
On representing, linking and distributing food
metadata:

a framework for distributing descriptive data
about food

Final Year Project (2005)

Author: Thomas Betts Supervised by: Vladimiro Sassone

Computer Science and Artificial Intelligence,
Department of Informatics,

University of Sussex

Candidate number: 41139

Statement of originality

This report is submitted as part requirement for the degree of Computer Science
and Artificial Intelligence at the University of Sussex. It is the product of my
own labour except where indicated in the text. The report may be freely copied
and distributed provided the source is acknowledged.

1

Acknowledgements

I would like to extend sincere thanks to Vladimiro Sassone for his guidance,
support and enthusiasm for this project.

2

Abstract

‘Over 90% of consumers want to know where the meat in
their pork pie or sausages comes from’ - Cabinet Office, 2002
[37]

This report outlines a centralised and self-moderated database system for the
distribution of descriptive information about food. Designed as a server, the
product combines principles of web services with the Semantic Web to provide
a facility for the accurate, machine-processable and extensible description of
food. To facilitate the population of such a vast shared database, an open-
access approach is proposed for both reading and writing.

While applications are suggested, the database is constructed with no specific
application in mind and no usage restrictions. The type of data to be stored in
the database and the use of that data is a matter for software developers using
the database. However, disparate use of the system is encouraged to provide a
broad basis of information.

The report focuses on four key areas:

• the role of users in a shared database system, including discussions on
authorisation, accountability and participation.

• the representation of food item description using a serialisable and exten-
sible vocabulary language

• the management of data including methods to maintain data integrity and
reduce vandalism and data error in an open-access database

