Low cost motion capture system for the
implementation of a real-time two-dimensional

and three-dimensional mouse

Name: Patrick Holroyd

Degree: Multimedia and Digital Systems (BSc)
Department: SciTech

Candidate Number: 42729

Project Supervisor: Dr Phil Watten

Year: 2008

Statement of Originality

This report is submitted as part requirement for the degree of Multimedia and Digital
Systems at the University of Sussex. It is the product of my own labour except where
indicated in the text. The report may be freely copied and distributed provided the source is

acknowledged.

(Signature of Student)

Acknowledgements

| would like to thank the following people:

Dr Phil Watten for his guidance, patience and motivation.

My family for their support, especially my mother and father for their financial assistance.

David Chabbi for his inspiration and motivation.

Summary

This project aims to research, develop and evaluate a gesture controlled, usable real-time
two-dimensional (2D) and three-dimensional (3D) mouse by means of a low financial cost

motion capture system.

Motion capture is a technique for digitally recording movement. The motion data recorded
can be used to animate a 3D model, control a robot or analyse the movements of the
subject for scientific research. The progression of technology is making mocap an expanding

field, which is more available to researchers and developers.

This project has been developed using the Cocoa programming environment for Mac OS X.
The 2D motion tracking system is designed to use a single high-resolution iSight camera and
the 3D motion tracking system uses two cameras; a high-resolution iSight camera and an off
the shelf low-resolution web cam. Colour-based motion tracking is used to track a coloured
thimble attached to the index finger of the user. Feedback is given to the user via an OpenGL
3D cube, which can be either rotated or moved, and a finger location display showing the

tracked location of the finger.

This project has been evaluated for success against the original requirements and by means
of a user based questionnaire. Tests for latency and jitter were completed to evaluate the

performance of the system.

Although several challenges and obstacles were faced during the implementation of the
system, the project has been completed and the challenges successfully overcome.
Additionally all the project system requirements have been met. In conclusion, colour based
finger tracking could be used to implement a gesture controlled real-time 3D mouse in

software. There are some issues with speed, but these will reduce as technology advances.

Contents

O T 4 o T [0 AT o H TP PRRPPPRPPPTOPR 1
1.1 Project MOtIVAtioN ... ——————— 1
A (VLo (] <o) Y=Y o Yo o U 3
1.3 Professional conSiderationsccouiiiieriieneeniieiiene et 4

2. ReqUIremMENTS ANGIYSIS c.uuvviieieiiiiee ittt ettt e et e e e st e e e et e e e e eteeeeentaeeeessaaeeesnasaneeaan 6
2.0 ProOJECT AIM ittt s s e s s e s s e e e e e e e e e e e e eeaaaeeaaaeens 6

0 0 A (= To [O T =] 0 o 1= o | £ PP P PP TP PPPTPP 7
2.2 Background reSEArCRuciiiiiiiie et e e nraeas 7
2.2.1 Motion Capture TEChNOIOZIEScevviieeeiiiieeee e e 7
A O] ot | VA (=] 4 S PUT 8
2.2.3 NON-0PLICAl SYSTEMS .ttt e e e e e re e e e e e e e e ebsrraeeeaaeens 8
2.2.4 Evaluation of Motion Capture TechnolOgIiescceeeeeiiicciiiiiiiee e, 10
D A Y - T (L o TSP 10
2.2.6 3D OBJECE .ottt sbe ettt be e st et ereas 11
P Y o T=Yo] oF=Y o o PSR 11
2.5 Project Management ... ———————— 12
2.5.1 Project Implementation FIOW Diagram..........ccccveeeiiiieeeieiiieeeciiiee e eeiieee e eeieeee e 12
2.5.2 Project DeliVerables......ccuuiii ittt e 13
DT B Yol o T=Te 1] 1o PSP 13
PN T o A o - o SRS 14

3. DIBSIGN ceiiiiiitiiiiiittet ettt s e e e e e e e e e e e e e e e e e e e aaaaeeaaaeeeeeeeeeeeeeeeeererereremes 15
3.1 High Level SYyStem OVEIVIEWuueeiiiiiiiccciiiiiieeee e ececrree e e e e e e escrere e e e e e e e e eearrraaeeeeaeeas 15
0 AN [o] o 10 | ST PPPPUTROPPPPRE 16
3.3 Tracking and ANAIYSIS ...ueeieiii it e e ee e e e e e e e e rr e e e e e e e e et rrraaeeeas 17
R 0 1) { 01U | SR PPPPUTRO PPN 20

12 Y o] 1= g = o} = 1 I UUPR 22
AL PIAtFOIM oottt sttt ettt et e b e she e et e bt e she e saeeereens 22
4.2 IMplementation STAGESuiiiiii i e e e 23
e O UL o TU Nl =Ty 21T o ol o (TR 24
4.4 Static 2D Motion Tracking SYSTEMcceiicuiiieiiiiiieecciieee e e et e e e e erre e e s snreeeeeeaes 26

A 4.1 IMAGE VIBWET ittt s s s s s s s s ss e s s e s e s e e e s e eeaaseaeeaaaaaaaaeasaeaeeeneneseneneeeeens 26
A O N1 o o T o1 T SRS 27

4.4.3 Tracking algOrithm ...ccc..vviiiieee e e 29

4.5 2D Video Motion Tracking SYStEMcciccuiieeiiiiiieecciieee et e eeree e sstre e e eevae e e s snaaeeeeaes 30
T A Y =4 A =Y o) (U PRSP 30
4.5.2 Filter IMmplementation ...t e 32
4.5.3 Tracking Algorithm Implementation.......cccccuveiiriiiiiiiciee e 33
4.5.4 OpenGL Model Implementation......cccccocccciiiiiiie e e 35
B.5.5 GUI e e e e s et e e e e e e e r et e e et e e e enenerene 36
A.5.6 OPTiMISAtIONS...uuieieiiiiiiiit e s e s e s e e e e s e e s e e e e e e e e e e e e e aeaaaaaaaaaaaaaaaeaeaeeeseeeererenes 39
4.5.7 2D Motion Tracking System Class Diagramccccccviiiieeeeeeeicciieieeee e e 40

4.6 3D Video Motion Tracking SYSteMceeeii i 41
4.6.1 3D Tracking System Class DIagramccccuviiieieeeeieecciiiirree e e e e eeccevrere e e e e e e e e esnnenes 43

oy A TN V=Y [o] oY 0 1= 0 Al =T o [T URRRRN 44
By B 0 oY= o[€] I\ oo =] I =TS SRR SR 44
A.7.2 FIEEI TEST ettt ettt ettt sttt e sbe e st st e b e shee st e ebeesnnesane e 44
4.7.3 CUSTOM FIlEOI .ttt ettt ettt s re e b e s e 45
4.7.4Tracking AlGOTithM....cc.uiiiiiiiee e e e e e 45
By R Y =4 A =Y o) (U PP 46
4.7.6 2D video motion tracking system filter testcccccveviieiiiciieiii e, 46
Ty A AV 1= 0 Vo T YA A Fo Yo=Y o o] o U PUUURRE 47
4. 7.8 USB/FIrE@WIFE CaAmMEIa .eveeeeeeeieeeeeeeeeeeeee e et e e eeeeettteeeeeseesaseaeeeeeesesesasasreeeeeeessssananns 47
A I C 1] I = SRRt a7

D EVAIUGLION ettt et e e e b e e s re e e eareeenareeeas 48

5.1 Requirements EValuationuuiiieiiiii it 48

5.2 SYStEM PeITOIMEANCEviiieiiiiie ettt e ettt e e e etee e e e ebte e e e s ataeeeeebteeaesentaeaeeeanes 49

5.3 USEr EVAlUALION ..t s 50
5.3.1 Level Of CONTIOL..c..iiiiiiiieieeee et s 51
5.3.2 Graphical User INterfaceccoucuiiiiiciiie ettt e e e aaee s 51
5.3.3 FEEADACK ...e ettt s 52
I I N O YT - | I V] = o [PSR 52

6. Conclusion and FUrther WorK........coouiiiiiiiieieeecetee e 54

6.1 Challenges Overcome FOr Project SUCCESS.ccuvuiiieiriiieeiciiiee e eeiieee e eee e siae e e e 54
6.1.1 Developing using Cocoa for Mac OS X.....uueeieeeeiiciiiiiiiiee e e e e ececiirreee e e e e e e e esnrnreeeee s 54
(ST Y/ =10 o Vo T VA Y F= T o = Tod=T 0 a = o | PP PP PP PR 55
6.1.3 Thread Safe ...ec i 55

\

6.1.4 Streaming Two Cameras Simultanouslyccceeivciieiiiiciiie e 55

Lo T o ol [T T ox Y PSR 55

6.2 The FINAl SYSTEIM ..uviiiiiciiiie ettt e e st e e e s e bae e e e sntaeeeeenbeeeeesanes 56
6.3 FULUIE WOTK ..ttt et st e s it e e s bt e e sabeessabeesabbeesares 57
6.3.1 INFrared TraCKing......ccuveiiiiiiiie e e e e e e e e ee e e e snreeas 57
6.3.2 Multiple POiNt TraCKing.......cccuiiiiiieee ettt e brree e e e e e e nrraae s 57

7 REFEIENCES ...ttt ettt e e s bt e e br e e s b e e e sa bt e e nr e e sabeeesareeenaneenas 58
Y o o 1T g T [A PSSP 61
8.1 2D Motion Tracking SYSTEMuviiiiiiiee et e e e e e e e e e e e rrre e e e e e e e e e e nrrraeeeeaaeeas 61
0 Y I = Yol {1 = PUPRRt 61
8.1.2 MYOPENGLVIEW ..ttt s e s e e n e e e e e e eeeeas 63
8.1.3 FINGEIPOSITION .ccieeieeeeeeeeeeeeeeeee s e e e e e e e e e e e e e eeeas 65

8.2 3D Motion Tracking SYSLEMcciiiiiiee ettt e e e abae e e e 66
L BB A Vi I = ol 4oV 66
I A A L - 1ol 1o V-SSR 69
8.2.3 MYOPENGLVIEW ..ttt e e e e e e e s e e e ea e e e e e e eaaenaanns 72
8.2.4 FINGEIPOSITION ceeiiiiiiiiiiiiiiiiiieiettttt ettt s e e e e e e e e e e e as 73

8.3 CUSEOM FIlEOI .ttt ettt st st e s abe e sbbe e sabeessteesabbeesares 74

1S BN o o 1T o T [= TSRS 76
9.1 QUESTIONNAINE.cceiiitieeee ettt e st e e s e e s st e e e s sanr e e e e s sanreeeesanreeeessnrneeesanne 76

Vi

1. Introduction

This project aims to research, develop and evaluate a gesture controlled, usable real-time
two-dimensional (2D) and three-dimensional (3D) mouse by means of a low financial cost

motion capture system.

1.1 Project Motivation

Motion capture or mocap is a technique for digitally recording movement. It is defined as
“The creation of a 3D representation of a live performance and translating it into usable
mathematical terms.” in the book Understanding Motion Capture for Computer Animation
and Video Games [16]. The data recorded can be used to animate a 3D model, control a
robot or analyse the movements of the subject for scientific research. It is an ever-expanding
field, which is becoming more accessible to researchers and developers with the rapid

increase of available processing power.

There are many potential applications for mocap systems, but only two drew interest into
the area. The first and the most common is for computer generated (CG) effects. This
application is mainly used by the entertainment industry to create CG 3D characters or CG

shots for use within video games, commercials or films. Within the games industry mocap is

used to capture the motion of real people or animals with a database of the different motion
movements built up e.g. walking, running, fighting. These are then strung together within
the game to create the visual effect of the virtual character moving and interacting
realistically. The film industry deploys mocap to capture data used for sophisticated CG shots
and in recent years this has allowed films to include CG characters; one of the more

successful being Gollum (see figure 1.1) from The Lord of the Rings.

Figure 1.1 Motion Capture being used on The Lord of the Rings

The announced film production of Tintin has recently made news due to its groundbreaking
technology, which allows the director to look at a monitor showing a real time fully rendered

3D virtual set, with the actors animated as their characters.

The second, and less common until recently, is advanced user interfaces. The keyboard,
mouse and games controller have dominated the area of Human Computer Interaction (HCl)
since the late 1970s, but recently there has been movement away from these towards more
innovative and natural methods of interaction. Mocap systems are increasingly being used in
vision based interfaces such as gesture recognition, for sign language applications. The
Nintendo Wii, launched in 2007, gives users the ability to interact with games similar to that
of a real world experience. It is supplied with a controller which uses motion capture to track
its position in accordance with the television allowing users to use it in a variety of different

ways e.g. golf club, tennis racket.

Using motion capture, a system will be developed capable of capturing the real-time motion
of a user’s index finger (see figure 1.2). The motion data captured will be mapped to a
control interface, which will control the movement of a 3D object, giving the user feedback
of the finger being tracked. The system will be designed for a generic user therefore allowing
more design focus on the interactive process of motion capture. It will conform to general

usability standards allowing the majority of users to correctly operate the system with little

training required. Using readily available hardware, with the majority of software being

custom produced means the system with have a low financial cost.

Figure 1.2 Example of user operating the system

1.2 Structure of Report

This report is structured as follows:

Chapter 2 — Requirements Analysis: Examines the requirements and specifications of the
project, background research and project management.

Chapter 3 — Design: Examines the conception and design of each module within the system.
Chapter 4 — Implementation: Examines the implementation and testing of the different
systems.

Chapter 5 — Evaluation: Examines the outcome of the system against the requirements,
system performance and user evaluation questionnaire

Chapter 6 — Conclusion: Examines the challenges faced, the final system and future work of
the project.

Chapter 7 — References

Chapter 8 — Appendix A

Chapter 9 — Appendix B

1.3 Professional considerations

A number of issues need to be addressed in order to complete a professional and ethical
project. The British Computer Society sets out a Code of Conduct [10] and Code of Practice
[11] which both students and professionals must adhere to in order to be a member. The
practical application behind this project means that issues involving public interest must be

considered. Below are codes which require particular consideration:

“1. In your professional role you shall have regard for the public health, safety and
environment.” [10]

During the development of the system public health and safety will be considered and
attention will be given to any situation which arises that could harm or endanger the public.
The finished system will give warnings to the user about the possible dangers and hazards of
using such a physical form of computer interaction. All possible design considerations will be
taken into account to reduce public risk when the system is in use. The environment will
also be a major consideration throughout the development and operation of the system.
The considerations extend to the three key factors of recycling which are Reuse, Reduce, and
Recycle [22]. Every effort will also be made to reduce the carbon footprint of the entire
project by using modern, more energy efficient computers and programming applications
which are as streamline as possible therefore reducing processing power which consume

large amounts of electricity.

“3. You shall ensure that within your professional field/s you have knowledge and
understanding of relevant legislation, regulations and standards, and that you comply with
such requirements.” [10]

Wherever necessary and possible relevant legislation, regulations and standards will be
consulted. This will minimise infringement of such codes. In particular the Disability
Discrimination Act 1995 [21] will be reviewed to prevent discrimination which may arise

from the development of practical application which involves certain physical requirements.

“14. You shall seek to upgrade your professional knowledge and skill, and shall maintain
awareness of technological developments, procedures and standards which are relevant to

your field, and encourage your subordinates to do likewise.” [10]

Throughout the project the primary aim will be to improve knowledge and skill relating to
the chosen topic. The recent release of Mac OS X Leopard will be reviewed and decisions will

be made regarding further development of the system using Xcode 2.0 and Objective-C 2.0.

“15. You shall not claim any level of competence that you do not possess. You shall only offer
to do work or provide a service that is within your professional competence.” [10]

This project has been discussed with supervisors and an agreement made that the level work
required is suitable. Regular meetings have also been arranged with supervisors to discuss

the work completed and outstanding.

2. Requirements Analysis

This chapter examines the aims, requirements and specifications of the project. It includes
the background research conducted during the early stages of the project comprising an
overview of the motion capture technologies available, technical requirements analysis and
chosen tracking algorithm. It also includes the project management scheduling and delivery

dates.

2.1 Project Aim

This project aims to develop a gesture controlled, usable real-time two-dimensional (2D) and
three-dimensional (3D) mouse by means of a low financial cost motion capture system. In
order to evaluate the system it should be capable of moving and rotating a 3D object in
space through specific hand gestures tracked by the motion capture device. It must also
provide the user with an input mechanism, similar to a click on a tradition 2D mouse. It will
use a two camera system to provide 3D motion data, which once analysed will provide
parameters that will be mapped into a control interface. The control interface will then drive
the movements of the 3D object through x,y,z co-ordinate parameters specifically using the z
axis for input clicks. A graphical user interface (GUI) will be designed to provide the user with

a simple easy to use front end, which requires minimal training.

