 Page 23 of 94

Figure 6.2 - Flowchart showing the image processing execution stages

Feature extractions

Image rotation and saving

Disk

Start

End

R
e

p
e

a
t

fo
r

e
a

c
h

 i
m

a
g

e

Fetch images Images

finished
false

true

save

true

false

Orientation determination

Save

Location

Save

(true/false)

Fetch processing
parameters

Parameters

Automatic Photograph Orientation! April 2007

 Page 24 of 94

6 . 3 U s e r I n t e r a c t i o n

The user interacts with the system through a graphical user interface (GUI) and
performs a limited number of operations using interface controls. An actor is
restricted to only users as all interaction with the system is through the GUI.

Figure 6.3 - A use case diagram of the system

There are four basic system interaction scenarios as shown in the following figures -
figure 6.4, figure 6.5, figure 6.6, and figure 6.7.

User

System

Process
images

Add/
Remove
images

Change
process/

save
parameters

Preview the
image

Automatic Photograph Orientation! April 2007

 Page 25 of 94

Figure 6.4 - An interaction diagram of the system for “Add/Remove images”

Figure 6.5 - An interaction diagram of the system for “Process images”

GUI
Interface

Controller

User

1. Add/Remove

 images

2. Add/Remove

 images

3. Refresh list

Image processing

CImg class library

GUI
Interface

Controller

User

1. Process

 images

2. Process

 images

5. Refresh list

Image processing

3. Process

 image

4. Return

 results

CImg class library

Automatic Photograph Orientation! April 2007

 Page 26 of 94

Figure 6.6 - An interaction diagram of the system for “Change process/save parameters”

Figure 6.7 - An interaction diagram of the system for “Preview the image”

GUI
Interface

Controller

User

1. Change

 process/save

 parameters

2. Change

 process/save

 parameters

3. Refresh view

Image processing

CImg class library

GUI
Interface

Controller

User

1. Preview the

 image

2. Preview

 selected

 image

3. Open preview

Image processing

CImg class library

Automatic Photograph Orientation! April 2007

 Page 27 of 94

Each of these scenarios requires separate control from the GUI. A draft of the GUI
design is given in figure 6.8 showing all user controls necessary for the interaction
scenarios above.

Figure 6.8 - A draft design of the systems graphical user interface (GUI)

Application Name

path 1

path 2

path 3

File path

75% Process

SaveSave to:

Progress:

AddRemove

Application Name

variable 1

variable 2

variable 3 Remove All

Preview:

Automatic Photograph Orientation! April 2007

 Page 28 of 94

7.0 Implementation
This chapter examines the implementation of the design principles from the previous
chapter including how user control is dealt with, how data is managed within the
processing algorithms, and how parameters are managed between the user interface
and the image processing.

7 . 1 T h e I n t e r f a c e

The user interface provides the control mechanism for the system, this can be
considered to consist of two parts the GUI itself, and the interface controller. The
interface controller sits behind the GUI and is triggered, through its methods, to react
to user input from manipulation of the controls on the GUI.

7 . 1 . 1 U s a b i l i t y P r i n c i p l e s

The GUI is designed to follow human-computer interaction usability principles,
allowing the user to easily understand and manipulate the system. Nielsens ten
heuristics26 - the "rules of thumb! for designing user friendly systems - are as follows.

The interface design follows these heuristics with attention to "aesthetic and
minimalist design! and "recognition rather than recall! in general, the following
features emphasise specific heuristics.

Keyboard shortcuts

The program makes extensive use of keyboard shortcuts allowing the user to
manipulate the program using only the keyboard, these shortcuts are indicated in the
program menus alongside the operation they relate to.

1. Visibility of system status;

2. Match between system and the real world;

3. User control and freedom;

4. Consistency and standards;

5. Error prevention;

6. Recognition rather than recall;

7. Flexibility and efficiency of use;

8. Aesthetic and minimalist design;

9. Help users recognise, diagnose, and recover from errors;

10. Help and documentation.

Automatic Photograph Orientation! April 2007

 Page 29 of 94

Figure 7.1 - Showing the applications menu and indication of keyboard shortcuts

The inclusion of keyboard shortcuts allows advanced users to use the program much
faster, fulfilling "...efficiency of use!. The shortcuts used in the program are also
consistent with shortcuts in many other applications, allowing users experienced at
using shortcuts to easily translate those skills to the program.

Progress indication

It is important that the user be informed as to the programs operation and current
state - following the heuristic "visibility of system status! - there are two features
enabling this:

1. A progress indication bar;

2. The disabling of controls during processing.

These two features are triggered when the system is processing images - which can
take several seconds per image - updating through this process, and releasing
control to the user when the process is finished.

Figure 7.2 - The application interface during processing

Automatic Photograph Orientation! April 2007

 Page 30 of 94

Validation and errors

Where the program relies on input from the user it must be validated to ensure that it
is of an expected type, i.e. of a type that the system will be able to process. The user
interface handles most of this checking through both validation of inputs and
restricting possible inputs.

When selecting files to be processed (opening files) the file-picker dialogue is
restricted to only allow selection of certain file types, these being JPEG, PNG, and
GIF, thus restricting the input of files to only compatible types. The same principle is
also applied when a user must specify a location to save processed images to, this
time the file-picker dialogue is restricted to the selection of single folders.

There are several instances where user operation is restricted to eliminate
vulnerabilities in the system integrity, in these cases the user is informed with the use
of alert panels. For instance when the user tries to remove files and none are
selected, or when the user tries to process the images when none have been
opened. Through this behaviour the systems fulfils the heuristics of "error prevention!
and "visibility of system status!.

Figure 7.3 - A warning displayed when no save location is specified

Where the system encounters an error due to some problem in the execution of the
program the user is provided with a clear error warning and it is ensured that the
program does not suffer from any unrecoverable problem.

Figure 7.4 - A warning displayed when the application encounters an error processing

Automatic Photograph Orientation! April 2007

 Page 31 of 94

Image preview/information

The user is provided with the ability to preview the processed or unprocessed image
with additional information, this is displayed in a "drawer! attached to the right of the
main window. This additional information is not necessary to the operation of the
program but provides the user with a more visual way of checking the program
results. This fulfils "user control and freedom! and "aesthetic and minimalist design!.

Figure 7.5 - The ‘info drawer’ displaying an image preview and information

7 . 1 . 2 T h e I n t e r f a c e C o n t r o l l e r

The following sections describe the code implementation of the interface controller.
The iterative process of where some were problems encountered during testing and
were solved is also described. In places description is made of elements of the
Apple Inc. Cocoa windowing system27.

Full and commented code is given in appendix C, section 14.3.1.

File-picker dialogues

The file-picker dialogue is used to provide the user with a file system navigation
interface from which files/folders can be selected, this is used in the program to
specify files to open and save locations. The system makes use of the Cocoa class

Automatic Photograph Orientation! April 2007

 Page 32 of 94

NSOpenPanel which is provided for use as a file-picker and facilitates consistency

across all Mac OS28 applications.

Figure 7.6 - The file-picker to choose images to open

The NSOpenPanel object supports several methods to define its functionality, these

include allowing restriction to choosing only files and/or folders, allowing multiple
selections, setting button text, and setting allowed file types. The NSOpenPanel

when closed will then return the selected files file paths in an array - an NSArray

object specified at creation.

Initially it was found that the program would crash if the "Cancel! button was clicked
on an NSOpenPanel, this was as the program assumed the array would always

contain file paths on exit from the file-picker, inserting a check on the return value
from NSOpenPanel solved this problem.

Automatic Photograph Orientation! April 2007

 Page 33 of 94

Figure 7.7 - Example code showing the implementation of a file-picker

Working with tables

The list of files displayed in the interface uses the Cocoa object NSTableView, this

object requires a data-source to display from - this is a class containing a data
structure which can be accessed using several overridden methods. For this reason
the interface controller overrides these methods, acting as the data structure, and
stores the data for the NSTableView in a NSMutableArray. When data in the table
must be refreshed the method reloadData is called on the NSTableView object,

which then calls the overridden methods of the data-source. This allows for complete
control over what is displayed in the table from the interface controller.

Figure 7.8 - The file list of the interface

//create NSOpenPanel object

NSOpenPanel *panel = [NSOpenPanel openPanel];

//set its properties:

//can choose multiple valid image files but not directories

//set panel text items

[panel setCanChooseDirectories: NO];

[panel setCanChooseFiles: YES];

[panel setAllowsMultipleSelection: YES];

NSArray* allowedFileTypes = [NSArray arrayWithObjects:@"jpg", @"JPG",

 @"gif", @"GIF", @"png", @"PNG", nil];

[panel setTitle: @"Please Choose Some Images"];

[panel setPrompt: @"Choose"];

//create variables to store results in

NSArray* fileList;

int chosen;

//open the panel, storing the results in the variables

if (chosen = [panel runModalForTypes: allowedFileTypes]) {

fileList = [panel filenames];

}

Automatic Photograph Orientation! April 2007

 Page 34 of 94

The list of files also contains the determined rotation and confidence of each file.
The data structure behind the list stores a series of NSMutableDictionary objects,

each representing a file. Each of these NSMutableDictionary objects contains

three object-key pairs for file path, rotation, and confidence.

To store that a file hasn!t yet been processed two error codes are used in the place of
"image rotation! and "confidence! in the NSMutableDictionary object, these being

361 and 101 respectively. When a call is made to the NSTableView to refresh data

these codes are looked for and indicators that the file hasn!t been processed are
returned to be displayed.

Removing files

When the user wishes to remove files from the processing list the method
deleteFiles is triggered. This method will remove the selected files from the data

structure and refresh the NSTableView. The method retrieves the selected rows of

the NSTableView - which act as indexes to the data structure items to be removed.

To simply remove each of the objects at each index from the NSMutableArray would

cause problems - this is as the NSMutableArray object will automatically resize,
rendering the index of the next item removed to be incorrect.

Instead the data structure must be cycled through adding each object at each
selected index to a temporary NSMutableArray, after this is complete the method

removeObjectsInArray can be called on the data structure using the temporary

NSMutableArray as a parameter. This is shown in figure 7.9.

Figure 7.9 - Example code showing the removal of objects from an array

//Initialise

//int limit - as number of items to be removed

//unsigned indexBuffer - as array containing the indexes to be removed

//create temporary locations to store in

NSMutableArray *tempArray = [NSMutableArray array];

id tempObject;

//store each object to be removed in a temporary array

for (int idx = 0; idx < limit; idx++) {

tempObject = [records objectAtIndex:indexBuffer[idx]];

[tempArray addObject:tempObject];

}

//remove all the items in the temporary array

[records removeObjectsInArray:tempArray];

Automatic Photograph Orientation! April 2007

 Page 35 of 94

Image preview/information

The image preview drawer makes use of the Cocoa NSDrawer object, this is a simple

panel attached to a window that can be toggled on or off. This drawer displays
information about the selected image, including a preview of the image (with the
determined rotation), the filename, the file kind, the file-path, the determined rotation,
and the rotation confidence. This drawer is toggled open and closed with a button on
the interface.

To keep updated with the information of the currently selected file the program makes
use of a timer, which triggers a refresh method every 0.1 seconds. To save on CPU
usage this method checks whether the drawer is open, only refreshing if it is, the
method then goes on to set the various pieces of information about the file in the
drawer view.

The spaces set for information about the file are as NSTextField objects, when

these need to be updated the required information is passed as a string parameter
with the method setStringValue called on the relevant NSTextField object.

To update the preview of the image it is fetched from disk - using the file path stored
in the data structure - and read in as an NSImage object. The NSImage object is then

transformed with the determined rotation29 , also stored in the data structure, and set
in an NSImageView object using the setImage method. The full code for

transforming the NSImage object can be found in appendix C, section 14.3.1.

Processing of the images

When the user hits the "Process! button the processList method is triggered in the
interface controller. The interface controller handles the initialisation of processing
the images, retrieving all the variables needed, and processing each image in turn
using the back-end image processing code.

In performing the processing the following steps are taken:

1. The data structure is checked for the existence of files to process - this will throw
an error if no files are in the list;

2. The controls of the interface are disabled;

3. The variables are fetched from the interface controls - these are also validated;

4. The list of file paths is fetched from the data structure;

5. Each file is then processed - this is done in conjunction with the image processing
back-end code, details of this interconnection can be found in section 7.3;

6. The list of files is refreshed from the data structure;

Automatic Photograph Orientation! April 2007

 Page 36 of 94

7. The controls of the interface are enabled again.

An alert panel is displayed if any of the processed files are returned with a low
confidence of rotation, this is when the confidence is below a set global variable.

7 . 2 I m a g e P r o c e s s i n g

This section covers the code implementation of the image processing C++ class -
Image.cpp - which is instantiated with the file-path of an image. The class contains

several private and public methods for processing the image at the file-path
specified, to determine its correct orientation.

This section of the program uses the CImg C++ library 30 for many of the image
processing methods. Full and commented code is given in appendix C, section
14.3.2.

7 . 2 . 1 M e t h o d s o f A n a l y s i s

Three methods of image analysis have been implemented for determining the
orientation of images, these are implemented using C++ and the image processing
methods provided in the CImg library. These determination techniques are as
follows:

A. Colour Moment analysis with 4-side segmentation

This method segments the image into a user specified number of blocks - NxN -
and using the top, left, right, and bottom regions of the image - defined by these
segments - analyses the predominance of blue in each. This method determines
that the region with the greatest predominance of blue should be the top of the
image.

B. Complexity analysis

This method uses a 9 pixel map, positioning the central pixel over each pixel in
the image and determining if the difference in intensity between that pixel and any
of the surround 8 is greater than a threshold value.

C. Edge detection analysis

This method is a modified version of the EDH method, using a sobel transform to
identify edges within the image. If the orientation of an edge lies within one of two
ranges - one for horizontal lines, one for vertical - then a count is incremented
pertaining to that orientation. The size of these ranges is a user determined
variable.

Automatic Photograph Orientation! April 2007

 Page 37 of 94

7 . 2 . 2 T h e M a i n M e t h o d

The main method - processImage - is the controlling method of the class. From this

method each analysis method is called, the decision merging method is called, and
the re-orientated image is saved - if this has been specified.

The file at the given file-path is read using the CImg construct - CImg<unsigned
char> image(filePath) - the number of colour channels is then retrieved to

determine whether the image is grayscale or colour, this uses the dimv() method

called on the image.

If the image is found to be colour a call is made to the colour determination method
and the image is converted to grayscale - this is done using the toGrayscale

(image) method, taking the colour image as a parameter and returning a grayscale
version. If the image is already grayscale then error codes are stored for the colour
determination results - to indicate this analysis method was not conducted - and the
program flow continues.

The complexity determination and edge determination methods are then called using
the grayscale image - whether it is the original image or a converted version.

A call is then made to calculate the final rotation and confidence, this is the decision
merging method.

The rotated image may be saved at this point depending on the users preference.

7 . 2 . 3 O t h e r M e t h o d s

Convert to grayscale

This method takes a colour image as a parameter and cycles over each pixel in the
image - using a library function cimg_mapXY() - storing the grayscale converted pixel
value of that location - using the equation given in figure 7.10 - in a temporary image.
The temporary image is then returned.

Figure 7.10 - The equation for conversion from RGB to grayscale

Fetch rotation/confidence

These are two methods which simply return the stored final rotation and confidence.

grayscale = (0.3 ! red) + (0.59 ! green) + (0.11 ! blue)

Automatic Photograph Orientation! April 2007

 Page 38 of 94

7 . 2 . 4 C o l o u r D e t e r m i n a t i o n

The colour determination algorithm examines the predominant colour of each pixel in
the top, right, left, and bottom regions of the image, the size of these regions being a
user set variable - in percentage of the image dimensions. For each colour (red,
green, and blue) in each region a count is made, this is incremented every time a
pixel of that predominant colour is found in that region. Once the image has been
examined, the colour count for each region is analysed and, based on the amount of
blue in that region, a confidence that the region is the top of the image is stored.
Whichever region has the greatest confidence assigned to it is assumed to be the top
of the image.

This process uses two image loops to loop over the top and bottom portions of the
image, and the left and right portions. These image loops are the CImg construct
cimg_for_borderXY(img,x,y,n) which loop over the image!s sides (or borders) -

the size of which are a parameter n - in the X and Y direction. Two loops are used,

this is as the size of the border at the top and bottom, as opposed to the right and
left, will be different if the image is not square.

At each pixel location the amount of red, green, and blue, is obtained, and using a
series of conditional statements the predominant colour is determined. A count is
then incremented for that colour in that region.

A confidence determination is then run - this segment of code examines the count of
blue pixels against that of red and green in each region. If the blue count is greater
than both the red and green counts, then a confidence is calculated that this region is
the top of the image. This confidence is calculated using the formulae in figure 7.11.

Figure 7.11 - The formulae used to calculate the confidence with which the edge is the top of the
image

A series of conditional statements is then used to evaluate the region with the
greatest confidence, deciding the rotation returned by the colour determination - e.g.
if the region with the greatest confidence is on the right then the image must be
rotated by 270ºCW. This amount of rotation is stored in a global variable, along with
the confidence relating to this rotation.

confidence = 100 ! 1 -()red count + green count

2 ! blue count()

Automatic Photograph Orientation! April 2007

 Page 39 of 94

7 . 2 . 5 C o m p l e x i t y D e t e r m i n a t i o n

The complexity determination algorithm examines each pixel within the image and
measures the difference between that pixel!s intensity and its neighbours, if the
difference is above a set threshold then that pixel is determined to be a location of
complexity. The count of locations of complexity in the top, right, left, and bottom
halves of the image is made. Based on these counts a judgement is made as to the
orientation of the image.