• the interface to the database as a web service

Contents

1 Introduction 9

1.1 Motivation . 9

1.1.1 Applications . 10

1.1.2 Terms of reference . 10

1.2 Relevance . 11

1.3 Approach . 11

1.4 Structure of this document . 12

2 Professional considerations 14

3 Requirements analysis and problem specification 15

3.1 Problem specification . 15

3.2 Existing systems . 15

3.2.1 Systems with similar domain-specific aims 16

3.2.2 Systems with similar technical aims 16

3.3 Users and participation . 18

3.3.1 Capturing the data . 18

3.3.2 Participants . 18

3.4 Data representation . 20

3.4.1 Metadata model . 20

1

3.4.2 Choosing a data model 21

3.5 Data management . 23

3.5.1 Data integrity . 23

3.5.2 Storage . 24

3.6 Delivery mechanism . 25

3.6.1 Web Services . 25

3.6.2 DOAFI and Web Services 25

3.7 Testing . 26

3.8 System overview . 26

4 Design 27

4.1 Users and participation . 27

4.1.1 Authentication . 27

4.1.2 Authorisation and integrity 27

4.1.3 Storing user details . 28

4.2 Data representation . 28

4.2.1 Relational modeling . 28

4.2.2 Prototyping the standard vocabulary 28

4.3 Data management . 31

4.3.1 Uniform Resource Identifiers 31

4.3.2 Rolling back changes . 32

4.3.3 Transactions . 33

4.4 Delivery mechanism . 33

4.4.1 Query protocol . 34

4.4.2 Server administration module 36

4.5 Test specification . 36

4.5.1 Server . 36

2

4.5.2 Vocabulary . 37

4.6 System overview . 38

4.6.1 REST . 38

4.6.2 Components in place . 38

5 Implementation 40

5.1 System structure . 40

5.2 Users and participation . 40

5.3 Data representation . 41

5.3.1 Query structure . 41

5.3.2 Query result . 43

5.3.3 Standard vocabulary . 44

5.3.4 Recording changes . 45

5.4 Data management . 45

5.4.1 Rollback implementation 45

5.4.2 Transactions . 46

5.5 Delivery mechanism . 46

5.5.1 Server configuration . 46

5.5.2 Database . 47

5.5.3 Receiving queries . 47

5.5.4 Interpreting queries . 47

5.5.5 Administration module 47

6 Testing 49

6.1 Server . 49

6.1.1 Execution of regular operations 49

6.1.2 Concurrency . 51

3

6.1.3 User access . 52

6.2 Vocabulary . 53

7 Conclusions 54

7.1 Project evaluation . 54

7.2 System criticism . 55

7.2.1 Data representation and semantics 55

7.2.2 Users and access . 56

7.2.3 Efficiency . 56

7.3 Deployment requirements . 57

7.3.1 System integration . 57

7.3.2 Users and contribution . 57

7.4 Extensions and future work . 57

7.4.1 Accuracy . 58

7.4.2 Collaborative categorisation 58

7.4.3 Social software . 59

7.4.4 Identity and trust . 59

Bibliography 64

Appendices 64

A Report appendices 65

A.1 Requirements Analysis . 65

A.2 Design . 67

A.2.1 RDF instantiation . 67

A.2.2 Formalising the vocabularies with RDFS 70

A.3 Implementation . 77

4

A.3.1 Code walkthrough . 77

A.4 Testing . 80

A.4.1 GetQuery . 80

A.4.2 SetQuery . 80

A.4.3 User access . 81

B Source code 86

B.1 DOAFI package . 86

B.1.1 QueryProcessor . 86

B.1.2 QueryBase . 90

B.1.3 QueryInterface . 92

B.1.4 GetQuery . 92

B.1.5 SetQuery . 95

B.1.6 QueryWrapper . 107

B.2 Vocabulary package . 108

B.2.1 DOAFI . 108

B.2.2 QUAFI . 111

B.3 Administration module package 112

B.3.1 AddUser . 112

B.3.2 EditUser . 114

B.3.3 DeleteUser . 116

C Administration 118

C.1 Project schedule . 118

C.2 Project phases . 119

C.3 Progress report . 121

5

List of Figures

3.1 Example assertions made by different organisations or food cer-
tifying bodies . 20

3.2 Tree structure of classes as found in a taxonomy 22

3.3 A visual overview of the proposed DOAFI system structure . . . 26

4.1 Worcestershire Sauce RDF/XML containing base classes 30

4.2 A RDF/XML Biography class . 30

4.3 Simplified graph-based view of difference between original database
and edit . 32

4.4 Sequence of database item edits 33

4.5 Database query example combining the DOAFI and QUAFI vo-
cabularies . 35

4.6 Database response example combining the DOAFI and QUAFI
vocabularies . 36

4.7 Component structure of the DOAFI server 39

5.1 An example SetQuery involving modification to title field of a
FoodItem . 41

5.2 GetQuery request to a depth of 2 42

5.3 GetQuery response to a depth of 2 43

5.4 Graph representation of a server response 44

6.1 Testing concurrent requests . 52

6.2 Server response to failed authentication 52

6

6.3 Example data model illustrating combined vocabularies 53

A.1 DOAFI server class diagram . 78

A.2 Example of a rollback query . 80

A.3 Response to query by properties 81

A.4 Response to query by URI . 81

A.5 Response to query for non-existent item 82

A.6 SetQuery operation to delete a property 82

A.7 SetQuery operation to rollback changes to the data model 83

A.8 The FoodItem modelHistory after compound changes 84

A.9 Base example of authentication query 85

7

List of Tables

4.1 Domain elements and their properties 29

4.2 Query vocabulary classes . 34

4.3 Query vocabulary properties . 35

4.4 Server query execution test specification 37

5.1 Misinterpretation of a historical version of an item 45

6.1 Results of execution of GetQuery operations 50

6.2 Results of execution of SetQuery operations 51

8

Chapter 1

Introduction

A shared database of food metadata could transform our ability to make justified
decisions about food purchases. Description of a Food Item (DOAFI) aims to
achieve exactly this - providing a centralised and self-moderated database of
machine understandable food description. A generalised framework and web
service interface allows any party to read and write data using standard or
proprietary vocabularies. The ability to generate a vocabulary for describing a
specific interest is open to all.

1.1 Motivation

‘Over 90% of consumers want to know where the meat in
their pork pie or sausages comes from’ - Cabinet Office,
2002 [37]

Traceability of ingredients and food production processes are fundamental to
food quality, but this information is missing from current food labeling due
to the physical constraints of providing such data. In this project I propose
and construct an open-access database server with a web service interface for
the collection and distribution of food metadata. This facilitates the recording
of comprehensive and extensible description by corporations, individuals and
independent and disparate organisations about a food item and each of it’s con-
stituent ingredients. The aim is to encourage the use of the database in software
development and ultimately increase both producer and consumer participation
for reading and contributing.

At present, EU law dictates that it is not obligatory for manufacturers to list
the ingredients of compound ingredients if they form less than 25% of the total
product weight [28].Various reasons are cited for this including lack of space and
ease of description. Furthermore, where ingredients are listed, they are usually
non-specific. For example, one might see ‘beef mince’ in an ingredients list -

9

but what part of the cow was used to produce this product, who produced it
and where was it produced? There is little reason why this information cannot
be provided - if the consumer demands it. It is likely that somebody, some-
where has the knowledge to describe the ingredients or production processes,
whether they are the producer, a wholesaler, an independent organisation or an
individual. Rheingold [39] suggests that using an open-access, shared database
has the possibility to ‘fundamentally transform knowledge-sharing by drastically
lowering the transaction cost of matching questions and answers’. DOAFI may
indeed open up a potentially rich (in volume and semantics) knowledge-base
to developers to use freely in their applications. I indicate a variety of feasible
applications in the following subsection.

The availability of comprehensive food item description, especially when aug-
mented with guidance or knowledge from food authorities, would remove the
market distortions we currently experience as a consequence of inconsistent and
inadequate food labeling. The use of DOAFI could enable both human and
automated product comparison, involving a better heuristic than price. In-
dependent food bodies could describe accurately, in terms of manufacturing
processes, ingredients or economic impact, the differences between a ‘regular’
product and one which is free-range, organic or fair trade. This combination of
information could inform users (consumers or producers sourcing ingredients),
guiding them to make decisions which they are unable to make with currently
available information, based upon their own interests, ethics and priorities.

DOAFI attempts to provide a real basis for comparing and profiling food.

1.1.1 Applications

The possibility for applications which implement the DOAFI knowledge-base are
unbounded: from food ‘recommendation’ systems which infer dietary preference
(for example, you may prefer locally produced food, items comprising organic
ingredients, or animals which have been fed a specific diet) to the automated
profiling of nutrients and vitamins.

Use of the database could be coupled with hardware or software systems, for
example a handheld device helping a consumer to make decisions, based on their
preferences, when purchasing food in a shop. It could be combined with Internet
food shopping facilities for the same purpose. The data could also be used in a
system which compares recipes for freshly prepared food with the corresponding
processed equivalent. These systems could use expert systems and reasoning in
order to make recommendations or infer likely answers to consumer problems.

1.1.2 Terms of reference

The terms of reference for this project were to:

10

1. Define the markup required to describe food and design a metadata model
capable of expressing food item relationships.

2. Determine a common language and a protocol for client/server interaction.

3. Determine a method for serialising the data using XML and create an
open access interface using a web services approach.

4. Implement some persistent storage device for the data, relationships and
attributes.

5. Provide mechanisms to reduce data duplication, inaccuracies and abuse.

6. Produce sample instantiations using the metadata model.

7. Develop a client for querying the server for the purpose of illustration.

8. Discover external reaction to the system from independent bodies in order
to evaluate the system.

An implementation of the system should facilitate access to food item informa-
tion, for example: the producer, production methods and ingredients - each of
which could be further described by database entries and specialised vocabular-
ies. Allowing open access to the data as a web service facilitates ubiquity and
interoperability between clients and systems.