2.1.1 Requirements

RQ1- Understand the process and techniques involved in capturing motion data
RQ1.1 -Research current methods of motion capture
RQ1.2 -Analyse motion capture method most appropriate for the proposed system
RQ2 - Develop a 3D object for controlling
RQ2.1- Design appropriate object which best displays control effect
RQ2.2 - Design object to be controlled from control interface
RQ2.3 - Design object to be updated within real-time
RQ3 - Develop areal-time 2D and 3D motion tracking system
RQ3.1- Capture video stream
RQ3.2 - Convert video stream into frame images capable of being analysed
RQ3.3 - Filter out unwanted environment
RQ3.4 - Track user’s index finger with tracking algorithm
RQ3.5- Map tracking result to control interface
RQ4 - Develop a control interface to drive the 3D object from captured motion data
RQ4.1- Receive tracking data from RQ3
RQ4.2 - Analyse data to determine amount to update object from RQ2
RQ4.3 - Update object using results from RQ4.2

2.2 Background research

2.2.1 Motion Capture Technologies

There are two main types of motion capture systems in use within the motion capture
industry, optical and non-optical [17]. Both systems have advantages and disadvantages (see
table 3.1) but the freedom of movement combined with relatively high levels accuracy
usually makes the optical approach the system of choice. Systems can also be separated into
real-time (no post processing required) and non-real time capture (post processing required
to clean up data). Within recent years interest and development of motion capture has
grown exponentially. Several factors can be attributed to this growth but it is mainly due to
the increase of available processing power. This increase has lowered the costs of capturing
and video processing, meaning that is it now used within many different applications once

considered out of reach.

2.2.2 Optical Systems

Optical systems rely on directionally reflective, light emitting or coloured balls referred to as
markers, which are attached to the performer body. The system requires several cameras
(usually between 3 and 16), which are used to track and triangulate the 3D position of the
markers within a specific area, usually called a motion capture stage [25]. With an increase
of cameras many markers can be tracked at once producing realistic capture data. The
different optical systems involve the types of markers used. Passive markers are either balls
coated with a reflective material that reflects light generated near the camera (see figure
2.1) or balled coated with vibrant colour. Active markers are one or multiple LEDs which
emit their own light rather than reflecting an externally generated light source. Other optical

system markers include time modulated active and semi-passive imperceptible markers [20].

O1:m0NS,2Y

SN

Figure 2.1 Angelina Jolie using optical motion capture in
Beowulf and Tom Hanks using it in Polar Express [15] [9]

2.2.3 Non-optical Systems

Non-optical systems involve all other non marker related capture devices. Mechanical
motion capture records movements directly via an exo-skeletal type suit attached to the
performer (see figure 2.2). As the user moves so does the suit, feeding information into
sensors located at each joint. This information is then fed into a computer wirelessly for real
time processing. Mechanical motion capture is cheaper than optical systems but the suits
tend to be restrictive and only major movements can be recorded. Magnetic systems use
sensors placed on the body to measure the low frequency magnetic field generated by a
transmitter source. The sensors and source are connected to a control unit which calculates
the location of the sensors within the field. Magnetic systems can use six or more sensors to
track a user’s movements using inverse kinematics to solve the angles of various body parts.

Many problems are associated which magnetic capture mainly inaccuracies due to magnetic

interference. Also the data has to be transmitted through cables which make sensors
cumbersome to wear and difficult to use [24]. Gyro systems use tiny inertial gyroscopes that
are attached to the performers body. These directly record the rotations of the performers
body parts. The rotational data is transmitted by radio to a receiver unit where it is
processed in real-time and mapped to a CG object. An advantage of the gyro system is that
they are very easy to use and do not require a motion capture stage, meaning they can be

used on location [2].

Figure 2.2 Mechnical exo-skeletal suit [1]

Motion Capture System Advantages Disadvantages
Optical e Extremely accurate in most | ® Require extensive post
cases processing
e lLarge number of markets e Expensive hardware
can be used e Marker occlusion
e Performs not constrained e Capture must be carried
by cables out in controlled
e large performance area environment (away from
e High frequency of capture reflective noise)
Non-optical e Real time data output can e Tracker’s sensitivity to
provide immediate metal can result in
feedback irregular output
e Position and orientation e Performers constrained by
data are available without cables
post-processing e Low sampling rate
e Less expensive than optical | ¢ Smaller capture area
e Sensors are never occluded compared to optical
e Multiple performance e Difficult to change maker
capture configurations

Table 2.1 Motion Capture System Advantages/Disadvantages [18] [19]

2.2.4 Evaluation of Motion Capture Technologies

In order for the motion capture system being developed for this project to be low cost, it
must be produced from readily available hardware, which can easily be integrated into
custom produced software. Non-optical exo-skeletal systems are not suitable for this project
because of their complexity and high equipment costs. An optical system is far more suited
because it can be produced using standard camera equipment, with the tracking and post
processing being done with custom produced software. A passive coloured based marker
will be used to track the user’s index finger within a small capture stage as it is financially

cheaper than using a reflective based marker.

2.2.5 Tracking

There are many sophisticated algorithms developed which are capable of detecting and
tracking a number of different things. One of the most famous tracking algorithms
developed is the Kalman filter [23]. This algorithm will provide accurate continuously-
updating information about the position and velocity of an object given only a limited
number of observations, some of which include errors. It is a highly sophisticated algorithm
utilised within radar and computer vision systems. A more recent detection algorithm was
developed by John F. Canny in 1986 [12] which when applied to a colour image will return an
image with the edges of objects within highlighted. These types of algorithms were
developed to extract information and produce results from often complex and erroneous
data. The tracking method used within the system will remove most of the complex data
using chroma key colour separation. A specific coloured marker will be attached to the
user’s index finger and then using a number of filters, all other colours will be removed.
Removing all but one colour reduces the amount of the complex data before a tracking
algorithm is being applied. This allows for a simpler, yet still demanding, tracking algorithm
to be used. The bases of this algorithm will be the centre of mass equation defined in
equation 2.1.

The centre of mass R of a system of particles is defined as the average of their positions r;,
weighted by their masses m;:

R_ Sty
>y

Euqation 2.1 Centre of Mass Equation

10

In order to track 3D motion, two cameras will be used which when processed simultaneously
will provide the location of the user’s finger within the motion capture stage. One camera

will be used to track x and y-axis and the other will be used to track the z-axis.

2.2.6 3D Object

Within the system a 3D object will be created which will updated and rendered within real-
time. The industry standard application programming interface (APIl) for creating real-time
3D graphics is the cross platform Open Graphics Library (OpenGL). This will be used to create
a 3D object which will be controlled using the motion capture data. The OpenGL API consists
of approximately 250 function calls used to draw complex 3D objects from simple primitives.
It allows 3D objects to be directly rendered from the graphics card, which enables them to
be rendered within real time. Figure 2.3 shows the overall system architecture developed

using the background research

)
001011011
010111100
101010101
—
Input Tracking and Output
(Finger with coloured tip) analysis (OpenGL Object)

Figure 2.3 High Level System Architecture

2.4 Specification

The following specifications were developed using the requirements and background
research outlined in sections 3.1.1 and 3.2 respectively.

SP1- Develop OpenGL object

SP2 - Control object from SP1 using control interface

SP3 - Specify type of control from SP2 using tracking system

SP4 - Render object from SP1 in real-time

SP5 - Capture video streams from two cameras simultaneously in real-time

SP6 - Convert video streams from SP5 into frame images

SP7 - Remove all but specified colour from images from SP6

11

SP8 - Apply tracking algorithm to filtered images from SP7

SP9 - Map tracking algorithm result from SP8 to control interface

SP10 - Analyse tracking algorithm result from SP9 to determine amount to update
object from SP1

SP11 - Update object from SP1 using result from SP10 in real-time

2.5 Project Management

2.5.1 Project Implementation Flow Diagram

The final system is divided into a number of sub systems which can be developed

independently. See figure 2.4.

- Implement image viewer

- Implement filters

- Implement tracking
algorithm

<
[Implement 2D static motion tracking system

- Implement video display l
- Implement filters

- Implement tracking . . .
algorithm Implement 2D video motion tracking system

- Map data to 2D
control interface

- Implement multi threading

- Implement 3D
Implement 3D video motion tracking system motion tracking
- Map data to 3D

control interface

l

[Completed 2D and 3D System]

Figure 2.4 Project Flow Diagram illustrating the development flow of the system

12

2.5.2 Project Deliverables

Description
OpenGL Object

2D Static Motion Tracking System
Image Viewer
Custom Filter
Tracking Algorithm
2D Video Motion Tracking System
Video Display
3D Video Motion Tracking System
Graphical User Interface

Final Testing

2.5.3 Scheduling

Date
09/11/2007
07/11/2007
16/11/2007
31/11/2007
07/11/2007
18/01/2008
11/01/2008
01/02/2008
08/02/2008
15/02/2008

Completed
v

SN N N N N R

The project has been given an overall time scale of 24 weeks. The 24 weeks were broken

down into approximately 5 week for research, 11 weeks for implementation and testing and

8 weeks for the project write up and presentation. Section 2.5.4 displays a Gantt chart which

outlines the start and finish time of each aspect of the project. It also includes dependences

allowing for the continuation of the project should one aspect fail to meet its specified

deadline.

The following milestone dates were set:
e Project proposal: 18/10/07
e Begin development: 05/11/07
e Delivery of interim report: 06/12/07
e Completed system: 15/02/08
e Final report completed: 24/04/08
e Presentation: 28/04/08 — 09/05/08

13

2.5.4 Gantt Chart

14

3. Design

Chapter 2 established that the camera based optical motion capture technology is best for

this project. A passive colour marker will be used to track the user’s index finger using two

cameras for 3D motion tracking. This chapter examines the conception and design of each

module within the 2D and 3D systems. It examines the main components included within

the systems with main focuses on the input, tracking and analysis and GUI modules.

3.1 High Level System Overview

Video In

Colour
Extraction

Tracking

= > Control

v ” Interface

z

Coordinates l l l
OpenGL
Object

Figure 3.1 — High Level System Overview

Figure 3.1 shows the high level system overview, which consists of three main components:

Input, Tracking and analysis and Output. The input component captures the movement of

the user’s index finger. This information is then passed to the tracking and analysis

15

component which applies the filter and tracking algorithm. The result from the tracking and

analysis component is then used to drive the output component; an OpenGL 3D model.

3.2 Input

To produce a low cost motion capture system, readily available equipment is being used
throughout this project. An available MacBook computer will be used to implement the
project therefore reducing costs. 3D movements is tracked using the x,y and z-axis, see

figure 3.2.

A
v
x

y

Figure 3.2 3D x,y,z-axis

To capture 3D movement of a user’s index finger two standard webcams are being used. The
first webcam will be used to track the x and y axis of the user’s index finger and the second
will deal with the z axis. This will provide the required 3D motion capture data used
throughout the systems. A simple set up for the two cameras is to position them at right
angles from each other therefore reducing the amount of computational overhead, which
would result from correcting erroneous data generated from inaccurate tracking. Figure 3.3

illiterates the positioning of two cameras within a 3D environment.

/ B—vi Cameral
Camera 2—5—9

z

Figure 3.3 Camera and axis locations

Camera 1 will be a high-resolution isight camera already built into MacBook computers and
camera 2 will be an inexpensive off the shelf webcam. The input component will have direct,

simultaneous access to both decompressed real time streams from the cameras. Once the

16

input module receives a frame from a camera it will resize it, therefore reducing processing
required for larger images, and convert it into an appropriate image format. This will then be
fed into the tracking and analysis module at a rate of approximately 15 frames per second
(fps). Multi-threading will be incorporated into the input module because of the high levels
of data being processed by the central processing unit (CPU). Each camera stream will be
processed via different threads therefore improving efficiency within the system. See figure

3.4.

-
“\ L, c 1 Decompressed | || Scale down
amera

frames frame

Tracking and o Image
analysis conversion
c) Decompressed Scale down

— mer —> —>

amera frames frame

Tracking and Image

. <_ .
analysis conversion

Figure 3.4 Input Module System Diagram

3.3 Tracking and Analysis

The tracking and analysis component will use the stream of images sent by the input
component and apply a tracking algorithm. The result produced will be the position of the
user’s index finger. The tracking algorithm will be colour based so the user will wear a
coloured thimble on their finger. The tracking algorithm will be applied to the stream of
images sent from the input component and upon receiving an image it will first apply a filter,
which will exact a specified colour. The filter will take a detection colour, match every pixel
that is similar to that colour, and change the pixels not similar, to black. Pixels that are
similar but not an exact match will be changed to the detection colour. This will produce an

image with all but the coloured thimble removed. See figures 3.5 and 3.6.

17

Figure 3.5 Example Colour Extraction and Centre of Mass result

Input Frame

A

Compare pixel with
detection colour

A4

Produce uniform
colour from >
sensitivity bounds

Discard unwanted
pixels

—

_/

Colour Extraction

A 4

Centre of Mass
formula

Figure 3.6 Colour Extraction System Diagram

The next stage of the tracking will calculate the centre of the thimble. This will be achieved

using the centre of mass formula outlined in chapter 2. The mass of a pixel will be

represented by its colour therefore any coloured pixel will have a greater mass than a black

pixel. This will result in coloured pixels having a greater pull on the centre of mass.

Centre of mass result

Figure 3.7 Centre of mass example result

18

Figure 3.7 shows an example result when the centre of mass formula is applied to a 12x12
grid of pixels with 4 green pixels each equidistant from one another. The centre of mass is in
the middle of the 4 green pixels because each pixel is exerting an equal force on the centre
of mass. If there were another green pixel on the right the resulting centre of mass would
also shift to the right because there would be a greater pull in that direction. The coordinate
system used for the centre of mass is one where the top left of the scene is represented by
0,0. As the finger moves towards the right, along the x-axis the centre of mass will increase.

As it moves down, along the y-axis it will also increase. See figure 3.8.

0, 320, 0

0, 240 320, 240

Figure 3.8 Centre of mass coordinate system

The result produced when this formula is applied to each filtered image is the centre of the
thimble and because there are approximately 15 images being processed per second, per
camera, this will result in a real time position of the thimble which can then be used to drive
the output component. Once the thimble has been successfully tracked there will be an
analysis on the results produced. This mainly involves calculating the distance the thimble
has moved from one image to the next. This is simply achieved by subtracting the previous
known location from the current location (see figure 3.9 and 3.10). The camera 1 result from
this calculation can be used to move the 3D object. The camera 2 result can be used to
check if the user is clicking (along the z axis). To simulate a click the user will quickly move
their finger towards camera 1 and back to the original position. This movement will be
tracked using camera 2 along the z axis. Therefore if the distance moved between frames on

camera 2 is large, it can be assumed that the user has simulated a click.

19

Previous frame
tracking result

Current frame
tracking result

\/

Apply distance
equation

}

OpenGL
rotate/move
function

)

Movement of
OpenGL cube

Figure 3.9 Distance Equation System Diagram

Previous Frame
(Pixel location)

Figure 3.10 Example of Distance Equation

3.4 Output

Current Frame
(Pixel location)

Merged Frames
(Distance moved)

The output component will consist of the real time rendered 3D object which will be rotated

or moved in accordance with the tracking results from camera 1, along the x and y axis. The

object will be produced using OpenGL, outlined in chapter 2, and displayed on the system

GUI. There are many shapes that could be used but because of its simplicity and defined

edges a cube will best show the movement effect. The cube will be rotated right or left along

its x axis if the user moves their finger to the right or left. It will be rotated up and down

along its y axis if the user moves their finger up or down. If the user simulates a click the

model will move instead of rotating (still in accordance with the user’s finger gestures). If the

user clicks again the model will revert back to rotating. See figure 3.11

20

Tracking and
Analysis output

\ 4

Clicked?

\ 4

No

Yes

Move

Rotate

\ 4

OpenGL Model

Figure 3.11 Output Data Flow diagram

A

21

4. Implementation

This chapter covers the implementation of the various components of the system. It
discusses the problems, which arose during the development, and the solutions that were

implemented. It also presents the graphical user interface (GUI), and incorporated features.

4.1 Platform

The software written for this project will be for Mac OS X using Apple Computer’s XCode
development environment. Applications produced will be based upon the Cocoa application

framework using Objective-C programming language.

Mac OS X is a powerful operating system developed for Apple Macintosh computers [5]. It
will be used to develop the software required for this project due to its image, video,
performance and multiprocessor capabilities. Mac OS X is also a fully-conformant UNIX
operating system popular for open source development. It provides a high level
programming environment Cocoa, which enable developers to produce complex and
demanding programs quickly and effectively. To produce programs Mac OS X includes a
number of developer applications, primarily Xcode. Xcode is a development environment,

which provides developers with a graphical workbench integrated with a professional text

22

editor, debugger and powerful complier [8]. It tracks all the resources which go into an

application such as code, image, sound etc..