To loop over the image and examine each pixel!s neighbours a special loop from the
CImg library is used along with another CImg construct called a map. This allows the
image to be looped over with the ability to reference each pixel!s neighbours. This is
shown in figure 7.12 and figure 7.13.

Figure 7.12 - Example code showing the use of a CImg map

Figure 7.13 - The use of maps within CImg

The image is looped over obtaining the difference between the current pixel and each
of its neighbours, the magnitude of the difference is obtained using the C++ Math

//define a 3x3 pixel map

CImg_3x3(I,float);

//loop over the image - img - using the map - I

cimg_map3x3(img,x,y,z,v,I) {

 //perform some image processing on the current pixel

 //reference the neighbouring pixels using the map I

}

-1,+1 0,+1 +1,+1

-1,0 0,0 +1,0

-1,-1 0,-1 +1,-1

y

x

Ipn Icn Inn

Ipc Icc Inc

Ipp Icp Inp

y

x

Map with

x,y coordinates

Map with

references

The centre of the

map is positioned

over the current

pixel.

Where:

I = the map

p = previous

c = current

n = next

Automatic Photograph Orientation! April 2007

 Page 40 of 94

function fabs(x). If the magnitude of any of these differences is greater than the set

threshold value, then the count for the current half of the image is incremented.

After running this loop a count of the complex locations in each half of the image is
obtained. Conditional statements are then used to examine which count is the
greatest, this half of the image is assumed to be the lower half, and a rotation based
on this is stored. A confidence of this rotation is also calculated using the formulae
shown in figure 7.14.

Figure 7.14 - The formulae used to calculate the confidence of a complexity rotation determination

The determined rotation and complexity are both stored in global variables.

7 . 2 . 6 E d g e D e t e r m i n a t i o n

The edge determination algorithm loops over all the pixels in the image, and using a
convolution matrix calculates the direction of an edge at each pixel location. These
edges are counted into two bins, if the direction is within a certain range - one for
vertical edges, and one for horizontal edges. Based on the amount of horizontal
edges versus the amount of vertical edges a judgement is made on the image
orientation.

This process uses an image loop with a 3x3 map to reference each pixel!s
neighbours, as shown in figure 7.12 and figure 7.13.

Each pixel of the image is examined, and using the image map to reference the
surrounding pixels two variables - Gx and Gy - are calculated. From these a value of
theta (#) obtained, this process is demonstrated in section 4.1.3. Theta is a
measurement of the orientation of the edge at that pixel location in radians, which is
then examined for being within two ranges - for vertical and horizontal edges. The
spread of these ranges being a user set variable, if the result is within one of these
ranges a count is incremented. This is shown in figure 7.15.

()()confidence = 100 ! 1 -
bottom count

top count

Automatic Photograph Orientation! April 2007

 Page 41 of 94

Figure 7.15 - Example code showing the implementation of sobel edge detection

A conditional statement is now used to determine if there are more horizontal edges
or vertical edges, determining the orientation judgement. The rotation from this
judgement can only be determined to be one of two groups - 90º or 270º, or 0º or
180º - as the edges are only orientated in the vertical and horizontal planes with no
direction attached to them.

A confidence calculation is also made using the same method as in the complexity
determination algorithm, shown in figure 7.14. Both the determined rotation and
confidence are stored as global variables.

7 . 2 . 7 D e c i s i o n M e r g i n g

Once the determination algorithm methods have been run, the results from each
must be merged to give a final decision on the rotation, and the confidence pertaining
to that rotation. This process is called decision merging.

The process of decision merging follows the following steps for each determination
result:

1. The result is examined for an error code - this is where 101 is stored as a
confidence value - indicating that no determination was made by that algorithm;

2. If no error code exists then a series of conditional statements extract the
determined rotation;

//create a 3x3 map

CImg_3x3(I,float);

cimg_map3x3(img,x,y,0,0,I) {

//calculate Gx and Gy using map references

float gx = Inp + Inc*2 + Inn - Ipp - Ipc*2 - Ipn;

float gy = Ipp + Icp*2 + Inp - Ipn - Icn*2 - Inn;

//find the result: theta = arctan(Gy / Gx)

float result = atan2 (gy,gx);

 //if edge is in vertical range

 //increment vertical edge count

 //if edge is in horizontal range

 //increment horizontal edge count

}

Automatic Photograph Orientation! April 2007

 Page 42 of 94

3. The counter assigned to that rotation amount is incremented;

4. The confidence is added to a bin assigned to that rotation!s cumulative
confidence.

This varies for the edge determination where the result is between two options - 0º or
180º and 90º and 270º - in this case the counters for each rotation are incremented
and the confidence split between the cumulative counters for each of these rotation
amounts.

After this process is complete a series of conditional statements pick the largest
rotation counter value, which is set as the determined rotation. The set confidence is
that of the cumulative confidence counter assigned to that rotation amount, over the
rotation counter amount, or the mean confidence of the number of determinations
that made that rotation judgement.

If no determination can be made then an error code is stored.

7 . 3 P r o g r a m I n t e r c o n n e c t i o n

Bringing together the two distinct parts of the application holds a few problems as the
image processing algorithms are written in C++ and the interface is built using
Cocoa31 which natively uses Objective-C. This section covers the implementation of
the interconnection between the two parts of the application.

To allow for communication between the interface and the C++ image processing the
interface is implemented using Objective-C++, this a variation of Objective-C which
allows for use of C++ syntax - and so the use of C++ objects - along with regular
Objective-C syntax. By implementing the interface controller using Objective-C++ it
can instantiate a C++ object - representing the image to be processed - and call
methods on this object. This process is shown in figure 7.16.

Figure 7.16 - Example code showing the use of C++ objects in Objective-C++

//create a c++ object

CppObj* myCppObj;

myCppObj = new CppObj(var1);

//call a method on the C++ object which returns an int

int returned = myCppObj -> main(var2);

//delete the C++ object as it's no longer needed

delete myCppObj;

Automatic Photograph Orientation! April 2007

 Page 43 of 94

Objects in Objective-C - such as strings - are not necessarily found in C++, for this
reason conversion or simplification was necessary between the two sides. The C++
code deals with strings as arrays of characters, whereas the interface controller code
uses the object NSString. So conversion between these must occur, this is done
using the code shown in figure 7.17.

Figure 7.17 - Example code showing the conversion between an NSString and a character array

All other variables are passed using the primitive int, which is common to both

Objective-C and C++.

Processing each image may take several seconds, and while processing is being
carried out the program may hang, this causes a problem for drawing the progress
indication bar. To solve this problem the window must be redrawn each time an
image is processed, by making a call to the application "run loop!. Along with this the
progress indicator must be forced to run on a separate thread to the application, so it
will redraw. The code for this is shown in figure 7.18.

Figure 7.18 - Example code showing the implementation of a progress indicator

unsigned int strLen = [str length];

char temp[strLen + 1];

strcpy(temp, [str cString]);

//where

//str is the NSString to convert

//and temp is the destination character array

//execute this line when initialising the controller

[progressIndicator setUsesThreadedAnimation:YES];

//execute this line for every image processed

[[NSRunLoop currentRunLoop] runMode:NSEventTrackingRunLoopMode

 beforeDate:[NSDate date]];

Automatic Photograph Orientation! April 2007

 Page 44 of 94

8.0 Testing and Improvement
This chapter describes the various stages of testing and the methods of testing
performed, improvements were carried out after initial testing, which are also
described here.

During implementation testing was carried out in each iteration phase of construction
- the process of which is described in chapter 5.0. After completion of a functioning
system "initial testing! was carried out - this being the final phase of iteration in the
construction of the system. After carrying out improvements from this stage of testing
final testing was carried out, this is to analyse the effectiveness of the system in
meeting user requirements.

8 . 1 I n i t i a l Te s t i n g

This phase of testing was conducted on two levels. To test the usability of the
system a usability survey was conducted on a small group of potential users. To test
the operation of the image processing a "white-box! testing approach32 was taken.

8 . 1 . 1 U s a b i l i t y T e s t i n g

In usability testing users were given tasks to perform, designed to test the interaction
scenarios of the system set out in section 6.3. Usability testing is often referred to as
"black-box! testing33 - where the user (or tester) doesn!t know the details of the
systems operation - so giving a more "real world! test of the systems performance.
Through this testing the usability of the interface, and how well it meets user
requirements, can be analysed, and potential failures in the systems integrity may be
uncovered.

Usability surveys were conducted on a small group of users with a range of
experience and computer literacy levels. Users were asked to perform six basic
tasks, and while conducting these were monitored and directed when necessary. A
full copy of the results of these user surveys can be found in appendix A, section
14.1.1.

The following findings were made:

A. There was ambiguity about the process of adding and removing images to be
processed. Users commented that the menu option to open images was titled
“Add...” where as the survey referred to this operation as “opening images”.
The shortcut for this operation is also “command-O” indicating that the
operation should be “Open...”. Users also encountered problems with the
operation of the buttons to open and remove images, it was commented that
the function of buttons titled “+” and “-” was not immediately obvious, and it
was suggested they should be titled “open...” and “remove”.

Automatic Photograph Orientation! April 2007

 Page 45 of 94

B. Users commented that using a tick box to indicate saving images on
processing was unintuitive as it was not clear that ticking a box titled “Save”
meant that images would be saved with the determined rotation.

C. A user commented that the error alert panels were not informative enough, in
particular that no indication was given of how to avoid such an error in the
future.

D. Several users indicated that they were not aware of the functionality of the
variables, referring to the image processing variables.

E. A user commented that the information displayed about an image did not
indicate whether that image was rotated or not.

F. A user made the comment that once processing has been initiated it could not
be stopped without aborting the program.

G. One user discovered that the system would crash if, after a directory had been
specified to save to, it was deleted, and then the images processed.

H. Another user complained that the system appeared to become slow and "jerky!
when previewing images using the info drawer.

8 . 1 . 2 W h i t e - b o x T e s t i n g

During "white-box!34 testing various images were used as test subjects to specifically
test the systems operation. This is in line with the theory of "white-box! testing, which
is to deliberately try to exploit possible system vulnerabilities, with knowledge of the
systems operation.

Some images were created to test specific aspects of the operation of the image
processing algorithms, and the decision merging process. Others were used to test
the operation of the interface, and how this dealt with errors. The images created for
testing are shown in figure 8.1.

Figure 8.1 - The test images used in ‘white-box’ testing

Image 1 was created to test the complexity detection algorithm, image 2 to test the
edge detection algorithm, image 3 to test the colour detection algorithm, and image 4
to test the case where no determination can be made.

Image 1 Image 2 Image 3 Image 4

Automatic Photograph Orientation! April 2007

 Page 46 of 94

The following findings were made from testing with these specifically created images:

I. On processing image 4 the system displayed a rotation of 1º and a confidence
of over -300,000, without any user feedback being given.

J. When previewing image 3 - determined with a rotation of 270º - it was noticed
that the info drawer containing the image preview became very slow, and after
some time unresponsive. This was also noted in the usability survey (point H).

K. It was noticed during testing that some images returned a rotation of 180º, this
degree of rotation should be excluded from decisions as it was determined
that images are not expected to be out of orientation by 180º.

8 . 2 I m p r o v e m e n t s f r o m I n i t i a l Te s t i n g

After conducting initial testing several problems were remedied, the process of these
improvements, relating to each problem, is described below:

A. The interface design was altered to consistently use the word “open” when
referring to opening images to be processed, the buttons on the interface were
also changed to read “open...” and “remove”.

B. The text of the save tick box was changed to read “Save on process”, this
should make it more obvious as to its purpose.

C. All alert panels were refined to give more detail on the error encountered.

D. The titles of the variables container was changed to “processing variables”,
making their purpose clearer. As the interface is not developed for complete
user release but more of a research platform this is not an issue, but is
however an interesting usability point.

E. The info drawer was updated to indicate if an image has not been processed,
this should also indicate to the user that the image has not been rotated.

F. This user-raised point has not been remedied, as it is felt that it is beyond the
scope of the project, as the interface is designed for research purposes.

G. Checks have been inserted to ensure that, before running processing, any
save locations are valid paths, this is done using the code shown in figure 8.2.

Automatic Photograph Orientation! April 2007

 Page 47 of 94

Figure 8.2 - Example code showing the implementation of file path checking

H. The problem in which the system became slow when previewing images has
been remedied by implementing a caching system for image previews. On
opening an image it is stored that there is no valid preview for that image.
When the info drawer is refreshed a check is made for a valid preview for the
selected image, if it is found that there is none then the image is loaded and
stored with the determined rotation, it is also set that there is a valid preview.
When the image list is processed all the images are set to have and invalid
preview, thus forcing a preview refresh when the info drawer is shown. By this
method the image is not rotated - a time consuming task - every time the info
drawer is refreshed (set to happen every 0.1 seconds), this conserves memory
and removes the "jerkiness! of the info drawer.

I. When this problem is encountered the system is expected to give user
feedback indicating that the specified image!s orientation could not be
determined. From examining the code using a debugger, it became clear that
if no determination could be made then no confidence value was stored,
therefore these variables were not initialised. Both rotation and confidence
are stored as an int, the un-initialised value of which is over -300,000. This

un-initialised value was being returned for the confidence. The code in figure
8.3 was inserted to account for no determination being made - storing error
codes in this event - removing the problem.

//convert NSString to NSURL for checking

NSURL *url = [NSURL URLWithString:filePath];

//check to be valid path

BOOL isValid = [url isFileURL];

//if it's not valid display error message and exit method

if(!isValid) {

NSRunAlertPanel(@"Error",@"An error message.",@"OK",NULL,NULL);

return;

}

Automatic Photograph Orientation! April 2007

 Page 48 of 94

Figure 8.3 - Example code showing the implementation of storing error codes

J. The solution for this problem is described in point H.

K. This problem was solved by inserting a check for a rotation of 180º and setting
this to be 0º if found. The justification for this decision can be found in section
3.2.

8 . 3 A p p l i c a t i o n R e l e a s e

The following are screen-shots of the functioning system.

Figure 8.4 - The application interface

//other determination code has run

else {

 //set error codes

rotation = 361;

confidence = 101;

 //indicate no determination was made

return 0;

}

Automatic Photograph Orientation! April 2007

 Page 49 of 94

Figure 8.5 - The file-picker to choose images to open

Figure 8.6 - The application during processing

Automatic Photograph Orientation! April 2007

 Page 50 of 94

Figure 8.7 - The interface showing processed images

Figure 8.8 - The ‘info drawer’ showing image preview and information

Automatic Photograph Orientation! April 2007

 Page 51 of 94

Figure 8.9 - The application menu showing indication of keyboard shortcuts

Figure 8.10 - The warning displayed when processing is started with no files having been opened

Figure 8.11 - The warning displayed when processing is started with saving specified but no save
location has been specified

Figure 8.12 - The warning displayed when the directory specified for saving to is not valid

Automatic Photograph Orientation! April 2007

 Page 52 of 94

Figure 8.13 - The warning displayed when an error is encountered during processing

Figure 8.14 - The warning displayed when some images have a low confidence level

Automatic Photograph Orientation! April 2007

 Page 53 of 94

9.0 Final Testing
A system must be tested as to its performance, and how well it meets its user
requirements. This testing will allow assessment of how well the project meets it
goals.

9 . 1 U s e r R e q u i r e m e n t s Te s t i n g

The system was tested against the interaction scenarios set out in chapter 6.0. The
tests and the results of these are given in table 9.1 along with references to screen
captures of each result found in section 8.3.

Te s t R e s u l t F i g u re

Open several images After clicking the “open...” button, the system displayed a
file-picker, where only image files could be chosen.

Using the keyboard shortcut or menu item had the same
result.

On clicking “OK” in the file-picker, the selected files were

listed on the file list, on clicking “Cancel” the file-picker
closed and no change to the interface was made.

8.5

Remove some images On clicking the “remove” button, the selected files were
removed from the list. When no files were selected an

alert panel was displayed indicating this.

The same result was obtained using the keyboard
shortcut and menu item.

-

Remove all images On clicking the “remove all” button, all files were removed
from the list.

The same result was obtained using the keyboard
shortcut and menu item.

-

Process images On clicking the “Process” button, the images in the list
were processed, this took a little time. While processing

was taking place the buttons on the interface were
disabled and the progress indicator incremented for each
image.

Images with low confidence were warned of with an alert
panel. Images that could not be processed were alerted

to with an alert panel describing the error.

If no files were in the list an alert panel was displayed
detailing this.

The same result was obtained using the keyboard
shortcut and menu item.

8.6, 8.7,
8.10, 8.13,

8.14

Automatic Photograph Orientation! April 2007

 Page 54 of 94

Te s t R e s u l t F i g u re

Process and save the
images without specifying

a save location

After ticking the “Save on Process” check-box, and
clicking the “Process” button, the system displayed an

alert panel detailing that there was no save location
specified and to specify one before processing and
saving.

8.11

Specify a save location After clicking the “Save to...” button, the system displayed
a file-picker where only directories could be selected. On

clicking “OK” the directory path was added to the “Save
to” text field, on clicking “Cancel” the file picker closed
and no action was taken.