1.2 Relevance

This project is concerned with creating a framework which will allow the unified
storage and delivery of descriptive data about food. I consider this project to
be Semantic Web [34] enabling - providing machine understandable meaning to
food description, and a process for collection and delivery of this data.

The creation of such a knowledge base has potential use in the areas of logic
programming, knowledge representation and machine learning, as well as more
general applications involving a public, shared database. During the course of
this project I have drawn influence from database theory and application, dis-
tributed systems, standards for information interchange, internet technologies
including web services, protocol design and XML and general principles from
software engineering.

1.3 Approach

In this project, I combine technologies, theories and concepts that I have pre-
viously studied independently in order to solve a real-world problem, to which
there is not yet a well-known solution. Due to the open-endedness of the speci-
fication and the relatively underdeveloped vision for the Semantic Web, I opted

11

to develop the primary themes of the project using an iterative and incremental
approach.

This development approach involved development in 2 phases, requiring com-
plete cycles of requirements analysis, design, implementation and evaluation.
The first phase involved developing a requirements analysis for the project, fol-
lowed by the design and implementation of a subset of the project requirements.
During the second phase, revisions were made based on learning from develop-
ing and evaluating the first phase. The remaining subset of requirements were
also implemented during the second phase.

Development could continue to follow this format after an initial deployment.

Further detail of the content of each project phase is contained in Appendix
C. A Gannt chart for the project illustrating estimated and actual completion
dates for the project phases is included in Appendix C.3.

1.4 Structure of this document

Throughout this report I focus on 4 primary themes for the development of the
project - users and participation, data representation, data management and
delivery of the data. Each of these themes are addressed and developed in the
requirements analysis, design and implementation sections.

Chapter 2 briefly addresses ethical and professional considerations with respect
to the storage and dissemination of DOAFI data. I discuss the self-moderated
and open-access nature of the database in relation to libel, copyright infringe-
ment and potential economic impact.

Chapter 3 includes a requirements analysis and problem specification. I evaluate
similar existing systems and consider the needs and role of users in the success of
a shared database. I explore the requirements for metadata storage and assess
technologies for representing data. I begin to present ideas about data integrity,
including a hierarchy for database keys and facilities for storage. Finally, I
consider the interface to the system as a web service.

Chapter 4 explains the translation of the requirements analysis into a project
design. I formalise and illustrate the evolution of the vocabularies for food de-
scription and server interaction. I determine a policy for access control and au-
thentication and discuss data accuracy and integrity in terms of keys, database
transactions and the ability to rollback changes. I also explain the design for a
delivery mechanism and give an overview of the required server components.

Chapter 5 details the implementation of the server and vocabulary elements of
the project. I provide a walk-through of the server source code, and detail the
implementation of transactions and database rollbacks. I explain the interac-
tion between the components of the server and describe it in terms of a delivery
mechanism for a web service. I also explain the representation of queries, re-

12

sponses and database entries in RDF/XML and describe user interaction, in
particular in relation to authentication.

Chapter 6 illustrates the testing which has been undertaken on the system and
vocabularies. It includes execution of ‘regular’ operations, and specific testing
with respect to user access and concurrent database access. I also discuss the
extent to which the vocabulary meets the system requirements.

Chapter 7 provides closing remarks and a critical review of the project imple-
mentation. I evaluate the project according to the terms of reference, provide
criticism of the implementation and detail conditions to be met prior to deploy-
ment of the server. I also outline areas of future work to improve or build on
the work of this project.

13

Chapter 2

Professional considerations

As with any shared database, to be delivered over the internet and with no
explicit moderation in place, one should be aware of the problems which accom-
pany that. Data may be entered into the system which are factually incorrect,
opinionated, could be libelous or subject to copyright or similar restrictions.
For a maintainer of a database, at best these problems cause inaccuracies in the
data, at worst they break the law.

I have therefore concentrated effort in the combined areas of data integrity and
user authorisation to minimise the effect of information imperfections. The
nature of structured metadata and the reduction of free-text description should
further lead the description of food items to be fact-based.

It is important that it is made clear to any users of the system that no guarantees
are provided about the quality or accuracy of the data. Where producers are
entering their own data into the system, they should be aware that they are
describing their product and any misinformation provided could be covered by
the relevant food labeling legislation.

A successful implementation of a system such as this, if widely used, could
alter food consumption behaviour. By facilitating access to perfect or near
perfect information about food would allow direct comparison of products on a
like-for-like basis, allowing consumers and producers to evaluate products more
accurately and with a better heuristic than price alone. At present there is no
way for consumers to access such information, and as such the effect that it
could have on purchasing patterns is therefore unknown.

14

Chapter 3

Requirements analysis and

problem specification

In this chapter I provide a problem specification and an analysis of the area.
In the first section I quantify the problem. In the second section I evaluate
existing systems. I consider the role of users in the success of a shared database
in the third section. In the fourth section I evaluate XML-based solutions to
document structure. In the fifth section I outline ideas about data management,
specifically data integrity. I discuss web services and delivery in the sixth section.
The chapter ends with brief comments on structure and testing.

3.1 Problem specification

The requirement is to construct a shared database for the storage of food meta-
data. A vocabulary should describe characteristic and physical properties of a
food item for storage in the database, and the relationship between food items.
Assumptions should not be made about the structure of the database, such that
users will be free to combine their own vocabularies with those provided.

The database is to be used for the distribution of food description and should
therefore support some method of collecting and delivering that data. A web
service interface is to be provided for this purpose.

3.2 Existing systems

In this section I examine existing solutions to similar problems. In the first
subsection I analyse domain-specific applications for data delivery. In the second
subsection I assess shared database solutions.

