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SUMMARY

Neural complexity was introduced in 1994 in [31] as a measure of interplay between
functional integration and segregation in the brain. Using evolutionary selection it was
shown in [18,22] that network topologies giving rise to high complexity had large
dense clusters. Random directed networks with the same number of nodes and
connections were used for comparison and their complexity was much lower.

Small-world networks are a class of network which have short paths and high
clustering. In various papers [16-26] it has been shown that networks with high
complexity, either artificial or natural, share the features of small world networks:
they have short average path length, like random graphs, and high clustering
coefficient, like lattices.

Entropy and integration are related measurements to complexity. Networks optimised
for entropy or integration have different topologies and do not show evident small
world attributes.

The initial aim of this project was to investigate the relationship between high
complexity networks and small-world networks.

It was found that calculation of complexity, entropy and integration was more
complicated than expected as even small changes in the kind of normalisation used
change the numerical values of these measures for the same network. More
importantly parameter variations affected the topology of resulting optimised
networks. When using the same parameters to evaluate networks of different size or
different number of connections it was not clear how the complexity values were
affected by the choice of parameters, which may favour one network because of its
size instead of its topology (e.g. some combinations of parameters may reward lower
clustering more than others).

Later it was discovered [1,2] that the analytical process used to derive the covariance
matrix from the network connection matrix was flawed. So the direction of the project
moved to assessing the impact of this error on published research.

Using the correct covariance calculation, networks evolved for high complexity,
entropy and integration seem to not resemble those evolved using the previous
analytical covariance derivation and do not show small-world attributes.

The covariance matrices obtained using the correct procedure do not resemble the
covariance matrices obtained from neurobiological data, so there is some doubt
whether the Gaussian multivariate stochastic process model used in the definition of
neural complexity is realistic.

The correct covariance matrix calculation is not immune to variations of the same
parameters considered above.

Unless a rigorous revision of the neural complexity measure and its applications is
undertaken, especially concerning the comparison of networks of different sizes, wider
use seems unlikely.
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1 Introduction

This project investigates the relationship between network topology and neural
complexity. It also assess the impact of an error recently discovered in the calculation
of the complexity value on previous studies.

Tononi, Sporns and Edelman proposed a measure called neural complexity in 1994
[31]. This measure is intended to reflect the interplay between the functional
segregation of brain regions and their integration, using methods from information
theory. Neural complexity has then been used to examine brain connectivity data and
to build simple models of neural networks.

Small-world networks are a class of networks characterized by short path lengths and
high clustering. First introduced by Watts and Strogatz in 1998 [33] small-world
networks have influenced several fields of research since then and have been widely
used in biology, sociology, epidemiology, computer networks and networks in other
contexts. Although the actual topology of small-world networks may vary significantly,
a common understanding is that if a network is a small-world network it exhibits
particular dynamics: short path lengths make any event happening anywhere in the
network affect the other nodes quickly, while high clustering should protect the
network from disconnections.

Small-world metrics have been introduced in the evaluation of actual and simulated
brain networks in [16-26], in addition to neural complexity or on their own. It is
generally accepted that brain connectivity exhibits small-world attributes: neurons are
densely connected at the local level while long-range connections provide shortcuts
between different brain areas. Small-world measures are simpler and faster to
calculate than complexity, therefore it is tempting to evaluate the small-world metrics
instead of complexity. It seems generally to be the case that a high small-world index
is likely to be associated with high complexity.

However a paper by Buckley and Bullock [4] states that small-world networks do not
necessarily have high neural complexity.

Furthermore in [1,2] Barnett et al. report that there is a serious error in the way
neural complexity is calculated and propose the correct method. They also introduce a
measure of approximate complexity, which is much faster to compute.

1.1 Structure of the report

The first chapter of this report will introduce background information on graph theory,
small world networks, motifs, information theory and neural complexity.

The second chapter will present the methods and an overview of the software written
for the project, although the full details are in the appendices.

In the third chapter previous experiments in this field will be replicated and the
results obtained with the erroneous and correct covariance matrix calculation will be
compared. These studies are mainly [7,18,19,22] which used evolutionary techniques
to evolve high complexity graphs and compared them to various designed or



neurobiological networks.
The fourth chapter will discussed issues concerning various aspects of complexity.

In the fifth chapter relationships between network topologies, especially small-world
networks, and complexity will be explored.

Finally conclusions will be drawn.

1.2 Background on graph theory

A network is mathematically defined as a graph. A graph consists of a set of vertices
and a set of edges. An edge indicates a connection between two vertices: the two
vertices which share the connection are called adjacent or, informally, neighbours.
Connections can be represented using an adjacency matrix of size NxN, where N is
the number of vertices. If no connection exists between two vertices the
corresponding entry in the matrix is zero. Edges can be directed or undirected.
Undirected edges are reciprocal so they correspond to two symmetrical entries in the
adjacency (or connection) matrix. If there is an edge between two vertices the
corresponding entry in the matrix (or both entries for undirected graphs) will be 1.
Self-connections may or may not be allowed. A complete graph is one in which every
node is connected to every other node. A graph is defined as sparse or dense
according to its number of edges compared to the maximum possible. The topology of
a graph is its structure as defined by the adjacency matrix. There could be weights
associated to the edges, which could be positive or negative numbers. The weight
associated to an edge can be stored in a separate matrix or sometimes in the
adjacency matrix.

Graphs and vertices are more informally called networks and nodes, while edges may
also be called connections or links. Here two graphs will be described as similar if they
have the same number of nodes and connections but different topology, e.g. regular
vs random. Graphs will be compared according to the various metrics described in this
document to verify their similarity.

Several definitions from graph theory are used:

Walks and Paths: a walk is a sequence of contiguous edges which connect two
arbitrary nodes. It may contain cycles, i.e. the same node is included more than once.
A cycle is a path whose initial and final nodes are the same. A path is a walk with no
cycles. The distance between two nodes is the length of the shortest path (there could
be more than one) i.e. the path with the fewest edges for unweighted graphs. The
diameter of a graph is the maximum distance between any pair of nodes. Often when
referring to a path between two nodes the shortest path is intended. The average
path length is the average of all the shortest paths between the nodes in the graphs.

Connectedness: a graph is connected if there is a path between each pair of vertices.
If the graph is undirected the connectedness of a graph can be assessed fairly easily.
For directed graphs the process is more complex. In this project the directed graphs
will often be strongly connected, i.e. there will be paths between each pair of nodes in
each direction. If a graph is not connected it is made up of different components.
Separated components cannot interact with each other.

Degrees of a node: the indegree of a node is the number of incoming or afferent



connections, while the outdegree is the number of outgoing or efferent connections. If
the graph is undirected the indegree and outdegree are the same and we just use the
term degree. The degree distribution considers the degrees of all nodes. Different
topologies of networks have different degree distributions. Of course the actual
degree values depend on the number of edges and nodes in the graph.

Random graphs have connections assigned at random. They have short average path
lengths and the probability for a node to have a certain degree follows a Poisson
distribution. So in a random graph we can expect to find many nodes with about the
same degree, but it is still possible to find a few nodes with significantly lower or
higher degrees. There are formulas to calculate the average path length or determine
with high probability if a random graph is connected on the basis of the number of
edges and nodes. Their average shortest path length is fairly low.

Regular graphs have the same degree for all the nodes. They are generally
represented as lattices of 1 or more dimensions in which each node is connected to a
fixed number of neighbours. Average path length in regular graphs depends on the
number of nodes and their degree, and is longer than the average path length in a
similar random graph.

1.3 Small world networks

The small-world model proposed by Watts and Strogatz in 1998 [33] refers to
networks whose characteristic path length is similar to that of a similar random graph,
while the nodes are arranged in clusters. The original small-world model used a
regular ring lattice as a starting point. According to a certain probability the
connections of the graph are rewired. If the probability is high the resulting network
will be a random graph. For medium probability values the resulting network will
retain the high clustering of the regular lattice and a similar degree distribution while
the new shortcuts will cause a sharp drop of the characteristic path length.

The original meaning of clustering coefficient of a single node is the proportion of
direct connections existing between a node's neighbours, or in Watts' own words "in
terms of social networks analogy, the clustering coefficient is the degree to which a
person's acquaintances are acquainted with each other" [37, p.33]. The value for a
graph is calculated as an average over the nodes in the network. The clustering
coefficient of a one dimensional lattice with the same number of nodes and edges is
used as a model of high clustering. The clustering coefficient is between 0 and 1. We
can obtain high clustering when the graph is dense or when it is structured as a
"caveman world", in which densely connected subgraphs are sparsely connected
among themselves. Note that a cluster is not necessarily segregated from the rest of
the network, as for example in the regular lattice.

The characteristic path length is defined as the median of the means of the shortest
path lengths connecting each vertex to all other vertices [37, p.29].

Scale-free networks share some attributes with small-world networks. Barabasi and
Albert provided a model for scale-free networks in 1999 [36]. Those networks exhibit
a peculiar degree distribution. The degree distribution follows a power law, i.e. the
probability that a node has degree K is proportional to some negative power of K. This
means that in this type of networks the majority of nodes have a very low degree,
while a few nodes, called hubs, have a very high degree. The Internet has been
shown to be scale-free, as well as many other networks.



The small-world metrics are defined as averages over the graph, so there may be no
uniformity in the local structure of the networks. More importantly the original small-
world metrics were invented having in mind undirected graphs. The metrics have then
been adapted to directed graphs, but the original meaning may have been altered.
More recently other small-world metrics have been proposed: a small-world index
measuring clustering coefficient and characteristic path length compared to a similar
random graph and a community structure property which identifies groups of nodes
which are tightly connected to each other while having looser connection to the rest of
the network.

1.4 Information theory

Entropy and mutual information are information theory concepts which are used in
the definition of neural complexity and other related measures. Information theory
mainly applies to signal processing and data compression. Information theory
concepts are applied to artificial neural networks since signal transmissions can
represent the activity of the brain. Entropy measures the number of bits of
information needed to effectively represent some generic entity. If the entropy in a
system is less than the sum of the entropies of its components, it means that there
are dependencies between them. Entropy is calculated on the basis of the distribution
of possible values of a signal or system. There is a well known formula:

H(X)=0.5log(2me)"|COV (X)|

to calculate the entropy of a multivariate normal distribution, that is a system whose
variables are individually normally distributed and which are related by a given set of
covariances. These covariances are normally given as a matrix, called the covariance
matrix, which then represents the interdependency between the elements in the
system. The values in the covariance matrix are high if the two elements are strongly
correlated and zero if they are independent. The diagonal of the covariance matrix
contains the variances of the single elements.

The mutual information:

MI(X,Y)=H(X)+H(Y)-H(X,Y)
measures the redundancy present in a combined system. Mutual information is always
measured between two information sources. If we consider the entropy of two
elements in the system and the combined entropy of the combined elements, their
overlap is the mutual information between the two elements. To calculate the mutual
information of X and Y, we sum their entropies and subtract the entropy of their
combination.

The entropy can be calculated for a discrete or continuous distribution. The entropy of
a continuous system can be negative, which is not intuitive.
1.5 Neural complexity

The measure of neural complexity Cy(X) was introduced by G.Tononi, O. Sporns and
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G. Edelman in 1994 in [31]. It starts from the observation that brain organization
combines functional segregation of local areas with integration of their activity without
the need of a master area. Neural complexity is a measure which, in the intentions of
its authors, should evaluate a system so that integration and segregation are both
rewarded, and that to score highly overall a system should possess both.