The same result was obtained using the keyboard
shortcut and menu item.

-

Process and save the
images with a valid save

location

After clicking the “Process” button, with a valid save
location selected, and “Save on Process” ticked, the

system processed the images - with the same results as
the Process images test - and the saved images were
verified as being in the correct location with the

determined orientation.

8.7

Process and save the
images after removing the

save location from disk

On clicking the “Process” button, the system displayed an
alert panel warning that the save location was not valid,

processing did not continue and the interface was
enabled.

8.12

Open an image, remove it
from disk, then process

On clicking the “Process” button, the system performed
the processing until reaching the missing image, the

program then crashed. Before this happened an
exception was thrown in C++ (this was found through
debugging).

-

Increment and decrement
the variables

On moving the variable sliders the interface updated, the
same result was achieved using the keyboard shortcuts

and menu items. The slider values did not overflow
beyond maximum or minimum.

On processing, the current slider values were taken as

processing variables.

8.9

Automatic Photograph Orientation! April 2007

 Page 55 of 94

Te s t R e s u l t F i g u re

Display the "info drawer!
with no files selected, one

file selected, and multiple
files selected

The info drawer was opened and closed using the “show/
hide info” button, and when pressed in quick succession

no ill effects were found. The same result was achieved
using the keyboard shortcut and menu item.

When no files were selected the info drawer displayed

“No Items Selected”.

When one file was selected the info drawer displayed the

following:

• The file name (including extension);

• A preview of the image with determined rotation;

• The rotation amount;

• The confidence;

• The file type (JPEG, GIF, PNG);

• The file path.

These details were refreshed when another file was

selected.

When multiple items were selected the info drawer

displayed “Multiple Items Selected”.

8.8

Table 9.1 - The results of user requirements testing

9 . 2 S y s t e m P e r f o r m a n c e

The performance of a system is important when part of it!s functionality is time
consuming, such as image processing. The performance of the system is outlined
here through tests. During testing no other applications were running, ensuring more
accurate results.

9 . 2 . 1 I m a g e P r o c e s s i n g T i m e

The system was tested with a range of sizes of both colour and grayscale images,
the processing time of these is shown in table 9.2.

I m a g e s i z e
Ave r a g e C o l o u r
P ro c e s s i n g T i m e

Ave r a g e G r ay s c a l e
P ro c e s s i n g T i m e

200x150px

128KB colour

112KB grayscale

0.40ms 0.34ms

800x600px

404KB colour

292KB grayscale

2.0ms 1.9ms

Automatic Photograph Orientation! April 2007

 Page 56 of 94

I m a g e s i z e
Ave r a g e C o l o u r
P ro c e s s i n g T i m e

Ave r a g e G r ay s c a l e
P ro c e s s i n g T i m e

1600x1200px

1125KB colour

814KB grayscale

3.8ms 3.7ms

2800x2100px

2892KB colour

2127KB grayscale

5.5ms 5.4ms

Table 9.2 - The results of image processing time tests

These tests were conducted using timing components within the Objective-C++ code.
The results are an average of 10 measurements, all results are to 2 significant
figures, and published in full in appendix A, section 14.1.2.

These results clearly show that larger images take longer to process, but also that
colour images take longer to process than grayscale images. The processing times
are not excessive for the purposes of research, however if developing an application
for retail these times would ideally be reduced.

9 . 2 . 2 C P U a n d M e m o r y U s a g e

The systems use of CPU and memory was tested during processing, previewing an
image, and idle running. These measurements were taken with Activity Monitor, the
average of 4 readings is given in table 9.3.

Ta s k
Ave r a g e C P U

U s a g e
Ave r a g e M e m o r y

U s a g e

Idle 0.1% 7.24MB

Previewing image 7.2% 13.6MB

Processing 35% 17.9MB

Table 9.3 - The results of CPU and memory usage tests

CPU usage is given to 2 significant figures, whereas memory usage is given to 3
significant figures. These results are published in full in appendix A, sections 14.1.3
and 14.1.4.

The system can be seem to perform well when idle, consuming limited system
resources. When processing more system resources are used, although due to the
nature of the application the time spent processing will be limited. When previewing
and image the application uses acceptable amounts of system resources.

Automatic Photograph Orientation! April 2007

 Page 57 of 94

10.0 Experiments
Experiments were run to determine the ideal parameters with which to process
images, finding their correct orientation. Firstly the performance of the individual
determination algorithms was tested, then using the results from these tests the ideal
variables were derived and used to test the collaborative determination.

In individual testing two groups of images were used as test subjects - a group of
indoor images, and a group of outdoor images mainly of natural landscapes. Each
image group contained 10 colour images, and 5 grayscale images. The image
groups were of mixed orientations, some images were correctly orientated while
others were incorrectly orientated by 90º or 270º.

Each test subject in each group was processed, taking the reading of rotation and
confidence for each variable individually. Variables were incremented from minimum
to maximum in 10 steps, giving 11 readings per test-subject, per variable, for both
rotation and confidence. The full results of these experiments can be found in
appendix B, section 14.2.

1 0 . 1 R o t a t i o n P e r f o r m a n c e

The determined rotation for each reading was compared to the correct rotation
amount for that image, counts were made per variable increment of the number of
correct orientations, and the number of incorrect orientations. Where a rotation could
not be determined - given by an error code - this was counted as a rejected image.

The following are graphs of performance of the individual determination algorithms
for rotation, they are split into indoor and outdoor.

Automatic Photograph Orientation! April 2007

 Page 58 of 94

1 0 . 1 . 1 I n d o o r

The performance of individual determination methods for rotation on indoor images.

Figure 10.1 - A graph showing the success rate of increasing segmentation size for colour
determination on indoor images

Figure 10.2 - A graph showing the success rate of increasing threshold level for complexity
determination on indoor images

Success against segmentation level for colour determination in indoor images

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45 50

Segment size (% of image dimension)

C
o

u
n

t
o

f
im

a
g
e

s

Correct rotation found

Incorrect rotation found

Rejected

Success against threshold level for complexity determination in indoor images

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

Threshold level (% of full intensity)

C
o

u
n

t
o

f
im

a
g
e

s

Correct rotation found

Incorrect rotation found

Rejected

Automatic Photograph Orientation! April 2007

 Page 59 of 94

Figure 10.3 - A graph showing the success rate of increasing spread amount for edge determination
on indoor images

These results indicate the following:

• That for indoor images colour determination is not very successful;

• That for complexity determination of indoor images while a higher threshold level
produces more correct orientations it also produces more rejected images,
comparably a threshold level of 20-30% is more suitable - producing no rejections
and a slightly higher correct to incorrect ratio;

• That the majority of determinations for edge detection of indoor images are
incorrect.

It can be inferred from these results that correct determination for indoor images will
be unlikely, but that using a complexity threshold level of 20-30% is desirable.

Success against spread amount for edge determination in indoor images

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

Spread amount (% of 0.5! radians about edge)

C
o

u
n

t
o

f
im

a
g
e

s

Correct rotation found

Incorrect rotation found

Rejected

Automatic Photograph Orientation! April 2007

 Page 60 of 94

1 0 . 1 . 2 O u t d o o r

The performance of individual determination methods for rotation on outdoor images.

Figure 10.4 - A graph showing the success rate of increasing segmentation size for colour
determination on outdoor images

Figure 10.5 - A graph showing the success rate of increasing threshold level for complexity
determination on outdoor images

Success against segmentation level for colour determination in outdoor images

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45 50

Segment size (% of image dimension)

C
o

u
n

t
o

f
im

a
g
e

s

Correct rotation found

Incorrect rotation found

Rejected

Success against threshold level for complexity determination in outdoor images

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

Threshold level (% of full intensity)

C
o

u
n

t
o

f
im

a
g
e

s

Correct rotation found

Incorrect rotation found

Rejected

Automatic Photograph Orientation! April 2007

 Page 61 of 94

Figure 10.6 - A graph showing the success rate of increasing spread amount for edge determination
on indoor images

These results indicate the following:

• That for outdoor images using colour determination a low segment size is desirable;

• That edge determination is not successful for outdoor images, although a spread
amount of 100% seems to be slightly more desirable;

• That in complexity determination a low threshold level of 10-20% is desirable, as
this produces no rejections and higher correct orientations than incorrect.

Therefore it can be inferred that for outdoor images both complexity and colour
determination will be relatively successful - at levels of 5-10% and 10-20%
respectively - whereas edge determination will be relatively unsuccessful.

1 0 . 2 C o n f i d e n c e P e r f o r m a n c e

The confidence generated for the rotation for each image at each increment of each
variable was also measured, the average of the readings at each increment level was
taken for both indoor and outdoor images. Where a determination could not be made
the result was not counted in the average.

The graphs of these average confidence levels are given below.

Success against spread amount for edge determination in outdoor images

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100

Spread amount (% of 0.5! radians about edge)

C
o

u
n

t
o

f
im

a
g
e

s

Correct rotation found

Incorrect rotation found

Rejected

Automatic Photograph Orientation! April 2007

 Page 62 of 94

Figure 10.7 - A graph showing average confidence of increasing segmentation size for colour
determination on indoor and outdoor images

Figure 10.8 - A graph showing average confidence of increasing threshold level for complexity
determination on indoor and outdoor images

Confidence calculated over increasing segmentation level in colour determination for indoor

and outdoor images

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50

Segment size (% of image dimension)

A
v
e

ra
g
e

 c
o

n
fi

d
e

n
c
e

 (
%

)

Indoor

Outdoor

Confidence calculated over increasing threshold level in complexity determination for indoor

and outdoor images

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

Threshold level (% of full intensity)

A
v
e

ra
g
e

 c
o

n
fi

d
e

n
c
e

 (
%

)

Indoor

Outdoor

Automatic Photograph Orientation! April 2007

 Page 63 of 94

Figure 10.9 - A graph showing average confidence of increasing spread amount for edge
determination on indoor and outdoor images

These results show that in both edge determination and complexity determination a
higher variable reduces confidence, whereas in colour determination confidence
remains relatively steady over all variable levels. It can therefore be inferred that
smaller variable values are more likely to be accurate, however this does raise
doubts of the relevance of confidence measurements.

1 0 . 3 C o l l a b o r a t i v e P e r f o r m a n c e

From the results of experiments with each determination algorithm the following
parameters have been determined the most suitable:

• Colour determination - segment size 5%

• Complexity determination - threshold level 20%

• Edge determination - edge spread amount 100%

Using these variables a test group of 50 images was processed, 25 of which were
indoor images, 25 outdoor, the results of which are shown in the figure 10.10.

Confidence calculated over increasing spread amount in edge determination for indoor and

outdoor images

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

Spread amount (% of 0.5! radians about edge)

A
v
e

ra
g
e

 c
o

n
fi

d
e

n
c
e

 (
%

)

Indoor

Outdoor

Automatic Photograph Orientation! April 2007

 Page 64 of 94

Figure 10.10 - A graph showing success rates for collaborative determination of both indoor and
outdoor images

These results show a high success for outdoor images, at a rate of 92%, but a low
success rate for indoor images, of only 40%. Only one image was rejected over both
image types demonstrating the ability of the algorithms to produce a result in most
cases.

These results corroborate those of the results of individual determination tests - that
correct indoor image orientation determination is unlikely, but that correct outdoor
image orientation determination is much more likely.

Figure 10.11 shows some of the incorrectly determined images, along with their
correct orientation.

Success rates for indoor and outdoor images using collaborative determination

0

5

10

15

20

25

Indoor Outdoor

Image type

C
o

u
n

t
o

f
im

a
g
e

s

Correct rotation found

Incorrect rotation found

Rejected

Automatic Photograph Orientation! April 2007

 Page 65 of 94

Figure 10.11 - Showing some of the incorrectly determined images and their correct orientation from
collaborative determination

In image 1.1 there is a lack of blue shades towards the top of the image, there is also
more complexity at the top of the image, these factors would cause misleading

Image 1.1

90º 270º

Image 1.2

0º 270º

Determined
orientation

Correct
orientation

Determined
orientation

Correct
orientation

Image 2.2

Rejected

0º 90º

Image 2.4

90º 270º

Image 2.1

0º 270º

Image 2.3

Automatic Photograph Orientation! April 2007

 Page 66 of 94

results from the colour determination and complexity determination methods, giving a
result of 90º rather than 270º. As image 1.2 is grayscale colour determination is not
possible, the complexity level is also relatively uniform over the image, therefore
edge detection would be the strongest result, and as there are more horizontal edges
the image it was orientated as 0º.

In image 2.1 there is a lot of complexity towards the top of the image, and no blue
colours for colour determination, this is likely the reason for incorrect determination.
As image 2.2 is grayscale colour determination is not possible, there is also a very
low complexity level and no strong edges, on these features the algorithms would not
have been able to base a determination, for this reason the image was rejected. In
images 2.3 and 2.4 there is stronger complexity in the right and left (respectively) of
the images, this is likely the reason for incorrect determination.

Automatic Photograph Orientation! April 2007

 Page 67 of 94

11.0 Conclusions
This chapter examines the outcomes of the project, how well the goals were met, the
possible extensions and improvements to the project, and alternative approaches to
the project.

1 1 . 1 M e e t i n g t h e O b j e c t i v e s

The main objective of this project was “to create a simple software package to
process batches of digital images, orientating them correctly - with a reasonable
success rate”. This objective has been met with the completion of a functioning
system.

The user requirements of the project, and the extent to which they are met are
detailed as follows:

R.1 To develop a software package with a complete graphical user interface following human
 computer interaction principles, to facilitate ease of use and efficiency. The software package

 should provide the following functionality:

i. The ability to select a series of images to process;

ii. Save the processed images to a directory;

iii. Progress indication of this process;

iv. A measure of confidence in the returned rotation for each image.

The interface provides this functionality with a "user friendly! interface following
human-computer interaction principles.

R.2 To implement an effective automatic rotation algorithm for:

i. Outdoor photographs;

ii. Indoor photographs.

The system implements an effective automatic rotation algorithm for outdoor images,
and a partially effective automatic rotation algorithm for indoor images. This
requirement has been met.

R.3 To achieve a success rate of roughly 80% for such a complete algorithm.

Automatic Photograph Orientation! April 2007

 Page 68 of 94

In implementing a complete algorithm the system has been proven to achieve a
success rate of 92% for outdoor images, and a 40% success rate for indoor images,
giving an average of 66%. Therefore this requirement has been partially met.

A.1 Broadening the application to process more categories of images, and so increasing its
 usefulness.

This advanced requirement has not been met.

A.2 Porting the application to multiple platforms.

This advanced requirement has not been met, the system is however implemented to
allow easy porting of the image processing segment.

A.3 Increasing the algorithm success rate.

The success rate for outdoor images exceeds the 80% target success rate, however
for indoor images the success rate is only 40%. Therefore it cannot be said this
advanced requirement has been met overall.

1 1 . 2 I m p r o v e m e n t s a n d E x t e n s i o n s

There are several ways in which the system could be improved upon, and several
areas in to which the project could be extended. These are discussed here.

1 1 . 2 . 1 I m p r o v e m e n t s

The following areas of the systems operation could be improved upon:

• The accuracy of indoor image processing

The success rate of 40% for indoor images could be improved upon with more
determination methods or image category classification.

• The meaning of the confidence measurement

Currently the relevance of confidence measurement is not clear - i.e. images with
low confidences are still rotated - and the accuracy of the confidence produced is
not very meaningful. The use of confidence measurements in the system could be
improved.

• Aborting processing

During usability testing one user commented that the processing cannot be aborted
once it has started, this functionality could be implemented.

• Reducing processing time by streamlining the system or multi-threading

Automatic Photograph Orientation! April 2007

 Page 69 of 94

• Remedy system crash on non-existent file

Currently the system will crash when trying to process files that have been removed
after opening in the interface, the existence of files could be checked for before
processing, removing this problem.

• Preview caching

Currently previews are cached to memory, if several preview images are very large
memory will be used up quickly, and images must be page-swapped to disk.
Caching smaller previews or caching to disk may solve this.

1 1 . 2 . 2 E x t e n s i o n s

There a few areas into which the project could be extended, these are described
here:

• Expanding the system to be compatible with more image formats
Currently the system will only accept images of types JPEG, GIF, and PNG, the
ability to process other images types is a possible extension.

• Implementing more feature extraction methods, therefore enabling the system to to
deal with more image categories.

• Expanding the systems functionality into other feature extraction areas, these could
include locating people or objects within scenes, or extracting meta-data from an
image such as the season in which a photograph was taken.

1 1 . 3 A l t e r n a t i v e M e t h o d o l o g i e s

As previously mentioned in this report, a common approach to the problem of
automatic image orientation is that of a "neural network! - in which an artificial
intelligence system is designed and trained to categorise images based on identified
patterns. This approach has been examined in many other research papers, some of
which are discussed in chapter 3.0.

This project has chosen not to implement such a method, taking an algorithmic
approach to the problem. The "neural network! approach is however a viable - and
an often preferred alternative.

1 1 . 4 O v e r a l l S u c c e s s o f t h e P r o j e c t

The project has been successful in meeting its main goal and in meeting most of the
requirements set out for it.

It is clear from the work conducted throughout this project that implementing a
system that is able to correctly orientate images from several image categories is
difficult. Each category of image will contain different patterns indicating their

Automatic Photograph Orientation! April 2007

 Page 70 of 94

orientation, although these patterns may not hold true for every image in that
category, it is therefore difficult to implement a system flexible enough to account for
each image category.