15

3.2.1 Systems with similar domain-specific aims

Linking Environment and Farming (LEAF) is a charitable organisation aimed
at bringing farmers and consumers together. Their service, LEAF Tracks [29],
allows consumers to find out who produced their food. This is achieved by a
lookup of a producer number (attached to the product with a sticker), using
a web-based interface. The scheme has been supported by some major UK
supermarket chains.

Specific limitations of LEAF Tracks include:

• Provision of information is restricted to generic producer details

• Intended for a human audience only: the majority of the data is supplied
in prose - rather than structured metadata.

• Content delivery is via a web interface and is not specifically machine
readable.

• The system does not offer any facility for the description of food prod-
ucts comprising more than 1 ingredient, it is concerned only with farmed
produce.

• The sole shared aspect to the database design is the ability for any user to
read. Database modification is reserved for LEAF accredited producers,
leading to a limited system applicability.

Increasing availability of products using the LEAF Tracks system illustrates the
demand for greater access to information about food production. However, it
supplies a restricted subset of the information proposed by DOAFI.

I have been unable to locate any other consumer-oriented systems for the dis-
semination of descriptive data about food.

3.2.2 Systems with similar technical aims

Music databases

One of the most frequently referenced shared databases syndicated over the
internet is CDDB [21], a centralised database storing CD track titles, the pro-
genitor of the various audio CD metadata projects.

Audio playing software can be enabled, via the use of an API, to use the
database to determine CD track titles. An important feature of CDDB is that
the database is populated by users. If a user plays a CD not present in the
database, rather than return the titles, the API will ask for the user to enter
them. Subsequent requests for the metadata for that particular CD will then
be successful.

16

As a consequence of the sale of CDDB to Gracenote in 2001 and perceived
and actual removal of ‘freedom’ from the system, a number of further projects
materialised. One such project is FreeDB [19], effectively a clone of CDDB,
with an additional interface operating over HTTP to avoid firewall restrictions
encountered using CDDB (which uses port 8880 for communication).

MusicBrainz [35] expanded the CDDB model, creating a framework for a
music encyclopedia. Starting with the CD / track database, further information
can be associated such as artists, CDs, tracks, publishers, performers and record
labels.

This less-simplistic metadata model is described using the Resource Description
Framework (RDF), which I discuss further in Section 3.4.2. XML is employed
for serialising the data, meaning both the syntax and semantics for informa-
tion interchange are common, open standards. Query and response involves
posting RDF/XML using HTTP to a query processor. Developers who are not
concerned with the detail of RDF may use an API to wrap and unwrap their
queries.

Wikipedia

Wikipedia [48], ‘the free encyclopedia’, is currently one of the most popular open
access, shared database projects. It differs somewhat from the proposed DOAFI
model as it does not take a web services approach and editing is achieved via
a manual web interface. Little metadata is stored against each article - with
the main bulk of the information content being prose - Wikipedia is aimed very
much at a human audience.

The project has frequently received criticism [45] about the likelihood that pub-
lished information will be inaccurate, biased, of poor quality and subject to
vandalism due to the extreme open access ‘anybody can edit’ policy. Many
people assert that the project cannot scale, the belief being that as it increases
in popularity, so should the level of misuse of the resource. To date, this has not
been the case. According to Alexa [1], Wikipedia is the 170th most visited web
site on the Internet, and for the most part, the content remains factually reli-
able. Those analysing Wikipedia suggest that as the site increased in popularity,
so did the number of participants willing to oppose abuse.

Empirical analysis of these shared databases suggests that systems with open-
access writing policies can scale, and abuses will be ironed out by genuine
participants in the long term. Bricklin [12] describes this phenomena as the
‘cornucopia of the commons’, suggesting that contrary to being detrimental to
the system, ‘use brings overflowing abundance’.

17

3.3 Users and participation

In this section I examine the role of users in populating a shared database and
user needs. In the first subsection I detail successful shared databases and users.
In the second subsection I indicated participant types and their potential roles.

3.3.1 Capturing the data

Traditionally a large database would be populated using an organised manual
approach, where authorised bodies are specifically organised to enter a large
quantity of data. A preferable alternative is to automate the process - an or-
ganised mechanical approach, such as an automatic indexing algorithm.

The popularity of the Internet as a communication medium has given rise to
another method whereby users volunteer to manually enter entries themselves.
This option is useful for populating exceptionally large databases, where even
a substantial organisation does not have the resources to enter the data, and
where an automated system is not viable. The volunteer manual approach
could allow a database to potentially be filled with semantically rich data, very
fast; if a motivation for users to enter their own data can be found. This is
where ‘CDDB succeeded ... by harnessing the energy of its users’ [13]; the
motivation being that the users wanted to see track information about CDs in
their collection when playing them. They participated for their own benefit,
but simultaneously benefitted a community of users.

3.3.2 Participants

The scope of this project is to design and deploy a data store and facilitate
access to that store at a low level. Ultimately access to and use of the data
is aimed at end users, however the interface that I am concerned with is for
software developers in the first instance, with consideration as to their likely
use of the data. In the following sections I discuss participant interaction, a
detailed account of user requirements is contained in Appendix A.1.

Producers

Producers are in the best position to collect and administer (and mechanise
the collection of) their data; large producers are most likely to have the infras-
tructure to be able to do this. When looking at the creation of metadata for
electronic documents, Greenberg et al. [22] found that creators are intimate
with their work, they are familiar with their audience and are likely to want
their work to be consulted. Their study found that the original creators, while
not expert in the field library science, were able to produce very high quality

18

metadata. This suggests that food producers would be equally suited to the
task of metadata generation.

The question remains as to why a producer would want to contribute to a shared
database. Thomas and Griffin [23] suggest that where the burden of metadata
creation falls upon producers, a financial incentive is required to encourage them
to participate. It may also be the case that food producers want to actively
disguise exactly the sort of factual information DOAFI aims to reveal, in which
case, presumably an even greater financial incentive is required to secure their
participation.