User Experience

3D Motion Capture System

Application Frameworks
I:Cucua Carbun I: Java :|

Graphics and Media

QUICkTImEl Core Audlo 'Cure Image |Core ‘Iu"ldeu l OpenGL i

Darwin

Figure 4.1 Mac OS X System Architecture [6] in relation to this project (User Experience)

The motion capture application will be coded using Objective-C programming language.
Influenced by C and Smalltalk, Objective-C is an object or orientated language similar to Java.
It is an easy language to learn if the user previously familiar with object-oriented languages
such as Java or C++ [14]. To manipulate the video stream, both Core Video and Core Image
libraries will be used. The Core Image and Core Video APIs provide access to built-in image
filters for video and still image streams [3] (see figure 4.1). They provide a number of pre-
coded filters and support for creating custom filters using Core Image Kernel Language.

These can be used to filter out the unwanted background environment.

4.2 Implementation Stages

The final 3D video motion tracking system was implemented in five sub stages each built
independently. The main stages of development were the implementation of: Output test
bench, 2D static motion tracking system, 2D video (dynamic) motion tracking system, 3D

video (dynamic) motion tracking system and GUI. See figure 4.2.

23

2D Static Motion 2D Video Motion

OpenGL Model
pen ode Tracking System Tracking system

\4

3D Video Motion

GUl Tracking System

Figure 4.2 Implementation Flow

4.3 Output Test-Bench

A test framework was developed which used OpenGL to render an object onto a display area
(see figure 4.3). The object was created by defining four vertices, which together make a
square polygon. This object could be transformed by moving the vertices within the display
area along the x, y or z-axis. The use of 3 axis allowed 3D shapes to be created which could
be transformed within the 3D space. This formed an output test-bench for the front-end

system. See figure 4.4.

X —>

Stimuli Yy — Transform
7 —>

View

Figure 4.3 Test-Bench System

24

OpenGL Test Development OpenGL Test Development

1

Reset CL view

Figure 4.4 OpenGL Test Development

A number of tests was performed using the test-bench. These involved continuously
updating the position of the four vertices causing the object to rotate around the z-axis. The
update method was also connected to a slider so that as the slider was moved the object
rotated (see figures 4.5, 4.6 and 4.7). The final system used a similar update method but was

connected to the control interface rather than a slider.

OpenGL Test Development 800 OpenGL Test Development

Reset GL view Reset GL view

4 v

Figure 4.5 Test 1 Rotate around z —axis Figure 4.6 Test 2 Rotate around x,y,z-axis

OpenCL Test Development

=

Reset GL view

4

Figure 4.7 OpenGL Test 3: Move on x-axis

25

4.4 Static 2D Motion Tracking System

4.4.1 Image Viewer

An image viewer was also developed as part of the initial test bench. This read in an image
(from a number of different formats), applied a filter, and then displayed the result within a
display area, see figure 4.8. This was used to test various filters, which were later developed
(see figures 4.9 and 4.10). Once the correct filter was developed it was modified so that it

would also display the output result of the tracking algorithm.

806 Image Viewer

dben F;ile

7
Figure 4.8 Image Viewer Test Bench

eno Image Viewer

[Open File]

Image Viewer

[Open File

e 3
h = 5
= A w

M?:igure 4.10 Example Image Before and After Filter

26

4.4.2 Custom Filter

In order to track a user’s index finger the user has to wear a coloured thimble. The colour of
the thimble is extracted from the image and all other colours set to black. This allows a
tracking algorithm to be applied which will be less confused by other objects within the
scene. The original design indicated that a combination of Core Image and Core Video filters
would be able to produce the effect. Unfortunately after a number of tests using the built-in
filters the results were not as expected and it was very difficult to achieve the desired effect.
Within Cocoa, Core Image Kernel Language can be used to be to produce custom filters. This
was therefore used to produce a custom filter capable of extracting the thimble colour. A
benefit of using Core Image Kernel filters is that they are usually handled by the computer

graphics hardware providing near real-time processing (see figure 4.11).

Cocoa

A 4

Core Image Custom Filter

1l

Core Image
Kernel

Graphics
Hardware

Figure 4.11 Custom Filter

This improved the efficiency of the system and allowed a higher frame rate. When run, a
Core Image Kernel filter inspects every pixel within an image and modifies the pixel using a
customisable piece of code. The filter used for this project firstly converts the pixel from an
RGB (Red, Green, Blue) value to HSV (Hue, Saturation, Value), and then checks the Hue
(perceived colour) and Saturation (intensity of colour) against the colour provided. The
Compare function is used which returns either a black colour or the specified match colour

depending if the augment specified is greater or less than 1. Within this filter the argument

27

specified is a Vec4 component created from the Hue and Saturation results from the pixel. A
Vecd component is a representation of a 4D vector type. Figure 4.12 shows an RGBA (Red,
Green, Blue, Alpha) Vec4 representation. This is the same as the one used within the custom

filter except the Vec4 is made created from the Hue and Saturation result.

G B

Figure 4.12 RGBA Vec4 representation

There is also a sensitivity variable, which is calculated as a fraction and subtracted from the
Hue and Saturation result. This variable is used in order to allow a wider range of similar
colours to be changed to the detection colour instead of black. The compare function sets
the pixel to black if the argument is greater than 1, therefore if the sensitivity is set to a high
value the fraction subtracted will be smaller and more pixels will be changed to black. Once
all the pixels have been inspected, the resulting image is one where the coloured object has

been highlighted by blacking out all other colours. See figure 4.13.

Figure 4.13 Left, image before filter. Right, image after filter

Quartz Composer was used as a test bench for the filter allowing it to be improved before it
was packaged (see figure 4.14). This involved creating a Cocoa method that allowed the filter
to take in a sensitivity value and output the filtered image. The whole filter was then

packaged as releasable (meaning it can be used on any Mac) and then imported into the

28

MacBook library. Once imported a filter can be instantiated from any program just as any

built-in filter would be.

‘ Quartz Composer File Edit Editor Viewer Window Help O B ¢ = 40 Ea04 Mon20:18 Q
®@00 Untitled - Editor =) Untitled - Viewer =]
o i ™ | #]a Ha)]
lcla lala] - a 7 §03 @ [] B s ik E
Patch Creator Zoom Levels Create Macro Ecit Parent Create Clip Patch Parameters Patch Inspector Viewer | Full-Screen Rendering Mode Input Parameters Editor
Root Macro Patch
) O Inspector
I... ==
matchColor
=1]
sensitivity |2.125 $ 886 Patch Creator (Untitled)
000 Colors = M (Q Patch Name
Press Enter to insert patch in current editor workspace
¥ Patch Browser
| Category Name
Composite Addition -
Composite Color Blend Mode 0 512x384 Pixels 50.77 FPS
o Composite Color Burn Blend Mode :
Composite Color Dodge Blend Mode -
M composite Darken Blend Mode
& Composite Difference Blend Mode v
Composite Exclusion Blend Mode
Composite Hard Light Blend Mode
, | Composite Hue Blend Mode -
¥ Description
Addition B‘]
Adds color companents ta achieve a brightening
effect. This filter is typically used to add
Opacity

highlights and lens flare effects 3

Note that the image produced by this filter may
have infinite dimensions_If this is the case, since

4.4.3 Tracking algorithm

The output of the filtering stage is in the form of a Climage — a low level image format. In
order for the tracking algorithm to determine the Centre of Mass, the image had to be
converted into a NSBitmaplmage. This allowed the use of the ColourAt method which
returns the colour of a specific pixel. The bitmap data is then scanned, one pixel at a time,
and the colour extracted. The colour information is then fed into the Centre of Mass
equation. This method uses the CPU to extract the pixel colour, which can be inefficient
compared to using the graphics hardware. Another idea for implementing the tracking
algorithm was to use another custom filter. Unfortunately custom filters cannot accumulate
knowledge from pixel to pixel and they can only output a Vec4 component. This therefore

left no choice but to use the less efficient method.

The 2D static motion tracking system was developed purely as a test bench allowing for tests

to be carried out on different components of the system before they were implemented

29

within the 2D video motion tracking system. This meant that fewer errors would arise during

the development of the more complicated 2D and 3D video motion tracking systems.

4.5 2D Video Motion Tracking System

Figure 4.15 shows the overall 2D motion tracking system development flow. Implementing
the system in a number of sub stages allowed for the testing of each sub stage before

continuation of the overall system development.

_ . p L e m——— ,I
N 1 .
OpenGL Model 2D static Motion 2D Video Motion I~
Tracking Svst_m— id ‘ Tracking system ~<
=== - .{ _— .
- ~
- - -
-- -
- ~

- ~
- Ul 3D Video Motion S~
-=" Tracking System SS

Implement Tracking

iSight Capture Implement Filter)
Algorithm

Implement GUI
OpenGL model model

Map tracking result to Implement OpenGL

Figure 4.15 2D Video Motion Tracking System Development Flow Diagram

4.5.1 iSight Capture

Initial development for the 2D video motion tracking system focused on accessing the built
in iSight camera included within MacBook computers. The system originally began
development using XCode 2.0 for Mac OS X 10.4 (Tigar). Using this XCode 2.0 environment
development was concentrated on using Sequence Grabber components included within the
QuickTime architecture. Sequencer Grabber components allow applications to obtain
digitized data from external sources. As the iSight is connected to the USB High Speed bus it
is treated as an external source, just as if an off the shelf camera had been plugged in.
Experimental code was produced which could grab frames from the iSight camera and store
them within a QuickTime movie. The code produced for this method of capture was unable
to process frames real-time and it became apparent that another solution would need to be

found. One method was to use a number of Carbon APIs, which could better handle the real-

30

time capture from external sources. This however was difficult because Carbon is a foreign
language compared with Cocoa. With the release of XCode 3.0 for Mac OS X 10.5 (Leopard) a
number of new components was available for developers. This included QuickTime 7
architecture, with a brand new QTKit framework. QTKit makes it easier to access the
underlying QuickTime primitives and directly use more than 2500 functions in the QucikTime
procedural API. This in essence enables the real-time capture of the iSight camera using
Cocoa methods included within the QTKit framework. The method within QTKit capable of
capturing from input sources was the QTCaptureSession. This provides an interface that
determines which input device is selected and where the output of the device should be

routed. See Figure 4.16.

QTCaptureDevice ‘
4
| QTCaptureDevicelnput |
—‘ QTCaptureConnection | | QTCaptureConnection F
» Video :|
) Audio 1 QTCaplureSession mpdhae ‘
o O
O O
| QTCaptureConnection | | QTCaptureConnection | | QTCaptureConnection | ‘ QTCaptureConnection ‘
| aTCaptureVideoPreviewOutput | | QTCaptureMovieFileOutput | [aTCaptureAudioPreviewOutput |
| QTCaptureView ‘

o

MOVIE

Figure 4.16 QTCaptureSession Visual Display [4]

As the only device connected to the Mac was the iSight camera, the only external input
source connected could be the iSight. A connection was set up between the
QTCaptureSession and the iSight camera. To output the frames captured, the
QTCaptureDecompressedVideoOutput method was used. This method represents an output
destination for the QTCaptureSesson and can be used to process decompressed frames for
high quality processing. QTCaptureDecompressedVideoOutput functions by using a delegate
method despatched as a new thread. This delegate method outputs each frame captured
from the iSight as a Climage. This stream of images can then be used anywhere within the

system. A test application was produced using the stream of Climages, converting them to

31

NSImages then displaying them on screen using a NSImageView. This showed that the
capture method was working and that it was possible to move to the next stage of

implementation (see figure 4.17).

Figure 4.17 iSight Capture Test Application

4.5.2 Filter Implementation

The filter made within the 2D static motion tracking system could easily be imported into
this system with the images being filtered in the same way as in the previous system. To
apply the filter to the stream of images being captured from the iSight camera, a separate
method is called from the QTCaptureDecompressedVideoOutput delegate which applies the
filter and converts the image into a NSImage ready to be displayed using another

NSImageView. See figure 4.18.

Start \ (. Stop

Figure 4.18 2D Video Motion Tracking System Filter Test GUI

A major problem, which arose after implementing the filter, was a Cocoa issue with memory

management. Java uses automatic garage collection which cleans up the memory that has

32

been assigned and is no longer being used. If the memory is no longer being used the
garbage collection automatically releases it, making it available for other parts of the system
to use. If large amounts of memory are assigned and not released, once they have been
finished with, then all the memory available to computer fills up and the computer crashes.
As this system began development using Mac OS X 10.4, there is no automatic garbage
collection. The release of Mac OS X 10.5 included this function but could not be used
because parts the system had already been coded using the previous OS version. Major
issues arose when large amounts of data, being generated from the stream of images being
captured from the iSight, were being stored within system memory. The memory being
assigned for captured data was not being released and the system kept crashing. This was
not an issue with previously developed modules because there were not the large amounts
of data being generated. To overcome this problem Cocoa implements a manual allocation
and release of memory, which must be coded into the program. Instances (e.g. Climage)
must be allocated a block of memory, which will be retained until the block is released using
a release method. Careful attention needed to be taken not to try and access released
memory because this caused an exception, which crashed the system. This problem was
made more difficult because QTCaptureDecompressedVideoOutput delegate method was
threaded therefore the system needed to be thread safe (meaning that multiple threads
weren’t accessing the same piece of data simultaneously). One thread could also not access
a piece of memory already released by another thread without the memory first being

retained using the retain method.

4.5.3 Tracking Algorithm Implementation

The tracking algorithm used was the same one developed for the 2D static motion tracking
system. Once the image, being outputted from the QTCaptureDecompressedVideoOutput
delegate method, had the filter applied to it, then the tracking algorithm is applied. The
result of the tracking algorithm is the centre of mass of the coloured object within the image
(user’s index finger). The stream of images being generated meant that as each image was
examined the centre of mass changed therefore giving a real-time location of the user’s
index finger. Using a camera located in front of the user, meant that the images generated
were a mirror of the real scene. The coordinate system used for the tracking algorithm used
the top left corner of the scene as 0, 0. With the mirrored image the coordinate system

became one where the top right corner of the scene was 0,0. See figure 4.19.

33

320,0 0,0

320, 240 0, 240

_/V

Figure 4.19 Mirrored Image Coordinate System

To reverse this, the result of the tracking algorithm needed to be corrected. This was done

using the following formula outlined in equation 4.1.

COG_X = (COG_X *-1) + 320

Equation 4.1 Tracking Algorithm Correction
COG_X = Centre of mass result

One issue that arose from implementing the tracking algorithm used from the 2D static
motion tracking system was speed. The number of image format conversions necessary for
the use of different methods (Climage, NSImage, NSBitmaplmage) was beginning to slow the
system down. The NSBitmaplmage method ColorAt, for exacting pixel colour information,
was particularly slow. This was changed so that the raw pixel integer data was extracted
instead of its colour. This still gave the same result as the previous method but was more
efficient. In order to the move the OpenGL model, the distance the user’s index finger
moved from frame to frame needed to be calculated. To achieve this, the finger location
from the previous frame and the current frame were stored. Equation 4.2 is the distance
equation being used to calculate the distance the finger moved between frames. Figure 4.20

shows an example of the distance equation being used within the system.

d(x), dly) =V [(x2 -x1)* + (y2 - y1)’]

Equation 4.2 Distance Equation

d = distance

34

x2:24, y2:202 x1:301,y1: 18
o
Previous Frame Current Frame
(Pixel location) (Pixel location)

d(y) d(x): 267, d(y): -184

d(x)

Merged Frames
(Distance moved)

Figure 4.20 Distance Equation Example

When the capture system first loads there is no previous frame, therefore the distance
equation cannot be used. A Boolean flag was used to indicate whether it was the first
tracking instance and if true, the distance equation is not applied and only the location of
user’s finger is stored. This can then be used along with the next captured frame to find the

distance.

4.5.4 OpenGL Model Implementation

The OpenGL model, controlled using the input module, was designed as a 3D cube. To
implement this, each vertex was defined using the OpenGL vertex function call. Four vertices
were required to create each side of the cube along with another four for each point,

displayed at the corners of the cube. See figure 4.21.

35

Figure 4.21 OpenGL Cube

The OpenGL model was designed in a separate class, called each time the cube needed to be
re-drawn. Within the OpenGL class is a method used to rotate the cube. This method calls
the rotate function available from the OpenGL API and, using the result from the distance
equation, rotates the cube around either the x-axis or y-axis. An issue that arose during the
implementation of the OpenGL model was making the class thread safe. The
QTCaptureDecompressedVideoOutput delegate method may not be called by the main
thread but from a newly dispatched thread. This meant that it was possible for 2 or more
threads to try and access the same draw method within the OpenGL class. If two or more
threads try and access the same shared data the system crashes. The lockFocus and
unlockFocus methods available within Cocoa were used to make the draw method thread
safe. The lockFocus method locks off the draw method from all other threads until it is
unlocked by the unlockFocus method. If a thread tries to access the locked draw method, it

will just wait until it becomes unlocked, therefore preventing the system from crashing.

4.5.5 GUI

A number of GUIs where developed during the development and testing phase. During early
development the GUI was used to give test feedback about different aspects of the system
(e.g. finger location, distance moved). It also displayed different stages of image capture
including filtered images. Figure 4.22 and 4.23 are examples of the different stages of the
GUI. Figure 4.22 shows the GUI during the iSight capture stage with the filter being applied
to the stream of images being received. Figure 4.23 shows the GUI during the

implementation of the tracking algorithm.