Although a complete understanding of brain organization has yet to be achieved there
is knowledge on brain structure at both local and global level. It is known that some
neuronal groups are highly specialised. Each neuron is connected to a small number
of other neurons, either, more frequently, in the proximity or over longer distances.
The brain exhibits small worlds attributes as it has short paths and high clustering
[20].

The functional connectivity patterns are strongly related to the anatomical
connectivity: the brain dynamics is determined by topology of its components'
interconnections.

Neural complexity is applicable at various scales from neurons to cortical areas, to
which we refer as elements. Those elements form a graph and their pattern of
connectivity is represented by an adjacency matrix.

The system is assumed to be stationary with no external input. Random noise is
injected into each node. Under stationary conditions the entropy of a Gaussian
multivariate process can be determined from its covariance matrix using the formula
given in 2.3.

The integration measures the system's overall deviation from statistical independence
[22]:

1(X)=2H(x,)-H(X)

Integration is a non negative value. It is zero when its components are statistically
independent.

The neural complexity can be expressed in terms of either mutual information or
integration [22]. In both cases all the possible bipartitions of the system are to be
taken into account. However actual implementation of this is completely infeasible for
systems with more than a few nodes and a sampling approach is used instead.

Cyn(X)=2(K/2)I(X)—(1(X%))
Cy(X)=2 (MI(X5; X—X%))

A simplified version of complexity, C(X), just considers bipartitions consisting of a
single element and its complement [22].

C(X)=H(X)-2H(x,|X—x,)
C(X)=% MI(x,; X—x,)—1(X)
C(X)=(n=1)1(X)=n{I(X—x,))

Graphically neural complexity and complexity are (from [28]):
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1.5.1 Topology and complexity

According to [18,26,31] high values of neural complexity are found in networks with
mostly reciprocal connections and dense clusters.

The authors implemented [17,18,19,22] simulations to explore what type of
topologies give rise to high complexity. Other topological measurements are also
considered in relation to complexity such as path length, clustering coefficient, cycles
of short lengths and motifs.

De Lucia et al. [7] attempted to relate complexity to topology, giving a formula to
calculate an approximate neural complexity from the connectivity matrix. The
measure applies only to undirected graphs. According to [1,2] there is an error in
they way the covariance of subsystems is calculated in [7].

In [2], Barnett et al. propose a measure of approximate neural complexity. This
measure is computationally much cheaper than neural complexity as it scales
polynomially instead of exponentially with network size. This measure is calculated
from the normalised connection matrix:

% 1 2
C _ﬁ<n+l)zi¢j<ug)

where n is the number of units and U is the product of the normalised connection
matrix and its transpose.

They also note that the method used to the covariance matrix used in previous
studies is incorrect.

In [1] the approximate neural complexity is related to the underlying graph structure.
In particular the complexity values depends on the abundance of motifs in Fig. 1.2.
The importance of motifs may be affected by the weight normalisation as different
connection weights contribute proportionally to complexity.
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Fig. 1.2 motifs for high complexity

1.5.2 Other measures

The same authors also introduced similar measures based on the same concepts from
information theory which are not being considered in this project.

Matching complexity [27,29] measures the change in neural complexity depending on
inputs from the environment.

Functional clustering [27,30] identifies strongly interactive brain regions during a
particular task.

Degeneracy and redundancy [28] measure how different elements may produce the
same output. They are calculated using mutual information between subsets and
output.

@ , capacity to integrate information [32] is defined in terms of effective information
between two complementary subsets of a system.

Most of the above measures make use of the analytical derivation of the covariance
matrix from the connectivity matrix. Due to the error on this computation those
measures are also affected.

1.6 Covariance matrix

The activity of a system is captured by its covariance matrix, which, as described in
section 1.4, is used to calculate its entropy and is therefore very important in the
present context.

Covariance matrices can be derived from neuroimaging data as described in [30].
Covariance matrices can also be derived from a connection matrices by running a
system as a dynamical system [22].

In [17,18,19,22] the covariance matrix is calculated analytically from the connection
matrix, assuming that the system is linear and the activity of its components is a
Gaussian multidimensional stationary stochastic process. The assumption is that when
the components settle under stationary conditions, the vector A of the random
variables representing the system has the same values as before.

COV=(A"*4)=(0"*R"*Rx0)=0"*0

-12 -



A :Cij*A +R
o=[1-C,]"

where C is the adjacency matrix of the system and R is uncorrelated Gaussian noise.

To calculate the covariance matrix from the adjacency matrix this needs to be
normalised and preprocessed. The original authors in [18] consider some constraints
motivated by properties of real neurobiological networks which need to be used for
the normalisation.

The “Saturation constraint” imposes that the maximum total input to each node,
considering the absolute value for negative weights, i.e. self connection corresponding
to the variance, is always set under 1. In [18] the sum of afferent connections for
each node, excluding the self connection, was set to 0.8 for the graph selection
process. Since the indegree of each node was 8, the single weight value was 0.1. In
the same paper the single weight value was instead set to 0.04 to calculate the
complexity of the cat cortex and macaque visual cortex.

The “Activation constraint” requires that small self-inhibitory weights are added to the
connection matrix such that the variance, that is the diagonal of the covariance
matrix, is equal to a uniform fixed value. The absolute value of the self-connection
weight should be less than the other connection weight values. The variance in [18] is
set to 0.015 for the evolutionary processes, while it is set to 0.01 for the cortical data.
In [22] the variance is set to 0.01. The activation constraint is not mentioned in more
recent papers and the standard complexity MatLab toolbox does not include it.

For both the saturation and the activation constraints there are no specific indications
on what values are more suitable for different network sizes and/or connection
density. The impact of using different values on the complexity is not specified and
will be investigated in this report.

In [1,2] the role of normalisation and scaling of the connection matrix is examined
and several issues are discussed. To allow the system to be stationary the connection
matrix must be scaled so that its maximum eigenvalue is less than 1. The authors
propose a damping normalisation of the connection matrix such that the maximum
eigenvalue of the matrix is a fixed arbitrary positive number less than 1. They also
consider other plausible methods of normalisation such as using different connection
weights such that the sum of afferent connections for each node is constant, as
proposed in [31], although they question how this method could deal with negative
weights.

The last constraint, the "Connectedness constraint” is not directly related to the
covariance matrix and imposes that the networks must be strongly connected,
although calculating the covariance matrix and complexity of a not strongly connected
graph is numerically possible.

In [1,2] was found out that there was an error in the calculation of the covariance
matrix from the connection matrix. The error consists in the fact that in a stationary
multivariate Gaussian process, the stationarity refers to the distribution of the
element values, not to the values themselves. If the connection matrix is symmetrical
it possible to derive the correct covariance analytically. For directed graphs it is
necessary to perform an iterative process which expands a power series until the
required stationarity is reached.

The impact of this error seems to affect heavily the importance of reciprocal
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connections for high complexity. A more practical approach on the evaluation of this
error is presented in this report.

1.7 Motifs

Motifs are connectivity patterns observed in small groups of connected nodes in a
graph. Fig. 1.3 shows typical motifs including 3 or 4 nodes. Motifs have been
described as building blocks of complex networks [11, 26]

D L

148 178

Fig. 1.3

Milo [11] analysed statistically the number of motifs of certain types in biological and
artificial networks, suggesting that motifs of certain types are much more common in
some types of networks than in others.

Some of these motifs are short re-entrant circuits while other are unidirectional. They
also differ in the number of connections and reciprocal connections. Re-entrant motifs
are another name for short cycles. Cycles of size 2 are reciprocal connections.
Statistical analysis of cycles of different lengths is also included in [18]. High
complexity networks and cortex networks have a much higher quantity of short cycles
compared to equivalent random graphs.

The way motifs can be counted is somewhat ambiguous: motifs with more nodes and
connections include several simpler motifs. Therefore statistical analysis of graph
motifs may or may not include simpler motifs in the count or count just the most
complex motif. For example if between 3 nodes there is a motif n. 12 we could also
count for the same 3 nodes 1 motif n. 9, 1 motif n. 10, 1 motif n. 11 and others.
When counting motifs of size 4 they will contain motifs of size 3. So when looking at
statistical data we need to pay attention to what was actually being counted.
Sporns and Kotter [26] proposed a distinction between structural and functional
motifs. A single instance of structural motif may contain several instances of
functional motifs. The same paper concludes that networks optimised for complexity
are also optimised for functional motif numbers and vice versa, while networks
optimised for structural motif numbers show low complexity.
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2 Methods

2.1 Professional considerations

This project is mainly research based and the software produced is only intended for
use by the author. As a result many of the ethical considerations in the BCS Code of
Practice and Code of Conduct seem of limited relevance. However section 15, “You
shall not claim any level of competence that you do not possess.” does apply. It is true
that when I began the project I knew nothing about neural complexity, but I had
some experience with MatLab and the basics of graph theory. Before choosing the
project I read the papers referred to in the project description and felt confident that
my previous experience and knowledge was sufficient to undertake this challenge.

Source code from other sources is acknowledged in section 2.2.

2.2 Requirements analysis and implementation

The software to be written needed to provided a framework for an evolutionary
procedure where various parameters could be set independently so that it was
possible to replicate and extend the experiments reported in various papers.

A function to reorder the connection matrix such that clusters were readily visible was
needed, together with programs to compare complexity in different graphs and
wrapper code for various tasks.

The software in the project was to be implemented in MATLAB for compatibility with
existing code.

The graphs are strongly connected in nearly all cases. Graphs are usually sparse to
resemble biological networks. The graphs are unweighted, although most programs
can deal with weighted graphs as well. The numerical values, connection matrices and
graphs used in this report usually refer to just one specific case and not as an
average, although the same experiments have been repeated numerous times and
the results confirmed.

Original code was written for the above functions, while software from the following
sources has also been used.

For the computation of complexity and related measurements, MatLab functions
provided by O. Sporns (http://www.indiana.edu/%7Ecortex/resources.html) were
used. For graph and small-world metrics, including path lengths and clustering
coefficients, the same toolbox was used. Cortical data of the cat cortex and macaque
visual cortex are from the same source.

From results obtained from the various simulations in this project it is not very clear if
the same functions were used in the reference papers [18,22]. In particular the
adjacency matrix normalisation has without doubt been done in a different way.

The covariance matrix calculation with variance normalisation was provided by A.

- 15 -



Seth. The correct covariance matrix calculation function and the approximate
complexity function were provided by L. Barnett.

2.3 Graph metrics

The measurements used to evaluate networks are:

diameter: maximum distance between any two nodes.

characteristic path length: average distance between all pairs of nodes.
reciprocal connections: proportion over all connections

clustering coefficient as defined for small world networks

indegree and outdegree minimum and maximum

weight normalisation: usually the specified weight is used for all the
connections in a graph

variance normalisation: value on the covariance matrix diagonal, when
appropriate

L 2R 2R JEK 2R R 2

*

For comparison four different type of graphs are provided: directed random graph
(with fixed indegree when appropriate), undirected random graphs, lattices and small
world networks (rewired lattices with rewiring rate 0.1).

2.4 Software

The source code written for this project is described in appendix 8.2.

241 Evolutionary procedure

The evolutionary algorithms implemented are similar to those used in the original
papers. More details in appendix 8.2.

2.4.2 Rewiring

Rewiring consists in moving the origin or destination of a connection and it is used for
the evolutionary procedure and also for turning a lattice in a small-world network.
More details in appendices.

2.4.3 Community structure

A community structure algorithm [10,12,13] is used to order the connection matrices
and display the structure of a network. More details in appendices.