Responsibility for metadata creation should therefore be delegated elsewhere
during the infancy of the system. In the first instance, it is possible that smaller
producers may be willing to participate. While this administrative overhead may
be large as a proportion of their workload, many such companies may consider it
in their interest to participate in the system. Their participation could provide
a basis for their products to be accurately compared to the competition.

Developers

Developers are the bridge between DOAFI and the end users. They will not be
directly involved in contributing to the database, but will dictate the interactions
between end users and the database, and will be responsible for making use of
the data.

End users

It seems likely that individual contributors will be instrumental in populating
the database, in addition to producers, especially during the infancy of the
project. They may fill in gaps left by producers or supplement existing informa-
tion. While contributions may only be beneficial as a group, as in the cornucopia
of the commons [12], contributors will want to see an individual reward for en-
tering data into the system. Such a reward could be the ability to use ‘their’
data in some DOAFI-enabled application.

I also include organisational bodies, not involved in the production of food, in
this category. Figure 3.1 illustrates an informal model of plausible assertions
which could be made by organisations about farmed fish. Assertions about food
do not necessarily reflect complimentary interests and the incentive for food
bodies to participate is to allow their assertions to form part of the model for a
specific food item.

19

Figure 3.1: Example (fictitious) assertions made by different organisations or
food certifying bodies about farmed fish

3.4 Data representation

In this section I discuss ontologies, taxonomies and their integration in XML.
I provide an introduction in the first subsection. In the second subsection I
compare and contrast DTDs, XML Schema and RDF as viable solutions.

3.4.1 Metadata model

It is necessary to create a universal and extensible domain-specific ontology for
food item description. Such an ontology must allow the combination of simple,
factual attributes for example weight, product name and producer with more
complex (and perhaps subjective) properties, such as the assertions in Figure
3.1.

Simple attributes should not allow for duplication, however there may be mul-
tiple properties, such as certificates held from food organisations or conflicting
assertions about a food item. In particular, the semantics of these proper-
ties should be broad such that they can be independently formalised by do-
main specialists. Such formalisation involves combination with other ontologies.
Presently available relevant ontologies include the Food & Agriculture Organ-
isation of the United Nations: Agricultural Ontology Service Project [44] and
ontologies dealing with other factors such as geospacial data [10].

20

3.4.2 Choosing a data model

It is necessary to determine some model or framework for the description, storage
and serialisation of the relevant data.

As a well recognised, widely used and supported method for data interchange
on the Internet, XML should be used in some form for serialising the data.
However, it is not clear how the data should be structured, and how structure
should be imposed on the model used for describing and relating data.

Possible options are discussed in the following sections and include DTD and
XML Schema, or the more radical approach of RDF serialised using RDF/XML
and formalised using RDF Schema.

DTD

Document Type Declarations (DTDs) were included in the first release of XML
[9] to apply structure to an XML document. This includes dictating each allow-
able element in the document, possible attributes and values. DTDs are also
concerned with the occurrence and nesting of elements and are widely used for
the syntactic validation of XML.

DTDs are widely supported, due to early adoption and being relatively intuitive
for human readers to understand. Criticisms of DTDs include that they are not
based on XML syntax and so cannot be processed by the same processing engine
used for XML documents. Additionally, they do not fully support namespaces
and hence make the combination of vocabularies difficult.

More fundamentally, DTDs are only capable of defining how vocabulary items
relate to one another at an element level in an XML document. This model
is concerned only with XML document structure and not necessarily with the
more general sense of how objects relate in the real world.

XML Schema

A more sophisticated solution to the validation of XML documents is defined
by XML Schema [6, 8]. These are more closely related to the definition of rela-
tional tables and the ‘class’ structure of object-oriented design. XML Schemas
are themselves defined using XML, and are therefore much more easily machine
readable. Similar to DTDs, they define how elements relate to each other, how-
ever they provide functionality to record data types for elements and attributes,
rather than just ‘character data’ as supported by DTDs.

XML documents, as defined by DTDs or XML Schema, form tree structures
at the element level, as illustrated in Figure 3.2. Using XML documents for
DOAFI would be suitable for the description of items which can be described
using a taxonomy - where elements form a hierarchy.

21

Figure 3.2: Tree structure of classes as found in a taxonomy

XML Schemas support namespaces and by using multiple namespaces in an
XML document, one can combine elements from different XML Schemas, leading
to the possibility of combing vocabularies.

RDF and RDF Schema

The Resource Description Framework (RDF) [5] is a W3C specification for a
metadata model which does not explicitly and necessarily make use of XML,
and their recommendation for the Semantic Web [34]. It can be serialised using
a dialect of XML, specifically RDF/XML. The model is based around the idea of
making statements about objects in the real world. These are in the form subject
(the resource or object being described), predicate (the aspect or characteristic
being described), object (the value of that characteristic). This is known as the
RDF ‘triple’ – everything being described by RDF is in this triple form.

However, RDF alone provides no mechanism for defining properties such as
relationships between resources or attributes of resources. RDF Schema [11],
the vocabulary description language, makes it possible to describe classes of
data and their properties. RDF Schemas are themselves written in RDF. As
all RDF documents can be serialised using RDF/XML, it is possible to create
RDF Schemas in well-formed XML syntax, for flexibility and compatibility.

RDF Schema and the RDF model offer most of the benefits of XML Schema
and XML more generally. While RDF/XML is well-formed XML, the semantics
of RDF/XML and non-RDF XML are considerably different. XML documents
naturally form a tree structure, whereas in RDF everything is expressed in the
form subject-predicate-object - each triple could visually be viewed as a node-
arc-node graph representation. The potential use of URIs for every element in
an RDF model breaks the forced hierarchy of XML - each element in the model
can be uniquely identified by a URI and the relationship of elements is no longer
dictated by their ordering in a tree. The graphical representation of aggregated
RDF triples is a directed labeled graph.