This project has proven the viability of a system capable of correctly orientating
images automatically, and thoroughly researched into the area of feature extraction
from digital images in general.

Automatic Photograph Orientation! April 2007

 Page 71 of 94

12.0 Bibliography
APPLE INC. Cocoa Reference. Updated 2007. Accessed 21 April 2007 <http://
developer.apple.com/reference/Cocoa/>

FISCHER, R. Feature Detectors. Updated 2003. Accessed 10 April 2007 <http://
homepages.inf.ed.ac.uk/rbf/HIPR2/featops.htm>

KELLER, Bill. “Software Design Lecture Notes.” (2006) The Department of
Informatics, The University of Sussex.

LISCHNER, Ray. C++ in a Nutshell. California, O!Reilly Media Inc., 2003.

LOUDON, Kyle. C++ Pocket Reference. California, O!Reilly Media Inc., 2003.

LYU, Siwei. “Automatic Image Orientation Detection with Natural Image
Statistics.” (2005). Accessed 31 March 2007 <http://www.cns.nyu.edu/~lsw/files/
mm05.pdf>

MCGRATH, Mike. C++ Programming...in easy steps. Warwickshire, In easy steps,
2005.

NORMAN, Donald A.. The Design of Everyday Things. New York, Basic Books, 2002.

SHARP, Helen & ROGERS, Yvonne & PREECE, Jenny. Interaction Design: Beyond
Human Computer Interaction. Indianapolis, Wiley Publishing Inc., 2007.

SU, Zhou. “Automatic Image Orientation Detection.” (2004). Accessed 31 March
2007 <http://www.dcs.shef.ac.uk/intranet/teaching/projects/archive/msc2004/pdf/
m3zs2.pdf>

TRENT, Michael & MCCORMACK, Drew. Beginning Mac OS X Programming.
Indianapolis, Wiley Publishing Inc., 2005.

TSCHUMPERLÉ, David. The CImg Library Documentation. Updated 2007. Accessed
21 April 2007 <http://cimg.sourceforge.net/reference/index.html>

VAILAYA, Aditya. “Automatic Image Orientation Detection.” (1999). Accessed 31
March 2007 <http://citeseer.ist.psu.edu/223869.html>

VAILAYA, Aditya et al. “Automatic Image Orientation Detection.” (2000). Accessed 31
March 2007 <http://research.microsoft.com/asia/dload_files/group/mcomputing/
2003P/11tip07-vailaya-proof.pdf>

ZHANG, Lei & LI, Mingjing & ZHANG, Hong-Jiang. “Boosting Image Orientation
Detection with Indoor vs. Outdoor Classification.” (2001). Accessed 31 March 2007
<http://research.microsoft.com/users/leizhang/Paper/WACV02.pdf>

Automatic Photograph Orientation! April 2007

 Page 72 of 94

13.0 References

Automatic Photograph Orientation! April 2007

 Page 73 of 94

1 Film & Film Processing - US. Updated 2004. Accessed 21 March 2007 <http://
www.mindbranch.com/listing/product/R560-1061.html>

2 Industry statistics. Updated 2004. Accessed 21 March 2007 <http://
www.bigplanet.com/corp/company/industry_statistics.shtml>

3 The British Computer Society. Updated 2007. Accessed 24 March 2007 <http://
www.bcs.org/>

4 BCS Code of Conduct. Updated 2006. Accessed 24 March 2007 <http://
www.bcs.org/server.php?show=nav.6030>

5 See [4]

6 BCS Code of Practice. Updated 2006. Accessed 24 March 2007 <http://
www.bcs.org/upload/pdf/cop.pdf>

7 See [6]

8 See [6]

9 Adobe Photoshop product page. Updated 2006. Accessed 30 March 2007 <http://
www.adobe.com/products/photoshop/>

10 GNU GIMP web-site. Updated 2006. Accessed 30 March 2007 <http://
www.gimp.org/>

11 SU, Zhou. “Automatic Image Orientation Detection.” (2004). Accessed 31 March
2007 <http://www.dcs.shef.ac.uk/intranet/teaching/projects/archive/msc2004/pdf/
m3zs2.pdf>

12 LYU, Siwei. “Automatic Image Orientation Detection with Natural Image
Statistics.” (2005). Accessed 31 March 2007 <http://www.cns.nyu.edu/~lsw/files/
mm05.pdf>

13 VAILAYA, Aditya. “Automatic Image Orientation Detection.” (1999). Accessed 31
March 2007 <http://citeseer.ist.psu.edu/223869.html>

14 ZHANG, Lei & LI, Mingjing & ZHANG, Hong-Jiang. “Boosting Image Orientation
Detection with Indoor vs. Outdoor Classification.” (2001). Accessed 31 March 2007
<http://research.microsoft.com/users/leizhang/Paper/WACV02.pdf>

15 VAILAYA, Aditya et al. “Automatic Image Orientation Detection.” (2000). Accessed
31 March 2007 <http://research.microsoft.com/asia/dload_files/group/mcomputing/
2003P/11tip07-vailaya-proof.pdf>

16 See [11]

Automatic Photograph Orientation! April 2007

 Page 74 of 94

17 See [14]

18 Apple Cocoa technology. Updated 2007. Accessed 4 April 2007 <http://
developer.apple.com/cocoa/>

19 Apple Inc. Updated 2007. Accessed 4 April 2007 <http://www.apple.com>

20 The CImg C++ Library. Updated 2007. Accessed 5 April 2007 <http://
cimg.sourceforge.net/>

21 Sun Microsystems - Java Technology. Updated 2007. Accessed 4 April 2007
<http://java.sun.com>

22 See [21]

23 See [20]

24 Feature Detectors. Updated 2003. Accessed 10 April 2007 <http://
homepages.inf.ed.ac.uk/rbf/HIPR2/featops.htm>

25 The Software Development Process. Updated 2007. Accessed 24 April 2007.
<http://en.wikipedia.org/wiki/Software_development_process>

26 Nielsens Heuristics Principles. Updated 2007. Accessed 16 April 2007 <http://
www.useit.com/papers/heuristic/heuristic_list.html>

27 See [18]

28 Apple Developer Connection: Mac OS X. Updated 2007. Accessed 4 April 2007
<http://developer.apple.com/macosx>

29 WANDSCHNEIDER, Marc. Rotating an NSImage object in Cocoa. Updated 2006.
Accessed 22 April 2007 <http://www.chipmunkninja.com/article/nsimagerotate>

30 See [20]

31 See [18]

32 White box testing. Updated 2005. Accessed 19 April 2007 <http://openseminar.org/
se/modules/46/index/screen.do>

33 Black box testing. Updated 2005. Accessed 19 April 2007 <http://openseminar.org/
se/modules/47/index/screen.do>

34 See [32]

1 4 . 0 A p p e n d i c e s

1 4 . 1 A p p e n d i x A - Te s t i n g R e s u l t s

1 4 . 1 . 1 U s a b i l i t y S u r v e y s

Automatic Photograph Orientation April 2007

 Page 75 of 94

Automatic Photograph Orientation April 2007

 Page 76 of 94

Automatic Photograph Orientation April 2007

 Page 77 of 94

Automatic Photograph Orientation April 2007

 Page 78 of 94

1 4 . 1 . 2 T i m e P e r f o r m a n c e
2

0
0

x
1

5
0

 c
o

lo
u

r
2

0
0

x
1

5
0

 g
r
a
y
s
c
a
le

0
.7
2
1
7

0
.6
9
5
3

0
.3
6
5
2

0
.3
3
8
8

0
.4
1
9
9

0
.3
0
6
0

0
.3
3
9
2

0
.2
7
8
3

0
.3
4
7
4

0
.2
8
6
9

0
.3
5
9
1

0
.2
8
9
2

0
.3
5
1
6

0
.3
7
6
6

0
.3
6
2
2

0
.3
1
0
3

0
.3
4
6
2

0
.2
7
1
8

0
.3
8
4
3

0
.3
9
9
7
s
e
c
o
n
d
s

0
.2
8
4
6

0
.3
4
3
8
s
e
c
o
n
d
s

8
0

0
x
6

0
0

 c
o

lo
u

r
8

0
0

x
6

0
0

 g
r
a
y
s
c
a
le

2
.0
3
7

1
.8
8
9

2
.0
6
0

1
.9
1
3

2
.0
7
4

1
.9
0
4

1
.9
8
7

1
.8
9
5

2
.0
5
7

1
.8
7
4

2
.0
5
1

2
.0
4
2

1
.9
4
7

2
.0
4
9

2
.0
2
3

1
.9
0
9

2
.0
6
2

1
.9
3
9

2
.0
4
5

2
.0
3
4
s
e
c
o
n
d
s

1
.8
9
2

1
.9
3
1
s
e
c
o
n
d
s

1
6

0
0

x
1

2
0

0
 c

o
lo

u
r

1
6

0
0

x
1

2
0

0
 g

r
a
y
s
c
a
le

3
.8
4
5

3
.8
2
3

3
.8
0
7

3
.7
1
3

3
.8
3
4

3
.7
4
9

3
.7
9
7

3
.7
2
3

3
.9
0
7

3
.7
0
0

3
.8
0
5

3
.7
2
4

3
.8
1
1

3
.7
0
7

3
.8
2
2

3
.7
2
5

3
.8
1
7

3
.7
3
9

4
.0
4
0

3
.8
4
9
s
e
c
o
n
d
s

3
.6
9
7

3
.7
3
0
s
e
c
o
n
d
s

2
8

0
0

x
2

1
0

0
 c

o
lo

u
r

2
8

0
0

x
2

1
0

0
 g

r
a
y
s
c
a
le

5
.8
7
2

5
.6
8
5

5
.4
4
0

5
.5
5
6

5
.4
8
9

5
.5
6
7

5
.4
6
9

5
.5
8
3

5
.4
6
8

5
.3
6
8

5
.6
3
7

5
.3
3
9

5
.4
4
9

5
.2
6
6

5
.4
3
4

5
.3
6
8

5
.4
5
7

5
.2
6
8

5
.6
6
7

5
.5
3
8
s
e
c
o
n
d
s

5
.4
8
2

5
.4
4
8
s
e
c
o
n
d
s

1 4 . 1 . 3 C P U P e r f o r m a n c e

Idle Previewing Processing

0.1 6.8 37.1

0.1 7.3 -

0.1 7.3 43.0

0.1 7.4 24.2

0.1 % 7.2 % 35 %

Idle Previewing Processing

7.25 11.11 16.03

7.23 13.09 17.50

7.23 14.54 19.20

7.24 15.79 18.71

7.24 MB 13.6 MB 17.86 MB

1 4 . 1 . 4 M e m o r y P e r f o r m a n c e

Idle Previewing Processing

0.1 6.8 37.1

0.1 7.3 -

0.1 7.3 43.0

0.1 7.4 24.2

0.1 % 7.2 % 35 %

Idle Previewing Processing

7.25 11.11 16.03

7.23 13.09 17.50

7.23 14.54 19.20

7.24 15.79 18.71

7.24 MB 13.6 MB 17.86 MB

Automatic Photograph Orientation April 2007

 Page 79 of 94

1 4 . 2 A p p e n d i x B - E x p e r i m e n t R e s u l t s

1 4 . 2 . 1 R o t a t i o n R e s u l t s

Nick in the gallery.jpg DSC01434.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 270 0 361 0

5 0 270 5 361 0

10 0 270 10 361 0

15 0 270 15 361 0

20 0 270 20 361 0

25 0 270 25 361 0

30 0 270 30 361 0

35 0 270 35 361 0

40 0 270 40 361 0

45 270 270 45 361 0

50 270 270 50 361 0

DSC00145.jpg DSCF0636.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 180 270 0 361 0

5 90 270 5 361 0

10 90 270 10 361 0

15 180 270 15 361 0

20 180 270 20 361 0

25 180 270 25 361 0

30 180 270 30 361 0

35 180 270 35 361 0

40 180 270 40 361 0

45 180 270 45 361 0

50 180 270 50 361 0

DSCF0326.jpg DSCF0071.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 361 0 0 361 90

5 361 0 5 361 90

10 361 0 10 361 90

15 361 0 15 361 90

20 361 0 20 361 90

25 361 0 25 361 90

30 361 0 30 361 90

35 361 0 35 361 90

40 361 0 40 361 90

45 361 0 45 361 90

50 361 0 50 361 90

DSCF1258.jpg DSC00841.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 270 270 0 361 0

5 270 270 5 361 0

10 270 270 10 361 0

15 270 270 15 361 0

20 270 270 20 361 0

25 270 270 25 361 0

30 270 270 30 361 0

35 270 270 35 361 0

40 270 270 40 361 0

45 270 270 45 361 0

50 270 270 50 361 0

DSCF0618.jpg DSC01840.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 361 90 0 361 270

5 361 90 5 361 270

10 361 90 10 361 270

15 361 90 15 361 270

20 361 90 20 361 270

25 361 90 25 361 270

30 361 90 30 361 270

35 361 90 35 361 270

40 361 90 40 361 270

45 361 90 45 361 270

50 361 90 50 361 270

Counts

Correct rotation foundIncorrect rotation foundRejected

0 1 2 7

5 1 2 7

10 1 2 7

15 1 2 7

20 1 2 7

25 1 2 7

30 1 2 7

35 1 2 7

40 1 2 7

45 2 1 7

50 2 1 7

Rotation Indoor Colour Determination Results

DSCF0163.jpg DSCF1282.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 0 0 270 270

5 0 0 5 270 270

10 0 0 10 270 270

15 0 0 15 270 270

20 0 0 20 270 270

25 0 0 25 270 270

30 0 0 30 270 270

35 0 0 35 270 270

40 0 0 40 270 270

45 0 0 45 270 270

50 0 0 50 270 270

DSCF1116.jpg DSCF0127.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 90 90 0 0 0

5 90 90 5 0 0

10 90 90 10 0 0

15 90 90 15 0 0

20 90 90 20 0 0

25 90 90 25 0 0

30 90 90 30 0 0

35 90 90 35 0 0

40 90 90 40 0 0

45 90 90 45 0 0

50 90 90 50 0 0

DSCF0153.jpg Sunset from my room 2.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 270 270 0 180 0

5 270 270 5 180 0

10 0 270 10 180 0

15 0 270 15 180 0

20 0 270 20 180 0

25 0 270 25 180 0

30 0 270 30 180 0

35 0 270 35 180 0

40 0 270 40 180 0

45 0 270 45 180 0

50 0 270 50 90 0

DSC01684.jpg View onto Dolomites.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 90 90 0 270 270

5 90 90 5 270 270

10 90 90 10 270 270

15 90 90 15 270 270

20 90 90 20 270 270

25 90 90 25 270 270

30 90 90 30 270 270

35 90 90 35 270 270

40 90 90 40 270 270

45 90 90 45 270 270

50 90 90 50 270 270

DSC01173.jpg DSC00703.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 270 270 0 0 0

5 270 270 5 0 0

10 270 270 10 0 0

15 270 270 15 0 0

20 270 270 20 0 0

25 270 270 25 0 0

30 270 270 30 0 0

35 270 270 35 0 0

40 270 270 40 0 0

45 270 270 45 0 0

50 270 270 50 0 0

Counts

Correct rotation foundIncorrect rotation foundRejected

0 10 0 0

5 10 0 0

10 9 1 0

15 9 1 0

20 9 1 0

25 9 1 0

30 9 1 0

35 9 1 0

40 9 1 0

45 9 1 0

50 8 2 0

Rotation Outdoor Colour Determination Results

Automatic Photograph Orientation April 2007

 Page 80 of 94

DSC01840.jpg Nick in the gallery.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 270 0 270 270

10 180 270 10 180 270

20 180 270 20 180 270

30 180 270 30 180 270

40 180 270 40 90 270

50 180 270 50 90 270

60 180 270 60 90 270

70 180 270 70 90 270

80 180 270 80 90 270

90 180 270 90 361 270

100 180 270 100 361 270

DSC01496.jpg DSCF0071.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 90 0 90 90

10 180 90 10 0 90

20 180 90 20 0 90

30 180 90 30 0 90

40 180 90 40 0 90

50 180 90 50 0 90

60 180 90 60 90 90

70 180 90 70 90 90

80 180 90 80 90 90

90 180 90 90 90 90

100 180 90 100 90 90

DSCF0218.jpg DSCF0326.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 270 0 0 90 0

10 180 0 10 180 0

20 180 0 20 270 0

30 180 0 30 270 0

40 180 0 40 270 0

50 180 0 50 270 0

60 180 0 60 270 0

70 180 0 70 270 0

80 180 0 80 270 0

90 180 0 90 270 0

100 180 0 100 270 0

DSCF0636.jpg DSC01312.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 180 0 0 0 90

10 0 0 10 270 90

20 0 0 20 90 90

30 0 0 30 90 90

40 0 0 40 90 90

50 0 0 50 90 90

60 0 0 60 90 90

70 0 0 70 90 90

80 0 0 80 90 90

90 0 0 90 90 90

100 0 0 100 90 90

DSC00145.jpg _A140255

variable value rotation correct rotation variable value rotation correct rotation