36

X Position T Pre X Position

X Dis

Y Position Pre Y Position Y Dis

Z Position Pre Z Position

| ———
Drawer

Z Dis

Figure 4.22 GUI during iSight Capture Stage

r 1 - r 1 Time Since Previous Frame .
X Position 145.2184143(Pre X Position 145.0742645:

Y Position | 120.5283966(Pre Y Position 130.0857391%

- 5 Ve
Start Stop
X Dis 0.144149780: ” ” ”

¥Dis -0.55734252¢

Figure 4.23 GUI during Implementation of Tracking Algorithm
The GUI designed for the final systems includes the 3D cube as one of two main features.

The other is a feedback window giving the user the finger tracking result as a white point

(discussed further in 4.5.6). This advises the user if the system is tracking the location of

37

their finger correctly. Clicking on the Settings button brings out a sliding drawer to the right
or left of the window (depending where it is places on screen). This side window is used to
adjust the filter sensitivity by click on either the plus or negative buttons. Clicking on capture
button displays a frame from the iSight, which has had the filter applied to it. This gives the
user the ability to adjust the sensitivity of the filter depending on their surroundings and lets
them view the resulting filtered image. Figure 4.24 shows the final 2D video motion tracking

system GUI.

Object Tracker

Capture Frame

Sensitivity
- +

Settings

Figure 4.24 Final 2D Video Motion Tracking System GUI

The Settings, Capture Frame, Plus and Minus buttons were also mapped to the computer
keyboard as short keys. This enables the user to control the system with one hand while

adjusting the filter sensitivity with the other.

38

4.5.6 Optimisations

Some improvements were made in the final development of the 2D video motion tracking
system. The main issue hindering the development of the 3D video motion tracking system
was speed. Doubling up the amount of data being processed could crash the system or make
the system latency so large it rendered the program useless. The first of two major
improvements made to the system was the use of QTCaptureVideoPreviewOutput method
instead of QTCaptureDecompressedVideoOutput. Instances of
QTCaptureVideoPreviewOutput produce decompressed video frames suitable for preview.
Because the output video is intended for preview only, instances may drop frames or reduce
output quality in order to improve overall performance of the capture session. [7]
QTCaptureDecompressedVideoOutput was designed to never drop frames and to always
keep full quality regardless of system performance therefore
QTCaptureVideoPreviewOutput is far more suitable. The other major improvement was to
exact the colour data from every other pixel, instead of all pixels, thus reducing the
computational requirements per frame by half. This does give a slightly less accurate
tracking but is a fair trade off for the improved efficiency. The improvements made to the
GUI were done because of the lack of feedback being given to the user regarding the
perceived location of their finger by the system. This was done using another OpenGL class,
using an OpenGL point function to create the white point displayed within the scene. The
OpenGL move function was used to move the point using the output result from the tracking
algorithm. The coordinate system of the tracking algorithm uses the top left corner of the
scene as (0, 0), whereas the OpenGL coordinate system uses the middle of the scene as (0,

0). See figure 4.25.

0,0 320,0 -1,-1 1,-1

0, 240 320,240 L1 1,1

Figure 4.25 Tracking Algorithm and OpenGL Coordinate Systems

39

To convert between the tracking algorithm and OpenGL coordinate system a coordinate

transform was applied. See equation 4.3:
t(x) = (x/160) - 1
tly) = (y/120) - 1
Equation 4.3 Coordinate Transform Equations

t = transform

4.5.7 2D Motion Tracking System Class Diagram

xyTracking Thread

(void)captureOutput:(QTCaptureOutput
*)captureOutput

didOutputVideoFrame:(CVimageBufferR > NSThread
_____________ ef)videoFrame

withSampleBuffer:(QTSampleBuffer
*)sampleBuffer
fromConnection:(QTCaptureConnection
*)connection

1.*

1

xyTracking

]

1

1

]

1

1

1

1

|

|

]

1

1

1

1

]

1

1

1

1

:

E (void) awakeFromNib

! (void) tracking:(Climage *)source2;
! (IBAction) captureFrame:(id) sender
' (IBAction) sliderup:(id) sender

! (IBAction) sliderdown:(id) sender
' (void)windowWillClose:(NSNotification
' *)notification

: (void)dealloc

|

]

1

1

1

|

|

|

|

OpenGLModel

Lo--------->| (void)drawRect: (NSRect) bounds
(IBAction) rotate:(float) x :(float) y
:(id)sender

NSOpenGLView

FingerPosition

R —— (void) drawRect: (NSRect) bounds
(IBAction) move:(float) x :(float) y
:(id)sender

40

4.6 3D Video Motion Tracking System

The 3D video motion tracking system was adapted from the 2D video motion tracking
system. It captures from 2 source cameras, the iSight camera and an off the shelf webcam.

See figure 4.26.

iSight Capture
(Camera 1)

y

Filter/Tracking

Control Interface

Webcam Capture
(Camera 2)

\4

Filter/Tracking

Move/Rotate

OpenGL Model

Figure 4.26 3D Video Motion Tracking Data Flow Diagram

To capture two devices simultaneously an array was generated holding the information
about the devices connected to the computer. Using this array the two cameras were
established as input devices and each connected to a QTCaptureSession. Each
QTCaptureSession used a QTCaptureVideoPreviewOutput to output the stream of images,
which were filtered using the same code as the 2D video motion tracking system. A major
issue which occurred while developing the two camera setup was the inability to stream two
cameras connected to the same bus. Because the built in iSight is connected to the High
Speed USB bus another High Speed USB camera could not be connected and streamed at the
same time. This left the use of a low-resolution standard USB camera or high-resolution
Firewire camera. Due to the high costs of Firewire camera a standard USB camera was used.
Camera 2 tracks whether the user has simulated a click, which was originally designed to be
done using the tracking algorithm and distance equation. If the finger moved a large

distance between 2 frames it was assumed they were clicking. To improve efficiency within

41

the system and because of the reduced camera resolution, this method was changed so that
the number of green pixels within the scene determined the click. Instead of applying the
tracking algorithm to each frame, the number of green pixels was counted and if there were
a high number of green pixels it could be assumed the user was clicking. To prevent the
system constantly recognising clicks, only when the number of green pixels dropped below a
certain number does it recognise clicks again. Clicking determines whether the OpenGL
cube is rotated or moved and this was achieved by either selecting the rotate method

(within the OpenGL class) or a new move method. See figure 4.27.

%

Figure 4.27 Clicking Process

The move method used the OpenGL translate function and the output result from the

coordinate transform, used to control OpenGL white point.

42

4.6.1 3D Tracking System Class Diagram

NSThread

T

xyTrackingThread

(void)captureOutput:(QTCaptureOutput
*)captureOutput
didOutputVideoFrame:(CVImageBufferR
ef)videoFrame
withSampleBuffer:(QTSampleBuffer
*)sampleBuffer
fromConnection:(QTCaptureConnection
*)connection

I

zTrackingThread

(void)captureOutput:(QTCaptureOQutput

*)captureOutput

didOutputVideoFrame:(CVImageBufferR

ef)videoFrame
withSampleBuffer:(QTSampleBuffer
*)sampleBuffer

fromConnection:(QTCaptureConnection

*)connection

1.* 1.*
1 1
xyTracking zTracking
(void) awakeFromNib (void) awakeFromNib
(void) tracking:(Climage *)source2; (void) tracking:(Climage *)source2;
(IBAction) captureFrame:(id) sender K—— (IBAction) captureFrame:(id) sender
(IBAction) sliderup:(id) sender (IBAction) sliderup:(id) sender
(IBAction) sliderdown:(id) sender (IBAction) sliderdown:(id) sender
(void)windowWillClose:(NSNotification (int)clicking
*)notification (BOOL)clicked
(void)dealloc (void)windowWillClose:(NSNotification
*)notification
(void)dealloc
OpenGLModel

--------------------.>

(void) drawRect: (NSRect) bounds
(IBAction) rotate:(float) x :(float) y
:(id)sender
(IBAction) move:(float) x :(float) y
:(id)sender

FingerPosition

(void) drawRect: (NSRect) bounds
(IBAction) move:(float) x :(float) y
:(id)sender

NSOpenGLView

43

4.7 Development Testing

4.7.1 OpenGL Model Test

Description: Evaluate rotate and move functions available from OpenGL API

- The rotate and move functions were tested at the beginning of the development using the
OpenGL test bench framework. A 2D object was used and the rotate and move functions
connected to a slider to test if the OpenGL model would continually update. The slider
automatically generated data which was fed into the OpenGL rotate and translate functions.
Result: The OpenGL model successfully moved, rotated and updated when data was

inputted manually and when the slider automatically generated it. See figures 4.28 and 4.29.

OpenGL Test Development e 0o OpenCL Test Development

Reset GL view Reset GL view

Figure 4.28 Example Test 1: Figure 4.29 Example Test 2:
Rotate around z —axis Rotate around x,y,z-axis

4.7.2 Filter Test

Description: Evaluate built-in system filters

- The built-in system filters were evaluated by implementing an image filter application using
the image viewer test bench. The following filters were tested:

ClHueAdjust - Changes the overall hue, or tint, of the source pixels

ClColorControls - Adjusts saturation, brightness, and contrast values

ClColorInvert - Inverts the colours in an image

ClColorMatrix - Multiplies colour values and adds a bias factor to each colour component
ClGammaAdjust - Adjusts midtone brightness

Result: No combination of the built-in system filters offered the correct colour separation

therefore a custom filter was produced as previously described in section 4.4.2.

44

4.7.3 Custom Filter

Description: Test custom filter

- The custom filter was tested using Quartz Composer before it was packaged (see figure
4.30). This allowed rapid optimisation of the filter before development.

Result: Quartz Composer ran filter and improvements were made before the final filter was

packaged for release.

® Quartz Composer File Edit Editor Viewer Window Help Lol
®00 Untitled - Editor (=)

Q R - F 408 0 M
Patch Creator Zoom Levels Create Macro_ it parent Create Clip._Patch Parameters._Patch Inspector Viewer

Root Macro Patch

efin of Definition as Uy
1R
WE oo aire color.r);
Bl airr - airr 3.7 6, - aiff ¢ dirr;
5| retum airr/a;
B
14
B | floot aistsaturation(vect pix, vect color)
L
b

floot diff = cha(pix.g - color.a);
retum diff;

o4 rob)

ningrab.g, rob.6));
nax(rab.g, 190.6));

8
o,

KGN Jdounc@Eesaus PHET T W ﬁ_

Figure 4.30 Using Quartz Composer to test filter

4.7.4 Tracking Algorithm

Description: General test to check is algorithm was function correctly

- The tracking algorithm was applied to the stream of frames and the results analysed to
confirm it was giving the correct location of the user’s finger (see figure 4.31 and 4.32).
Result: Tracking algorithm worked correctly which enabled further development of the
system

[x: 64, y: 22] [x: 167, y: 111] [x: 302, y: 145]

.

Figure 4.31 Tracking Algorithm Example Test Video Sequence

45

[x: 64, y:22] [x: 167, y: 111]

[x: 302, y: 145]

Figure 4.32 Tracking Algorithm Example Test Video Sequence

4.7.5 iSight Capture

Description: General test to check correct capture of iSight

- 2D video motion tracking system test GUI was used to output iSight capture to check if
code was functioning correctly.

Result: QTKit was utilised for Mac OS X 10.5 and iSight capture was successfully displayed

using an NSImageView with a frame size of 320 x 240 at a 30fps.

4.7.6 2D video motion tracking system filter test

Description: General test to check if filter was functioning correctly

- 2D video motion tracking system test GUI was used to display both the iSight capture and
filtered image stream. This was used to analyse the effect of the filter on iSight video stream
and enable further development of the system. On the GUI the standard video stream was
displayed using an NSImageView along with the filtered video stream (see figure 4.33).
Result: Filter functioned correctly although different light levels do affect filter quality.
Having bright light behind the user majorly reduces filter effectiveness. This is due to light

not being bounced off the coloured thimble; therefore it does not appear green.

T

(start) Stop)

N

Figure 4.33 iSight and Fiter Video Streams

46

4.7.7 Memory Allocation

Description: Test for memory allocation and release

- Performance tools Malloc Debug and Leaks were used to check memory leaks within the
system. Results from these tools were used to track down memory leaks and fix them.
Result: Many memory leaks were found throughout the system. The majority of these were
careless programming errors (due to lack of knowledge regarding Cocoa memory
management) which performance tools Malloc Debug and Leaks were unable to track down.

All leaks were finally tracked down and fixed.

4.7.8 USB/Firewire Camera

Description: Test standard USB and Firewire cameras for simultaneous streaming

- With the discovery that a High Speed USB camera could not be used testing was carried out
on the ability to stream the built in iSight camera and either a standard USB or Firewire
camera simultaneously.

Result: Both the standard USB and Firewire camera were successfully streamed

simultaneous with the built in iSight camera.

Camera Fps Quality Frame Size
iSight 30fps High 640 x 480
Standard USB 30fps Low 352 x 288
Firewire 30fps High 640 x 480

Table 4.1 Test Cameras Specifications

4.7.9 GUI Testing

Description: General test to check functionally of GUI
- All GUI features were manually tested to confirm system was performing correctly.
Result: System crashed when adjusting sensitivity setting of second camera. This problem

was fixed meaning all GUI features function correctly.

47

5. Evaluation

This chapter discusses the evaluation and outcome of the project. The project was initially
evaluated against the requirements outlined in chapter 2. It was then evaluated by testing

the latency and jitter of the system and finally by means of a user questionnaire.

5.1 Requirements Evaluation

The project was first evaluated against the requirements outlined in chapter 2. These

objectives describe what was required to achieve a successful project.

RQ1l- Understand the process and techniques involved in capturing motion data

Understanding the techniques deployed in modern motion capture was essential in order
to implement the input module of the system. Chapter 1 contains a brief outline and
description of motion capture. Chapter 2 contains a detailed explanation of the different
types of motion capture technologies (RQ1.1), the advantages and disadvantaged of each

type of technology and the type of application they might be used in (RQ1.2).

48

RQ2 - Develop a 3D object for controlling

A 3D object was necessary for the user to have feedback about the capture system. A
successfully working 3D model was created using OpenGL in the form of a cube (RQ2.1).
This could be controlled using the OpenGL rotate and translate functions (RQ2.2) within
real-time (RQ2.3). The design and development of the 3D model is described in sections

3.4 and 4.3 respectively.

RQ3 - Develop a real-time 3D motion tracking program

A real-time 3D motion capture program was successfully developed using low cost
equipment and custom produced software. The system produces streams from two
cameras (RQ3.1/RQ3.2), filters out unwanted environment (RQ3.3) and uses a centre of
mass equation to track movement across X, y and z axis (RQ3.4). This is then mapped to a
control interface used to control the OpenGL 3D cube (RQ3.5). The design and
development of the 3D motion capture program is described in sections 3.2 and 4.6

respectively.

RQ4 - Develop a control interface to drive the 3D object from captured motion data

A control interface was successfully developed which calculates the distance the user’s
finger had travelled between frames to drive an OpenGL 3D cube (RQ4.1/RQ4.2/RQ4.3).
This objective was exceeded with the inclusion a finger location feedback window. This
gave the tracked location of the user’s finger as a white point within a black scene. The
design and development of the control interface is described in sections 3.3 and 4.5

respectively.

5.2 System Performance

The responsiveness of the system depends on the frame rate of both cameras and overall
system latency. Frame rate is the rate at which frames are received and processed by the
system from the two cameras. The higher the frame rate the more accurate the system
would become because the number of samples being taken of the user’s finger is dependent
on the frame rate. The fewer samples there are the less accurate the system. The overall
system latency is the time delay between when something is initialised to the moment the
first effect begins. Within this system is can be defined at the time delay between the user

moving their finger and the movement of the 3D model.

49

The following evaluation tests were completely on a MacBook Intel 2 GHz Core 2 Duo with

1GB of RAM.

Throughout the design and development the target frame rate was approximately 15 frames
per second (fps). This would achieve a system that would be responsive to all but extremely
fast finger movements. The target rate of 15fps was achieved with the 2D video motion
tracking system. Unfortunately with the high levels of data being processed, the frame rate
for the 3D video motion tracking system is approximately 7fps per camera. This is well below
the target frame rate meaning there is limited response from the 3D video motion tracking
system. The limiting factor with increasing the frame rate is the overall available processor
speed and memory. Increasing the computer CPU speed and RAM would have a highly

beneficial effect on the possible frame rate.