22

XML and RDF compared

A detailed discussion of XML and RDF as suitable technologies for DOAFI is
contained in Appendix A.1. The choice between ‘regular’ XML or RDF comes
down to the underlying structure of data being described. If that data can be
described entirely using a taxonomy, then an approach using XML Schema or
DTD would be appropriate. However, using such a hierarchical structure makes
it difficult to describe relationships such as ‘part of’, which will be important
when describing food items, for example when expressing a food item as an
ingredient of another.

It is straightforward to represent hierarchical structures and more complex re-
lationships using directed labeled graphs, and hence RDF.

3.5 Data management

In this section I discuss keys and uniqueness for data integrity and database
storage. The first subsection details mechanisms for maintaining data integrity
in an open-access database. The second subsection introduces storage in RDF.

3.5.1 Data integrity

Shared resources which can be freely modified will inevitably suffer from abuse or
misuse. Within a CDDB-like system, misuse is limited to incorrectly modifying
track titles; easily reverted by the active members of the community.

Possible reasons for lack of accuracy in database entries may include disagree-
ment on item content, intentional vandalism or the inclusion of factually incor-
rect information.

Uniqueness

CDDB benefits from the ability to create almost-unique keys for database en-
tries using a hashing algorithm on the actual structure of the CD. This helps
protect against data duplication, however in the case of food, it is not possible
to automatically generate some unique and derivable key.

Some other mechanism is required to reduce duplication. Possible ideas include:

• Self-moderation via the input process. When a user enters a new record,
before storing it, a number of similar records could be returned, requesting
the user to verify the uniqueness of their entry. A data mining algorithm
such as k-nearest neighbours [43] could be used to determine this similarity,

23

based upon fixed, physical food properties. This may not be a trivial
problem, as the system would need to deal with incomplete data and
encoding issues.

• Allow anyone to enter anything. Wikipedia does exactly this. The com-
munity of Wikipedia users also police it; inappropriate, incorrect, badly
structured or duplicate material is quickly rolled back, removed or merged.
The system relies on volunteer labour, rather than computation.

• Restrict the creation of entries to trusted and authenticated users. This
would add an element of ‘domain specialism’, for example food producers
could be responsible for manually entering their own produce and they
would be directly responsible for avoiding duplication. Users should still
be able to modify the database with further descriptive data. This would
necessarily divide each entry in 2, a base entry (supplied by the trusted
party) with optional additional information.

In this version of DOAFI, I propose the use of the 2nd option, augmented with
some authentication. Self-moderating behaviour could be added as a module at
a later date.

Open access

Based on the discussion in the previous sections, and especially the work of
Thomas and Griffin [23] - who suggest that producers will not participate until
they experience a financial incentive (ie the system is popular and participation
is a marketing exercise), I propose that the database be open to modification and
access by anybody. If producers add their produce and include factual properties
about the item, users should be able to add to these, and even modify them.

It would be useful to attach some user information against every modification
made, to facilitate user accountability, with the aim of reducing abuse (for
example using account blocking) and ultimately increasing data accuracy. This
might also create an opportunity for applications to make use of a ‘web of trust’
type approach to decide which database information to believe. This requires
user authentication.

Reading should not require authentication.

3.5.2 Storage

The data must be centrally stored in an efficient manner; that is efficient with
respect to the time taken to query the data store, the memory required to
perform a lookup, and the overall storage required. RDF data can be stored
using a regular relational database using an RDF processing package, or via a
custom written database.

24

Guha’s rdfDB [25] is a custom database written in Perl, however it is no longer
being developed and is not widely supported. Jena [27] and Sesame [41] are
Java-based tools which allow processing and storing of RDF data in a relational
database. Both are actively being developed and are suitable for the develop-
ment of a servlet for the delivery mechanism, as detailed in the next section.

3.6 Delivery mechanism

In this section I discuss the database interface as a web service. Initially I
introduce web services and follow this by combining it with DOAFI.

3.6.1 Web Services

As with all web services, delivery should be over HTTP using port 80. The
ubiquity of HTTP for delivery means that it is unlikely to be blocked and is
platform independent.

Traditionally, web service requests and responses are wrapped in Simple Object
Access Protocol (SOAP) [24] packets. These enable the exchange of messages
between applications, primarily over a network. Use of SOAP requires knowl-
edge of request and response message formats. This can be communicated using
the Web Services Description Language (WDSL) [14], an XML-based mark-up
describing web service communication.

3.6.2 DOAFI and Web Services

It is necessary to define a language for communication between client and server.
For purposes of consistency, I propose the use of RDF as a query language as
well as data model. This will ensure that queries are native to the database
content and will allow queries to easily be made on partial data.

Due to RDF being a relatively young standard, there is not yet a well-known
method to best deliver RDF data or integrate it as a web service. It is possi-
ble to wrap RDF into a SOAP packet, although this use is questionable [36].
MusicBrainz [31] has opted not to use SOAP, and are processing and delivering
RDF/XML alone, separating the details of the query using XML namespaces.

RDF Schema can facilitate the automatic discovery as to how a data model can
be queried (based upon the semantics of the data), and this WSDL-like property
is cited as one of the reasons for RDF being so popular amongst the W3C.

I therefore propose to simply receive queries in RDF/XML using HTTP post,
and return a response, also in RDF/XML, in the HTTP packet. RDF Schemas
will be made available.

25

3.7 Testing

Instantiating the RDF Schemas, and attempting to add, edit and view data
from the system will be a fundamental test for the system. Tests should be
applied to evaluate the performance of methods implemented to avoid duplicate
or bogus data in the system, and to test the support for users.

Testing will be continuous and will cover both the system and vocabularies.