2.4.4 Other programs

See appendices.
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3 Repeating and extending previous findings
3.1 Evolving high complexity networks

3.1.1 Using original covariance calculation

In [17,18,19] random networks were evolved to achieve high complexity, integration
and entropy. The motivation to use an evolutionary algorithm approach was that even
for small graphs (both nodes and connections) the variety of topologies was enormous
and an exhaustive search in the graph space was not feasible.

The networks to evolve had 32 nodes and 256 connections and the number of nodes
and connections did not change during the evolutionary process. The weight for each
connection was constant and uniform across all connections. The indegree was fixed
to 8 for every node. The starting graphs were random graphs with this indegree
value. The fitness function was the complexity measure C(X), the integration I(X) or
the entropy H(X).

The population size was 10 and at each iteration the population was replaced in the
following way: the individual with the highest fitness score was selected and copied to
the new population, while the remaining individuals in the new population were
mutated versions of the best individual of the previous population. The mutation
consisted in the rewiring of the source of a very limited number of connections (from
1 to 3) while the destination, and hence the indegree of each node, remained
unchanged. The number of generations was set to 2000.

The covariance matrices were obtained analytically from the connection matrices. In
particular the weights were set to 0.1 so that each node had a constant input of 0.8,
while the variance for each node, diagonal terms on the covariance matrices was set
to 0.015. The amount of uncorrelated noise, R in the covariance calculation formula

was not specified.

Replicating the same experiment using R value of 0.1, leads to the following
connection matrices:
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The evolved graphs were compared to random graphs, probably with the same
indegree as the evolved graphs, although this detail was not specified. In this report
undirected random graphs, lattices and small world networks (rewired lattices with
rewiring probability rate of 0.1) are included for comparison.

Networks - C(X) H(X) I(X) max Random Random Lattice Small
max max undirected directed world
Values ¢
C(X) 0.0858 0.0814 0.0446 0.0805 0.058 0.0846 0.0782
Cn(X) 21.05 18.08 13.59 18.95 15.19 22.79 20.58
H(X) -28.63 -28.19 -29.59 -28.66 -28.61 -29.59 -29.1
I(X) 6.842 6.34 7.783 6.867 6.814 7.798 7.307
Diameter 3 3 7 3 3 8 4
Char.Path 1.98 1.77 3.03 1.83 1.81 2.88 2.08
Recipr. c. 0.99 0.98 0.23 1 0.25 0.95 0.79
Clustering 0.443 0.062 0.649 0.238 0.25 0.702 0.518
Outdegree 7/9 6/9 1/31 3/14 4/13 4/10 3/13
min/max
Weight 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Variance 0.015 0.015 0.015 0.015 0.015 0.015 0.015

The above results are in line with the paper results, although the numerical values of
complexity seem to be different to those shown in the plots. This could be due to a
different approach to variance normalisation. Entropy and integration values are
similar to the originals.

Networks optimised for high complexity have high clustering, short paths and nearly
all reciprocal connections. Networks optimised for entropy, random undirected graphs
and lattices also have a quite high complexity. The only attribute they share is the
very high rate of reciprocal connections.

Cn(X) is not always optimised by C(X). The highest value of Cy(X) is found in the
lattice, but C(X) is maximum, as it is expected, in the network optimised for
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complexity.

The outdegree distribution of networks optimised for integration is quite peculiar, as
the majority of nodes have just one efferent connection, while the other nodes have
outgoing connections to all the other nodes. The indegree is fixed to 8 for every node.
They look like an extreme version of scale free networks.

What is really unexpected is that the lattice has even a higher integration value than
that of a network evolved specifically for high integration (after 2000 evolution
cycles). The two networks have in common only a high clustering coefficient.
Repeating the evolutionary procedures for 10,000 iterations the obtained integration
value is 7.83 and the structure is similar to the previous evolved network, although
the path length is shorter.

Networks optimised for entropy have extremely low clustering, much lower than
random networks and mostly reciprocal connections.

Rewiring a lattice decreases its complexity while the entropy increases.

Although the reference paper claims that 2000 generations are sufficient to stabilise
the results, in this report it was found that the fitness values kept increasing very
slowly but constantly if the number of generations was bigger. In particular when
evolving for complexity the cluster boundaries will become sharper if this number is
increased, as shown for 10,000 iterations. in Fig. 3.4.

C[X] 10,000 generations

[m] [m] O O O O
O 000 OO0 0 [m|
o O Ooooo o [m}
o o o
St 000 OO0 0O O o 1
o R o o o |
000 OO0d [}
oo o og Ood
00 O 000 00
10 o o o o [my
[m (][} ]
0000 0O od [m]
O O O00O OO0
bt o 000
o 15} 000 OO0 0Od 1
= oo O oo o
] ] O 00 00O O O
g 0o O O 0Ood O
2 0oog 0o [m] O o
L N | o I o A o By o o B
00 0000 O 0O
oo O ©Ooo O 0
0Od 000
Ood [
& oo o oy
O [m] 000 00 O
00 O OO0
OO0 0Oo0d
m} ooo 0O 000
30+ 0 00000 OO0
O oOgd o o Y
o8 0, Coooo
] 5 10 15 20 25 30
256 conn., weights 0.1, varance 0.015
Fig. 3.4

- 19 -



3.1.2 Using correct covariance calculation

Unfortunately the covariance matrix was not calculated in the correct way. Repeating
the evolutionary process using the correct covariance calculation yields the following
results (graph sizes are the same as above):
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The following table reports the same measures as in section 3.1.1 using the correct
covariance calculation, with the addition of the approximate complexity C*(X).
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Networks » | C(X) C*(X) H(X) I(X) max Random Random Lattice Small
max max max undirected |directed world
Values ¢
C(X) 0.0164 |0.0159 |0.0145 0.0166 0.0103 0.0067 0.0134 |0.0112
Cn(X) 4.6155 |4.4342 |3.399 4.9795 2.4704 1.5183 3.0274 |2.5363
C*(X) 5.9793 |6.0563 1.4058 5.8627 0.7824 0.7309 1.1968 |1.0238
H(X) -27.09 -27.12 -26.54 -27.08 -26.61 -26.8 -26.52 -26.61
I(X) 1.701 1.609 0.903 1.72 0.693 0.381 0.758 0.643
Diameter 12 5 15 14 3 3 8 4
Char.Path 4.17 2.52 4.24 4.98 1.83 1.81 2.88 2.08
Recipr. c. 0.27 0.28 0.42 0.27 1 0.25 0.95 0.79
Clustering 0.673 0.682 0.495 0.664 0.238 0.25 0.702 0.518
Outdegree 1/31 1/31 2/13 1/31 3/14 4/13 4/10 3/13
min/max
Weight 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Evolving for complexity or integration leads to the same network topology. None of
the evolved networks, except perhaps the one evolved for C*(X), is a small-world
network as their path length values are too large, although their clustering coefficients
are quite high. Reciprocal connections for high complexity networks is similar to that
of random directed graphs.

The relationship between C(X), Cy(X) and C*(X) is examined in section 4.7.

Rewiring the lattice causes the complexity and the other values to fall.

3.2 Biological networks and complexity

The following table compares the complexity values for the cat cortex and macaque
visual cortex to those of directed and undirected random networks, lattices and
rewired lattices. For the macaque visual cortex the weights are normalised to 0.04 as
used in [18]. For the cat cortex the weights are normalised to 0.03, as using 0.04
would have caused the sum of the incoming weights of some nodes to be greater than
1. The first and second complexity values are obtained using the incorrect covariance
calculation. The first complexity value uses variance 0.01, thus allowing comparison
with [18] while the second value does not use variance normalisation. The third
complexity value is obtained using the correct covariance calculation.

The cat cortex connection matrix available with the complexity toolbox is different
from the one used in [18] as it has fewer cortical areas (52 instead of 65) and
connections (818 instead of 1136).

- 21 -



Macaque Random Random direct Lattice Small world
visual cortex |undirected
Nodes 32 32 32 32 32
Connections 315 314 315 315 315
Diameter 4 3 3 6 3
Charact. Path L. |1.77 1.72 1.71 2.43 1.89
Reciprocal 0.77 1 0.27 0.96 0.81
conn.
Clustering 0.554 0.324 0.316 0.729 0.535
Indegree 0/19 5/15 5/16 5/12 5/12
min/max
Outdegree min/ | 2/20 5/15 5/16 5/12 6/14
max
Weight 0.04 0.04 0.04 0.04 0.04
Orginal 0.01429 0.0156 0.01038 0.01607 0.0147
Complexity
C(X) var. 0.01
Original 0.01557 0.01669 0.01081 0.01738 0.01572
Complexity
C(X) no var.
Correct COV 4.69 e-4 2.74 e-4 2.62 e-4 3.97 e-4 3.41 e-4
C(X)
Cat cortex Random und. Random direct Lattice Small world
Nodes 52 52 52 52 52
Connections 818 818 818 818 818
Diameter 4 3 3 6 3
Charact. Path L. |1.81 1.7 1.7 2.49 1.86
Reciprocal conn. | 0.74 1 0.31 0.98 0.83
Clustering 0.552 0.311 0.31 0.753 0.566
Indegree 7/32 9/23 7/23 8/18 8/18
min/max
Outdegree min/ |3/34 9/23 9/21 8/18 9/20
max
Weight 0.03 0.03 0.03 0.03 0.03
Original 0.01304 0.01433 0.00982 0.01508 0.01385
Complexity C(X)
var. 0.01
Original 0.01426 0.01532 0.01028 0.01641 0.01494
Complexity C(X)
no var.
Correct COV 6.28 e-4 3.32 e-4 3.21 e-4 5.84 e-4 4.62 e-4
C(X)
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One thing which is surprising when using the incorrect covariance calculation is that
undirected random graphs, as well as lattices and rewired lattices, have higher
complexity than the cortical matrices.

Using the correct covariance calculation the biological networks have the highest
complexity among the other networks considered for comparison.

However the biological networks do not resemble much the networks evolved for
complexity considered in section 3.1.2.
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4 Evaluating complexity

Complexity was proposed as a measure to evaluate some properties in a network and
was used to compare networks with the same or similar number of nodes and
connections. In general the comparison is made with random directed networks of the
same size and in [25] a scaled complexity measure was used, defined as C(network)/
C(random). This could be an appropriate way to compare networks of different size if
some conditions are met. But other relevant issues seem not have been addressed
yet. Those issues are still relevant when using the correct covariance calculation.

4.1 Connection and covariance matrix normalization and
complexity

The role of normalisation of the adjacency matrix is treated as marginal by the
original authors. It is noted that the weight values must be very small so that the sum
of afferent connections for each node is less than 1. Since in [18] the networks used
have a fixed indegree value, the weights are stable during the evolutionary process.
In older papers the details of the weight normalisation and variance are specified
while in more recent papers they are not.

In [1,2] it is noted that the largest eigenvalue of the normalised connection matrix
must be less than 1 to guarantee a stationary process, otherwise the system will not
settle. The authors also note that the numerical values of complexity depends on the
scaling of the connection matrix and therefore complexity values are only comparable
if the normalisation method is equivalent. To do this they propose to normalise the
connection matrix in such a way that its maximum eigenvalue is a fixed value less
than 1. In this way complexity values should be comparable among different
networks.

The standard complexity function provided in the toolbox sets the weights to 0.01,
which could not be appropriate for large networks. The weight values are different
from those used in [18], where weights were set to 0.1 and 0.04. Also in various
papers it is said that the diagonal of the covariance matrices is to be set to a constant
value, e.g. 0.015 in [18] for graph selection and 0.01 in [18] for neural data (cat and
macaque cortex), 0.01 in [22] for graph selection.