To measure the latency of the system, it was run and the time between a frame being
processed to the OpenGL 3D model moving was recorded. With the 2D video motion
tracking system the mean latency was 62.2ms over a period of 30 seconds. This is an
acceptable latency period giving a smooth and responsive cube movement. The 3D video
motion tracking system had a mean latency of 136.5ms over a period of 30 seconds. This is
over a two-fold increase on the 2D video motion tracking system giving an unresponsive and
jerky user experience. The low frame rate and high latency experienced with the 3D video
motion tracking system were foreseen problems and ones which were very difficult to
overcome. Only increasing the available processing power and memory of the computer

would allow an increase in frame rate and lower latency time.

5.3 User Evaluation

Once the final 2D and 3D video motion tracking systems were developed user evaluation
sessions were set up. The targeted user group were ten typical users; all computer literate
and all with a general understanding of motion tracking systems. Participants were given an
overview of the system and an explanation on how to use the different features. They were
asked to test the system and evaluate it based on their level of control, system feedback,
GUI and overall experience. Once they had finished they were asked to fill out a

questionnaire.

50

5.3.1 Level of Control

To what level of control did you feel you had over the 3D cube?
(2D Video Motion Tracking System)

74
6
s 7
4+
E
B dyd -
o+

0% (no control) IDD%(FUII cnntrnIJ

Chart 5.1 Level of Control (2D Video Motion Tracking System)

To what level of control did you feel you had over the 3D cube?
(3D Video Motion Tracking System)

[s L= BN

T
0% (no control) 100%(fu|lcontrol]

Chart 5.2 Level of Control (3D Video Motion Tracking System)

The results obtained show that participants felt they had a good level of control with 2D
video motion tracking system but less control with 3D video motion tracking system. This
was mainly due to the low frame rate and high latency experienced with the 3D video
motion track system. Results from other questions regarding level of control show that
participants felt they could click fairly easily and that there were high levels of accuracy with

finger tracking.

5.3.2 Graphical User Interface

Rate the usefulness of the features included within the Graphical User Interface?

Very Useful Fairly Useful Fairly Useless Wery Useless

[N T e -]

T T T S S P

Chart 5.3 GUI (3D Video Motion Tracking System)

51

Participants found the GUI very useful with all the features being a good idea and
implemented to a high standard. They found the sensitivity adjuster very useful especially in
different environments e.g. low light conditions. This shows that users were happy to use

the system and were pleased with the ease of use.

5.3.3 Feedback

Rate the usefulness of the finger position feedback window?

10 -
g .
s ‘
s
2 47

WVery Useful Fairly Useful Fairly Useless Very Useless

Chart 5.4 Feedback (3D Video Motion Tracking System)
All participants found the finger position feedback window to be very useful showing the
inclusion of the extra feedback window was a good idea. Participants also found the cube to

be a good shape for best representing the movement effect.

5.3.4 Overall System

Overall how would you rate the system?
(2D Video Mation Tracking System)

+

(=R R ST

Excellent Very Good Good Poor

Chart 5.5 Overall System (2D Video Motion Tracking System)

52

Overall how would you rate the system?
(3D Video Mation Tracking System)

a B omow B0
4

Excellent Very Good Good Poor

Chart 5.6 Overall System (2D Video Motion Tracking System)

The result obtained about the system overall show that the 2D video motion tracking was
well received amongst participants with the majority rating the system as either excellent or
very good. Participants were happy with the 3D video motion tracking system, with the
majority rating it either very good or good. Unfortunately the low frame rate and latency
issues were a problem and this is reflected by the single poor result. Participants were
intrigued by the type of control they could have over the cube using just a coloured thimble
and reported, despite the speed related problems, that it was an interesting and enjoyable

experience.

53

6. Conclusion and Further Work

The system was developed using Cocoa for Mac OS X operating system giving a large number
of possible applications and potential directions. This chapter gives an assessment of the
success of the finished system stating the challenges which were faced to successfully
achieve the project requirements. It presents the final system and discusses aspects, which

could be improved along with possible future work.

6.1 Challenges Overcome For Project Success

During the development of the system many problems and challenges were faced which had
to be overcome to successfully complete the system. These challenges also had to be
overcome within a limited time frame so that the system was still completed and delivered
by the agreed date. The section below outlines the challenges faced during the development

of the system and how these were overcome.

6.1.1 Developing using Cocoa for Mac OS X

The understanding and learning of the Cocoa programming language was a very time

consuming task. Having only programmed using Java for PC, the jump was larger than

54

expected. Although both languages are object orientated the subtle differences were
sometime difficult and frustrating to learn. The increased complexity of the system,

compared to previous programming experience, was also sometimes daunting and difficult.

6.1.2 Memory Management

Not having the convenience of automatic garage collection was a major and unforeseen
challenge. Initial programming of the system was completed without properly allocating and
releasing memory. This meant completing the time consuming task of tracking down and
fixing many memory leaks which were abundant throughout the code. Understanding when
memory should be released was also a problem because various system components were

accessing the same memory from different parts of the system.

6.1.3 Thread Safe

Making the system thread safe meant locking off and unlocking parts of code so that only
one thread could access the same data at the same time, therefore preventing the system
from crashing. The use of lockFocus, unlockFocus, synchronized and autorelease pool
functions were used. One particularly difficult piece of code to make thread safe was the
OpenGL cube. This could be re-drawn from a number of different threads and the calling of

OpenGL functions kept crashing the system.

6.1.4 Streaming Two Cameras Simultaneously

Being able to stream two cameras simultaneously was a critical aspect of the 3D motion
tracking system. Large amounts of time were spent determining why two high speed USB
cameras could not be streamed simultaneously. It was later discovered that QTKit was
unable to do this, an issue undocumented within the Cocoa API. Testing was then completed

establishing that QTKit was able to stream from different buses.

6.1.5 Efficiency

Keeping the system efficient was a challenge which arose throughout the development of

the project. Large amounts of data being captured from two cameras, filtering and tracking

55

meant high levels of computation was necessary. Making the system more efficient was an

ongoing process requiring creative solutions.

6.2 The Final System

The final system uses colour based motion tracking to implement a usable real-time 3D
mouse. A coloured thimble placed on the user’s index finger is tracked and the results
obtained mapped to a control interface which is used to control an OpenGL cube in real-
time. The system successfully tracks the x and y axis using the high-resolution iSight camera
built into MacBook computers. It allows the user to simulate a click using a second low cost,
low resolution, off the shelf webcam by tracking whether the finger has entered it field of
view. The frame rate of the system was unfortunately lower and the latency time higher
than specified within the design. This was due to the high levels of data being produced,

being unable to be sufficiently processed by the CPU.

Front Camera

- Capture Frame +

Side Camera

= Capture Frame +

_ Rotate Move |

Settings

Figure 6.1 Final 3D Motion Tracking System GUI

56

In conclusion, colour-based finger tracking can be used to implement a gesture controlled
real-time 3D mouse in software. There are some issues with possible frame rate and high
latency, but these will reduce as technology advances and available processing power
increases. Users were able to control the 3D cube and simulate clicks using their finger
alone. Participants in the user based evaluation found the system interesting and enjoyable
to use, rating it either good or very good, but were disappointed with the latency issues
affecting the tracking and 3D cube control. They found the GUI very useful and were pleased

with features included, especially the finger location feedback window.

6.3 Future Work

6.3.1 Infrared Tracking

Using infrared to track the location of the user’s finger can greatly improve the tracking
accuracy and reduce the level computation required. This can be achieved using a standard
camera using an infrared filter [13]. This type of filter will only let infrared light pass through
it therefore removing the need for a filter to be produced in software. Because the only
infrared light being produced will be from an emitter attached to the user’s finger, tracking
could easily be achieved in almost any condition regardless of the surrounding environment.
This type of tracking already has proven potential within commercial applications when it

was used as the chosen method of tracking for the Nintendo Wii games console.

6.3.2 Multiple Point Tracking

The ability to track multiple points would greatly increase the functionally and potential
applications of the system. To achieve this a more sophisticated tracking algorithm would
need to be produced which is capable of tracking multiple points simultaneously. This could
then be used for greater user interaction; for example specific two finger gesture controls
could be used to scale up or down the 3D cube. Object rotation and movement could be
achieved simultaneously along with controlling the cube with one finger while clicking with

the other. Overall this would produce far greater system functionality.

57

7. References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Animazoo (2007) Inertial Gyro Motion Capture Systems. [online] Available from:
http://www.animazoo.com/Inertial GyroMotionCaptureSystems.aspx [accessed
11/04/2008]

Animazoo (2008) The Mocap Specialists. [online] Available from:
http://www.animazoo.com/default.aspx [accessed 18/04/2008]

Apple Developer Connection (2007) Core Image. [online] Available from:
http://developer.apple.com/graphicsimaging/coreimage/ [accessed 02/12/2007]

Apple Developer Connection (2007) How QTKit Capture Works. [online] Available
from : http://developer.apple.com/documentation/QuickTime/Conceptual/
QTKitCaptureProgrammingGuide/GettingStarted/chapter_2_section_3.html
[accessed 03/04/2008]

Apple Developer Connection (2007) Mac OS X. [online] Available
from:http://developer.apple.com/macosx/ [accessed 02/12/2007]

Apple Developer Connection (2007) Mac OS X System Architecture. [online]
Available from: http://developer.apple.com/macosx/architecture/ [accessed
02/12/2007]

Apple Developer Connection (2007) QTCaptureVideoPreviewOutput Class
Reference. [online] Available from:
http://developer.apple.com/documentation/QuickTime/Reference/QTCaptureVideo
PreviewOutput_Class/Reference/Reference.html [accessed 03/04/2008]

58

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

Apple Developer Connection (2007) XCode. [online] Available from:
http://developer.apple.com/tools/xcode/ [accessed 02/12/2007]

August, J (2005) Digital filmmaking and the paradox of choice. [online] Available
from: http://johnaugust.com/Assets/polarex1.jpg [accessed 02/12/2007]

British Computer Society (2006) Code of Conduct for Members. [online] Available
from: http://www.bcs.org/server.php?show=conWebDoc.1588 [accessed
02/12/2007]

British Computer Society (2007) Code of Practice. [online] Available from:
http://www.bcs.org/server.php?show=conWebDoc.1590 [accessed 02/12/2007]

Canny, J (1986) a Computational Approach To Edge detection. IEEE Trans. Pattern
Anal. Mach. Intell. Vol. 8 pp. 679-698

Finny, A (2007) Invisible Light. [online] Available from:
http://www.atsf.co.uk/ilight/tech/ilightec.html

Hillegass, A (2004) Cocoa Programming for Mac OS X. 2nd ed., p.4. Pearson
Education, Inc.

La Fantasy au quotidian (2007) Beowulf. [online] Available from:
http://www.elbakin.net/plume/xmedia/fantasy/news/autres_films/jolie-beowulf-
capteurs.jpg [accessed 02/12/2007]

Menache, A (1999) Understanding Motion Capture for Computer Animation and
Video Games. 1st ed., p1 Morgan Kaufmann

Menache, A (1999) Understanding Motion Capture for Computer Animation and
Video Games. 1st ed., p14 Morgan Kaufmann

Menache, A (1999) Understanding Motion Capture for Computer Animation and
Video Games. 1st ed., p20 Morgan Kaufmann

Menache, A (1999) Understanding Motion Capture for Computer Animation and
Video Games. 1st ed., p23 Morgan Kaufmann

Meta Motion (2004) Optical Motion Capture Systems. [online] Available from:
http://www.metamotion.com/motion-capture/optical-motion-capture-1.htm

[accessed [18/04/2008]

Office of Public Sector Information (1995) Disability Discrimination Act. [online]

Available from: http://www.opsi.gov.uk/acts/acts1995/ukpga_19950050 en_4#pt3-

pb1-11g19 [accessed 02/12/2007]

Recycling Guide (2007) Reduce, Reuse, Recycle. [online] Available from:
http://www.recycling-guide.org.uk/rrr.html [accessed 02/12/2007]

59

(23]

[24]

[25]

Walsh, G & Bishop G (2006) An Introduction to the Kalman Filter. Department of
Computer Science, University of North Carolina at Chapel Hill

Scott Owen, G (1999) A Protical Approach Motion Capture: Acclaim’s optical motion
capture system. [online] Available from:
http://www.siggraph.org/education/materials/HyperGraph/animation/character_an
imation/motion_capture/motion_optical.htm#An%20overview%200f%20current%2
Oinput%20systems [accessed 18/04/2008]

Xsens (2007) Human Motion Analysis. [online] Available from:

http://www.xsens.com/index.php?mainmenu=technology&submenu=research&sub
submenu=human_motion [accessed 18/04/2008]

60

8. Appendix A

8.1 2D Motion Tracking System

8.1.1 xyTracking

// Created by Patrick Holroyd
// Copyright Patrick Holroyd 2008. All rights reserved.

/* xyTracking */

#import <Cocoa/Cocoa.h>
#import <QTKit/QTkit.hs>
#import <MyOpenGLView.hs>
#import <FingerPosition.hs>

@interface xyTracking : NSObject {

IBOutlet NSImageView *mImageView;
IBOutlet NSTextField *xtext;

IBOutlet NSTextField *ytext;

IBOutlet NSTextField *xdistext;
IBOutlet NSTextField *ydistext;
IBOutlet NSTextField *prextext;
IBOutlet NSTextField *preytext;
IBOutlet NSTextField *timetext;
IBOutlet MyOpenGLView *pOpenGLView;
IBOutlet FingerPosition *pFingerPosition;
IBOutlet QTCaptureView *mCaptureView;
IBOutlet NSSlider *slidersens;
IBOutlet NSButton *settings;
IBOutlet NSButton *capture;
IBOutlet NSButton *sliderup;
IBOutlet NSButton *sliderdown;
NSImage *image;
QTCaptureSession *mCaptureSession;
QTCaptureSession *mCaptureSession2;

QTCaptureVideoPreviewOutput
*mCaptureDecompressedVideoOutput ;
QTCaptureVideoPreviewOutput
*mCaptureDecompressedVideoOutput?2;
QTCaptureDeviceInput
QTCaptureDeviceInput

*mCaptureVideoDeviceInput;
*mCaptureVideoDeviceInput2;

CVImageBufferRef mCurrent ImageBuffer;
CVImageBufferRef imageBuffer;

BOOL firsttrack;

float pCOG_X;

float pCOG_Y;

float sensitivity;

- (void) MyInstanceThreadMethod: (CIImage *)source2;
- (IBAction) captureFrame: (id) sender;
- (IBAction) sliderup: (id) sender;

- (IBAction) sliderdown: (id) sender;

@end

// xyTracking.h

// xyTracking

//

// Created by Patrick Holroyd

// Copyright Patrick Holroyd 2008. All rights reserved.