3.8 System overview

Figure 3.3: A visual overview of the proposed DOAFI system structure

The structure of the system (as pictured in Figure 3.3) is quite elementary, using
a simple client-sever model. The client is interchangeable and only requires the
ability to process RDF. Both the client and server share a common vocabulary
whose semantics are defined by 1 or more RDF Schema. The server is responsible
for processing queries and executing the features of the web service, including
database interaction and generating responses.

26

Chapter 4

Design

In this chapter I develop the requirements analysis into a design, at the level of
concepts and modules to implement. In the first section I discuss the implemen-
tation of authorisation of users. In the second subsection I use relational mod-
eling to design the vocabularies. I discuss tools for the reduction of database
error including URIs, rollbacks and transactions in the third section. In the
fourth section I outline the query vocabulary as a protocol for communication.
The chapter ends with some detail about testing and an overview of the server
structure.

4.1 Users and participation

In this section I discuss the implementation of user authentication as discussed
in Section 3.3. This includes subsections on authentication, authorisation and
implementation detail.

4.1.1 Authentication

There are to be no restrictions placed on reading from the database; no user
should need to be identified for read access. In order for users to modify the
database, it would be useful to bind identity to their modifications, as discussed
in Section 3.5.1.

4.1.2 Authorisation and integrity

Based on the assumption that producers and ‘trusted’ users would make few
errors when entering data, restricting database edits to only these users would

27

remove the need to provide a facility for automatically reverting changes. How-
ever, as stated in Section 3.5.1, it would be ideal for reading and writing to be
carried out universally.

Providing identity can be verified, all users should be able to create and edit
items in the database. The problem arises that inexperienced users may not
know how to correctly classify items, however increased participation would
allow these errors to be rectified by active participants. An example of this
approach working is Wikipedia [46].

4.1.3 Storing user details

This method of authorisation requires authentication and relies on a common
access list dictating the level of access. This information can be recorded as a
simple database table containing a username, a password which has been subject
to some hashing function (such as MD5 [40]) and an access level.

4.2 Data representation

Berners-Lee [7] cites the relational data model as a principal point of reference
for the Resource Description Framework. While not commutable, these models
share similarities. I therefore use relational modeling techniques to develop the
RDF vocabulary in this section. In the second section I provide some brief
prototype examples, a complete version is contained in Appendix A.2.1

4.2.1 Relational modeling

Crucially, the system must allow the retrieval of food item metadata. Preferably
this should be implemented independently of a specific vocabulary, such that
the system is not bound by a single vocabulary. However to some extent it is
necessary to define domain-specific and intrinsic properties of food items to be
referenced within the system.

Table 4.1 shows some loosely defined domain elements identified and their prop-
erties which form the basis of the vocabulary.

4.2.2 Prototyping the standard vocabulary

For the purpose of this and subsequent prototyping and discussion, I will use
Lea & Perrins Worcestershire Sauce as a sample food item. A complete model
for this product is contained in Appendix A.2.1. An introduction to the model
is included in Figures 4.1 and 4.2.

28

Class Property Description
FoodItem Unique food ID to idenfity a FoodItem

Title full name
Ingredients list of ingredients
Biography biographical information about FoodItem
Produced details of production methods and process
Certification properties asserted about the food item
History stores Movement and Model changes
Alternatives list of alternatives for this product

Ingredient Amount how much of the ingredient is in FoodItem
Amount unit measurement of amount
Ingredient item URI of ingredient
Reason reason for inclusion in FoodItem

Biography Use before consumption best before date
Amount how much of the item there is
Amount unit unit of measurement of the amount

Produced Producer URI of Producer
Produced timestamp date of production
Geographic location of this production
Process how item was made at this stage
Used items list non-food items items used in production
Address full address of producer

Producer Producer ID unique identifier for a Producer
Title full name of producer
Web address primary web address
Geographic physical location of producer, eg. factory

Used Item Used item URI of the item being used
Amount amount of item used
Amount unit unit of amount
Used timestamp date of use
Reason reason for use

Certification Type URI type of certificate issued
Certifying body certificate issuer
Reason explanation for why it is certified this way
Timestamp date of certification
Expiry date certificate valid until expiry

Certificate Certificate ID unique identifier for a certificate type
Title title of certificate
Web address primary web address for human readers

MovementHistory Geographic geo-spatial location at end of movement
Timestamp date of movement
Reason reason for movement

ModelHistory Changes differences in model caused by change
Timestamp time and date of change
User user responsible for change
Reason string literal or reference to comment

Alternative Alternative item URI of alternative FoodItem
Reason reason for relationship between the items

Table 4.1: Domain elements and their properties

29

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi="http://doafi.4angle.com/elements/s-0.1/"
xml:base="http://doafi.4angle.com/FoodItem/"
xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">

<doafi:FoodItem rdf:about="Lea_And_Perrins/Worcestershire_Sauce/150ml/">
<doafi:title>Worcestershire Sauce</doafi:title>

<doafi:bio rdf:resource=
"Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography" />

<doafi:produced rdf:resource=
"Lea_And_Perrins/Worcestershire_Sauce/150ml/Produced" />

<doafi:history rdf:resource=
"Lea_And_Perrins/Worcestershire_Sauce/150ml/History" />

<doafi:alternatives rdf:resource=
"Lea_And_Perrins/Worcestershire_Sauce/150ml/Alternatives" />

<doafi:ingredientList rdf:resource=
"Lea_And_Perrins/Worcestershire_Sauce/150ml/Ingredients" />

<doafi:certification rdf:resource=
"Lea_And_Perrins/Worcestershire_Sauce/150ml/Certification" />

</doafi:FoodItem>
</rdf:RDF>

Figure 4.1: Worcestershire Sauce RDF/XML containing base classes. The
model provides references to each class of additional information.