0 0 270 0 0 90

10 270 270 10 180 90

20 270 270 20 180 90

30 270 270 30 180 90

40 270 270 40 180 90

50 361 270 50 180 90

60 361 270 60 180 90

70 361 270 70 90 90

80 361 270 80 90 90

90 361 270 90 90 90

100 361 270 100 90 90

Hugo interviews Paul_2.jpg DSC00841.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 90 90 0 0 0

10 90 90 10 90 0

20 90 90 20 270 0

30 90 90 30 270 0

40 90 90 40 270 0

50 90 90 50 270 0

60 90 90 60 270 0

70 90 90 70 270 0

80 90 90 80 270 0

90 90 90 90 270 0

100 90 90 100 270 0

DSCF0618.jpg DSC01434.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 270 0 0 0

10 0 270 10 90 0

20 270 270 20 90 0

30 270 270 30 90 0

40 270 270 40 90 0

50 270 270 50 90 0

60 270 270 60 90 0

70 270 270 70 90 0

80 270 270 80 90 0

90 270 270 90 90 0

100 270 270 100 90 0

DSCF1258.jpg

variable value rotation correct rotation

0 90 270

10 0 270

20 270 270

30 270 270

40 361 270

50 361 270

60 361 270

70 361 270

80 361 270

90 361 270

100 361 270

Counts

Correct rotation foundIncorrect rotation foundRejected

0 6 9 0

10 5 10 0

20 7 8 0

30 7 8 0

40 6 8 1

50 5 8 2

60 6 7 2

70 7 6 2

80 7 6 2

90 7 5 3

100 7 5 3

Rotation Indoor Complexity Determination Results

Automatic Photograph Orientation April 2007

 Page 81 of 94

DSCF0153.jpg DSC00703.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 270 270 0 0 0

10 180 270 10 0 0

20 90 270 20 0 0

30 90 270 30 0 0

40 90 270 40 0 0

50 90 270 50 0 0

60 90 270 60 0 0

70 361 270 70 361 0

80 361 270 80 361 0

90 361 270 90 361 0

100 361 270 100 361 0

A bay on the ring of keyy, ireland.jpg DSC01637.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 0 0 270 270

10 0 0 10 270 270

20 0 0 20 270 270

30 0 0 30 270 270

40 0 0 40 270 270

50 0 0 50 270 270

60 0 0 60 270 270

70 0 0 70 270 270

80 0 0 80 270 270

90 0 0 90 270 270

100 0 0 100 270 270

View onto Dolomites.jpg DSCF1116.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 270 270 0 90 90

10 270 270 10 90 90

20 180 270 20 90 90

30 90 270 30 90 90

40 90 270 40 90 90

50 90 270 50 90 90

60 180 270 60 361 90

70 361 270 70 361 90

80 361 270 80 361 90

90 361 270 90 361 90

100 361 270 100 361 90

DSCF0127.jpg Sunset from my room 2.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 0 0 0 0

10 0 0 10 0 0

20 0 0 20 90 0

30 0 0 30 90 0

40 0 0 40 0 0

50 0 0 50 0 0

60 90 0 60 361 0

70 361 0 70 361 0

80 361 0 80 361 0

90 361 0 90 361 0

100 361 0 100 361 0

DSCF0163.jpg A lake in southern Ireland.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 0 0 90 270

10 0 0 10 270 270

20 0 0 20 270 270

30 0 0 30 270 270

40 0 0 40 270 270

50 361 0 50 270 270

60 361 0 60 270 270

70 361 0 70 361 270

80 361 0 80 361 270

90 361 0 90 361 270

100 361 0 100 361 270

DSC01684.jpg DSCF1282.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 270 90 0 270 270

10 270 90 10 270 270

20 0 90 20 270 270

30 0 90 30 270 270

40 361 90 40 270 270

50 361 90 50 361 270

60 361 90 60 361 270

70 361 90 70 361 270

80 361 90 80 361 270

90 361 90 90 361 270

100 361 90 100 361 270

DSC01173.jpg Dolomites snow.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 270 270 0 270 270

10 270 270 10 270 270

20 270 270 20 270 270

30 270 270 30 270 270

40 0 270 40 180 270

50 90 270 50 270 270

60 90 270 60 270 270

70 90 270 70 270 270

80 361 270 80 270 270

90 361 270 90 270 270

100 361 270 100 270 270

DSCF0147.jpg

variable value rotation correct rotation

0 0 0

10 0 0

20 0 0

30 0 0

40 0 0

50 90 0

60 90 0

70 90 0

80 90 0

90 90 0

100 90 0

Counts

Correct rotation foundIncorrect rotation foundRejected

0 13 2 0

10 13 2 0

20 11 4 0

30 11 4 0

40 10 4 1

50 8 4 3

60 5 5 5

70 3 2 10

80 3 1 11

90 3 1 11

100 3 1 11

Rotation outdoor Complexity Determination Results

Automatic Photograph Orientation April 2007

 Page 82 of 94

DSC01840.jpg DSCF0618.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 90 or 270 270 0 0 270

10 90 or 270 270 10 0 270

20 90 or 270 270 20 0 270

30 90 or 270 270 30 0 270

40 90 or 270 270 40 0 270

50 90 or 270 270 50 0 270

60 90 or 270 270 60 0 270

70 90 or 270 270 70 0 270

80 90 or 270 270 80 0 270

90 90 or 270 270 90 0 270

100 90 or 270 270 100 0 270

DSCF0218.jpg Hugo interviews Paul_2.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 0 0 0 90

10 0 0 10 0 90

20 0 0 20 0 90

30 0 0 30 0 90

40 0 0 40 0 90

50 0 0 50 0 90

60 0 0 60 0 90

70 0 0 70 0 90

80 0 0 80 0 90

90 0 0 90 0 90

100 0 0 100 90 or 270 90

DSCF0326.jpg DSCF0071.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 0 0 0 90

10 0 0 10 0 90

20 0 0 20 0 90

30 0 0 30 0 90

40 0 0 40 0 90

50 0 0 50 0 90

60 0 0 60 0 90

70 0 0 70 0 90

80 90 or 270 0 80 0 90

90 90 or 270 0 90 0 90

100 90 or 270 0 100 0 90

DSCF0636.jpg DSCF1258.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 0 0 0 270

10 0 0 10 0 270

20 0 0 20 0 270

30 0 0 30 0 270

40 0 0 40 0 270

50 0 0 50 0 270

60 0 0 60 0 270

70 0 0 70 0 270

80 0 0 80 0 270

90 0 0 90 0 270

100 90 or 270 0 100 0 270

DSC01312.jpg Nick in the Gallery.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 90 0 0 270

10 0 90 10 0 270

20 0 90 20 0 270

30 0 90 30 0 270

40 0 90 40 0 270

50 0 90 50 0 270

60 0 90 60 0 270

70 0 90 70 0 270

80 0 90 80 0 270

90 0 90 90 0 270

100 0 90 100 0 270

DSC01496.jpg DSC00145.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 90 0 0 270

10 0 90 10 0 270

20 90 or 270 90 20 0 270

30 90 or 270 90 30 0 270

40 90 or 270 90 40 0 270

50 90 or 270 90 50 0 270

60 90 or 270 90 60 0 270

70 90 or 270 90 70 0 270

80 90 or 270 90 80 0 270

90 90 or 270 90 90 0 270

100 90 or 270 90 100 0 270

DSC1434.jpg DSC00841.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 0 0 0 0

10 0 0 10 0 0

20 0 0 20 0 0

30 0 0 30 90 or 270 0

40 0 0 40 90 or 270 0

50 0 0 50 90 or 270 0

60 0 0 60 90 or 270 0

70 0 0 70 90 or 270 0

80 0 0 80 90 or 270 0

90 0 0 90 90 or 270 0

100 0 0 100 90 or 270 0

_A140255.jpg

variable value rotation correct rotation

0 0 90

10 0 90

20 0 90

30 0 90

40 0 90

50 0 90

60 0 90

70 0 90

80 0 90

90 0 90

100 0 90

Counts

Correct rotation foundIncorrect rotation foundRejected

0 5 10 0

10 5 10 0

20 6 9 0

30 5 10 0

40 5 10 0

50 5 10 0

60 5 10 0

70 5 10 0

80 4 11 0

90 4 11 0

100 5 10 0

Rotation indoor edge Determination Results

Automatic Photograph Orientation April 2007

 Page 83 of 94

DSCF0163.jpg A bay on the ring or kerry, Ireland.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 0 0 0 0

10 90 or 270 0 10 0 0

20 90 or 270 0 20 0 0

30 90 or 270 0 30 0 0

40 90 or 270 0 40 0 0

50 90 or 270 0 50 0 0

60 90 or 270 0 60 0 0

70 90 or 270 0 70 0 0

80 90 or 270 0 80 0 0

90 90 or 270 0 90 0 0

100 90 or 270 0 100 0 0

DSC01637.jpg DSC01684.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 270 0 361 90

10 0 270 10 0 90

20 0 270 20 90 or 270 90

30 0 270 30 90 or 270 90

40 0 270 40 90 or 270 90

50 0 270 50 90 or 270 90

60 0 270 60 90 or 270 90

70 0 270 70 90 or 270 90

80 0 270 80 90 or 270 90

90 0 270 90 90 or 270 90

100 90 or 270 270 100 90 or 270 90

A lake in Southern Ireland.jpg DSCF1116.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 270 0 0 90

10 0 270 10 0 90

20 0 270 20 0 90

30 0 270 30 0 90

40 0 270 40 0 90

50 0 270 50 90 or 270 90

60 0 270 60 90 or 270 90

70 0 270 70 90 or 270 90

80 0 270 80 90 or 270 90

90 0 270 90 90 or 270 90

100 0 270 100 90 or 270 90

DSCF1282.jpg DSCF0153.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 270 0 0 270

10 0 270 10 0 270

20 0 270 20 0 270

30 0 270 30 0 270

40 0 270 40 0 270

50 0 270 50 0 270

60 0 270 60 0 270

70 0 270 70 0 270

80 0 270 80 0 270

90 0 270 90 0 270

100 90 or 270 270 100 0 270

DSCF0147.jpg DSC00703.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 0 0 0 0

10 90 or 270 0 10 90 or 270 0

20 90 or 270 0 20 90 or 270 0

30 90 or 270 0 30 90 or 270 0

40 90 or 270 0 40 90 or 270 0

50 90 or 270 0 50 90 or 270 0

60 90 or 270 0 60 90 or 270 0

70 90 or 270 0 70 90 or 270 0

80 90 or 270 0 80 90 or 270 0

90 90 or 270 0 90 90 or 270 0

100 90 or 270 0 100 90 or 270 0

DSCF0127.jpg Dolomites snow.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 0 0 90 or 270 270

10 90 or 270 0 10 90 or 270 270

20 90 or 270 0 20 90 or 270 270

30 90 or 270 0 30 90 or 270 270

40 90 or 270 0 40 90 or 270 270

50 90 or 270 0 50 90 or 270 270

60 90 or 270 0 60 90 or 270 270

70 90 or 270 0 70 90 or 270 270

80 90 or 270 0 80 90 or 270 270

90 90 or 270 0 90 90 or 270 270

100 90 or 270 0 100 90 or 270 270

DSC01173.jpg Sunset from my room 2.jpg

variable value rotation correct rotation variable value rotation correct rotation