Using the complexity toolbox it is not possible to replicate the graph selection process
as described in section 3.1.1 and [18].

The covariance calculation function in the complexity toolbox does not add inhibitory
self connections such that the variance, the diagonal of the covariance matrix, is
equal to a specific value for all the elements. The covariance calculation function used
in this project was provided by A. Seth. The process to normalise the covariance
diagonal iteratively adjusts the negative self-connections until the desired variance is
achieved. It is non-trivial and certainly deserves to be included in the complexity
toolbox if it is considered important. The numerical values of complexity do not seem
much different whether the variance normalisation is used or not, so this could be the
reason for its exclusion.

One problem with the variance normalisation is that depending on the particular
matrix it cannot be guaranteed that the inhibitory self-connections are always smaller
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than the connection weights, which seems to be a requirement in [18]. It could
actually happen that the self-connections weights need to be positive to make the
covariance matrix diagonal have the specified value.

In [22], Sporns and Tononi published results which are in contradiction with the ones

published in [18]. In [22] are reported results obtained evolving networks for high
complexity, entropy and integration. The connection matrices are (from [22]):

structural connectivity

entmopy compexit

Fig. 4.1

White indicates reciprocal connections, grey unidirectional connections and black no
connections. The above connections for entropy and integration are very different
form those published in [18] and repeated in 3.1.1:

-~

entropy integration complexity
Fig. 4.2

In [18] networks evolved for entropy had 99% reciprocal connections, while in [22]
they have none. Networks evolved for integration look completely different, the
number of reciprocal connections has increased dramatically form [18] to [22].
Networks evolved for complexity have changed, as the clusters are more segregated
in [22], although structurally (reciprocal connections and clustering) they are more
alike.

The main difference seems to be that in [18] the networks had 256 connections while
in [22] they had 320. The number of nodes was 32 in both cases. The weights were
set to 0.1 in [18] and to a constant value “such that the amount of input for each
node is less than 1” in [22]. Variance was 0.015 in [18] and 0.01 in [22]. It is not
clear if in [22] the number of incoming connections is uniform as in [18], as the initial
graphs are just described as random and looking at the connection matrix for
integration there are definitely columns with very few connections.

To find an explanation for the above various combinations of weight and variance
values have been tried to replicate the same results. The following connection
matrices are obtained using connection weights of 0.01 while the variance is 0.01 and
evolving for complexity, entropy and integration.
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Fig. 4.3

The networks in Fig. 4.3 are more similar to those in Fig. 4.2. Examining the values
on the self-connections for the variance normalisation of the three evolved networks
it was found that all the self-connections values were negative and their absolute
value was smaller than the normalised connection weights (about -0.003 while
connection weights were 0.01). If the variance had been set to 0.015 the same
networks would have had a positive value as self-connection. The network evolved for
integration in 3.1.1, when normalised using weights 0.1 and variance 0.015, has a
few self-connections (which are all negative) whose absolute value is greater than
0.1.

Repeating the same using the correct covariance does not change much the results
obtained in 3.1.2:
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Fig. 4.4

From a practical approach the normalisation affects the numerical values of the
complexity but also its dependency on the network structure. Changing the
normalisation method changes the results of the evolutionary processes. Therefore
the ranking of networks according to their complexity values depends on the way the
normalisation is done as has just been shown.

The evolutionary process seems more stable when evolving for complexity, which is
the most significant measure in this context.

The rate of growth of complexity and other measures during the evolutionary process
varies depending on the various parameter settings. Therefore a dramatic change in
the network topology may be the result of just a modest change in the fithess score.

The choice of parameters can also affect the time required for converging to a stable
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solution, as it may make the fitness landscape rougher. For example we know that in
certain cases the system will converge to a solution with only reciprocal connections,
but this process can take a few hundred generations in the best case or several
thousand in the worst case depending on the scaling imposed. Another example is
optimal networks which have high reciprocal connections and high clustering. Varying
the parameters it is possible to have systems which evolve both these characteristics
at the same time or we could have a system which first evolves reciprocal connections
and then increases its clustering.

It is nearly impossible to perform an exhaustive number of simulations to explore a
wide range of parameters, as the evolutionary processes take a very long time.

Even when the final results, the converged solutions, look the same, except of course
for the numerical values of complexity which depend on the parameters used, one
may wonder how the differences in parameters may affect the numerical values of
complexity when complexity is just used for evaluating a few networks and
determining which one has the highest complexity.

With the correct covariance calculation setting the diagonal of the covariance matrix
to a constant is not considered. An enhanced version which combines this function
with the function used to normalise the diagonal was implemented. It was quite slow,
as it uses two nested iterative processes. In the end this version was discarded for
three reasons. The first is that using the correct covariance calculation the values in
the covariance matrix are smaller and therefore the variance values used previously,
0.015 and 0.01, would actually require the self-connections to be positive. The second
is that without the covariance normalisation the diagonal terms are already very
similar and it seemed that the role of self-connections was just to guarantee uniform
values on the covariance matrix diagonal. The third, and most important, reason is
that self-connections play a role in the complexity value, as illustrated in Fig. 1.2,
therefore their introduction does not seem recommended.

The approximate complexity C* does not make use of a covariance matrix so it is still
unclear if the inhibitory self connections are needed. It could be possible to calculate

the covariance anyway to determine the self connection values and use the adjusted

connection matrix as input for the complexity calculation.

It is not clear if increasing the number of evolution cycles may lead to a better
convergence when varying parameters. It is also unclear what approach should be
taken with regard to weighted networks or networks with negative weights. Ultimately
the topology of a network giving rise to high complexity should be consistent
independently of the size of network and its number of connections. If weights vary it
is very possible that network topology which optimises complexity will not be unique
but rather will depend on the connection weights.

4.2 Reciprocal connections and complexity

In various papers [17,18,19,22,31] the importance of reciprocal connections has been
stressed because of neurobiological implications.

The cat cortex and macaque visual cortex have 74% and 77% reciprocal connections
respectively. The link the authors seem to fail to make is that complexity depends
mostly on reciprocal connections: a network cannot have high complexity unless it
has mostly reciprocal connections. Undirected random networks (i.e. with only
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reciprocal connections) have fairly high complexity, higher than the cortical matrices
(see section 3.2).

The problem seems to be that the erroneous covariance calculations assign an
excessive importance to reciprocal connections [1,2]. The correct covariance
calculation does not require reciprocal connections any more: networks optimised for
complexity have low reciprocal connections, about the same as random directed
graphs, thus being quite different from actual neural data.

4.3 Null hypothesis for complexity

When comparing networks of different sizes it is not trivial to evaluate which network
has the highest complexity, even when using the same normalisation.

Using directed random networks for comparison does not prove very useful as it is
already known that the biological networks we try to emulate are definitely not
random. Also in the case of the complexity calculated using wrong covariance we have
established that reciprocal connections are crucial for high complexity and any
network with few reciprocal connections is doomed to low complexity. It therefore
seems a bit unfair to compare supposed high complexity networks to networks with a
low amount of reciprocal connections to show that the former have high complexity. It
would be better to use as a null hypothesis a random network with the same amount
of reciprocal connections. It also would be interesting to use random networks which
have the same indegree and outdegree distributions as the supposed high complexity
networks, as the one used in [11].

The random networks used for comparison in this report have the same fixed indegree
as the evolved high complexity networks where possible.

4.4 Comparing networks

Complexity varies with the number of nodes and connections. It is nearly impossible
to compare networks with different numbers of nodes and connections. Using the
same scaling factor for all networks makes a fully connected network have higher
complexity than an evolved sparser network.

For the following comparisons the weights have been set to 0.02, which should avoid
the sum of incoming connections for a node being greater than 1, while the networks
considered are random and directed.

In Fig. 4.5 and 4.6 it is shown how complexity varies for a network with 32 nodes
when the connections vary between 128 and 350. In Fig. 4.5 the complexity used is
the original C(X) with variance 0.015, while in Fig.4.6 C(X) is calculated using the
correct covariance matrix.
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While the complexity increases linearly in Fig. 4.5, this is not the case in Fig. 4.6.
If using Cy(X) the results show a similar trend to the corresponding C(X). Also C*(X)
is similar to the corresponding C(X) and Cn(X).

The following results are obtained by keeping the nhumber of connections fixed to 300,
varying the number of nodes from 18 to 35 and setting the weight values to 0.02.
The first two figures concern the complexity C(X) and Cy(X) using the incorrect
covariance calculation and variance 0.015. The behaviour of Cy(X) is peculiar and was
confirmed using different numbers of nodes, connections and connection weights.
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Fig. 4.7 C(X) Fig. 4.8 Cn(X)

The following figures are obtained from C(X), Cy(X) and C*(X), using the correct
covariance. In this case the results are consistent.
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The following figures show how scaled complexity changes for similar cases to those
in Fig. 4.5 and 4.6 (32 nodes, 128-650 connections, weight 0.2, variance 0.015). The
scaled complexity is calculated comparing a lattice to a directed random graph of the
same size.
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Fig. 4.12 scaled complexity incorrect COV Fig. 4.13 scaled complexity correct COV
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The scaled complexity changes as the number of connections increases although the
trends are different, at least with the parameters used. Using the incorrect
covariance calculation the scaled complexity deceases constantly and slowly. Using
the correct covariance the scaled complexity shows an interesting behaviour and for
the first time it seems to show complexity arising in medium density networks, as the
inventors hoped.

C*(X) behaves in the same way as C(X) (with correct covariance).

Similar results are found when the number of connections is fixed (260) and the
number of nodes varies (18-68):

acaled complesity Glatics)iG{md) incomest GOW
.
2caled complesity Gllatics)iGimd] comsct GOV

20 25 30 35 40 45 50 55 1] 65 7 . 20 25 30 35 40 45 50 55 B0 BS o
nodes nodes

Fig. 4.14 scaled complexity incorrect COV Fig. 4.15 scaled complexity correct COV

It seems that, for a lattice with 32 nodes the optimal nhumber of connections for high
complexity (using the correct covariance) is in the range 250-300.

From these initial findings it seems that comparing networks of different sizes using
the scaled complexity is not feasible.

Different results for all the cases discussed in this section may be obtained using
different weights or non-uniform weights.

4.5 Maximum complexity

One thing the authors fail to investigate in more detail is why and how segregated
areas emerge during the evolutionary process. The number and size of densely
connected subgraphs varies in various simulations [17,18,19,22]. It is observed that
the size and numbers of clusters depend on the humber of edges and connections.
This is true but it is not the whole story. The number and size of the clusters depends
also on the constraints imposed on the network. In all the various simulations there
are always constraints on the number or total weights of the afferent connections in
the initialization of the network. Even when the initial network is completely random
its degree distribution will rarely include nodes with just very few efferent connections
or a high number of afferent connections. The number of afferent connections does
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not change during the evolutionary process, as the rewiring affects only the source of
the connection. Therefore the case in which one node has just one incoming
connection will be impossible or extremely rare, as it will be for a node to have
incoming connections from all the other nodes.

Although some constraints seem reasonable from a biological plausibility point of
view, the fact that other network topologies could even have higher values of
complexity is not considered. Networks with high complexity are compared to random
networks but not with each other.

To explore the graph space in more depth, a more generalised evolutionary algorithm
was implemented. This version allowed greater freedom in the rewiring process, while
still allowing control on the weight allowed (incoming and outgoing) for each
connection. Rewiring can affect any of the following: source of connection, destination
of connection, direction of the connection or both source and destination and also can
be extended to a reciprocal connection if there is one.

Scaling/normalising when the indegree is variable may need a different approach as
the weight for the same connection may vary depending on the number of incoming
connections for the same node.