#import "xyTracking.h"

@implementation xyTracking
- (void)awakeFromNib

// Create the capture session
mCaptureSession = [[QTCaptureSession alloc] init];
// Connect inputs and outputs to the session

BOOL success = NO;
NSError *error;

// Find a video device

NSArray *inputs = [QTCaptureDevice inputDevicesWithMediaType:QTMediaTypeVideo];
QTCaptureDevice *videoDevice = [inputs objectAtIndex:0];
success = [videoDevice open:&error] ;

// If a video input device can't be found or opened, try to find and open a muxed input
device

if (!success)
videoDevice = [QTCaptureDevice defaultInputDeviceWithMediaType:QTMediaTypeMuxed] ;
success = [videoDevice open:&error] ;

if (lsuccess)
//Handle error
videoDevice = nil;
NSLog (@"No Camera") ;

//Add the video device to the session as a device input

mCaptureVideoDeviceInput = [QTCaptureDevicelInput deviceInputWithDevice: videoDevice] ;
success = [mCaptureSession addInput:mCaptureVideoDeviceInput error:&error] ;
if (lsuccess)

//Handle error

NSLog (@"Cannot add camera to session");

mCaptureDecompressedVideoOutput = [[QTCaptureVideoPreviewOutput alloc] init];
[mCaptureDecompressedVideoOutput setDelegate:self];

success = [mCaptureSession addOutput:mCaptureDecompressedVideoOutput error:&error];
if (!success)

}

firsttrack = YES;

sensitivity = 1.5;

[settings setKeyEquivalent:@"s"];
[capture setKeyEquivalent:@"c"];
[sliderup setKeyEquivalent:@"x"

NSLog (@"Output not added") ;

61

[sliderdown setKeyEquivalent:@"z"];

[mCaptureSession startRunningl ;
[mCaptureSession2 startRunning] ;

}
/*

Zhread method which applies filter, scans pixels and applying Centre of Mass algorithm
-/(VOid) MyInstanceThreadMethod: (CIImage *)inputimage;
) @synchronized (self) {

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

[CIPlugIn loadAllPluglIns];
CIFilter *cFilter = [[CIFilter alloc] init];
CIFilter *gFilter = [[CIFilter alloc] init];
[pool addObject:cFilter];
[pool addObject:gFilter];
//Rpply Gaussian Blur filter

gFilter = [CIFilter filterWithName: @"CIGaussianBlur"];

[gFilter setDefaults];

[gFilter setValue: inputimage forKey: @"inputImage"];

[gFilter setValue: [NSNumber numberWithFloat: 5.0] forKey: @"inputRadius"];
CIImage *source2= [gFilter valueForKey: @"outputImage'"];

//Bpply custom filter
cFilter = [CIFilter filterWithName: @"ColorRemoveFilter"];

[cFilter setDefaults];
[cFilter setValue: source2 forKey: @"inputImage"];

[cFilter setValue: [CIColor colorWithRed: 0.00390 green: 0.41406 blue: 0.29687 alpha:

1.0] forKey: @"matchColor"];

[cFilter setValue: [NSNumber numberWithFloat: sensitivity] forKey:
@"inputSensitivity"];
CIImage *result = [cFilter valueForKey: @"outputImage'"];

//Resize frame

NSSize xsize = {320.0, 240.0};

NSCIImageRep *imageRep = [NSCIImageRep imageRepWithCIImage:result];
[imageRep retain];

[pool addObject:imageRepl] ;

[image release];

image = [[NSImage alloc] initWithSize:xsizel;

[image addRepresentation:imageRep] ;
[image retain];
[pool addObject:image] ;

NSData *tiff_data = [[NSData alloc] initWithData:[image TIFFRepresentation]];
[pool addObject:tiff_datal;

NSBitmapImageRep *bitmap = [[NSBitmapImageRep alloc] initWithData:tiff_datal;
[pool addObject:bitmap] ;

//Scan over pixels

int x;

int y;

float COG_X;

float COG_Y;

float total;

int totalGreen = 0;

for(x = 0;

X < 160; X++)

%or (y = 0; v < 120; y++)

NSUInteger pixelDatal[3];

[bitmap
float k

if(k ==

}

COG_X
cog_
1

tota

getPixel:pixelData atX:x*2 y:y*2];

= (pixelData[0]+pixelData[1]+pixelDatal2])/3;
61)

totalGreen++;

0G_X + (k*x*2);

= c
= COG_Y + (k*y*2);
-t

otal + k;

//Stop tracking if too much green is in frame

BOOL track = YES;
if (totalGreen > 3500

}

firsttrack = YES;
track = NO;

//Stop tracking if too little green is in frame

if (totalGreen < 150

firsttrack = YES;

track

NO;

if (track)

if (firsttrack)

//I1f first tracking only store finger location

}

else

COG_X = ((COG_X / total) * - 1) +320;
pCOG_X = COG_X;

COG_Y = COG_Y / total;

pCOG_Y = COG_Y;

firsttrack = NO;

//If not first tracking apply distance equation

COG_X = ((COG_X / total) * - 1) +320;
float xdis = COG_X - pCOG X;

COG_Y = COG_Y / total;

float ydis = COG_Y - pCOG Y;

//Map data to OpenGL cube

[pOpenGLView rotate:xdis :ydis :self];
[pFingerPosition move: (COG_X/160)-1 :((COG_Y/120)-1) * -1
[prextext setFloatValue: (COG_X/160)-1];
[preytext setFloatValue: (COG_Y/120)-1];

:self];

62

[xtext setFloatValue:COG_X];
[ytext setFloatValue:COG_Y];
[xdistext setFloatValue:COG_X];
[ydistext setFloatValue:COG_Y];
PCOG X = COG_X;

PCoOG Y = COG_Y;

!

[pool releasel;

}
/*

Capture frame for GUI
*/
- (IBAction) captureFrame: (id) sender

[mImageView setImage:imagel] ;

}
/*

Increase sensitivity
*
- (IBAction) sliderup: (id) sender

sensitivity = sensitivity - 0.1;
[mCaptureSession stopRunning] ;
[mCaptureSession startRunningl ;
[self captureFrame:self];

}
/*

Decrease sensitivity
*

- (IBAction) sliderdown: (id) sender

sensitivity = sensitivity + 0.1;
[mCaptureSession stopRunning] ;
[mCaptureSession startRunningl ;
[self captureFrame:self];

/*

Capture frame from xyCamera

*/
- (void) captureOutput: (QTCaptureOutput
didoutputvVideoFrame: (CVImageBufferRef)videoFrame

*) captureOutput
withSampleBuffer: (QTSampleBuffer

*) sampleBuffer fromConnection: (QTCaptureConnection *)connection

// Store the latest frame
CvImageBufferRef imageBufferToRelease;
CcvBufferRetain (videoFrame) ;
@synchronized (self)
imageBufferToRelease = mCurrentImageBuffer;
mCurrentImageBuffer = videoFrame;

@synchronized (self)

imageBuffer = CVBufferRetain(mCurrentImageBuffer);

if (imageBuffer)

CIImage *source = [CIImage imageWithCVImageBuffer:imageBuffer];

//Dispatch thread
[self MyInstanceThreadMethod:source];

CvBufferRelease (imageBufferToRelease) ;
CcvBufferRelease (mCurrentImageBuffer) ;

}

#pragma mark-
/*
Handle window closing notifications for device inputs
*
>/(void)windowwillclose:(NSNotification *)notification
[mCaptureSession stopRunning] ;
if ([[mCaptureVideoDeviceInput device] isOpen])

[[mCaptureVideoDeviceInput device] closel];

}
/*

Handle deallocation of memory for your capture objects
*
- (void)dealloc
[mCaptureSession release];
[mCapturevVideoDeviceInput release];
[mCaptureDecompressedVideoOutput releasel;
[super dealloc];

}
#pragma mark-

@end

8.1.2 MyOpenGLView

// Created by Patrick Holroyd
// Copyright Patrick Holroyd 2008. All rights reserved.

/* MyOpenGLView */
#import <Cocoa/Cocoa.h>
@interface MyOpenGLView : NSOpenGLView
float rotX;
float rotY;
- (void) drawRect: (NSRect) bounds ;
- (IBAction) rotate: (float) x :(float) y :(id)sender;
@end
//
// MyOpenGLView.h

// MyOpenGLView

//
// Created by Patrick Holroyd

63

// Copyright Patrick Holroyd 2008. All rights reserved.

#import "MyOpenGLView.h"
#include <OpenGL/gl.h>

@implementation MyOpenGLView

/*
OpenGL
*/

- (void)

draw method

drawRect: (NSRect) bounds

//Lock drawing code
if ([self lockFocusIfCanDraw] == YES) {

//Setup OpenGL

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glShadeModel (GL_SMOOTH) ;

glEnable (GL_DEPTH_TEST) ;
glDepthFunc (GL_LEQUAL) ;
glClearColor (0.0, 0.0, 0.0, 0.0);
glClearDepth(1.0) ;

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_ SRC_ALPHA) ;

glPointSize (3.0);

glEnable (GL_POINT_SMOOTH) ;

glHint (GL_POINT_SMOOTH_HINT, GL_NICEST) ;
glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;

glLoadIdentity () ;

//Rotate cube using result from tracking
glRotatef (rotX,0.0,1.0£f,0.0f) ;

glRotatef (roty,1.0£f,0.0£f,0.0f) ;
%lBegin(GL_POINTS);

glColor4f (1.0, 1.0, 1.0, 1.0);

glvertex3f(0.5f, 0.5f,-0.5f); //

glvertex3f(-0.5f, 0.5f,-0.5f); // Top Left Of The Quad
glvertex3f(-0.5f, 0.5f, 0.5f); //

glvertex3f(0.5f, 0.5f, 0.5f); //

glcolor4f (1.0, 1.0, 1.0, 1.0

glvertex3f(0.5f,-0.5f, 0.5f

glvertex3f(-0.5f,-0.5f, 0.5f

glvertex3f(-0.5f,-0.5f,-0.5f

glvertex3f(0.5f,-0.5f,-0.5f

glColor4f (1.0, 1.0, 1.0, 1.0);

glvertex3f(0.5f, 0.5f, 0.5f); //

glvertex3f(-0.5f, 0.5f, 0.5f); // Top Left Of The Quad
glvertex3f(-0.5f,-0.5f, 0.5f); //

glvertex3f(0.5f,-0.5f, 0.5f); //

glcolor4f (1.0, 1.0, 1.0, 1.0

glvertex3f(0.5f,-0.5f,-0.5f

glvertex3f(-0.5f,-0.5f,-0.5f

glvertex3f(-0.5f, 0.5f,-0.5f

glvertex3f(0.5f, 0.5f,-0.5f

glColor4f (1.0, 1.0, 1.0, 1.0);

glvertex3f(-0.5f, 0.5f, 0.5f); // Top Right Of The Quad
glvertex3f(-0.5f, 0.5f,-0.5f); //

Top Right Of The Quad

Bottom Left Of The Quad
Bottom Right Of The Quad

)i

)i // Top Right Of The Quad
)i // Top Left Of The Quad
)i // Bottom Left Of The Quad
)i // Bottom Right Of The Quad

Top Right Of The Quad

Bottom Left Of The Quad
Bottom Right Of The Quad

)i

)i // Top Right Of The Quad
)i // Top Left Of The Quad
)i // Bottom Left Of The Quad
)i // Bottom Right Of The Quad

Top Left Of The Quad

glvertex3f (-0
glvertex3f (-0

glColor4f (1.0,

glvertex3f(0
glvertex3f(0
glvertex3f(0
glvertex3f(0

glEnd () ;

.5f,-0
.5f,-0

1.0,
.5f, 0
.5f, 0
.5f,-0.
.5f,-0

%lBegin(GL_QUADS);

glColor4f (0.0,

glvertex3f(0
glvertex3f (-0
glvertex3f (-0
glvertex3f(0

glColor4f (0.0,

glvertex3f(0
glvertex3f (-0
glvertex3f (-0
glvertex3f(0

glColor4f (0.0,

glvertex3f(0
glvertex3f (-0
glvertex3f (-0
glvertex3f(0

glColor4f (0.0,

glvertex3f(0
glvertex3f (-0
glvertex3f (-0
glvertex3f(0

glColor4f (1.0,

glvertex3f (-0
glvertex3f (-0
glvertex3f (-0
glvertex3f (-0

glColor4f (0.0,

glvertex3f(0
glvertex3f(0
glvertex3f(0
?IVerteXBE(0

glEnd () ;
glFlush() ;

0.0,
.5f, 0
.5f, 0.
.5f, 0
.5f, 0

0.0,
.5f,-0.
.5f,-0.
.5f,-0.
.5f,-0
1.0,
.5f, 0
.5f, 0
.5f,-0
.5f,-0

0.0,
.5f,-0
.5f,-0
.5f, 0
.5f, 0

0.0,
.5f, 0
.5f, 0
.5f,-0
.5f,-0

0.5,
.5f, 0.
.5f, 0.
.5f,-0.
.5f,-0.

[self unlockFocus] ;

}
/*

Update point location
*/

- (IBAction) rotate: (float) x

@synchronized (self

rotX +=x;

.5f,-0.5f);
.5f, 0.5f);
1.0, 1.0);
.5f,-0.5f);
.5f, 0.5f);
5f, 0.5f);
.5f,-0.5f);
1.0, 0.2);
5f,-0.5f);
5f,-0.5f);
5f, 0.5f);
5f, 0.5f);
1.0, 0.2);
5f, 0.5f);
5f, 0.5f);
5f,-0.5f);
.5f,-0.5f);
0.0, 0.2);

.5f, 0.5f);
.5f, 0.5f);
.5f, 0.5f);
.5f, 0.5f);
1.0, 0.2);
.5f,-0.5f);
.5f,-0.5f);
.5f,-0.5f);
.5f,-0.5f);
1.0, 0.2);
.5f, 0.5f);
.5f,—0.5f);
.5f,-0.5f);
.5f, 0.5f);
1.0, 0.2);
5f,-0.5f);
5f, 0.5f);
5f, 0.5f);
5f,-0.5f);
:(float) y

{

NN~
RS

NN~
RN

: (id) sender

Bottom Left Of The Quad (Left)
Bottom Right Of The Quad (Left)

Top Right Of The Quad (Right)
Top Left Of The Quad (Right)
Bottom Left Of The Quad (Right)
Bottom Right Of The Quad (Right)

Top Right Of The Quad (Top)
Top Left Of The Quad (Top)
Bottom Left Of The Quad (Top)
Bottom Right Of The Quad (Top)

Top Right Of The Quad (Bottom)
Top Left Of The Quad (Bottom)
Bottom Left Of The Quad (Bottom)
Bottom Right Of The Quad (Bottom)

Top Right Of The Quad (Front)
Top Left Of The Quad (Front)
Bottom Left Of The Quad (Front)
Bottom Right Of The Quad (Front)

Top Right Of The Quad (Back)
Top Left Of The Quad (Back)
Bottom Left Of The Quad (Back)
Bottom Right Of The Quad (Back)

Top Right Of The Quad (Left)
Top Left Of The Quad (Left)
Bottom Left Of The Quad (Left)
Bottom Right Of The Quad (Left)

Top Right Of The Quad (Right)
Top Left Of The Quad (Right)
Bottom Left Of The Quad (Right)
Bottom Right Of The Quad (Right)

64

rot¥ +=y;
NSLog (@"rotate") ;
[self drawRect: [self boundsl];

@end

8.1.3 FingerPosition

// Created by Patrick Holroyd
// Copyright Patrick Holroyd 2008. All rights reserved.

/* FingerPosition */
#import <Cocoa/Cocoa.h>

@interface FingerPosition : NSOpenGLView

float posX;
float posY;
}
- (void) drawRect: (NSRect) bounds;
- (IBAction) move: (float) x :(float) y :(id)sender;
@end
//
// FingerPosition.h
// FingerPosition
//
// Created by Patrick Holroyd
// Copyright Patrick Holroyd 2008. All rights reserved.

#import "FingerPosition.h"
#include <OpenGL/gl.h>

@implementation FingerPosition

/*
OpenGL draw method
*/

- (void) drawRect: (NSRect) bounds

//Lock drawing code
if([self lockFocusIfCanDraw] == YES) (

//Setup OpenGL

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;
glShadeModel (GL_SMOOTH) ;

glEnable(GL_DEPTH_TEST);

glDepthFunc (GL_LEQUAL) ;

glClearColor (0.0, 0.0, 0.0, 0.0);
glClearDepth(1.0) ;

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;
glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;
glLoadIdentity () ;

glPointSize (10.0) ;

glEnable(GL_POINT_SMOOTH);
ngint(GL_POINT_SMOOTH_HINT, GL_NICEST);

}
/*

glEnable (GL_BLEND) ;
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;

//Move cube using result from tracking
glTranslatef (posX, posY, 0.0);
%lBegin(GL_POINTS);

glColor4f (1.0, 1.0, 1.0, 1.0);
glvertex3f(0.0f, 0.0f, 0.0f);

}

glEnd () ;
glFlush() ;

[self unlockFocus] ;

Update point location
*

- (IBAction) move: (float) x :(float) y :(id)sender

@end

@synchronized (self) {

posX =x;

posY =y;

[self drawRect: [self bounds]];

65

8.2 3D Motion Tracking System

8.2.1 xyTracking

// Created by Patrick Holroyd
// Copyright Patrick Holroyd 2008. All rights reserved.

/* xyTracking */

#import <Cocoa/Cocoa.h>
#import <QTKit/QTkit.h>
#import <MyOpenGLView.h>
#import <ZTracking.h>
#import <FingerPosition.h>

@interface xyTracking : NSObject {

IBOutlet NSImageView *mImageView;

IBOutlet NSTextField *xtext;

IBOutlet NSTextField *ytext;

IBOutlet NSTextField *xdistext;

IBOutlet NSTextField *ydistext;

IBOutlet NSTextField *prextext;

IBOutlet NSTextField *preytext;

IBOutlet NSTextField *timetext;

IBOutlet MyOpenGLView *pOpenGLView;

IBOutlet FingerPosition *pFingerPosition;

IBOutlet ZTracking *zTracking;

IBOutlet QTCaptureView *mCaptureView;

IBOutlet NSSlider *slidersens;

IBOutlet NSButton *settings;

IBOutlet NSButton *capture;

IBOutlet NSButton *sliderup;

IBOutlet NSButton *sliderdown;

IBOutlet NSSegmentedCell *control;

NSImage *image;
QTCaptureSession *mCaptureSession;

QTCaptureSession *mCaptureSession2;

QTCaptureVideoPreviewOutput
*mCaptureDecompressedVideoOutput ;
QTCaptureVideoPreviewOutput
*mCaptureDecompressedVideoOutput?2;
QTCaptureDeviceInput
QTCaptureDevicelInput

*mCaptureVideoDeviceInput;
*mCaptureVideoDeviceInput2;

CVImageBufferRef mCurrentImageBuffer;
CVImageBufferRef imageBuffer;
BOOL firsttrack;
float pCOG_X;
float pCOG_Y;
float sensitivity;

- (void) MyInstanceThreadMethod: (CIImage *)source2;

- (IBAction) captureFrame: (id) sender;

- (IBAction) sliderup: (id) sender;

- (IBAction) sliderdown: (id) sender;

@end

//

xyTracking.h
xyTracking

Created by Patrick Holroyd
Copyright Patrick Holroyd 2008. All rights reserved.