0 0 270 0 90 or 270 0

10 0 270 10 90 or 270 0

20 0 270 20 90 or 270 0

30 0 270 30 90 or 270 0

40 0 270 40 90 or 270 0

50 0 270 50 90 or 270 0

60 0 270 60 90 or 270 0

70 0 270 70 90 or 270 0

80 0 270 80 90 or 270 0

90 0 270 90 90 or 270 0

100 0 270 100 90 or 270 0

View onto Dolomites.jpg

variable value rotation correct rotation

0 0 270

10 0 270

20 0 270

30 0 270

40 0 270

50 0 270

60 0 270

70 0 270

80 0 270

90 0 270

100 0 270

Counts

Correct rotation foundIncorrect rotation foundRejected

0 5 9 1

10 1 14 0

20 2 13 0

30 2 13 0

40 2 13 0

50 3 12 0

60 3 12 0

70 3 12 0

80 3 12 0

90 3 12 0

100 5 10 0

Rotation outdoor edge Determination Results

Automatic Photograph Orientation April 2007

 Page 84 of 94

1 4 . 2 . 2 C o n f i d e n c e R e s u l t s

DSC00145.jpg DSC01840.jpg

variable value confidence variable value confidence

0 63 0 -

5 66 5 -

10 63 10 -

15 61 15 -

20 61 20 -

25 60 25 -

30 56 30 -

35 52 35 -

40 48 40 -

45 44 45 -

50 42 50 -

DSCF0071.jpg DSCF0326.jpg

variable value confidence variable value confidence

0 - 0 -

5 - 5 -

10 - 10 -

15 - 15 -

20 - 20 -

25 - 25 -

30 - 30 -

35 - 35 -

40 - 40 -

45 - 45 -

50 - 50 -

DSCF0618.jpg DSCF0636.jpg

variable value confidence variable value confidence

0 - 0 -

5 - 5 -

10 - 10 -

15 - 15 -

20 - 20 -

25 - 25 -

30 - 30 -

35 - 35 -

40 - 40 -

45 - 45 -

50 - 50 -

DSCF1258.jpg Nick in the Gallery.jpg

variable value confidence variable value confidence

0 99 0 78

5 99 5 78

10 99 10 76

15 99 15 73

20 99 20 71

25 99 25 68

30 99 30 66

35 99 35 64

40 99 40 62

45 99 45 64

50 99 50 64

DSC00841.jpg DSC01434.jpg

variable value confidence variable value confidence

0 - 0 -

5 - 5 -

10 - 10 -

15 - 15 -

20 - 20 -

25 - 25 -

30 - 30 -

35 - 35 -

40 - 40 -

45 - 45 -

50 - 50 -

Count

avg confidence

0 80

5 81

10 79

15 78

20 77

25 76

30 74

35 72

40 70

45 69

50 68

Confidence indoor colour Results

DSCF0163.jpg DSCF0127.jpg

variable value confidence variable value confidence

0 100 0 100

5 100 5 100

10 100 10 100

15 100 15 100

20 100 20 100

25 99 25 100

30 99 30 100

35 99 35 100

40 99 40 99

45 99 45 97

50 99 50 93

DSC00703.jpg DSC01684.jpg

variable value confidence variable value confidence

0 100 0 100

5 100 5 100

10 100 10 100

15 100 15 99

20 99 20 99

25 95 25 99

30 85 30 99

35 74 35 99

40 63 40 99

45 53 45 99

50 42 50 99

DSCF1282.jpg DSCF1116.jpg

variable value confidence variable value confidence

0 100 0 93

5 100 5 90

10 100 10 89

15 100 15 90

20 100 20 89

25 100 25 90

30 100 30 90

35 100 35 89

40 100 40 86

45 99 45 83

50 99 50 77

DSC01173.jpg Sunset from my room 2.jpg

variable value confidence variable value confidence

0 100 0 90

5 100 5 90

10 100 10 90

15 100 15 83

20 100 20 83

25 100 25 82

30 100 30 80

35 100 35 73

40 99 40 61

45 98 45 50

50 97 50 32

DSCF0153.jpg View onto Dolomites.jpg

variable value confidence variable value confidence

0 100 0 81

5 100 5 90

10 97 10 89

15 97 15 89

20 97 20 89

25 97 25 89

30 96 30 89

35 96 35 86

40 96 40 82

45 96 45 76

50 96 50 69

Count

avg confidence

0 96

5 97

10 97

15 96

20 96

25 95

30 94

35 92

40 88

45 85

50 80

Confidence outdoor colour Results

Automatic Photograph Orientation April 2007

 Page 85 of 94

DSCF0326.jpg DSC00145.jpg

variable value confidence variable value confidence

0 1 0 14

10 66 10 26

20 63 20 42

30 62 30 62

40 60 40 75

50 69 50 -

60 69 60 -

70 69 70 -

80 69 80 -

90 69 90 -

100 69 100 -

DSC00841.jpg DSC01840.jpg

variable value confidence variable value confidence

0 24 0 27

10 73 10 50

20 100 20 48

30 100 30 71

40 100 40 88

50 100 50 98

60 100 60 100

70 100 70 100

80 100 80 100

90 100 90 100

100 100 100 100

DSC01496.jpg Nick in the Gallery.jpg

variable value confidence variable value confidence

0 0 0 2

10 68 10 54

20 94 20 53

30 99 30 54

40 100 40 62

50 100 50 68

60 100 60 60

70 100 70 48

80 100 80 100

90 100 90 -

100 100 100 -

DSCF0218.jpg DSCF0071.jpg

variable value confidence variable value confidence

0 11 0 8

10 98 10 75

20 98 20 68

30 98 30 51

40 98 40 54

50 98 50 77

60 98 60 100

70 98 70 100

80 98 80 100

90 98 90 100

100 98 100 100

Hugo interviews Paul_2.jpg DSCF1258.jpg

variable value confidence variable value confidence

0 7 0 15

10 57 10 52

20 65 20 87

30 73 30 100

40 81 40 -

50 85 50 -

60 93 60 -

70 96 70 -

80 100 80 -

90 100 90 -

100 100 100 -

DSC01434.jpg _A140255.jpg

variable value confidence variable value confidence

0 21 0 0

10 45 10 44

20 54 20 46

30 76 30 41

40 91 40 37

50 96 50 50

60 97 60 71

70 97 70 81

80 97 80 81

90 97 90 81

100 97 100 81

DSCF0636.jpg DSCF0618.jpg

variable value confidence variable value confidence

0 14 0 66

10 94 10 91

20 99 20 96

30 99 30 98

40 99 40 99

50 99 50 99

60 99 60 99

70 99 70 99

80 99 80 99

90 99 90 99

100 99 100 99

DSC01312.jpg Count

variable value confidence avg confidence

0 27 0 34

10 45 5 37

20 64 10 37

30 84 15 36

40 84 20 35

50 84 25 32

60 84 30 30

70 84 35 29

80 84 40 28

90 84 45 26

100 84 50 24

Confidence indoor complexity Results

View onto Dolomites.jpg DSCF0147.jpg

variable value confidence variable value confidence

0 30 0 41

10 46 10 90

20 22 20 97

30 69 30 99

40 82 40 100

50 88 50 100

60 92 60 100

70 - 70 100

80 - 80 100

90 - 90 100

100 - 100 100

DSCF0153.jpg DSCF1282.jpg

variable value confidence variable value confidence

0 14 0 18

10 36 10 85

20 86 20 81

30 97 30 74

40 100 40 73

50 100 50 -

60 100 60 -

70 - 70 -

80 - 80 -

90 - 90 -

100 - 100 -

DSC00703.jpg DSCF0163.jpg

variable value confidence variable value confidence

0 83 0 58

10 89 10 95

20 83 20 92

30 90 30 87

40 91 40 95

50 97 50 -

60 100 60 -

70 - 70 -

80 - 80 -

90 - 90 -

100 - 100 -

DSC01684.jpg DSCF1116.jpg

variable value confidence variable value confidence

0 10 0 49

10 71 10 80

20 97 20 83

30 100 30 91

40 - 40 96

50 - 50 97

60 - 60 -

70 - 70 -

80 - 80 -

90 - 90 -

100 - 100 -

DSC01637.jpg A lake in Southern Ireland.jpg

variable value confidence variable value confidence

0 51 0 27

10 99 10 72

20 100 20 99

30 100 30 99

40 100 40 100

50 100 50 100

60 100 60 100

70 100 70 -

80 100 80 -

90 100 90 -

100 100 100 -

DSC01173.jpg Dolomites snow.jpg

variable value confidence variable value confidence

0 57 0 9

10 89 10 65

20 83 20 74

30 61 30 72

40 17 40 81

50 83 50 100

60 97 60 100

70 97 70 100

80 - 80 100

90 - 90 100

100 - 100 100

DSCF0127.jpg Sunset from my room 2.jpg

variable value confidence variable value confidence

0 63 0 42

10 94 10 53

20 95 20 55

30 95 30 55

40 95 40 96

50 95 50 100

60 66 60 -

70 - 70 -

80 - 80 -

90 - 90 -

100 - 100 -

A bay on the ring of kerry, Ireland.jpg Count

variable value confidence avg confidence

0 0 0 34

10 35 5 37

20 72 10 37

30 78 15 36

40 80 20 35

50 80 25 32

60 82 30 30

70 77 35 29

80 75 40 28

90 100 45 26

100 100 50 24

Confidence outdoor complexity Results

Automatic Photograph Orientation April 2007

 Page 86 of 94

DSCF0618.jpg DSC01312.jpg

variable value confidence variable value confidence

0 89 0 74

10 85 10 67

20 76 20 57

30 69 30 50

40 64 40 46

50 57 50 40

60 52 60 36

70 48 70 34

80 45 80 32

90 43 90 30

100 37 100 23

DSC00145.jpg DSC00841.jpg

variable value confidence variable value confidence

0 53 0 9

10 43 10 7

20 36 20 0

30 32 30 2

40 30 40 4

50 26 50 5

60 23 60 6

70 22 70 6

80 20 80 6

90 19 90 6

100 14 100 12

DSCF0218.jpg Hugo interviews paul_2.jpg

variable value confidence variable value confidence

0 0 0 21

10 0 10 16

20 0 20 10

30 0 30 7

40 0 40 6

50 0 50 5

60 0 60 4

70 0 70 4

80 0 80 4

90 0 90 3

100 0 100 2

DSC01434.jpg DSC01840.jpg

variable value confidence variable value confidence

0 14 0 8

10 17 10 20

20 16 20 24

30 14 30 24

40 13 40 24

50 11 50 22

60 9 60 21

70 8 70 20

80 8 80 19

90 7 90 18

100 0 100 19

_A140255.jpg DSC01496.jpg

variable value confidence variable value confidence

0 20 0 15

10 13 10 7

20 9 20 0

30 8 30 3

40 7 40 4

50 6 50 5

60 5 60 6

70 5 70 6

80 4 80 6

90 4 90 6

100 0 100 10

Nick in the Gallery.jpg DSCF0636.jpg

variable value confidence variable value confidence

0 41 0 14

10 39 10 10

20 35 20 6

30 31 30 5

40 29 40 4

50 26 50 3

60 24 60 3

70 22 70 3

80 21 80 3

90 20 90 2

100 14 100 1

DSCF0326.jpg DSCF0071.jpg

variable value confidence variable value confidence

0 53 0 21

10 38 10 23

20 25 20 21

30 17 30 20

40 11 40 20

50 5 50 18

60 2 60 17

70 0 70 16

80 0 80 15

90 0 90 14

100 2 100 9

DSCF1258.jpg Count

variable value confidence avg confidence

0 38 0 31

10 32 5 28

20 25 10 23

30 21 15 20

40 19 20 19

50 16 25 16

60 15 30 15

70 14 35 14

80 13 40 13

90 12 45 12

100 5 50 10

Confidence indoor edge Results

DSCF0153.jpg Dolomites snow.jpg

variable value confidence variable value confidence

0 76 0 13

10 82 10 23

20 83 20 26

30 82 30 27

40 81 40 27

50 78 50 26

60 75 60 25

70 73 70 23

80 71 80 22

90 69 90 21

100 64 100 21

DSCF1282.jpg DSCF0127.jpg

variable value confidence variable value confidence

0 20 0 0

10 20 10 14

20 16 20 23

30 12 30 26

40 12 40 27

50 8 50 25

60 7 60 24

70 6 70 23

80 6 80 22

90 6 90 21

100 4 100 23

Sunset from my room 2.jpg DSC00703.jpg

variable value confidence variable value confidence

0 28 0 9

10 48 10 1

20 60 20 16

30 62 30 20

40 64 40 22

50 60 50 23

60 58 60 24

70 58 70 23

80 58 80 23

90 55 90 22

100 52 100 23

View onto Dolomites.jpg DSC01637.jpg

variable value confidence variable value confidence

0 77 0 25

10 68 10 23

20 54 20 16

30 45 30 13

40 40 40 12

50 33 50 8

60 29 60 6

70 26 70 6

80 24 80 5

90 22 90 5

100 17 100 2

A lake in Southern Ireland.jpg DSCF1116.jpg

variable value confidence variable value confidence

0 91 0 20

10 84 10 12

20 76 20 5

30 70 30 2

40 66 40 0

50 61 50 0

60 57 60 1

70 54 70 1

80 51 80 1

90 49 90 1

100 44 100 6

DSC01173.jpg DSCF0147.jpg

variable value confidence variable value confidence

0 19 0 0

10 20 10 19

20 17 20 31

30 16 30 34

40 15 40 36

50 13 50 34

60 11 60 33

70 10 70 32

80 10 80 31

90 9 90 30

100 4 100 30

DSCF1258.jpg A bay on the ring of kerry, Ireland.jpg

variable value confidence variable value confidence

0 38 0 92

10 32 10 87

20 25 20 79

30 21 30 71

40 19 40 66

50 16 50 59

60 15 60 55

70 14 70 51

80 13 80 48

90 12 90 45

100 5 100 40

DSCF0163.jpg Count

variable value confidence avg confidence

0 3 0 34

10 18 5 37

20 31 10 37

30 35 15 36

40 37 20 35

50 35 25 32

60 33 30 30

70 32 35 29

80 31 40 28

90 30 45 26

100 30 50 24

Confidence outdoor edge Results

Automatic Photograph Orientation April 2007

 Page 87 of 94

C
o
lo
u
r

I
n
d
o
o
r

O
u
t
d
o
o
r

0
8
0

9
6

5
8
1

9
7

1
0

7
9

9
7

1
5

7
8

9
6

2
0

7
7

9
6

2
5

7
6

9
5

3
0

7
4

9
4

3
5

7
2

9
2

4
0

7
0

8
8

4
5

6
9

8
5

5
0

6
8

8
0

C
o
m
p
le
x
it
y

I
n
d
o
o
r

O
u
t
d
o
o
r

0
3
4

3
4

5
3
7

3
7

1
0

3
7

3
7

1
5

3
6

3
6

2
0

3
5

3
5

2
5

3
2

3
2

3
0

3
0

3
0

3
5

2
9

2
9

4
0

2
8

2
8

4
5

2
6

2
6

5
0

2
4

2
4

E
d
g
e

I
n
d
o
o
r

O
u
t
d
o
o
r

0
3
1

3
4

5
2
8

3
7

1
0

2
3

3
7

1
5

2
0

3
6

2
0

1
9

3
5

2
5

1
6

3
2

3
0

1
5

3
0

3
5

1
4

2
9

4
0

1
3

2
8

4
5

1
2

2
6

5
0

1
0

2
4

Confidence overall Results

1 4 . 2 . 3 C o l l a b o r a t i v e R e s u l t s

O
u

td
o

o
r
 i

m
a
g

e
s

fo
r
 N

=
5

%
,

T
=

2
0

%
,

S
=

1
0

0
%

Im
a
g
e

C
o
n
fi
d
e
n
c
e

R
o
ta

ti
o
n

C
o
rr

e
c
t

ro
ta

ti
o
n

A
 b

a
y
 o

n
 t

h
e
 r

in
g
 o

f
k
e
y
y
,

Ir
e
la

n
d
.j

p
g

4
6

0
0

A
 l
a
k
e
 i
n
 S

o
u
th

e
rn

 I
re

la
n
d

6
0

0
2
7
0

B
ri
d
g
e
.j

p
g

9
0

0
0

D
o
lo

m
it
e
s
 s

n
o
w

.j
p
g

4
2

2
7
0

2
7
0

D
S
C
0
0
7
0
3
.j

p
g

9
1

0
0

D
S
C
0
1
0
7
0
.j

p
g

9
9

2
7
0

2
7
0

D
S
C
0
1
1
7
3
.j

p
g

9
1

2
7
0

2
7
0

D
S
C
0
1
6
3
1
.j

p
g

9
9

0
0

D
S
C
0
1
6
3
7
.j

p
g

5
0

2
7
0

2
7
0

D
S
C
0
1
6
8
4
.j

p
g

5
1

9
0

9
0

D
S
C
F
0
0
9
8
.j

p
g

7
0

9
0

9
0

D
S
C
F
0
1
2
7
.j

p
g

9
7

0
0

D
S
C
F
0
1
4
7
.j

p
g

9
7

0
0

D
S
C
F
0
1
5
3
.j

p
g

1
0
0

2
7
0

2
7
0

D
S
C
F
0
1
6
3
.j

p
g

9
6

0
0

D
S
C
F
0
1
6
6
.j

p
g

9
4

2
7
0

2
7
0

D
S
C
F
0
3
2
9
.j

p
g

5
1

9
0

9
0

D
S
C
F
0
7
1
1
.j

p
g

9
2

0
0

D
S
C
F
1
1
1
6
.j

p
g

5
8

9
0

9
0

D
S
C
F
1
2
8
2
.j

p
g

6
1

2
7
0

2
7
0

D
S
C
F
1
3
8
9
.j

p
g

1
9

2
7
0

2
7
0

D
S
C
F
1
4
1
3
.j

p
g

1
0
0

2
7
0

2
7
0

H
u
g
o
.j

p
g

7
8

9
0

2
7
0

S
u
n
s
e
t

fr
o
m

 m
y
 r

o
o
m

 2
.j

p
g

9
0

0
0

V
ie

w
 o

n
to

 D
o
lo

m
it
e
s
.j

p
g

9
0

2
7
0

2
7
0

I
n

d
o

o
r
 i

m
a
g

e
s

fo
r
 N

=
5

%
,

T
=

2
0

%
,

S
=

1
0

0
%

Im
a
g
e

C
o
n
fi
d
e
n
c
e

R
o
ta

ti
o
n

C
o
rr

e
c
t

ro
ta

ti
o
n

_
A
1
4
9
2
5
5
.j

p
g

2
3

0
9
0

_
A
1
4
0
2
5
9
.j

p
g

9
6

0
0

D
S
C
0
0
1
4
5
.j

p
g

3
4

0
2
7
0

D
S
C
0
0
8
4
1
.j

p
g

5
3

2
7
0

0

D
S
C
0
1
1
8
9
.j

p
g

7
6

0
0

D
S
C
0
1
3
1
2
.j

p
g

6
4

9
0

9
0

D
S
C
0
1
4
3
4
.j

p
g

5
4

9
0

0

D
S
C
0
1
4
9
6
.j

p
g

9
4

0
9
0

D
S
C
0
1
7
6
2
.j

p
g

8
7

0
9
0

D
S
C
0
1
8
4
0
.j

p
g

4
8

0
2
7
0

D
S
C
F
0
0
7
1
.j

p
g

3
6

0
9
0

D
S
C
F
0
0
8
1
.j

p
g

8
9

9
0

9
0

D
S
C
F
0
0
8
7
.j

p
g

1
2

0
0

D
S
C
F
0
1
3
7
.j

p
g

8
3

9
0

9
0

D
S
C
F
0
2
1
8
.j

p
g

1
0
1

3
6
1

0

D
S
C
F
0
2
5
1
.j

p
g

3
5

0
9
0

D
S
C
F
0
3
2
6
.j

p
g

3
2

2
7
0

0

D
S
C
F
0
6
1
8
.j

p
g

9
6

2
7
0

2
7
0

D
S
C
F
0
6
3
6
.j

p
g

9
9

0
0

D
S
C
F
0
7
3
2
.j

p
g

4
4

9
0

2
7
0

D
S
C
F
0
8
0
4
.j

p
g

3
1

9
0

0

D
S
C
F
1
2
5
8
.j

p
g

9
3

2
7
0

2
7
0

H
u
g
o
 i
n
te

rv
ie

w
s
 P

a
u
l_

2
.j

p
g

3
3

9
0

9
0

N
ic

k
 i
n
 t

h
e
 G

a
ll
e
ry

.j
p
g

3
9

0
2
7
0

R
ic

h
a
rd

 a
t

th
e
 v

is
io

n
 m

ix
in

g
 d

e
s
k
.j

p
g

7
9

9
0

2
7
0

C
o

u
n

ts

C
o
rr

e
c
t

ro
ta

ti
o
n
 f

o
u
n
dIn

c
o
rr

e
c
t

ro
ta

ti
o
n
 f
o
u
n
dR
e
je

c
te

d

In
d
o
o
r

1
0

1
4

1

O
u
td

o
o
r

2
3

2
0

Automatic Photograph Orientation April 2007

 Page 88 of 94

14.3 Appendix C - Source Code

14.3.1 Interface Controller

Printed: 24/04/2007 09:43 Page 1

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.mm

#import "RotationController.h"

@implementation RotationController

/* Called on interface 'waking'. Initialises variables */

- (void)awakeFromNib

{

//Create data structructure for list of images

records = [[NSMutableArray alloc] init];

//Timer to control refresh of preview information

timer = [NSTimer scheduledTimerWithTimeInterval: 0.1

 target: self

 selector: @selector(handleTimer:)

 userInfo: nil

 repeats: YES];

//Set progress indicator to update on a seperate

//thread to the application loop

[progressInd setUsesThreadedAnimation:YES];

//Set minimum confidence level

minConfidence = 25;

}

/* Method to add files to the datastructure */

- (IBAction)addFiles:(id)sender

{

/* Open a file selector window with a limit of available file types */

NSOpenPanel *panel = [NSOpenPanel openPanel];

[panel setCanChooseDirectories: NO];

[panel setCanChooseFiles: YES];

[panel setAllowsMultipleSelection: YES];

NSArray* fileTypes = [NSArray arrayWithObjects:@"jpg", @"JPG", @"gif", @"GIF", @"

png", @"PNG", nil];

[panel setTitle: @"Please Choose Some Images"];

[panel setPrompt: @"Choose"];

//Variables to store in

NSArray* fileList;

int chosen;

//Run the file selector, storing in variables

if (chosen = [panel runModalForTypes: fileTypes]) {

fileList = [panel filenames];

}

//Check if the cancel button was hit

if(chosen != 0) {

NSEnumerator *enumerator = [fileList objectEnumerator];

id object;

//Enumerate over array

Printed: 24/04/2007 09:43 Page 2

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.mm

while (object = [enumerator nextObject]) {

//Get file path out

NSString *path = object;

//Create a record (multi-part 'dictionary')

NSMutableDictionary *record = [[NSMutableDictionary alloc] init];

//Set objects in the dictionary for: the image path, codes that it's

unchecked,

//that there's no valid preview.