The evolutionary procedure evolved graphs with 32 nodes and 256 connections. The
weights were set to 0.03, so even in the worst case the sum of afferent connections
for a single node was less than 1. It is also to be considered if the weight scaling
should depend also on the maximum number of efferent connections for a node.
The variance for Fig. 4.16 was 0.01.

In the absence of constraints, the maximum complexity is achieved by networks of
the following structure:
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The network in Fig. 4.16 has path length of 5.73, clustering 0.47 and 98% reciprocal
connections. The network in Fig. 4.17 has path length 2.11, clustering of 0.53 and
50% reciprocal connections. In contradiction with the networks in sections 3.1.1 and
3.1.2, this time evolving using the incorrect covariance does not lead to a small-world
network, while the network evolved using the correct covariance is a small-world.

The reasons driving the formation of the clusters observed in 3.1.1 and 4.1 can now
be explained. In the absence of constraints the highest complexity is achieved by a
single cluster of the maximum size allowed by the number of connections.

When constraints are imposed a unique cluster cannot be formed and the evolutionary
algorithm will grow multiple smaller clusters. These clusters look like squares along
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the matrix diagonal (in the reordered graph) as high complexity graphs have nearly
all reciprocal connections, so the afferent and efferent connections of a nodes are
reciprocal. The size of the clusters is limited to the indegree values, fixed or random.

The structure of the network evolved using the correct covariance, Fig. 4.16, is not
well defined. Perhaps a different reordering algorithm could show its structure more
clearly.

4.6 C(X) vs Cx(X)

Evolving using Cy(X) and C(X) may lead to slightly different results, as the rank of
networks is affected, as shown in section 3.1.1.

Ultimately, evolving using Cy(X) is not feasible for several reasons. The first is that
Cn(X) is much slower to compute than C(X). The second one is that even for smallish
networks the calculation is not done on all the subsets of X but on a sample and
therefore the numerical values vary slightly for the same network and we need a
reliable value to use as fitness score as in later stages of the evolutionary process
even a very small difference matters. Using the complexity toolbox, the maximum
network size for which the complete neural complexity Cy(X) calculation is possible is
12.

4.7 C*(X) vs Cnx(X) vs C(X)

Approximate complexity and neural complexity were used in 3.1.2 to compare evolved
graphs to random networks and lattices. The results leave us with many doubts. Cy(X)
is an approximate measure, as it is calculated only on a sample, therefore it may be
subject to imprecision and inconstancy. There seems to be a rank problem between
C*(X) and Cn(X) similar to the one noticed in 4.6. The rate of growth of C(X), C*(X)
and Cn(X) is unconvincing and deserves more attention, which is outside the scope of
this report.

A network evolved to optimise C*(X) was presented in 3.1.2. It was similar to the
network evolved for C(X) but with a much shorter average path.
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5 Relating complexity to network topology

5.1 Small world networks and complexity

It has been shown in section 3.1.1 that networks evolved for high complexity (using
the erroneous covariance calculation) show small world attributes. Their
characteristic path length is short, like that of a similar random graph, while the
clustering coefficient is high, like a lattice with the same size. Comparisons with small
world networks (Watts and Strogatz model, rewired lattice) have also been made and
the small world attributes compared, which matched.

Networks evolved for complexity using the correct covariance calculation have high
clustering, while the average path length is very long for C(X) and moderately long
for C*(X) , about half way between a lattice and a rewired lattice, so it seem that they
do not possess fully small world characteristics (see section 3.1.2).

It has also been shown that complexity in lattices falls if the lattice is rewired (3.1.1
and 3.1.2).

In [4] it was shown that rewiring lattices makes the complexity fall monotonically.
Similarly in [18] it was shown that rewiring cortical matrices decreased complexity
proportionally to the rewiring rate.

Repeating the same experiment, using both the incorrect and correct covariance
calculations, confirm the above findings. But while complexity keeps falling when
using the incorrect covariance, using the correct covariance the complexity flattens
out if the rewiring rate is greater than 50%. The connection weights are set to 0.3,
while the variance for the networks in Fig. 5.1 is set to 0.01.
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campledty C[%] in

L L L L L L I L
0 20 40 60 80 100 0 20 40 G0 a0 100
rewiting proba biliey rewiting probability

Fig. 5.1 Fig. 5.2

In the small world network model the initial lattice has high clustering and highish
path length, depending on the size of the network and the degree of each node. The
purpose of the rewiring is to maintain the clustering while reducing the characteristic
path length by introducing a few long range connections. So the clustering is that of
the original lattice and can only decrease with random rewiring.

One important thing is that complexity, calculated with wrong covariance relies
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enormously on reciprocal connections: networks evolved for high complexity have
nearly 100% reciprocal connections. Therefore the rewiring process will heavily affect
the reciprocal connections, breaking them. Secondarily rewiring affects the clustered
structure of the network as described above.

The clustering coefficient is defined as average therefore it does not say much about
the variety of structure in a network. It also does not capture the structure of high
complex networks which present dense segregated areas. It is also questionable if the
way the clustering coefficient is calculated for directed graphs is appropriate in the
present context.

Alternative clustering measures exist and could be considered in further studies.

5.2 Complexity and motifs

In [16,17,18,19,20,26] it was observed that networks with high complexity have a
high humber of short re-entrant circuits/motifs. Unsurprisingly these networks have
also a high humber of motifs with reciprocal connections.

Motif frequency analysis also gives information about the clustering coefficient of a
graph when considering motifs of size 3: the number of triangles is related to the
clustering coefficient. It also relates to the amount of cycles of size 3 present in a
graph. Networks evolved for entropy in [18] have few cycles of size 3 and a low
clustering coefficient.

[1,2] also relate neural complexity, calculated using the correct covariance, to the
abundance of motifs of certain types, as illustrated in section 1.5.1.

5.3 Models of high complexity graphs

Using the results obtained in 4.5 it was possible to create a model for high complexity
networks according to C(X) and the wrong covariance calculation. In this graph there
is a fully connected subgraph of the maximum size allowed by the total humber of
connections, while the nodes not in the cluster are connected loosely. (Fig. 5.4)
Similarly a graph structure with multiple clusters can be considered to be compared to
evolved networks with fixed indegree.

A model for a high complexity graph, using the correct covariance calculation, is
mostly bipartite and has very low clustering (0.02) (Fig 5.4).

Biparite

00000000000

o
) B 1o 15 20 25 0 0 5 10 15 20 25 30
256 connections 256 connections

Fig. 5.3 Fig. 5.4
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6 Conclusion

The aim of this project has changed during its implementation for two reasons. The
first was that from initial findings it was discovered that weight and variance
normalisation had a strong impact on the results of the evolutionary procedures. The
second reason was the discovery half-way through the year that current research had
found an error in the way complexity was calculated rendering all past results moot.

The role of normalisation is still unclear and even the results published in [18] and
[22] seem to have been affected. Preliminary results using the correct covariance
calculation seem to suggest that the complexity calculation is more robust as the

evolved networks do not change structurally when changing the normalisation.

But the numerical values of complexity change according to the normalisation used.
Therefore it seems infeasible to compare complexity values obtained using different
normalisation methods. It is still unclear if and how networks of different sizes (nodes
and/or connections) could be compared, as it would seem that some measure of
scaled complexity should be used. It is also not clear if it makes sense to compare
networks of different sizes.

As far as the original aim is concerned, it has been shown that although small-world
networks built using the Watts-Strogatz model (rewired lattices) have higher
complexity compared to random directed networks, the original non-rewired lattices
have higher complexity. This is valid for both the erroneous and correct covariance
calculation.

High complexity networks may or may not show small-world attributes depending on
the normalisation used and constraints imposed. Also the definition of clustering
coefficient for directed graphs used in this report is questionable and other
possibilities should be considered.

The constraints, such as the maximum number of incoming connections, which are
often used in papers, may be justifiable by biological reasons but restrict the range of
networks which can be evolved. Networks not corresponding to these specifications
can have higher complexity as has been shown.
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8 APPENDICES
8.1 Project Log

Autumn term

The autumn term was spent mostly doing background reading. The MATLAB toolbox
by Sporns was tested and a first model of high complexity network was implemented
(weeks 9 and 10).

Meetings with supervisor in weeks 2, 4 and 9.

Christmas break

Replicated Buckley and Bullock findings.

Completed experiments with high complexity networks.
Implemented evolutionary algorithms.

Reorganised bibliography.

Spring term

Extensive search of high complexity networks through evolutionary algorithm using
various parameters.

Related complexity to small-word index and vice-versa.

Tried evolutionary algorithm to improve SW index and evaluate variation in
complexity.

Repeated all the above using the correct covariance calculation.

Wrote draft final report.

Meeting with supervisor in weeks 2,5 and 9. Also with L. Barnett in weeks 5,9 and C.
Buckley in week 9.

Easter break

Collected statistics and data. Ran evolutionary procedures.
Checked for new papers on the topic.

Wrote final report.

Summer term
Completed final report.
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8.2 Source code description
8.2.1 Evolutionary procedure

The evolutionary algorithms implemented are similar to those used in the original
papers.

The number of nodes and connections does not change during the evolutionary
process which therefore involves only the placement of connections.

The initial population can be any of random graphs, random graphs with a specific
number of indegree or copy of a graph passed as input. The latter is useful to evolve a
specific graph, suitably designed for optimality or obtained in other ways, e.g.
previous evolutionary procedure or cortical matrix.

The property to optimise, complexity, neural complexity, integration or entropy is
specified as a parameter, which also allows to specify if the measure is to be
calculated using the erroneous or correct covariance.

The population size is specified as a parameter, although its importance is marginal as
the reproduction process does not use crossover, which is unsuitable in this case since
we want the connection and node numbers to remain the same.

At each iteration the population is replaced in the following way. The individual with
the highest fitness score is selected and copied to the new population, while two
thirds of the remaining individuals in the new population are mutated versions of the
best individual and one third are mutated versions of a random element of the
population. The mutation consists in the rewiring of a very limited number of
connections. The amount of rewiring depends on a parameter, the rewiring rate. Each
connection is considered in turn and if a generated random number is less than the
rewiring rate the edge is rewired. For the same rewiring rate the number of
connections rewired will depend on the number of total edges in the graph. For
example if the graph has 200 connections and the rewiring rate is 0.01, it is expect
that 2 edges will be rewired. In the paper considered the number of rewired edges is
low, from 1 to 3.

The number of generations is usually 2000.

The evolutionary procedure is composed of the following programs:

8.2.1.1 evolvePop

The main evolutionary algorithm is called evolvePop and takes as parameters:
1. the initial population
2. the number of generations
3. the rewiring probability
4. the complexity type
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the maximum weight(or degree) for each node

the type of rewiring

the weight to be assigned to connections for normalisation
the variance value for the covariance matrix

®NoU

The parameters 4,7 and 8 are used for to calculate the complexity (or entropy or
integration) value, which constitutes the fitness function.
The procedure returns the best element of the last generation.

8.2.1.2 evolveClJ

Takes as input a connection matrix as well as the parameters 2-8 described above and
initialises the population with the specified number of copies of the input connection
matrix before calling the main evolutionary procedure. It is used to start the
evolutionary procedure from a non-random network, e.g. a network previously
evolved or a lattice.

8.2.1.3 evolveRand

Takes as input a number of nodes and connections as well as the parameters 2-8
specified above. The population is formed of random directed graphs which are
checked to be strongly connected. The program then invokes the main evolutionary
produre.

8.2.1.4 evolveRandinmax

As evolveRand, but it uses random directed graphs with fixed indegree.