R
A

#import "xyTracking.h"

@implementation xyTracking

/*

Initial wakeup method

*/

- (void) awakeFromNib

// Create the capture session
mCaptureSession = [[QTCaptureSession alloc] init];

// Connect inputs and outputs to the session
BOOL success = NO;
BOOL success2 = NO;
NSError *error;

// Find a video device

NSArray *inputs = [QTCaptureDevice inputDevicesWithMediaType:QTMediaTypeVideo];

QTCaptureDevice *videoDevice = [inputs objectAtIndex:0];

QTCaptureDevice *videoDevice2 = [inputs objectAtIndex:1];
success = [videoDevice open:&error] ;

success2 = [videoDevice2 open:&error] ;

// If a video input device can't be found or opened, try to find and open a muxed input
device

if (!success)
videoDevice = [QTCaptureDevice defaultInputDeviceWithMediaType:QTMediaTypeMuxed] ;
success = [videoDevice open:&error] ;

}

if (!success)
videoDevice = nil;
NSLog (@"No Camera 1");

if (!success2) {
videoDevice2 = nil;
NSLog (@"No Camera 0") ;

}

//Add the video device to the session as a device input

mCaptureVideoDeviceInput = [QTCaptureDevicelInput deviceInputWithDevice: videoDevice] ;

mCaptureVideoDeviceInput?2 = [QTCaptureDeviceInput deviceInputWithDevice:
videoDevice2] ;

success = [mCaptureSession addInput:mCaptureVideoDeviceInput error:&error] ;

if (!success)

//Handle error
NSLog (@"Cannot add camera 1 to session");

66

}

[zTracking main:mCaptureVideoDeviceInput2];

mCaptureDecompressedVideoOutput = [[QTCaptureVideoPreviewOutput alloc] init];
[mCaptureDecompressedVideoOutput setDelegate:self];
success = [mCaptureSession addOutput:mCaptureDecompressedVideoOutput error:&error] ;

if (lsuccess)

//Handle error
NSLog (@"Output not added") ;

}

[mCaptureView setCaptureSession:mCaptureSession];

firsttrack = YES;

sensitivity = 1.5;

[settings setKeyEquivalent:@"s"];
[capture setKeyEquivalent:@"c"];
[sliderup setKeyEquivalent:@"x"];
[sliderdown setKeyEquivalent:@"z"];

[mCaptureSession startRunning] ;
[mCaptureSession2 startRunning];

/*

Thread method which applies filter, scans pixels and applying Centre of Mass algorithm
*/

- (void) MyInstanceThreadMethod: (CIImage *)source2;

//Check if clicking
%f([zTracking clicking] < 20)

@synchronized (self) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

[CIPlugIn loadAllPluglIns];
CIFilter *cFilter = [[CIFilter alloc] init];

//Bpply custom filter

[pool addObject:cFilter];

cFilter = [CIFilter filterWithName: @"ColorRemoveFilter"];
[cFilter setDefaults];

[cFilter setValue: source2 forKey: @"inputImage"];

[cFilter setValue: [CIColor colorWithRed: 0.00390 green: 0.41406 blue: 0.29687 alpha:

1.0] forKey: @"matchColor"];
[cFilter setValue:

@"inputSensitivity"];
CIImage *result = [cFilter valueForKey: @"outputImage'"];

[NSNumber numberWithFloat:

//Resize frame

NSSize xsize = {320.0, 240.0};
NSCIImageRep *imageRep = [NSCIImageRep imageRepWithCIImage:result];
[imageRep retain];

[pool addObject:imageRepl] ;

[image releasel];

image = [[NSImage alloc] initWithSize:xsizel;
[image addRepresentation:imageRep] ;

[image retain];

[pool addObject:imagel] ;

sensitivity] forKey:

NSData *tiff data = [[NSData alloc] initWithData:[image TIFFRepresentationl];
[pool addObject:tiff datal;

NSBitmapImageRep *bitmap = [[NSBitmapImageRep alloc] initWithData:tiff datal;
[pool addObject:bitmap] ;

//Scan over pixels

int x;

int y;

float COG_X;

float COG_Y;

float total;

int totalGreen = 0;
for(x = 0; X < 160; X++)

for (y = 0; vy < 120; y++)

NSUInteger pixelDatal[3];
[bitmap getPixel:pixelData atX:x*2 y:y*2];

float k = (pixelData[0]+pixelData[l]+pixelDatal([2])/3;
if(k == 61)

{
}
COG_X

COG_Y
total

totalGreen++;

COG_X + (k*x*2);
COG_Y + (k*y*2);
total + k;

//Stop tracking if too much green is in frame

BOOL track = YES;
if (totalGreen > 1750

firsttrack = YES;
track = NO;
//Stop tracking if too little green is in frame
if (totalGreen < 75)

firsttrack = YES;
track = NO;

if (track)
if (firsttrack)

//I1f first tracking only store finger location

COG_X = ((COG_X / total) * - 1) +320;
pCOG_X = COG_X;
COG_Y = COG_Y / total;
pCOG_Y = COG_Y;
) firsttrack = NO;

else

//If not first tracking apply distance equation

67

[mCaptureSession startRunning];

COG_X = ((COG_X / total) * - 1) +320; [self captureFrame:self];
float xdis = COG_X - pCOG_X; }

COG_Y = COG_Y / total;

float ydis = COG_Y - pCOG_Y; /*

Capture frame from xyCamera
//Rotate cube */

if ([zTracking clicked] == NO) - (void) captureOutput: (QTCaptureOutput *) captureOutput
didOoutputVideoFrame: (CVImageBufferRef)videoFrame withSampleBuffer: (QTSampleBuffer
[control setSelectedSegment: 0] ; *) sampleBuffer fromConnection: (QTCaptureConnection *)connection

//Map data to OpenGL cube
[pOpenGLView rotate:xdis :ydis :self];

} //Store the latest frame
CVImageBufferRef imageBufferToRelease;

//Move cube CVBufferRetain (videoFrame) ;

if ([zTracking clicked] == YES)

@synchronized (self
[control setSelectedSegment: 1];

//Map data to OpenGL cube imageBufferToRelease = mCurrentImageBuffer;
) [pOpenGLView translate: (COG_X/160)-1 :((COG_Y/120)-1) * -1 :self]; mCurrentImageBuffer = videoFrame;
//Map data to OpenGL finger position feedback @synchronized (self
[pFingerPosition move: (COG_X/160)-1 :((COG_Y/120)-1) * -1 :self];
[prextext setFloatValue: (COG_X/160)-1]; imageBuffer = CVBufferRetain(mCurrentImageBuffer) ;
[preytext setFloatValue: (COG_Y/120)-1];
[xtext setFloatValue:COG_X]; if (imageBuffer)
[ytext setFloatValue:COG_Y];
[xdistext setFloatValue:COG X]; CIImage *source = [CIImage imageWithCVImageBuffer:imageBuffer];

[ydistext setFloatValue:COG_Y] ;
//Dispatch thread

PCOG X = COG_X;
pCOG_Y = COG_Y; [self MyInstanceThreadMethod:source] ;
; CcvBufferRelease (imageBufferToRelease) ;

CcvBufferRelease (mCurrentImageBuffer) ;
[pool release];

}

g #pragma mark-
}
/*
/* Handle window closing notifications for device inputs
*/

Capture frame for GUI
*/ - (void)windowWillClose: (NSNotification *)notification

- (IBAction) captureFrame: (id) sender

[mImageView setImage:image] ; [mCaptureSession stopRunning] ;
} if ([[mCaptureVideoDeviceInput device] isOpen])
/* [[mCaptureVideoDeviceInput device] close];

Increase sensitivity
* if ([[mCapturevVideoDeviceInput2 device] isOpen]
- (IBAction) sliderup: (id) sender
[[mCaptureVideoDeviceInput2 device] close];
sensitivity = sensitivity - 0.1;
[mCaptureSession stopRunning] ;

[mCaptureSession startRunning]; }
[self captureFrame:self];
} /e
Handle deallocation of memory for your capture objects
/* *
Decrease sensitivity - (void)dealloc
*
- (IBAction) sliderdown: (id) sender [mCaptureSession release];
[mCapturevVideoDeviceInput release];
sensitivity = sensitivity + 0.1; [mCaptureDecompressedVideoOutput releasel];
[mCaptureSession stopRunning] ; [super dealloc];

68

}
#pragma mark-

@end

8.2.2 ZTracking

// Created by Patrick Holroyd
// Copyright Patrick Holroyd 2008. All rights reserved.

/* ZTracking */
#import <Cocoa/Cocoa.h>

#import <QTKit/QTkit.h>
#import <MyOpenGLView.h>

@interface ZTracking : NSObject {

IBOutlet NSImageView *mImageView2;
IBOutlet NSTextField *ztext;
IBOutlet NSTextField *zdistext;
IBOutlet NSTextField *preztext;
IBOutlet NSTextField *click;

IBOutlet NSTextField *greenclick;

IBOutlet QTCaptureView *mCaptureView2;
IBOutlet NSButton *sliderup;
IBOutlet NSButton *sliderdown;

QTCaptureSession
QTCaptureVideoPreviewOutput
*mCaptureDecompressedVideoOutput?2;
QTCaptureDeviceInput

*mCaptureSession2;

*mCaptureVideoDeviceInput2;

NSImage *image2;
CVImageBufferRef mCurrent ImageBuffer2;
CVImageBufferRef imageBuffer;
BOOL firsttrack;
BOOL clicked;
BOOL reset;

float sensitivity;
float pCOG_7Z;
float zdis2;

int totalGreen;

int globaltotalGreen;

}

- (void) MyInstanceThreadMethod: (CIImage *)source2;

- (void)main: (QTCaptureDeviceInput *)zVideoDevice;

- (void) captureOutput : (QTCaptureOutput *) captureOutput
didOutputVideoFrame: (CVImageBufferRef)videoFrame withSampleBuffer: (QTSampleBuffer
*) sampleBuffer fromConnection: (QTCaptureConnection *)connection;

- (int)clicking;

BOOL) clicked;

IBAction) captureFrame2: (id) sender;

IBAction) sliderup2: (id) sender;

IBAction) sliderdown2: (id) sender;

-
-
-
-

@end

//
// xyTracking.h
// xyTracking

//

// Created by Patrick Holroyd

// Copyright Patrick Holroyd 2008. All rights reserved.
#import "xyTracking.h"

@implementation xyTracking

/*

Initial wakeup method

*/

- (void)awakeFromNib

// Create the capture session

mCaptureSession = [[QTCaptureSession alloc] init];
// Connect inputs and outputs to the session

BOOL success = NO;

BOOL success2 = NO;

NSError *error;

// Find a video device

NSArray *inputs = [QTCaptureDevice inputDevicesWithMediaType:QTMediaTypeVideo];

QTCaptureDevice *videoDevice = [inputs objectAtIndex:0];

QTCaptureDevice *videoDevice2 = [inputs objectAtIndex:1];
success = [videoDevice open:&error] ;

success2 = [videoDevice2 open:&error] ;

// If a video input device can't be found or opened, try to find and open a muxed input
device

if (!success)
videoDevice = [QTCaptureDevice defaultInputDeviceWithMediaType:QTMediaTypeMuxed] ;
success = [videoDevice open:&error] ;

}

if (!success)
videoDevice = nil;
NSLog (@"No Camera 1");

if (!success2) {
videoDevice2 = nil;
NSLog (@"No Camera 0") ;

}

//Add the video device to the session as a device input

mCaptureVideoDeviceInput = [QTCaptureDevicelInput deviceInputWithDevice: videoDevice] ;

mCaptureVideoDeviceInput?2 = [QTCaptureDeviceInput deviceInputWithDevice:
videoDevice2] ;

success = [mCaptureSession addInput:mCaptureVideoDeviceInput error:&error] ;

if (!success)

//Handle error
NSLog (@"Cannot add camera 1 to session");

69

[zTracking main:mCaptureVideoDeviceInput2];

mCaptureDecompressedVideoOutput = [[QTCaptureVideoPreviewOutput alloc] init];
[mCaptureDecompressedVideoOutput setDelegate:self];
success = [mCaptureSession addOutput:mCaptureDecompressedVideoOutput error:&error] ;

if (lsuccess)

//Handle error
NSLog (@"Output not added") ;

}

[mCaptureView setCaptureSession:mCaptureSession];

firsttrack = YES;

sensitivity = 1.5;

[settings setKeyEquivalent:@"s"];
[capture setKeyEquivalent:@"c"];
[sliderup setKeyEquivalent:@"x"];
[sliderdown setKeyEquivalent:@"z"];

[mCaptureSession startRunning] ;
[mCaptureSession2 startRunning] ;

/*

Thread method which applies filter, scans pixels and applying Centre of Mass algorithm
*/
E (void) MyInstanceThreadMethod: (CIImage *)source2;

//Check if clicking
if ([zTracking clicking] < 20)

@synchronized (self) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

[CIPlugIn loadAllPlugIns];
CIFilter *cFilter = [[CIFilter alloc] init];

//Bpply custom filter

[pool addObject:cFilter];

cFilter = [CIFilter filterWithName: @"ColorRemoveFilter"];
[cFilter setDefaults];

[cFilter setValue: source2 forKey: @"inputImage"];

[cFilter setValue: [CIColor colorWithRed: 0.00390 green: 0.41406 blue: 0.29687 alpha:

1.0] forKey: @"matchColor"];

[cFilter setValue: [NSNumber numberWithFloat: sensitivity] forKey:

@"inputSensitivity"];
CIImage *result = [cFilter valueForKey: @"outputImage"];

//Resize frame

NSSize xsize = {320.0, 240.0};
NSCIImageRep *imageRep = [NSCIImageRep imageRepWithCIImage:result];
[imageRep retain];

[pool addObject:imageRepl] ;

[image release];

image = [[NSImage alloc] initWithSize:xsizel;
[image addRepresentation:imageRep] ;

[image retain];

[pool addObject:image] ;

NSData *tiff data = [[NSData alloc] initWithData:[image TIFFRepresentationl];
[pool addObject:tiff datal;

NSBitmapImageRep *bitmap = [[NSBitmapImageRep alloc] initWithData:tiff datal;
[pool addObject:bitmap] ;

//Scan over pixels

int x;

int y;

float COG_X;

float COG_Y;

float total;

int totalGreen = 0;
for(x = 0; X < 160; X++)

%or (y = 0; vy < 120; y++)

NSUInteger pixelDatal[3];
[bitmap getPixel:pixelData atX:x*2 y:y*2];

float k = (pixelData[0]+pixelData[l]+pixelDatal([2])/3;

if (k == 61)
totalGreen++;

}

COG_X = COG_X + (k*x*2);

COG_Y = COG_Y + (k*y*2);
total = total + k;

//Stop tracking if too much green is in frame

BOOL track = YES;
if (totalGreen > 1750

firsttrack = YES;
track = NO;
//Stop tracking if too little green is in frame
if (totalGreen < 75)

firsttrack = YES;
track = NO;

if (track)
if (firsttrack)

//I1f first tracking only store finger location
COG_X = ((COG_X / total) * - 1) +320;
pCOG X = COG_X;

COG Y = COG Y / total;
pCOG Y = COG_Y;
firsttrack = NO;

else

//If not first tracking apply distance equation

COG_X = ((COG_X / total) * - 1) +320;

70

float xdis = COG_X - pCOG_X;
COG_Y = COG_Y / total;
float ydis = COG_Y - pCOG_Y;

//Rotate cube
if ([zTracking clicked] == NO)

[control setSelectedSegment: 0] ;
//Map data to OpenGL cube
[pOpenGLView rotate:xdis :ydis :self];

}
//Move cube
if ([zTracking clicked] == YES)
[control setSelectedSegment: 1];
//Map data to OpenGL cube
} [pOpenGLView translate: (COG_X/160)-1 :((COG_Y/120)-1) * -1 :self];
//Map data to OpenGL finger position feedback
[pFingerPosition move: (COG_X/160)-1 :((COG_Y/120)-1) * -1 :self];

[prextext setFloatValue: (COG_X/160)-1];
[preytext setFloatValue: (COG_Y/120)-1];
[xtext setFloatValue:COG_X];

[ytext setFloatValue:COG_Y];

[xdistext setFloatValue:COG_X];
[ydistext setFloatValue:COG_Y];

pCoG_X
pCoG_Y

|

[pool release];

|

COG_X;
coc_Y;

}

/*

Capture frame for GUI

*/

- (IBAction) captureFrame: (id) sender
[mImageView setImage:image] ;

}

/*

Increase sensitivity
*/
- (IBAction) sliderup: (id) sender

sensitivity = sensitivity - 0.1;
[mCaptureSession stopRunning] ;
[mCaptureSession startRunning] ;
[self captureFrame:self];

}
/*

Decrease sensitivity
*
- (IBAction) sliderdown: (id) sender

sensitivity = sensitivity + 0.1;
[mCaptureSession stopRunning] ;
[mCaptureSession startRunning] ;
[self captureFrame:self];

}
/*

Capture frame from xyCamera

*/
- (void) captureOutput: (QTCaptureOutput
didoutputVideoFrame: (CVImageBufferRef)videoFrame

*) captureOutput
withSampleBuffer: (QTSampleBuffer

*) sampleBuffer fromConnection: (QTCaptureConnection *)connection

//Store the latest frame
CvImageBufferRef imageBufferToRelease;
CVvBufferRetain (videoFrame) ;
@synchronized (self
imageBufferToRelease = mCurrentImageBuffer;
mCurrentImageBuffer = videoFrame;

}
@synchronized (self
imageBuffer = CVBufferRetain(mCurrentImageBuffer);

if (imageBuffer)

CIImage *source = [CIImage imageWithCVImageBuffer:imageBuffer];

//Dispatch thread
[self MyInstanceThreadMethod:source] ;
CvBufferRelease (imageBufferToRelease) ;
CcvBufferRelease (mCurrentImageBuffer) ;
}
#pragma mark-

/*

Handle window closing notifications for device inputs
*
—/(void)windowwillclose:(NSNotification *)notification
[mCaptureSession stopRunning] ;
if ([[mCaptureVideoDeviceInput device] isOpen])
[[mCaptureVideoDeviceInput devicel closel];
if ([[mCaptureVideoDeviceInput2 device] isOpen])

[[mCaptureVideoDeviceInput2 device] close];

}
/*

Handle deallocation of memory for your capture objects
*
- (void)dealloc

[mCaptureSession release];
[mCapturevVideoDeviceInput release];

[mCaptureDecompressedVideoOutput releasel];
[super dealloc];

71

#pragma mark-

@end

8.2.3 MyOpenGLView

// Created by Patrick Holroyd
// Copyright Patrick Holroyd 2008. All rights reserved.