[record setObject:path forKey:@"ImagePath"];

[record setObject:[NSNumber numberWithInt:101] forKey:@"Confidence"];

[record setObject:[NSNumber numberWithInt:361] forKey:@"Rotation"];

[record setObject:[NSNumber numberWithInt:0] forKey:@"previewValid"];

//Add record to array

[records addObject:record];

}

[files reloadData]; //Call for reload of the data to the table

[files deselectAll:self]; //Deselect all rows in the file list

}

}

/* Method to remove selected files from the datastructure */

- (IBAction)deleteFiles:(id)sender

{

//Get the selected rows of the file list

NSIndexSet *indexSet = [files selectedRowIndexes];

unsigned int numberSelected = [indexSet count];

//Check for no files selected

if (numberSelected == 0) {

NSRunAlertPanel(@"Error",@"No files selected to remove.",@"OK",NULL,NULL);

 return;

}

//Move selected indexes into buffer

unsigned indexBuffer[numberSelected];

unsigned limit = [indexSet getIndexes:indexBuffer maxCount:[indexSet count]

inIndexRange:NULL];

unsigned idx;

//Create temp variables to save to

NSMutableArray *tempArray = [NSMutableArray array];

id tempObject;

//Store each object to be removed in a temporary array

for (idx = 0; idx < limit; idx++) {

tempObject = [records objectAtIndex:indexBuffer[idx]];

[tempArray addObject:tempObject];

}

Printed: 24/04/2007 09:43 Page 3

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.mm

//Now remove all these objects

[records removeObjectsInArray:tempArray];

//Call to reload the data to the table

[files reloadData];

//Deselect all rows in the file list

[files deselectAll:self];

}

/* Overwrite abstract method for datastructure of a table, returns number of table

rows */

- (int)numberOfRowsInTableView:(NSTableView *)aTableView

{

return [records count];

}

/* Overwrite abstract method for datastructure of a table, returns information obout

the cell specified*/

- (id)tableView:(NSTableView *)aTableView

 objectValueForTableColumn:(NSTableColumn *)aTableColumn

 row:(int)rowIndex

{

//Store data from datastructure about specified cell

id theRecord, theValue;

theRecord = [records objectAtIndex:rowIndex];

NSString *ident = [aTableColumn identifier];

theValue = [theRecord objectForKey:ident];

//Look for confidence error code

//Return "Unchecked" if value is 101, or value + "%" if not

if([ident compare:@"Confidence"] == NSOrderedSame) {

if([theValue intValue] == 101)

return @"Unchecked";

else

return [NSString stringWithFormat:@"%d%@", [theValue intValue],

 @"%"];

}

//Look for rotation error code

//Return "-" if value is 361, or value + "°" if not

if([ident compare:@"Rotation"] == NSOrderedSame) {

if([theValue intValue] == 361)

return @"-";

else

return [NSString stringWithFormat:@"%d%@", [theValue intValue],

 @"°"];

}

//Otherwise just return the value

Printed: 24/04/2007 09:43 Page 4

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.mm

return theValue;

}

/* Method to process the opened files */

 /* The datastructure is queried, the number of files checked for 0 result.

 * The buttons disabled

 * Data inputs on the interface and the saving checked

 * For each file in the datastructure the path is passed to be processed and the

progress tracked

 * on the interface progress bar

 * Errors are detected from the returned values

 * The interface is told to refresh and the buttons are enabled again.

 */

- (IBAction)processList:(id)sender

{

//Get number of files in data structure

int numberOfFiles = [records count];

//Check for files existing

if(numberOfFiles != 0) {

//Disable all the buttons

[self disableButtons];

//Set progress bar max to number of images

[progressInd setMaxValue: numberOfFiles];

//Get slider values

int segments = [segmentsSlider intValue];

int threshold = [thresholdSlider intValue];

int spread = [spreadValueSlider intValue];

//Get save checkbox value

int save = [saveTick intValue];

//Get save location

NSString *savePath = [saveLocation stringValue];

//Ensure checkbox value is 1 or 0

//Adjust values for sliders at 0

if(save != 1 && save != 0) { save = 1; }

if(segments == 0) { segments = 1; }

if(threshold == 0) { threshold = 1; }

if(spread < 4) { spread = 4; }

//Check for no save path supplied when save checkbox is checked

//Check for valid directory URL

if([savePath length] == 0 && save == 1) {

//Run error alert

NSRunAlertPanel(@"Error",@"Please choose a location to save if you wish t

o save the images on processing.",@"OK",NULL,NULL);

//Enable all the buttons and return out

[self enableButtons];

Automatic Photograph Orientation April 2007

 Page 89 of 94

Printed: 24/04/2007 09:43 Page 5

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.mm

return;

} else if([savePath length] != 0 && save == 1) {

//Check for valid directory path with NSURL

NSURL *url = [NSURL URLWithString:savePath];

BOOL isValid = [url isFileURL];

//If invalid

if(!isValid) {

//Run error alert

NSRunAlertPanel(@"Error",@"There was a problem with the directory you

specified to save to. Please check this directory is valid.",@"OK",NULL,NULL);

//Enable all the buttons and return out

[self enableButtons];

return;

}

}

//Set low confidence tracker

bool lowConf = NO;

//Loop over all files

for(int n = 0; n < numberOfFiles; n++) {

//Get record to look at

id theRecord = [records objectAtIndex:n];

//Store file path

NSString *filePath = [theRecord objectForKey:@"ImagePath"];

//Increment progress indicator

[progressInd incrementBy: 1];

//Redraw the window to update progress indicator

[[NSRunLoop currentRunLoop] runMode:NSEventTrackingRunLoopMode

beforeDate:[NSDate date]];

//Convert file path to string for C++

unsigned int filePathLength = [filePath length];

char temp[filePathLength + 1];

strcpy(temp, [filePath cString]);

//Create temporary variables and create C++ object

int isDone;

int rotation;

int confidence;

Image* myCppImage;

myCppImage = new Image(temp);

//Do this to save

if(save == 1) {

//Get filename

NSArray *separatedPath = [filePath componentsSeparatedByString:@"/"];

NSString *fileNameString = [separatedPath

Printed: 24/04/2007 09:43 Page 6

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.mm

objectAtIndex:([separatedPath count] - 1)];

//Concatenate file name onto save path

NSString *fullSavePath = [NSString stringWithFormat:@"%@%@",

savePath,

fileNameString];

//Covert the save path to C++ char array

unsigned int savePathLength = [fullSavePath length];

char temp2[savePathLength + 1];

strcpy(temp2, [fullSavePath cString]);

//Run processing method on C++ object with parameters

isDone = myCppImage -> processImage(segments, threshold, spread, save

, temp2);

} else

isDone = myCppImage -> processImage(segments, threshold, spread, save

, NULL);

//Check if an error was encountered (0 == error)

if(isDone == 1) {

//Get determined rotation and confidence

confidence = myCppImage -> getConfidence();

rotation = myCppImage -> getRotation();

//Store determined confidence and rotation, store that no valid

preview

[theRecord setObject:[NSNumber numberWithInt:confidence]

forKey:@"Confidence"];

[theRecord setObject:[NSNumber numberWithInt:rotation]

forKey:@"Rotation"];

[theRecord setObject:[NSNumber numberWithInt:0]

forKey:@"previewValid"];

} else {

//Run error alert

NSString *errPath = [NSString stringWithFormat:@"%@%@%@",

 @"There was an error i

n processing the file at path: ",

 filePath,

 @". This could be due

to a system error or that no determination could be made with the set variables."];

NSRunAlertPanel(@"Error",errPath,@"OK",NULL,NULL);

}

//Delete C++ object as it's no longer needed

delete myCppImage;

//Check for low confidence

if(confidence < minConfidence)

lowConf = YES;

}

//On finish reset progress bar

Printed: 24/04/2007 09:43 Page 7

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.mm

[progressInd setDoubleValue: 0];

//Call to reload the data to the table

[files reloadData];

//Deselect all rows in the file list

[files deselectAll:self];

//Enable all buttons

[self enableButtons];

//Run alert if any images had low confidence

if(lowConf)

NSRunAlertPanel(@"Warning",@"Some files have a low confidence of rotation

.",@"OK",NULL,NULL);

} else

NSRunAlertPanel(@"Error",@"There are no files to process.",@"OK",NULL,NULL);

}

/* Method to disable all buttons on the interface */

- (void)disableButtons

{

[segmentsSlider setEnabled:NO];

[thresholdSlider setEnabled:NO];

[spreadValueSlider setEnabled:NO];

[addButton setEnabled:NO];

[minusButton setEnabled:NO];

[removeAllButton setEnabled:NO];

[toggleInfoButton setEnabled:NO];

[chooseButton setEnabled:NO];

[saveTick setEnabled:NO];

[processButton setEnabled:NO];

}

/* Method to enable all buttons on the interface */

- (void)enableButtons

{

[segmentsSlider setEnabled:YES];

[thresholdSlider setEnabled:YES];

[spreadValueSlider setEnabled:YES];

[addButton setEnabled:YES];

[minusButton setEnabled:YES];

[removeAllButton setEnabled:YES];

[toggleInfoButton setEnabled:YES];

[chooseButton setEnabled:YES];

[saveTick setEnabled:YES];

[processButton setEnabled:YES];

}

Printed: 24/04/2007 09:43 Page 8

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.mm

/* Methood called to choose a saving location */

- (IBAction)chooseSave:(id)sender

{

//Set file selector options

NSOpenPanel *panel = [NSOpenPanel openPanel];

[panel setCanChooseDirectories: YES];

[panel setCanChooseFiles: NO];

[panel setTitle: @"Please Choose A Folder"];

[panel setPrompt: @"Choose"];

//Variable to check for cancel button hit

int chosen;

//Run panel

if(chosen = [panel runModalForTypes: nil]) {

//Check for cancel button being hit

if(chosen != 0) {

//Get the directory path, append a "/", set it in text field

NSString *path = [[panel filenames] objectAtIndex: 0];

NSString *absPath = [NSString stringWithFormat:@"%@/",

path];

[saveLocation setStringValue:absPath];

}

}

}

/* Tick/untick the save tick box */

- (IBAction)tickSave:(id)sender

{

[saveTick setState:![saveTick state]];

}

/* Increment the segments slider */

- (IBAction)incrementN:(id)sender

{

[segmentsSlider setIntValue:([segmentsSlider intValue] + 1)];

}

/* Increment the threshold slider */

- (IBAction)incrementT:(id)sender

{

[thresholdSlider setIntValue:([thresholdSlider intValue] + 1)];

}

/* Increment the spread slider */

- (IBAction)incrementS:(id)sender

{

[spreadValueSlider setIntValue:([spreadValueSlider intValue] + 1)];

}

/* Decrement the segments slider */

- (IBAction)decrementN:(id)sender

{

Automatic Photograph Orientation April 2007

 Page 90 of 94

Printed: 24/04/2007 09:43 Page 9

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.mm

[segmentsSlider setIntValue:([segmentsSlider intValue] - 1)];

}

/* Decrement the threshold slider */

- (IBAction)decrementT:(id)sender

{

[thresholdSlider setIntValue:([thresholdSlider intValue] - 1)];

}

/* Decrement the spread slider */

- (IBAction)decrementS:(id)sender

{

[spreadValueSlider setIntValue:([spreadValueSlider intValue] - 1)];

}

/* Method to remove all files */

- (IBAction)clearFiles:(id)sender

{

//Get number of files in lsit

int total = [records count];

//Loop over files removing each

for(int n = 0; n < total; n++) {

[records removeObjectAtIndex:0];

}

//Call to reload the data to the table

[files reloadData];

//Deselect all rows in the file list

[files deselectAll:self];

}

/* Toggle the info drawer */

- (IBAction)toggleDrawer:(id)sender

{

[drawer toggle:self];

}

/* This method is called by the timer refreshing the info drawer contents */

- (void)handleTimer:(NSTimer *)timer

{

//Check that the drawer is not closed

if([drawer state] != 0) {

//Count number of selected files

NSIndexSet *indexSet = [files selectedRowIndexes];

unsigned int numberSelected = [indexSet count];

//Set "No files selected"

if(numberSelected == 0)

[drawer setContentView:noSelectionView];

//Set "Multiple files selected"

Printed: 24/04/2007 09:43 Page 10

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.mm

if(numberSelected > 1)

[drawer setContentView:multipleSelectionView];

//Set info about selected file

if(numberSelected == 1) {

//Get the record from the datastructure of the selected file

unsigned indexBuffer[numberSelected];

unsigned limit = [indexSet getIndexes:indexBuffer maxCount:[indexSet coun

t] inIndexRange:NULL];

NSMutableDictionary *record = [records objectAtIndex:indexBuffer[0]];

//Get values from the record

int confidence = [[record objectForKey:@"Confidence"] intValue];

int rotation = [[record objectForKey:@"Rotation"] intValue];

int previewValid = [[record objectForKey:@"previewValid"] intValue];

NSString *path = [record objectForKey:@"ImagePath"];

//This is added if confidence is below the set level

NSString *append = @"";

if(confidence < minConfidence)

append = @" (!!!)";

/* SET FILE NAME */

NSArray *separatedPath = [path componentsSeparatedByString:@"/"];

NSString *fileNameString = [separatedPath objectAtIndex:([separatedPath

count] - 1)];

[imageFileName setStringValue:fileNameString];

/* SET FILE PATH */

[imagePath setStringValue:path];

/* SET CONFIDENCE */

NSString *conf;

if(confidence == 101)

conf = @"Not processed";

else

conf = [NSString stringWithFormat:@"%d%@%@", confidence,

 @"%",

 append];

[imageConfidence setStringValue:conf];

/* SET ROTATION */

NSString *rota;

if(rotation == 361)

rota = @"Not processed";

else

rota = [NSString stringWithFormat:@"%d° CW%@", rotation,

 append];

[imageRotation setStringValue:rota];

/* SET FILE TYPE */

NSString *extension = [path substringFromIndex:([path length]-4)];

if([extension compare:@".jpg"] == NSOrderedSame || [extension compare:@".

Printed: 24/04/2007 09:43 Page 11

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.mm

JPG"] == NSOrderedSame)

[imageKind setStringValue:@"JPEG"];

if([extension compare:@".gif"] == NSOrderedSame || [extension compare:@".

GIF"] == NSOrderedSame)

[imageKind setStringValue:@"GIF"];

if([extension compare:@".png"] == NSOrderedSame || [extension compare:@".

PNG"] == NSOrderedSame)

[imageKind setStringValue:@"PNG"];

/* SET IMAGE PREVIEW */

NSImage *previewImage;

//Check is image has valid preview

if(previewValid == 0) {

//Get NSURL of file path

NSURL *fileUrl = [NSURL fileURLWithPath:path];

//Read in the image as an NSImage

previewImage = [[NSImage alloc] initWithContentsOfURL:fileUrl];

//Check for rotation of 90 or 270

if(rotation == 90 || rotation == 270) {

//Call to rotate the preview image

//correct rotation by +180 as rotate method does CCW when we want

CW

previewImage = [self rotateIndividualImage:previewImage

by:(rotation+180)];

}

//Set NSImage in data structure

[record setObject:previewImage forKey:@"previewImage"];

//Set that there is a valid preview

[record setObject:[NSNumber numberWithInt:1] forKey:@"previewValid"];

} else {

//Set stored NSImage

previewImage = [record objectForKey:@"previewImage"];

}

//Set image in frame on info drawer

[imagePreview setImageScaling:NSScaleProportionally];

[imagePreview setImage:previewImage];

/* SET CONTENT VIEW TO DRAWER */

[drawer setContentView:drawerView];

}

}

}

/* This method is to rotate an image by 90 or 270 degrees

 *

 * This code taken from: http://www.chipmunkninja.com/article/nsimagerotate

 * modified very slightly

Printed: 24/04/2007 09:43 Page 12

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.mm

 */

- (NSImage *)rotateIndividualImage:(NSImage *)image by:(int)alpha

{

 NSSize existingSize = [image size];

NSSize newSize = NSMakeSize(existingSize.height, existingSize.width);

 NSImage *rotatedImage = [[NSImage alloc] initWithSize:newSize];

NSAffineTransform *rotateTF = [NSAffineTransform transform];

 [rotatedImage lockFocus];

 NSPoint centerPoint = NSMakePoint(newSize.width / 2, newSize.height / 2);

 [rotateTF translateXBy: centerPoint.x yBy: centerPoint.y];

 [rotateTF rotateByDegrees: alpha];

 [rotateTF translateXBy: -centerPoint.y yBy: -centerPoint.x];

 [rotateTF concat];

 [image drawAtPoint:NSZeroPoint

 fromRect:NSMakeRect(0, 0, existingSize.width, existingSize.height)

 operation:NSCompositeSourceOver

 fraction:1.0];

 [rotatedImage unlockFocus];

 return rotatedImage;

}

@end

Automatic Photograph Orientation April 2007

 Page 91 of 94

1 4 . 3 . 2 I m a g e P r o c e s s i n g

Printed: 24/04/2007 09:46 Page 1

/Users/admin/Dev/3rd Year Project/Rotation/Image.cpp

#include "Image.h"

/* Constructor for a new image, which can be proccessed */

Image::Image(const char* fileLoc)

{

//The image path is stored and the value of PI is set.

filePath = fileLoc;

pi = 3.141592654;

}

/* Process the image with the passed parameters */

int Image::processImage(int N, int T, int S, int save, const char* savePath)

{

//Load the image at filePath

CImg<unsigned char> image(filePath);

//Create temp grayscale image

CImg<unsigned char> grayscale;

//Get number of colour channels

int v = image.dimv();