8.2.2 Rewiring

Rewiring consists in moving the origin or destination of a connection and it is used for
the evolutionary procedure and also for turning a lattice in a small-world network.

The rewiring can take different forms, depending on a parameter passed to the
function. In general it involves one edge of a connection. In the original small world
model, graphs were undirected hence it did not matter which edge of a connection
was rewired. In our case the network is directed, so it does matter which end of a
connection is rewired. In [18,22] the source of the connection was rewired, thus
preserving the nodes' indegree.

To explore in more depth the graph space it is possible a more generalised rewiring
process is necessary. This version allows greater freedom in the rewiring process,
while still allowing control on the weight allowed (incoming and outgoing) for each
connection. Rewiring can affect any of the following: direction of the connection,
source of connection, destination of connection, direction of the connection, both
source and destination and also can be extended to a reciprocal connections if there
is one.

For each edge in the network a random number is generated. If this number is less
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than the rewiring rate the edge is rewired. The type of rewiring is specified by a
parameter. If the rewiring type allows multiple possibilities the exact type will be
chosen at random among the alternatives listed above.

After an edge is rewired the resulting graph must be still strongly connected. If this is
not the case the change is discarded. To simplify the choice of the rewiring rate it is
also possible to specify a minimum and maximum of edges to be rewired. Using a
minimum of one rewired edge is important when using a low rewiring rate or using
particularly stringent constraints. If the requested number of rewired edges is not
achieved after considering all the edges, the rewiring process will restart from the
beginning. The maximum rewiring amount will make the rewiring process end as soon
as the required number of edges is rewired.

To optimise the randomness of the rewiring process the initial edge, that is the row
and column of the connection matrix, is chosen at random. The other edges will be
considered sequentially and when the end of the matrix is reached it will start again
from row 1, column 1, until the whole matrix is considered.

The same rewiring function, using a different, usually much higher rewiring rate is
used to obtain small world networks from lattices.

8.2.2.1 rewire12

Takes as input:

connection matrix

rewiring probability

minimum number of connections to be rewired
maximum number of connections to be rewired
maximum indegree/weight

maximum outdegree/weight

rewiring type

NouhswNE=

8.2.2.2 rewireS

Simplified version of rewire 12. Rewires the incoming connection according to the
specified rewiring rate.

8.2.2.3 complexSW

Rewires the input network using rewiring rates from 0.01 to 1 and plots complexity.

8.2.3 Complexity calculation

The functions to calculate the complexity, entropy and integration values were
provided by external sources.

A generalised interface which takes as inputs the connection matrix, the complexity
type, the weight and variance normalisation values is called ccomplex. The
connection matrix weights are normalised, according to the value of a parameter to a
fixed value, to 0.8 divided by the number of connections or to 0.8 divided by the
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number of the incoming connections for that node. According to the type of
complexity and the variance normalisation the covariance matrix is calculated using
one of four different external functions. Then the required complexity or entropy or
integration value is calculated using different functions.

The complexity types are:

ce for C(X) using the original, erroneous covariance calculation
c for C(X) with correct covariance calculation

he for H(X), wrong covariance

h for H(X), correct covariance

ie for I(X), wrong covariance

i for I(X), correct covariance

cne for Cy(X) wrong covariance

cn for Cy(X) correct covariance

cnx for C*¥(X) approximate complexity, correct covariance

PONOUNHWN =

8.2.4 Community structure

The connection matrix figures in this report have been obtained reordering the
connection matrix using a community structure algorithm described in [10,12,13].
Nodes belonging to the same community share many more connections among
themselves than with the rest of the network. The algorithm recursively partitions the
graph or subgraph into two groups until no more convenient way of separation is
possible or until the subgroup is under a certain size.

A matrix of the same size of the adjacency matrix is initialised with:

B indegree,outdegree ;

i ij
y y m

The matrix B is added to its transpose to get a symmetric matrix and then the
eigenvalues and eigenvectors of the resulting matrix are calculated. The original graph
or subgraph is partitioned according to the sign of the corresponding element of the
eigenvector of greatest eigenvalue. The process is repeated recursively on each
partition until no more convenient partitions can be found.

The function dispComm takes in input a connection matrix, orders it using the
community structure algorithm and the function sortCIJv and displays the connection

matrix. The function sortCIJv reorders the input matrix according to the values
contained in an input vector.

8.2.5 Network models

8.2.5.1 makeRandinmax

Creates a random directed network with the specified indegree

8.2.5.2 makeSunxxx and makecometCIlJ

Create networks with the largest possible fully connected component.
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8.2.5.3 makeBip

Create a (nearly) bipartite graph of the specified size

8.2.6 Other programs

8.2.6.1 measureClJ and measure?2

Receives a connection matrix and calls various graph theoretical measure functions
(path length, clustering etc.) and displays the results. The function measure2 in
addition prints complexity measures.

8.2.6.2 compareClJ and compareClJr

Calculate the complexity for a range of networks varying the number of node while
keeping constant the number of connections, or vice versa, and plot results.
CompareCllr sclaes the complexity to that of a random network.
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8.3 Source code

8.3.1 Evolutionary procedures
8.3.1.1 evolvePop

function fitnessScore = fitnessF(CIJ, fitnessType, wei, vari)

% calculate the fitness score for the individual (connection matrix) using
% the specified fitness function

fitnessScore = ccomplex(CIJ, fitnessType, wei, vari);
end

function CIJ = evolvePop(population,generations,prob, complexType,maxWeight,both, wei,
vari)

% evolve a poplation of popsize networks with N nodes and K edges for
% generations generations

N=size(population,2);
K=sum(sum(population(:,:,1)));
popsize= size(population, 3);

% initialize population fitness
fitness = zeros (popsize,l);
for i=l:popsize
fitness(i) = fitnessF(population (:,:,i),complexType, wei, vari);
end

disp '======
disp '======
prevc=0;

prevp=zeros (N);
for (e=l:generations)

[maxcompl,indmax] = max(fitness);
population (:,:,1) = population (:,:,indmax);
fitness(l) = maxcompl;

for (i=2:ceil(popsize/3*2))
network = rewirel2(population (:,:,1),prob,1,9,maxWeight,maxWeight,both);
population (:,:,i) = network(:,:);
fitness(i) = fitnessF(network,complexType, wei, vari);
end
indrand = ceil(rand*ceil(popsize/3%2));
randnet = population (:,:,indrand);
for (i=ceil(popsize/3*2)+1l:popsize)
network = rewirel2(randnet,prob,1,9,maxWeight,maxWeight,both);
population (:,:,i) = network(:,:);
fitness(i) = fitnessF(network,complexType, wei, vari);
end
[maxcompl,indmax] = max(fitness);
if (mod(e,200) == 0)
e
maxcompl
indmax
fitness

if (maxcompl > prevc + 0.00000000000001 || maxcompl < 0)
prevc = maxcompl;

dispComm(population (:,:,1));

measureCIJ(population (:,:,1))
end
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end
end
[maxcompl,indmax] = max(fitness);
maxcompl

CIJ = population (:,:,indmax);
8.3.1.2 evolveClJ

function CIJ = evolveCIJ(CIJ,popsize,generations,prob,
complexType,maxWeight,both,wei,vari)

% evolve a poplation of popsize networks with N nodes and K edges for
% generations generations

% initialize population
N=length(CIJ);

K=sum(sum(CIJ));

population = zeros(N,N,popsize);

for i=1l:popsize
population(:,:,1i) = CIJ;
end
CIJ=evolvePop(population, generations, prob, complexType,maxWeight,both,wei,vari);

8.3.1.3 evolveRand

function CIJ = evolveRand(N,K,popsize,generations,prob, complexType, maxWeight,both, wei,
vari)

% evolve a poplation of popsize networks with N nodes and K edges for
% generations generations

% initialize population

population = zeros(N,N,popsize);

maxAttempts = 1000;

i=1;

attempts=0;

while (i<=popsize && attempts < maxAttempts)
network = makerandCIJ(N,K);

% discard disconnected networks
[R,D] = breadthdist (network);
if (sum(sum(R)) == N*N)
population (:,:,i) = network(:,:);
i=i+1;
end
attempts = attempts + 1;
end
if (attempts < maxAttempts)
CIJ=evolvePop(population, generations, prob, complexType,maxWeight,both,
wei, vari);
else
CIJ=zeros(N,N);
end

8.3.1.4 evolveRandInmax

function CIJ = evolveRandInmax(N,K,popsize,epochs,prob, complexType,
maxWeight,both, wei, vari)

% evolve a poplation of popsize networks with N nodes and K edges for

% epochs epochs

% initialize population
population = zeros(N,N,popsize);
maxAttempts = 1000;

i=1;

attempts=0;

while (i<=popsize && attempts < maxAttempts)
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network = zeros(N);
for z=1:N
knode = 0;
while (knode < maxWeight)
node = ceil(rand*N);

if (node ~= z && network(node,z) == 0)
network(node,z) = 1;
knode = knode + 1;
end
end
end

% discard disconnected networks

[R,D] = breadthdist(network);
if (sum(sum(R)) == N*N)
population (:,:,i) = network(:,:);
i=i+1;
network;
end
attempts = attempts + 1;
end
if (attempts < maxAttempts)
population;

CIJ=evolvePop(population, epochs, prob, complexType,9999,both, wei, vari);
else

CIJ=zeros(N,N);
end

8.3.2 Rewiring

8.3.2.1 rewire12

function [CIJ] = rewirel2(CIJ,p,minrew,maxrew,maxWeightIn,maxWeightOut,both)
% inputs:

% CIJ connection matrix

% P rewiring probability

% minrew minimum number of rewired edges

% maxrew maximum number of rewired edges

% maxWeightNode maximum value for incoming connections
% both

% =0 rewire (i,j) to (x,j) 1 edge,

% =1 rewire 1 edge,

% =2 rewire reciprocal edges (if they exist)
% =3 probability 0.5 of rewiring both edges

% outputs:

% CIJg connection matrix with rewired edges

%

% Annamaria Cucinotta

%

krew = 0;
if (minrew <= 0)

minrew = -1;
end
startRow = floor(rand * size(CIJ,1l)) + 1;
startCol = floor(rand * size(CIJ,1l)) + 1;
cycles = 0;
while ((minrew < 0 || krew < minrew) && cycles < 100)

cycles = cycles + 1;

i = startRow;
krow = 0;

while (krow < size(CIJ,1l))
krow= krow + 1;
if (i > size(CIJd,1))
i=1;
end
j = startCol;
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kcol = 0;
while (kcol < size(CIJ,1))
kcol= kcol + 1;
if (j > size(CI1J,1))
j=1;
end
rewire if the node is not already connected to everything else.
but if a node is already connected to everything else how can we possibly

if connection reciprocal then we may rewire indirectly through the
reciprocal connection

the graph is strongly connected, so at least one reciprocal connection
exists (considering the node connected to everything else in one
direction) we can just hope tht the reciprocal connection will be rewired
at some point but this will make rewire less effective/probable for this
node

weightInd=sum(CIJ(:,3));
weightOutI = sum(CIJ(i,:));

if (i~= j && CIJ(i,j) -= 0 && (rand <= p || weightInJ >
maxWeightIn || weightOutI > maxWeightOut))