/* MyOpenGLView */
#import <Cocoa/Cocoa.h>
@interface MyOpenGLView : NSOpenGLView

float rotX;
float rotY;

float posX;
float posY;
}
- (void) drawRect: (NSRect) bounds ;
- (IBAction) rotate:(float) x :(float) y :(id)sender;
- (IBAction) translate:(float) x :(float) y :(id)sender;
@end

//

// MyOpenGLView.h

// MyOpenGLView

//

// Created by Patrick Holroyd

// Copyright Patrick Holroyd 2008. All rights reserved.

#import "MyOpenGLView.h"
#include <OpenGL/gl.h>

@implementation MyOpenGLView

/*
OpenGL draw method
*/

- (void) drawRect: (NSRect) bounds

//Lock drawing code
if ([self lockFocusIfCanDraw] == YES) {

//Setup OpenGL

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;
glShadeModel (GL_SMOOTH) ;

glEnable (GL_DEPTH_TEST)

glDepthFunc (GL_LEQUAL) ;

glClearColor (0.0, 0.0, 0.0, 0.0);
glClearDepth(1.0) ;

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;
glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;

glPointSize (3.0) ;

glEnable (GL_POINT_SMOOTH) H

glHint (GL_POINT_SMOOTH_HINT, GL_NICEST) H

glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;

glLoadIdentity () ;

//Move cube using result from tracking
glTranslatef (posX, posY, 0.0);
//Rotate cube using result from tracking
glRotatef (rotX,0.0f,1.0f,0.0f) ;
glRotatef (rotY,1.0f,0.0f,0.0f) ;
%lBegin(GL_POINTS);

glColor4f (
glvertex3f
glvertex3f
glvertex3f
glvertex3f

~———

0
0
-0.
0
0

glColor4f (
glvertex3f
glvertex3f
glvertex3f
glvertex3f

~———

0
0
-0.
0
0

glColor4f (
glvertex3f
glvertex3f
glvertex3f
glvertex3f

~———

0
0
-0.
0
0

glColor4f (
glvertex3f
glvertex3f
glvertex3f
glvertex3f

~———

0
0
-0.
0
0

glColor4f (1.0
glvertex3f (-0
glvertex3f (-0.
(-0
(-0

glvertex3f
glvertex3f

glColor4f (1.0,
glvertex3f(0.
glvertex3f(0.
glvertex3f(0.
glvertex3f(0.

glEnd () ;

(Top)

(Top)

(Bottom)
(Bottom)
(Bottom)

(Bottom)

1.0,
5f, 0.
5f, 0.
5f, 0.
5f, 0.

1.0,
5f£,-0
5f,-0
5f£,-0
5f,-0

1.0,
5£, 0
5f, 0
5f£,-0
5f,-0

1.0,
5f,-0
5f,-0
5£, 0
5f, 0

1.0,
5£, 0
5f, 0.
5f£,-0.
5f£,-0.

1.0,
5f, 0
5f, 0.
5f£,-0.
5f£,-0.

%lBegin(GL_QUADS);

glColor4f (0.0, 0.0,
glvertex3f(0.5f, 0
glvertex3f (-0.5f, 0
glvertex3f (-0.5f, 0

1.0, 1.0);
5f,-0.5f);
5f,-0.5f);
5f, 0.5f);
5f, 0.5f);
1.0, 1.0);
5f, 0.5f);
5f, 0.5f);
5f,-0.5f);
5f,-0.5f);
1.0, 1.0);
5f, 0.5f);
5f, 0.5f);
5f, 0.5f);
5f, 0.5f);
1.0, 1.0);
5f,-0.5f);
5f,-0.5f);
5f,-0.5f);
5f,-0.5f);
1.0, 1.0);
5f, 0.5f);
5f,-0.5f);
5f,-0.5f);
5f, 0.5f);
1.0, 1.0);
5f,-0.5f);
5f, 0.5f);
5f, 0.5f);
5f,-0.5f);

glvertex3f(0.5f, 0.

glcColor4f (0.0, 0.0,

glvertex3f(0.5f,-0

glvVertex3f (-0.5f,-0.

glvertex3f (-0.5f,-0

glvertex3f(0.5f,-0

1.0, 0.2);
.5f,-0.5f);
.5f,-0.5f);
.5f, 0.5f);
5f, 0.5f);
1.0, 0.2);
.5f, 0.5f);
5f, 0.5f);
.5f,-0.5f);
.5f,-0.5f);

Top Right Of The Quad (Top)
Top Left Of The Quad (Top)
Bottom Left Of The Quad (Top)
Bottom Right Of The Quad (Top)

Top Right Of The Quad (Bottom)
Top Left Of The Quad (Bottom)
Bottom Left Of The Quad (Bottom)
Bottom Right Of The Quad (Bottom)

Top Right Of The Quad (Front)
Top Left Of The Quad (Front)
Bottom Left Of The Quad (Front)
Bottom Right Of The Quad (Front)

Top Right Of The Quad (Back)
Top Left Of The Quad (Back)
Bottom Left Of The Quad (Back)
Bottom Right Of The Quad (Back)

Top Right Of The Quad (Left)
Top Left Of The Quad (Left)
Bottom Left Of The Quad (Left)
Bottom Right Of The Quad (Left)

Top Right Of The Quad (Right)
Top Left Of The Quad (Right)
Bottom Left Of The Quad (Right)
Bottom Right Of The Quad (Right)

Bottom Left Of The

~ o~~~
~ N~

Bottom Right Of The

// Top Right Of The
// Top Left of The
// Bottom Left Of The

// Bottom Right Of The

Top Right Of The Quad (Top)
Top Left Of The Quad (Top)

Quad

Quad

Quad
Quad
Quad

Quad

72

glColor4f(0.0,1.0, 0.0, 0.2);
glvertex3f(0.5f, 0.5f, 0.5f);
(Front)
glvertex3f(-0.5f, 0.5f, 0.5f);
glvertex3f(-0.5f,-0.5€, 0.5f);
(Front)
glvertex3f(0.5f,-0.5f, 0.5f);
(Front)
glColor4f (0.0, 0.0, 1.0, 0.2);
glvertex3f(0.5f,-0.5f,-0.5f);
glvertex3f(-0.5f,-0.5f£,-0.5f) ;
glvertex3f(-0.5f, 0.5f,-0.5f);
(Back)
glvertex3f(0.5f, 0.5f,-0.5f);
(Back)
glColor4f (1.0, 0.0, 1.0, 0.2);
glvertex3f(-0.5f, 0.5f, 0.5f);
glvertex3f(-0.5f, 0.5f,-0.5f);
glvertex3f(-0.5f,-0.5f£,-0.5f) ;
(Left)
glvertex3f(-0.5f,-0.5€, 0.5f);
(Left)
glColor4f (0.0, 0.5, 1.0, 0.2);
glvertex3f(0.5f, 0.5f,-0.5f);
(Right)
glvertex3f(0.5f, 0.5f, 0.5f);
glvertex3f(0.5f,-0.5f, 0.5f);
(Right)
glvertex3f(0.5f,-0.5f,-0.5f);
(Right)
}
glEnd () ;
glFlush() ;
[self unlockFocus];
}
/*

Update amount to rotate cube
*/
- (IBAction) rotate: (float) x :(float) y :(id)sender

@synchronized (self)

rotX +=x;
rot¥ +=y;
[self drawRect: [self bounds]l];
}
}
/*

Update amount to move cube
*

- (IBAction) translate: (float) x :(float) y :(id)sender

@synchronized (self)

posX =x;
posY =y;
[self drawRect: [self boundsl]l];

Top Left Of The Quad

Top Right Of The Quad
Top Left Of The Quad

Top Right Of The Quad
Top Left Of The Quad

Top Left Of The Quad

@end

8.2.4 FingerPosition

// Created by Patrick Holroyd
// Copyright Patrick Holroyd 2008. All rights reserved.

/* FingerPosition */
#import <Cocoa/Cocoa.h>
@interface FingerPosition : NSOpenGLView

float posX;
float posY;

}

- (void) drawRect: (NSRect) bounds;
- (IBAction) move: (float) x :(float) y :(id)sender;

@end

// FingerPosition.h
// FingerPosition

// Created by Patrick Holroyd
// Copyright Patrick Holroyd 2008. All rights reserved.

#import "FingerPosition.h"
#include <OpenGL/gl.h>

@implementation FingerPosition

/*
OpenGL draw method
*/

- (void) drawRect: (NSRect) bounds

//Lock drawing code
if([self lockFocusIfCanDraw] == YES) {

//Setup OpenGL

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;
glShadeModel (GL_SMOOTH) ;

glEnable (GL_DEPTH_TEST) ;

glDepthFunc (GL_LEQUAL) ;

glClearColor(0.0, 0.0, 0.0, 0.0);
glClearDepth(1.0) ;

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;
glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;
glLoadIdentity () ;

glPointSize (10.0) ;

glEnable (GL_POINT_SMOOTH) ;

glHint (GL_POINT_SMOOTH_HINT, GL_NICEST);

glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;

//Move cube using result from tracking
glTranslatef (posX, posY, 0.0);

73

%1Begin(GL7POINTS);

glColor4f (1.0, 1.0, 1.0, 1.0)
glvertex3f(0.0f, 0.0f, 0.0f)
}
glEnd () ;
glFlush() ;

[self unlockFocus] ;

/*

Update point location
*
- (IBAction) move: (float) x :(float) y :(id)sender

@synchronized (self

posX =x;

posY =y;

[self drawRect: [self boundsl];
}
@end

i
i

8.3 Custom Filter

float distHue (vec4 pix, vec4 color)

float diff = abs(pix.r - color.r);
diff = diff > 3. ? 6. - diff : diff;
return diff/3.0;

}
float distSaturation(vec4 pix, vec4 color)

float diff = abs(pix.g - color.g);
return diff;

}

vec4 rgb2hsv(vec4 rgb)

float X = min(rgb.r, min(rgb.g, rgb.b));
float V = max(rgb.r, max(rgb.g, rgb.b));
float £ = (rgb. = X) ? rgb.g - rgb.b
(rgb. X) ? rgb.b - rgb.r
rgb.r - rgb.g;
float i = ? 3.0
? 0
1.0;
float H = (V == X) ? 0 i- £/ (V-X);
float S = (V == X) ? 0 v -x /v;
return vec4 (H, S, V, 1.0);
}
kernel vec4 multiplyEffect (sampler rgbImage, _ color matchColor, float sensitivity)

vec4 rgb = sample(rgbImage, samplerCoord(rgbImage)) ;
vec4 color = unpremultiply(matchColor) ;

vec4 hsv = rgb2hsv(rgb) ;

vec4 colorhsv = rgb2hsv(color) ;

float comp = distHue (hsv, colorhsv);

float comp2 = distSaturation(hsv, colorhsv)

comp = sgrt (comp*comp + comp2*comp2) - (1.0)/sensitivity + abs(hsv.b - 0.5);

vec4 outpix = compare(vec4 (comp, comp, comp, 1.0),
matchColor,
vec4 (0, 0, 0, 1.0));

return outpix;

ColorRemoveFilter.h
ColorRemove

Created by Patrick Holroyd
Copyright Patrick Holroyd 2008. All rights reserved.

NN
RN

#import <Foundation/Foundation.hs>
#import <QuartzCore/QuartzCore.h>

//interface that specifies the filter inputs (input parameter must be
specified filter)
@interface ColorRemoveFilter : CIFilter

CIImage *inputImage;

in same order

as

74

CIColor *matchColor;
NSNumber *inputSensitivity;

@end

ColorRemoveFilter.m
ColorRemove

Created by Patrick Holroyd.
Copyright Patrick Holroyd 2008. All rights reserved.

R R R
Y

#import "ColorRemoveFilter.h"

#import <Foundation/Foundation.hs>

#import <ApplicationServices/ApplicationServices.h>
@implementation ColorRemoveFilter

//check if CIKernel is already initialised
static CIKernel *ColorRemoveFilterKernel = nil;

- (id)init
if (ColorRemoveFilterKernel == nil)
//return bundle that loads the CIFilter class

NSBundle *bundle =
bundleForClass:NSClassFromString (@"ColorRemoveFilter")];

[NSBundle

NSString *code = [NSString stringWithContentsOfFile: [bundle

pathForResource:@"ColorRemoveFilterKernel" ofType:@"cikernel"]];
/store .cikernel files into an array
NSArray *kernels = [CIKernel kernelsWithString:codel ;
//initialise .cikernel files stored in the array
ColorRemoveFilterKernel = [[kernels objectAtIndex:0] retain];

return [super init];
//set filter attributes
- (NSDictionary *)customAttributes
return [NSDictionary dictionaryWithObjectsAndKeys:

[NSDictionary dictionaryWithObjectsAndKeys:
[CIColor colorWithRed: 0.00784 green: 0.36078 blue:

1.01,
kCIAttributeDefault,
nill, @"matchColor",
[NSDictionary dictionaryWithObjectsAndKeys:
[NSNumber numberWithDouble: 0.0], kCIAttributeMin,
[NSNumber numberWithDouble: 5.0], kCIAttributeMax,
[NSNumber numberWithDouble: 2.148], kCIAttributeDefault,
[NSNumber numberWithDouble: 0.0], kCIAttributeIdentity,
kCIAttributeTypeScalar, kCIAttributeType,
nill, @"inputSensitivity",
nill;
}

//create CIImage object for each inputImage and apply kernel method
- (CIImage *)outputImage

CISampler *src = [CISampler samplerWithImage: inputImagel];

0.25882

alpha:

return [self apply:

?CIApplyOptionDefinition,

@end

[src definition],

ColorRemoveFilterKernel,

nill;

src,

matchColor,

inputSensitivity,

75

9. Appendix B

9.1 Questionnaire

Evaluation Questionnaire

Level of Control

1.

2.

3.

How easy was it to control the 3D cube with the coloured thimble?

U Very Easy
U Fairly Easy
U Fairly Hard
4 Very Hard
U Impossible

To what level of control did you feel you had over the 3D cube?

U 0% (no control)

0 25%

U 50%

U 75%

U 100% (full control)

At what level of accuracy do you feel the 3D cube is following you finger
movements?

U 0% (no accuracy)

O 25%

U 50%

Q 75%

1 100% (full accuracy)

How easy did you find it to click? (3D Motion Capture System only)

U Very Easy
O Fairly Easy
4 Fairly Hard
4 Very Hard
O Impossible

Graphical User Interface

5.

Rate the usefulness of the features included within the Graphical User Interface?

U Very Useful
4 Fairly Useful
U Fairly Useless
U Very Useless

76

6. How easy did you find it to adjust the sensitivity of the filter?

U Very Easy
U Fairly Easy
U Fairly Hard
4 Very Hard
U Impossible

Feedback
7. To what level did you find the 3D cube best represents movement?

U 0% (no representation)

U 25%

U 50%

Q 75%

1 100% (full representation)

8. Rate the usefulness of the finger position feedback window?
4 Very Useful
4 Fairly Useful
U Fairly Useless
U Very Useless

Other Features

9. What additions would you make to the system

10. What would you remove from the system

11. Overall how would you rate the system

O Excellent

4 Very Good

U Good

U Poor
Date:
Initials

77