//If image is garyscale skip colour determination,

//if not run colour determination then convert to grayscale

if(v != 1) {

colour(image, N); //Perform colour determination

grayscale = toGrayscale(image); //Convert image to grayscale

} else {

//Store invalid values for colour determination

colourRotation = 361;

colourConfidence = 101;

grayscale = image;

}

complexity(grayscale, T); //Perform complexity determination

edge(grayscale, S); //Perform edge determination

//Run decision merging

//returns 0 if no determination made (error), 1 if else (OK)

int found = calculateRotationsAndConfidences();

//Check for no error and wishing to save.

if((found == 1) && (save == 1)) {

//Rotate image to amount

image.rotate(rotation);

//Save rotated image

image.save(savePath);

}

//Return 1 or 0 (error or not)

return found;

}

Printed: 24/04/2007 09:46 Page 2

/Users/admin/Dev/3rd Year Project/Rotation/Image.cpp

/* Convert the parameter image to grayscale and return the converted image */

CImg<unsigned char> Image::toGrayscale(CImg<unsigned char> image) {

//Create greyscale image of same dimensions

CImg<unsigned char> grayscale(image.dimx(), image.dimy());

//Convert original image to grayscale, storing in new image

cimg_mapXY(image,x,y)

grayscale(x,y) = 0.3 * image(x,y,0) + 0.59 * image(x,y,1) + 0.11 *

image(x,y,2);

//Return grayscale converted image

return grayscale;

}

/* Run decision merging to find the winning rotation and confidence */

int Image::calculateRotationsAndConfidences() {

//"edgeRotation = 1" is 0 or 180 degrees, "edgeRotation = 2" is 90 or 270 degrees

//"rotation = 361" or "confidence = 101" indicates error code

//Set up counters and toggle

int zeroCounter = 0;

int zeroToggle = 0;

int ninetyCounter = 0;

int ninetyToggle = 0;

int oneEightyCounter = 0;

int oneEightyToggle = 0;

int twoSeventyCounter = 0;

int twoSeventyToggle = 0;

//Check for colour error code

//Store the colour determination and confidence

if(colourConfidence != 101) {

if(colourRotation == 0) {

zeroCounter = zeroCounter + colourConfidence;

zeroToggle++;

} else if(colourRotation == 90) {

ninetyCounter = ninetyCounter + colourConfidence;

ninetyToggle++;

} else if(colourRotation == 180) {

oneEightyCounter = oneEightyCounter + colourConfidence;

oneEightyToggle++;

} else if(colourRotation == 270) {

twoSeventyCounter = twoSeventyCounter + colourConfidence;

twoSeventyToggle++;

}

}

//Check for complexity error code

//Store the complexity determination and confidence

if(complexityConfidence != 101) {

if(complexityRotation == 0) {

zeroCounter = zeroCounter + complexityConfidence;

Printed: 24/04/2007 09:46 Page 3

/Users/admin/Dev/3rd Year Project/Rotation/Image.cpp

zeroToggle++;

} else if(complexityRotation == 90) {

ninetyCounter = ninetyCounter + complexityConfidence;

ninetyToggle++;

} else if(complexityRotation == 180) {

oneEightyCounter = oneEightyCounter + complexityConfidence;

oneEightyToggle++;

} else if(complexityRotation == 270) {

twoSeventyCounter = twoSeventyCounter + complexityConfidence;

twoSeventyToggle++;

}

}

//Check for edge error code

//Store the edge determination and confidence

if(edgeConfidence != 101) {

int temp = 0;

if(edgeConfidence != 0)

temp = (edgeConfidence/2);

if(edgeRotation == 1) {

zeroCounter = zeroCounter + temp;

zeroToggle++;

oneEightyCounter = oneEightyCounter + temp;

oneEightyToggle++;

} else if(edgeRotation == 2) {

ninetyCounter = ninetyCounter + temp;

ninetyToggle++;

twoSeventyCounter = twoSeventyCounter + temp;

twoSeventyToggle++;

}

}

//Check if no determinations were made

//Find the counter that is the highest, this indicates the most common rotation

determined

//Set final confidence and rotation

if((zeroToggle != 0) || (ninetyToggle != 0) || (oneEightyToggle != 0) ||

(twoSeventyToggle != 0)) {

if((zeroCounter > ninetyCounter) && (zeroCounter > oneEightyCounter) && (zero

Counter > twoSeventyCounter)) {

confidence = zeroCounter / zeroToggle;

rotation = 0;

} else if((ninetyCounter > zeroCounter) && (ninetyCounter > oneEightyCounter)

&& (ninetyCounter > twoSeventyCounter)) {

confidence = ninetyCounter / ninetyToggle;

rotation = 90;

} else if((oneEightyCounter > zeroCounter) && (oneEightyCounter > ninetyCount

er) && (oneEightyCounter > twoSeventyCounter)) {

confidence = oneEightyCounter / oneEightyToggle;

rotation = 180;

} else if((twoSeventyCounter > zeroCounter) && (twoSeventyCounter > ninetyCou

nter) && (twoSeventyCounter > oneEightyCounter)) {

confidence = twoSeventyCounter / twoSeventyToggle;

Printed: 24/04/2007 09:46 Page 4

/Users/admin/Dev/3rd Year Project/Rotation/Image.cpp

rotation = 270;

} else {

//Store error codes, return error code 0

rotation = 361;

confidence = 101;

return 0;

}

} else {

//Store error codes, return error code 0

rotation = 361;

confidence = 101;

return 0;

}

//Set result of 180 to be 0 as we never rotate 180

if(rotation == 180)

rotation = 0;

//Return OK code

return 1;

}

/* Perform colour determination on the parameter image */

void Image::colour(CImg<unsigned char> image, int segments) {

//Get image height and width

int width = image.dimx();

int height = image.dimy();

//Get pixel size of segments

int widthN = width * (segments/100.0);

int heightN = height * (segments/100.0);

//Variable to keep track of the side being examined

int side = 0;

//Set up counter arrays

int redCount[4] = {0,0,0,0};

int greenCount[4] = {0,0,0,0};

int blueCount[4] = {0,0,0,0};

//Loop over image, border of heightN (top and bottom)

cimg_for_borderXY(image,x,y,heightN) {

//Check if we're in top or bottom

//Set "side" to 1 if top or 0 for bottom

if((side = (y < heightN)) || (y > height - heightN)){

//Get RGB values

int red = image(x,y,0);

int green = image(x,y,1);

int blue = image(x,y,2);

//Increment counts for dominant colours

if((red > green) && (red > blue))

redCount[side]++;

Automatic Photograph Orientation April 2007

 Page 92 of 94

Printed: 24/04/2007 09:46 Page 5

/Users/admin/Dev/3rd Year Project/Rotation/Image.cpp

if((green > red) && (green > blue))

greenCount[side]++;

if((blue > red) && (blue > green))

blueCount[side]++;

}

}

//Loop over image, border of widthN (left and right)

cimg_for_borderXY(image,x,y,widthN) {

//Check if we're in left or right

//Set "side" to 0 if left or 1 if right

if((side = (x < widthN)) || (x > width - widthN)) {

//Adjust side

side = side + 2;

//Get RGB values

int red = image(x,y,0);

int green = image(x,y,1);

int blue = image(x,y,2);

//Increment counts for dominant colours

if((red > green) && (red > blue))

redCount[side]++;

if((green > red) && (green > blue))

greenCount[side]++;

if((blue > red) && (blue > green))

blueCount[side]++;

}

}

//Create a confidences array

int confidences[4] = {0,0,0,0};

//Loop over counters

for(int idx = 0; idx < 4; idx++) {

//Check for blue counter being largest

if((blueCount[idx] > redCount[idx]) && (blueCount[idx] > greenCount[idx])) {

//Deal with infinity (don't divide by 0) and store confidence

float temp = ((redCount[idx] + greenCount[idx])/2.0);

if(temp == 0)

confidences[idx] = 100;

else

confidences[idx] = (1-(temp/blueCount[idx]))*100;

}

}

//Find the max confidence for which side

int maxIndex = 4;

int maxVal = confidences[0];

 for (int idx = 1; idx < 4; idx++) {

 if(confidences[idx] > maxVal) {

maxVal = confidences[idx];

 maxIndex = idx;

Printed: 24/04/2007 09:46 Page 6

/Users/admin/Dev/3rd Year Project/Rotation/Image.cpp

 }

 }

//Set rotation amount

if(maxIndex == 4) {

if(confidences[0] != 0) {

colourRotation = 180;

colourConfidence = confidences[0];

} else {

//not found

colourRotation = 361;

colourConfidence = 101;

}

} else {

if(maxIndex == 1) colourRotation = 0;

if(maxIndex == 2) colourRotation = 270;

if(maxIndex == 3) colourRotation = 90;

colourConfidence = maxVal;

}

}

/* Perform complexity determination on the parameter image */

void Image::complexity(CImg<unsigned char> image, int threshold) {

//Get image width and height

int width = image.dimx();

int height = image.dimy();

//Calculate threshold value

threshold = (255 * threshold) / 100;

//Define 3x3 neighbourhood, I

CImg_3x3(I,float);

//Define counters

float topComplexCount=0;

float botComplexCount=0;

float leftComplexCount=0;

float rightComplexCount=0;

//Calculate half of height and width

int heightOverTwo = height / 2;

int widthOverTwo = width / 2;

//Loop over image using 3x3 neighbourhood

cimg_map3x3(image,x,y,0,0,I) {

//Get current pixel value (grayscale so 0 to 255)

int pixVal = image(x,y);

//Calculte the magnitude difference between the current pixel and its

neighbours

//If any magnitude exceeds the threshold value increment a counter

if((fabs(pixVal - Ipp) > threshold) || (fabs(pixVal - Ipc) > threshold) ||

(fabs(pixVal - Ipn) > threshold) || (fabs(pixVal - Icp) > threshold) || (fabs(pixVal

Printed: 24/04/2007 09:46 Page 7

/Users/admin/Dev/3rd Year Project/Rotation/Image.cpp

- Icn) > threshold) || (fabs(pixVal - Inp) > threshold) || (fabs(pixVal - Inc) >

threshold) || (fabs(pixVal - Inn) > threshold)) {

//Check in top or bottom half

if(y < heightOverTwo)

topComplexCount++;

else

botComplexCount++;

//Check in left or right half

if(x < widthOverTwo)

leftComplexCount++;

else

rightComplexCount++;

}

}

//Determine the greatest counter, set roation to this and calculate confidence

if((topComplexCount > botComplexCount) && (topComplexCount > leftComplexCount) &&

(topComplexCount > rightComplexCount)) {

complexityRotation = 180;

complexityConfidence = (1-(botComplexCount/topComplexCount))*100;

} else if((botComplexCount > topComplexCount) && (botComplexCount > leftComplexCo

unt) && (botComplexCount > rightComplexCount)) {

complexityRotation = 0;

complexityConfidence = (1-(topComplexCount/botComplexCount))*100;

} else if((leftComplexCount > topComplexCount) && (leftComplexCount > botComplexC

ount) && (leftComplexCount > rightComplexCount)) {

complexityRotation = 270;

complexityConfidence = (1-(rightComplexCount/leftComplexCount))*100;

} else if((rightComplexCount > topComplexCount) && (rightComplexCount >

topComplexCount) && (rightComplexCount > topComplexCount)) {

complexityRotation = 90;

complexityConfidence = (1-(leftComplexCount/rightComplexCount))*100;

} else {

//Store error codes if no determination

complexityRotation = 361;

complexityConfidence = 101;

}

}

/* Perform edge determination on the parameter image */

void Image::edge(CImg<unsigned char> image, int spread) {

//S comes in as 4 to 100, convert to 0.01 to 0.25

float S = spread/400.0;

//Define 3x3 neighbourhood, I

CImg_3x3(I,float);

//Variables for horizontal and vertical edge counts

float horizLines = 0;

float vertiLines = 0;

//Loop over the image using 3x3 neighbourhood

Printed: 24/04/2007 09:46 Page 8

/Users/admin/Dev/3rd Year Project/Rotation/Image.cpp

cimg_map3x3(image,x,y,0,0,I) {

//Calculate Gx and Gy using the correct neighbour positions for sobel edge

detection

float gx = Inp + Inc*2 + Inn - Ipp - Ipc*2 - Ipn;

float gy = Ipp + Icp*2 + Inp - Ipn - Icn*2 - Inn;

//Find result = arctan(Gy / Gx)

float result = atan2 (gy,gx);

//Determine if the edge direction is in one of the two ranges

//The spread of these ranges is given by S

if(((-(pi*2) <= result) && (result < -(pi*(2-S)))) || ((-(pi*(1+S)) <= result

) && (result < -(pi*(1-S)))) || ((-(pi*(0+S)) <= result) && (result < pi*(0+S))) ||

((pi*(1-S) <= result) && (result < pi*(1+S))) || ((pi*(2-S) <= result) && (result <=

pi*2)))

vertiLines++;

if(((-(pi*(1.5+S)) <= result) && (result < -(pi*(1.5-S)))) || ((-(pi*(0.5+S))

<= result) && (result < -(pi*(0.5-S)))) || ((pi*(0.5-S) <= result) && (result < pi*(0

.5+S))) || ((pi*(1.5-S) <= result) && (result < pi*(1.5+S))))

horizLines++;

}

//Determine the greatest counter and so rotation determined

if(vertiLines > horizLines) {

//rotate 0 or 180

edgeRotation = 1;

edgeConfidence = (1-(horizLines/vertiLines))*100;

} else if(vertiLines < horizLines) {

//rotate 90 or 270

edgeRotation = 2;

edgeConfidence = (1-(vertiLines/horizLines))*100;

} else {

//error codes

edgeRotation = 361;

edgeConfidence = 101;

}

}

/* Return the total confidence */

int Image::getConfidence()

{

return confidence;

}

/* Return the total rotation */

int Image::getRotation()

{

return rotation;

}

Automatic Photograph Orientation April 2007

 Page 93 of 94

1 4 . 3 . 3 H e a d e r F i l e s

Printed: 24/04/2007 09:45 Page 1

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.h

/* RotationController */

#import <Cocoa/Cocoa.h>

#include "Image.h"

/* Define controller object references */

@interface RotationController : NSObject

{

//Interface buttons

IBOutlet NSButton *addButton;

IBOutlet NSButton *minusButton;

IBOutlet NSButton *removeAllButton;

IBOutlet NSButton *chooseButton;

IBOutlet NSButton *processButton;

IBOutlet NSButton *toggleInfoButton;

//More complex interface objects

IBOutlet NSTableView *files;

 IBOutlet NSProgressIndicator *progressInd;

IBOutlet NSTextField *saveLocation;

 IBOutlet NSButton *saveTick;

//Variable sliders

 IBOutlet NSSlider *segmentsSlider;

IBOutlet NSSlider *spreadValueSlider;

 IBOutlet NSSlider *thresholdSlider;

//Preview Drawers

IBOutlet NSDrawer *drawer;

IBOutlet NSView *drawerView;

IBOutlet NSView *noSelectionView;

IBOutlet NSView *multipleSelectionView;

//Preview drawer componenets

IBOutlet NSImageView *imagePreview;

IBOutlet NSTextField *imageFileName;

IBOutlet NSTextField *imageKind;

IBOutlet NSTextField *imagePath;

IBOutlet NSTextField *imageRotation;

IBOutlet NSTextField *imageConfidence;

//Reference to to controller itself

IBOutlet id rotation;

//Data structure for list of images

NSMutableArray *records;

//Low confidence setting variable

int minConfidence;

//Timer for refreshes

NSTimer *timer;

}

Printed: 24/04/2007 09:45 Page 2

/Users/admin/Dev/3rd Year Project/Rotation/RotationController.h

/* Methods triggered by interface controls*/

- (IBAction)addFiles:(id)sender;

- (IBAction)deleteFiles:(id)sender;

- (IBAction)processList:(id)sender;

- (IBAction)chooseSave:(id)sender;

- (IBAction)tickSave:(id)sender;

- (IBAction)incrementN:(id)sender;

- (IBAction)incrementT:(id)sender;

- (IBAction)incrementS:(id)sender;

- (IBAction)decrementN:(id)sender;

- (IBAction)decrementT:(id)sender;

- (IBAction)decrementS:(id)sender;

- (IBAction)clearFiles:(id)sender;

- (IBAction)toggleDrawer:(id)sender;

@end

Interface controller header file

Printed: 24/04/2007 09:46 Page 1

/Users/admin/Dev/3rd Year Project/Rotation/Image.h

/*

 * Image.h

 */

//Define CImg properties and include library

#include <cstdlib>

#include <iostream>

#define cimg_convert_path "/usr/local/bin/convert"

#define cimg_display_type 0

#include "CImg.h"

using namespace cimg_library;

using namespace std;

/* Define methods and variables of the class */

class Image {

public:

 Image(const char* fileLoc);

int processImage(int N, int T, int S, int save, const char* savePath);

CImg<unsigned char> toGrayscale(CImg<unsigned char> image);

int calculateRotationsAndConfidences();

void colour(CImg<unsigned char> image, int segments);

void complexity(CImg<unsigned char> image, int threshold);

void edge(CImg<unsigned char> image, int spread);

int getConfidence();

int getRotation();

private:

float pi;

const char* filePath;

int colourRotation;

int complexityRotation;

int edgeRotation;

int colourConfidence;

int complexityConfidence;

int edgeConfidence;

int confidence;

int rotation;

};

Image processing header file

Automatic Photograph Orientation April 2007

 Page 94 of 94