01dCIJ=C1J;
randN=rand;
if (both == 0)
% rewire (i,j) to (x,3)

knode = 0;
for inode=1:length(CIJ)
if (inode ~= i && inode ~= j && CIJ(inode,j) == 0 ...
&& sum(CIJ(inode,:)) + CIJ(i,j) <= maxWeightOut)
knode = knode + 1;
listNodes(knode) = inode;
end
end

if (knode > 0) % possible source nodes found
node = listNodes(ceil(rand * knode));
CIJ(node,j) = CIJ(i,J);
CIJg(i,j) = 0;

end

else
if (weightInJ > maxWeightIn || randN < 0.3) % rewire (i,j) to (i,x)

knode = 0;
for inode=1:length(CIJ)
if (inode ~= i && inode ~= j && CIJ(i,inode) == 0 ...
&& sum(CIJ(:,inode,:)) + CIJ(i,]j) <= maxWeightIn)
knode = knode + 1;
listNodes (knode) = inode;
end
end
if (knode > 0) % possible target nodes found
node = listNodes(ceil(rand * knode));
CIJ(i,node) = CIJ(i,j);
CIJg(i,j) = 0;
% check reciprocal connection
% rewire reciprocal only if it is not alreaady there

bothc = 'ix one';
if ((both==2 || (both==3 && rand > 0.5)) &&
CIJ(j,i) ~= 0 && CIJ(node,i) == 0 &&
sum(CIJ(node,:)) + CIJ(j,i) <= maxWeightOut)
CIJ(node,i) = CIJ(j,1i);
CIJ(j,i) = 0;
bothc = 'ix two';
else
end
end
else
if (randN < 0.6 || weightOutI > maxWeightOut)
% rewire (i,j) to (x,3)
knode = 0;
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sum(CIJ(node, :))

for inode=1l:length(CIJ)

if (inode ~= i && inode ~= j &&
CIJ(inode,j) == 0 &&
sum(CIJ(inode,:)) + CIJ(i,j) <= maxWeightOut)
knode = knode + 1;
listNodes(knode) = inode;
end

end
if (knode > 0) % possible source nodes found
node = listNodes(ceil(rand * knode));

CIJ(node,j) = CIJ(i,J);
CIJg(i,j) = 0;
% check reciprocal connection
% rewire reciprocal only if it is not alreaady there

bothc = 'xj one';

if ((both==2 || (both==3 && rand > 0.5)) && CIJ(j,1i)
~= 0 && CIJ(j,node) == 0 && sum(CIJ(:,node))
+ CIJ(j,1i) <= maxWeightIn)

CIJ(j,node) = CIJ(j,1i);
CIJ(j,i) = 0;
bothc = 'xj two';
else
end
end
else

if (randN < 0.8)
% rewire (i,j) to (x,y)

knode = 0;
for inode=1l:length(CIJ)
if (inode ~= i && inode ~= j && CIJ(i,inode)
== 0 && sum(CIJ(:,inode,:)) + CIJ(i,]j) <=
maxWeightIn)
knode = knode + 1;
listNodes (knode) = inode;
end
end

if (knode > 0) % possible target nodes found
node = listNodes(ceil(rand * knode));

else
node = j;
end
knode = 0;
for inode=1l:length(CIJ)
if (inode ~= i && inode ~= j && inode ~= node &&
CIJ(inode,node) == 0 && sum(CIJ(inode,:))
+ CIJ(i,j) <= maxWeightOut)
knode = knode + 1;
listNodes(knode) = inode;
end
end

if (knode > 0) % possible source nodes found
node2 = listNodes(ceil(rand * knode));
cijnodenode2= CIJ(node2,node);
CIJ(node2,node) = CIJ(i,]);
CIJg(i,j) = 0;
% check reciprocal connection
% rewire reciprocal only if it is not alreaady there

bothc = 'xy one';

if ((both==2 || (both==3 && rand > 0.5)) &&
CIJ(j,1)
~= 0 && CIJ(node,node2) == 0 &&

+ CIJ(j,i) <= maxWeightOut && (node == j || .
sum(CIJ(:,node2)) + CIJ(j,i) <= maxWeightIn))

CIJ(node,node2) = CIJ(j,i);

CIJ(j,i) = 0;
bothc = 'xy two';
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else

end
%end
end
else
% rewire (i,j) to (j,1i)
if (CIJ(j,i) == 0 && sum(CIJ(j,:)) + CIJ(i,]) <=
maxWeightOut && sum(CIJ(:,i)) + CIJ(i,j) <=
maxWeightIn)
CIJ(j,i) = CIJ(i,3);
CIJg(i,j) = 0;
end
end
end
end
end
[R,D] = breadthdist(CIJ);

if (sum(sum(R)) < size(CIJ,l)*size(CIJ,1l))
2disp 'disconnected graph '
CIJ=0ldCIJ;

else

krew = krew + 1;
if (krew >= maxrew)

return
end
% else
% disp 'cannot rewire'
end
end
j=3+1;
end
i=1+1;
end
if (minrew < 0)
minrew = 0;
end
end
8.3.2.2 rewireS
function [CIJ,krew] = rewireS(CIJ,p)

% rewire the input network accoding to the specified rewiring rate

% inputs:

% CIJ connection matrix

% P rewiring probability

% output:

% CIJ connection matrix with rewired edges
% krew number of rewired connections

%

%

initCIJ = CIJ;
for i = 1l:length(CIJ)
for j=l:length(CIJ)
rrand = rand;

if (CIJ(i,j) ~= 0)

knod = knod + 1;

end

if (initCIJ(i,j) ~= 0 && CIJ(i,j) ~= 0 && rrand <= p)

01dCIJ=CIJ;
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% rewire (i,Jj) to (x,3)

inr = 0;
for nr=1:1length(CIJ)
if (nr ~= i && nr ~= j && CIJ(nr,j) == 0)
inr = inr + 1;
listNodes(inr) = nr;
end
end

if (inr > 0) % target node found
node = listNodes(ceil(rand * inr));
CIJd(node,j) = CIJ(i,J);
CIJg(i,j) = 0;

end

[R,D] = breadthdist(CIJ);

if (sum(sum(R)) < size(CIJ,1l)*size(CIJ,1l))
% disp 'disconnected graph '
CIJ=0ldCIJ;

else
krew = krew + 1;

end

end

end
end

8.3.2.3 complexSW

function complexSW(CIJ, complexType, wei, vari)
%
% rewire the input networks using rewiring rate 0-100 and plot complexity

compval= zeros(101,1);

rCIJ=CIJ;
for i=1:101
compval (i) = ccomplex(rCIJ, complexType, wei, vari);
if i < 101
[rCIJ,krew] = rewireS(CIJ, 0.01 * i);
end
% if (mod(i,10)==0)
% dispComm(rCIJ) ;
% end
end
figure
plot(0:100,compval)
end

8.3.3 Complexity

function complexity = ccomplex(CIJ, complexType, wei, vari)

Calculate complexity, entropy or integration.
Parameters:
CIJ connection matrix

complexType complexity type:
ce complexity wrong COV
cne neural complexity wrong COV
he entropy wrong COV
ie integration wrong COV
c complexity correct COV
cn neural complexity correct COV
cnx neural complexity C* correct COV
h entropy correct COV
i integration correct COV

wel weight normalisation
if > 0 wei value as constant weight

00 0P 00 00 o0 A0 P Id° O 0P A0 A0 P Id° o° o° o0 oP
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% if = -1 weight = 0.8/incomig connections

% if = -2 weight = 0.8/N
%
N = length(CIJ);

R = 0.1l*eye(N);

if (wei == -1)
CIJn = CIJ.*wei;
weights=ones(1,N);
weights = weights*0.8;
weights = weights./(sum(CIJ>0));
for inx=1:N

CIJdn(:,inx) = CIJ(:,inx).*weights(1l,inx);
end
else
if (wei == -2)
CIJn = CIJ.* 0.8/N;
else
CIJn = CIJ.*wei;
end
end

if (strcmp(complexType, 'cnx'))
complexity = calcCNapprox(CIJn, true);

return
end
if (strcmp(complexType,'ce') || strcmp(complexType,'cne') ||
stremp (complexType, 'ie') || strcmp(complexType, 'he') )
if (vari == 0)
[COV,COR] = calcCOV00(CIJn,R);
else
[COV,its] = seth_calcCOV3(CIJn,vari);
end
else
if (vari == 0)
[COV,COR] = calcCOVcorrect(CIJdn,R,1000,false);
else
[COV,its] = calcCOVcorrectVD(CIJn,vari);
end
end
if (strcmp(complexType, 'c') || strcmp(complexType,'ce'))
C_alt = calcC_det(COV);
complexity = C_alt;
else
if (strcmp(complexType, 'cn') || strcmp(complexType, 'cne'))
[C_N,I_1vl,I_1lvl max] = calcC_Nint(COV,1000);
complexity = C_N;
else
if (strcmp(complexType,'i') || strcmp(complexType,'ie'))
C_i = calcI_det(COV);
complexity = C_i;
else
C_h = calcH_det(COV);
complexity = C_h;
end
end
end
end

8.3.4 Community structure

function [CIJcomm,nnn,nodelist] = communityCIJ(CIJ,partsize,nnn,nodelist,thisnodes)
% community structure algorithm from Leicht and Newman (2007)
%

% divide recursevely the input connection matrix into two partitions
%
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CIJ connection matrix
partsize minimum partition size
nnn
nodelist
thisnodes
CIJcomm=CIJ;
if (size(nodelist) == [1 1]) % initialise
nodelist = zeros(3,length(CIJ));
nodelist(l,l:end) = l:length(CIJ);
nodelist(2,1l:end) = 1;
nodelist(3,1l:end) = l:length(CIJ);
thisnodes = l:length(CIJ);
end
if (length(CIJ) < partsize)
disp ' return'
CIJg
disp ' return'
return;
end
[id,od,deg] = degrees(CIJ);
for i=1l:length(CIJ)
for j=1l:length(CIJ)
B(i,j) = CIJ(i,j) - id(i)*od(j)/length(CIJT);
end
end
BB =B + B';
[eigvect,eigval ]=eig(BB);
eigval;
eigvect;
maxeig = eigval(end);
if (eigval(end) > 0.000000001)
ipartl=0;
ipart2=0;
for i=l:length(BB)
if (eigvect(i,end) >= 0)
ipartl = ipartl + 1;
partl(ipartl) = i;
nodelist(2,thisnodes(i)) = nnn;
thisnodesl(ipartl)=thisnodes(i);
nodelist(3,thisnodes(i)) = nnn*100+ipartl;
else
ipart2 = ipart2 + 1;
part2(ipart2) = i;
nodelist(2,thisnodes(i)) = nnn + 1;
thisnodes2 (ipart2)=thisnodes(1i);
nodelist(3,thisnodes(i)) = (nnn + 1)*100 +ipart2;
end
end
for i=l:length(partl)
for j=1l:length(partl)
partlCIJ (i,j) = CIJ(partl(i), partl(j));
end
end
for i=1l:length(part2)
for j=l:length(part2)
part2CIJ (i,j) = CIJ(part2(i), part2(j));
end
end
[P1,nnn,nodelist]=communityCIJ(partlCIJ, partsize,nnn,nodelist,thisnodesl);
[P2,nnn,nodelist]=communityCIJ(part2CIJ, partsize,nnn+l,nodelist,thisnodes2);
P1l;
P2;
CIJcomm=zeros (length(BB),length(BB));
CIJcomm(l:length(P1l),1l:1length(P1l))=P1;
CIJcomm(length(Pl)+1l:1length(P2)+length(P1l),length(Pl)+1:1length(P2)+length(P1l))=P2;
else

2disp 'no more partitions'
CIJcomm = CIJ;
partl=l:length(BB);
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part2=partl;
end

function newCIJ
nodelist;
node;

newCIJ= partCIJ;

for iii=1l:length(nodelist)
newCIJ(length(partCIJ)+1,iii)
newCIJ(iii,length(partCIJ)+1)

end

end
end

function v3=dispComm(CIJ)
% display community structure

[a,b,c]=communityCIJ(CIJ,4,1,0,0);
v3=sortCIJv(CIJ,c);
figure;

spy(v3,'s',12);

end

function CIJ sortCIJv(CIJ,values)
% sort CIJ according to the vector values

[mm,o0o0]=sort(values(end,:));

for i=l:size(CIJ,1)

if (i ~= oo(i)) % swap rows and cols
0ldCIJ = CIJ;
copyXv = CIJ (i,:);
copyXh = CIJ (:,1i);
copyYv = CIJ (oo(i),:);
copyYh = CIJ (:,00(1));
CIJ(i,:) = copy¥Yv(:);
CIJ(:,1i) = copyYh(:);
CIJ (oo(i),:) = copyXv(:);
CIJ(:,00(i)) = copyXh(:);
CIJ(i,i) = copyYh(oo(i));
CIJ(i,o0(i)) = copy¥Yv(i);

CIJ(oo(i),00(i)) copyXv(i);
CIJ(oo(i),1i) copyXv(oo(i));
oo(find(oo==i)) = oo(i);
end
end

8.3.5 Network models

8.3.5.1 makeRandinmax

function CIJ
maxAttempts

makeRandInmax(N,K,maxWeight)
1000;

i=1;
attempts=0;
maxWeight;
N;

while (i<=1 && attempts < maxAttempts)
network zeros(N);
for z=1:N

addCIJ(partCIJ,nodelist,node,CIJ)

= CIJ(node,nodelist(iii));

CIJ(nodelist(iii),node);
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knode = 0;
while (knode < maxWeight)
node = ceil(rand*N);
if (node ~= z && network(node,z) == 0)
network(node,z) = 1;
knode = knode + 1;
end

end
end
if (sum(diag(network)) > 0)
network
end
gnetwork = makerandCIJ nondir (N, floor(K/2));
% discard disconnected networks
[R,D] = breadthdist(network);
if (sum(sum(R)) == N*N)

i=i+1;
network;
end
attempts = attempts + 1;
end
if (attempts < maxAttempts)

CIJ=network;
else
CIJ=zeros(N,N);
end
end

8.3.5.2 makesun4ClJ and makecometCIlJ

function [CIJ] = makesun4CIJ(N,K)

% inputs:

% N number of vertices

2 K number of edges

% outputs:

% CIJ connection matrix

%

% makes a graph with the largest fully connected components while other
% nodes are connected to one node of the cluster
% Annamaria Cucinotta

%

% initialize
%disp 'makesun4CIJ’'
CIJ = zeros(N);
delta = 9-4%(2*N-K);
if (delta <= 0)
centreSize
else
centreSize = floor((3 + sqrt(delta))/2)
if (centreSize > N)
centreSize = N;
end
CIJ(l:centreSize,l:centreSize) = 1;
for (i=l:centreSize)
CIJ(i,i) = 0;
end
end

0;

if (centreSize < N)
KK = centreSize*(centreSize-1); % number of vertices added to the matrix
node = centreSize;
centralN = 1;

while (KK+1<K);
node = node + 1;
if (node > N)
centralN = centralN + 1;
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node = centreSize + 1;

end
if (node ~= centralNN)
CIJ(node,centralN) = 1;
CIJ(centralN,node) = 1;
KK= KK+2;
end
gsum(sum(CIJ));
end;
if (KK < K)

node = node + 1;

if (node > N)
centralN = centralN + 1;
node = centreSize + 1;

end
CIJ(node,centralN) = 1;
KK= KK+1;
sum(sum(CIJ));
end
end
function [CIJ] = makecometCIJ(N,K)
inputs:
N number of vertices
K number of edges
outputs:
C1Jg connection matrix

makes CIJ matrix, with size = N,K. The final graph as a 'comet' shape:
there is a fully connected subgraphs of the maximum possible size, while
other nodes form a tail

£
B
£
%
%
K]
%
%
%
% Annamaria Cucinotta
%

% initialize
¢disp 'makecometCIJ’
CIJ = zeros(N);
delta = 9-4*(2*N-K);
if (delta < 0)

delta = 0;
end

centreSize = floor((3 + sqrt(delta))/2);

CIJ(l:centreSize,l:centreSize) = 1;

for (i=l:centreSize) % no self connections diagonal
CIJg(i,i) = 0;

end

KK = centreSize*(centreSize-1); % number of vertices added to the matrix

% connect remaining nodes to the central component as a tail
node = centreSize + 1;

while (KK<K & node <= N );

CIJ(node,node-1) = 1;
CIJ(node-1,node) = 1;
KK= KK+2;

sum(sum(CIJ));
node = node + 1;
end;

% connect remaining nodes to random nodes in the tail

node = centreSize + 1;
while (KK<K);
node;
if (node > N)
node = centreSize + 1;
end;
centralN = ceil(rand*(N-centreSize)) + centreSize;
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if ( CIJ(node,centralN) =
CIJ(node,centralN)
CIJ(centralN,node) =
KK= KK+2;

end

sum(sum(CIJ));

node = node + 1;

end;

|
==l
~

8.3.5.3 makeBip

function [CIJ] = makeBip(N,K)

% inputs:

% N number of vertices
K K number of edges

% outputs:

% C1Jg connection matrix
%

%

%

%

makes a bipartite graph
Annamaria Cucinotta

%disp 'makesun6CIJ’
CIJ = zeros(N);
delta = (1-N)*(1-N) - 4%(K-N)
if (delta <= 0)
left = N-1;
else
left = floor((N-1 - sqgrt(delta))/2);
if (left > N)
left = N-1;

end
end

CIJ(N-left+1:N,1:N-left) = 1;

for (i=1l:left)
CIJ(i,i+N-left) = 1;

end

for (i=left+l:N-left)
CIJ(i,N) = 1;

end

for (i=1:N)

CIJ(i,i) = 0;
end

edges = K-sum(sum(CIJ));

while edges > 0
nodel = ceil(rand*N);
node2 = ceil(rand*N);

if (nodel ~= node2 && CIJ(nodel,node2) == 0)
CIJ(nodel,node2) = 1;
edges = edges - 1;

end

end
end

8.3.6 Other programs

8.3.6.1 measureClJ

function [labels,meas]=measureCIJ(CIJ)

% display statistical measures
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[R,D] = breadthdist(CIJ);
[lambda,ecc,radius,diameter] = charpath(D);
[RCIJ,rhoG] = reciprocal(CIJ);
[gamma,gammaG] = clustcoef(CIJ);

meas (2)=lambda;

labels(:,2) = 'path '
meas (1l)=diameter;
labels(:,1) = 'diam ‘s
CIJr= reshape (CIJ,[size(CIJ,l)*size(CIJ,1l) 1]);
if rhoG == Inf

meas(3) = 1;
else

meas (3)=rhoG;
end
labels(:,3) = 'reciprocal ';
if (gammaG == 0)

gamma
end
meas (4)=gammaG;
labels(:,4) = 'clustering ';

[id,od,deg] = degrees(CIJ);

meas (5) = min(id);
labels(:,5) = 'min in deg ';
labels(:,6) = 'max in deg ';
labels(:,7) = 'std in deg ';
labels(:,8) = 'min out deg ';
labels(:,9) = 'max out deg ';
labels(:,10) = 'std out deg ';
meas (6) = max(id);

meas (7) = std(id);

meas (8) = min(od);

meas (9) = max(od);

meas (10) = std(od);

labels=labels';
size(labels);
size(meas);

ns=num2str(meas(:,:)"');
size(ns);
labels(:,end+l:end+size(ns,2)) = ns;

end

8.3.6.2 measure2

function measure2(netw, type, wei, vari)

%

% display graph metrics and complexity values
%

% netw input network

2 type 1-01dCOV 2-bothCOV 3-newCOV

% weil weigth normalisation

% vari variance normalisation

measureCIJ(netw)

if type < 3
complexity ce=ccomplex(netw, 'ce', wei, vari)
complexity cne=ccomplex(netw, 'cne', wei, vari)
complexity he=ccomplex(netw, 'he', wei, vari)
complexity ie=ccomplex(netw,'ie', wei, vari)

end

if type > 1
complexity c=ccomplex(netw,'c', wei, vari)
complexity cn=ccomplex(netw, 'cn', wei, vari)
complexity cnx=ccomplex(netw, 'cnx', wei, vari)
complexity h=ccomplex(netw, 'h', wei, vari)
complexity i=ccomplex(netw,'i', wei, vari)

end
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end

8.3.6.3 compareClJ

function compareCIJ(N1,N2,K1,K2,complexType,wei,vari)
% compare network complexity varying connections or nodes

if (N1==N2) % vary connections

ccomp = zeros(K2,1);
for i=K1l:K2
%CIJ = makesunCIJ(N1l,i);
$CIJ = getRand(N1l,i);
$CIJ = makerandInmax(N1l,i,floor(i/N1));

CIJ = makeringlatticeCIJ(N1l,i);

ccomp(i,l) = ccomplex(CIJ,complexType,wei,vari);
end
figure
plot(1:K2,ccomp)

else % vary nodes

ccomp = zeros(N2,1);

for i=N1:N2
%CIJ = makesunCIJ(i,K1l);
%CIJ = getRand(i,Kl);
CIJ = makeringlatticeCIJ(i,K1);
%CIJ = makerandInmax(i,Kl,floor(K1/1i));
ccomp(i,l) = ccomplex(CIJ,complexType,wei,vari);

end
figure
plot(1:N2,ccomp)

end
title (complexType)

function network=getRand(No,Ko)
ir = 0;
while ir < 100
ir = ir + 1;
network = makerandCIJ(No,Ko);
if (sum(sum(network)) ~= Ko)
disp 'missing edges'
end
[R,D] = breadthdist(network);
if (sum(sum(R)) == No*No)
return;
end
end
disp 'cannot find connected network'
end

end

8.3.6.4 compareClJr

function compareCIJr(N1,N2,K1,K2,complexType,wei,vari)

% compare newtworks varying nodes or connections scaling complexity
% to random network

if (N1==N2) % vary connections
ccomp = zeros(K2,1);

for i=K1l:K2
$CIJ = makesunCIJ(N1l,i);
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CIJ = getRand(N1l,i);

$CIJ = makerandInmax(N1l,i,floor(i/N1));
ccompl = ccomplex(CIJ,complexType,wei,vari);

CIJ = makeringlatticeCIJ(N1l,i);

ccomp2 = ccomplex(CIJ,complexType,wei,vari);

ccomp(i,l) = ccomp2/ccompl;
end

figure
plot(1:K2,ccomp)

else % vary nodes
ccomp = zeros(N2,1);
for i=N1:N2
%CIJ = makesunCIJ(i,K1l);
CIJ = getRand(i,Kl);

$CIJ = makerandInmax(i,Kl,floor(K1/i));
ccompl = ccomplex(CIJ,complexType,wei,vari);

CIJ = makeringlatticeCIJ(i,K1l);

ccomp2 = ccomplex(CIJ,complexType,wei,vari);

ccomp(i,l) = ccomp2/ccompl;
end

figure
plot(1:N2,ccomp)
end

title (complexType)

function network=getRand(No,Ko)

ir = 0;
while ir < 100
ir = ir + 1;
network = makerandCIJ(No,Ko);
if (sum(sum(network)) ~= Ko)
disp 'missing edges'
end
[R,D] = breadthdist(network);
if (sum(sum(R)) == No*No)
return;
end
end
disp 'cannot find connected network'

end

end
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