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi="http://doafi.4angle.com/elements/s-0.1/"
xml:base="http://doafi.4angle.com/FoodItem/"
xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">

<doafi:Biography rdf:about=
"Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography">

<doafi:useBefore>2005-03-01T00:00:00-00:00</doafi:useBefore>
<doafi:amount>150</doafi:amount>
<doafi:amountUnit>ml</doafi:amountUnit>

</doafi:Biography>
</rdf:RDF>

Figure 4.2: A RDF/XML Biography class, as referenced by Figure 4.1

I provide a formalisation of the vocabulary using RDF Schema in A.2.1.

30

4.3 Data management

In this section I discuss features for the reduction of data error. This includes
an overview of URIs as database keys in the first subsection. I outline the use
of rollbacks to easily revert vandalism or error in the second subsection. I also
introduce the reduction of failed writes by using database transactions in the
third subsection.

4.3.1 Uniform Resource Identifiers

Items within the database need to be uniquely identified according to the avail-
able classes of metadata. Using RDF, this is best done with URIs to iden-
tify the metadata classes. This will facilitate the reuse and accurate refer-
ence to statements in the model. The base of such a URI should be within
some unique domain, to ensure avoid duplication. The present such base is
http://doafi.4angle.com/

The total URI for a given item should consist of the base concatenated with the
relative property being expressed.

The following proposed structure for URIs is aimed at reducing accidental du-
plication in the database by guiding users to categorise items according to a
hierarchy. The URI design offers no protection against physical data duplica-
tion.

Objects requiring identification

• FoodItem (eg. FoodItem/Lea_and_Perrins/Worcestershire_Sauce/150ml/)

• NonFoodItem (eg. NonFoodItem/Monsanto/AntibioticX/)

• Producer (eg. Producer/Lea_and_Perrins/)

• Non-specific FoodItem (eg. FoodItem/Lea_and_Perrins/Worcestershire_
Sauce/ - this would be a way of describing this class of item, generally,
rather than a specific instance of the object in the database)

• Certification (eg. Certificate/HM_the_Queen/)

Object hierarchy

Many of the classes being described form a natural hierarchy, for instance the
Ingredients class of a FoodItem ‘Worcestershire Sauce’ produced by ‘Lea and
Perrins’ could be described by the relative URI FoodItem/Lea_and_Perrins/
Worcestershire_Sauce/150ml/Ingredients. The same is format follows for
other FoodItem classes including Biography, Produced, UsedItems, History,
and Alternatives.

31

Where a producer is not known for a FoodItem, perhaps when referenced in an
ingredients list, it can be referenced using a ‘Generic’ producer, hence a URI
such as FoodItem/Generic/Sea_Salt.

4.3.2 Rolling back changes

As detailed in Section 3.5.1, accuracy of entries in a shared database is non-
trivial, especially in the situation that anybody is able to modify or add data. I
propose the implementation of a rollback system for reverting changes consisting
of an operation to return the database to some previous state. This is addressed
in the following subsections.

Calculating and storing changes

The Jena API provides functionality for determining the difference between
2 models. To illustrate this, consider an entry about a food product in the
database, and a new entry which is a copy of the original with minor modifi-
cations. Each time a modification is made, the old entry is overwritten by the
new. A function is available to calculate the difference between 2 models, and
this difference should be stored after each modification. An example is pictured
in Figure 4.3.

Figure 4.3: Simplified graph-based view of difference between original database
and edit. State (a) shows an original model, state (b) shows the model after
modification of the weight property, and state (c) shows the computed difference
between the 2 models

With this difference, it is possible to return to the previous state (hence reverting
changes) by treating the difference as if it were a user requested modification.

Accessing and reverting changes

Each change should have the username of the user making the change and a
timestamp associated with it. It would also be useful to add a further property
to the query vocabulary, editComment, a field for users to write a brief com-

32

ment justifying their edit. For frequently occurring types of edit, this could be
replaced by a URI reference to a class describing the edit.

It should be possible for each uniquely identifiable database entry to have mod-
ifications associated with it. Using RDF to model these changes, one could use
the built-in RDF:Seq notation, which stores sequential data. The model differ-
ences, combined with the additional fields as above, could be stored in such a
construct. Each change would be made with respect to a given FoodItem, giving
rise to the ModelHistory class of the FoodItem History class.

Figure 4.4: Sequence of database item edits

If Figure 4.4 were to represent the history of a database entry, then to revert
the database state to x would require reverting the database first to y, then to
x. Reverting in this way results in the deletion of all edits succeeding the state
reverted to.

Unfortunately, should an error have been made in x which needs to be corrected,
using this approach, the modifications made in version y will be removed when
reverting to x. The user responsible for the rollback is free to manually re-enter
any of the changes which will otherwise be lost.

4.3.3 Transactions

Transactions are a well-known solution to problems of concurrent access and
failed writes in databases. In order to facilitate consistency, at the beginning
of some write operation, a transaction is started. Should an element in the
write fail, the transaction will not commit - all of the changes, leading to the
failure, would not be stored. On success, the transaction can commit, writing
the changes to the database and storing the difference.

Transactions are support natively in the Jena API.

4.4 Delivery mechanism

In this section I consider the interface to the web service. This includes a
discussion, design and prototype for a query protocol in the first subsection and
the administration of users via a separate module in the second subsection.

33

4.4.1 Query protocol

For every class of data being stored, a mechanism must be implemented to query
the server with respect to that class. This includes the addition, modification
and removal of metadata from the database.

As it is not possible to determine what vocabularies will be used with the system,
query and response frameworks should be sufficiently general to contain all forms
of food metadata. The data itself will be described by the vocabulary in use.

As queries will be posted to the server as RDF, an additional vocabulary must
be established, specifically relating to the requirements of queries, which can be
used in combination with the DOAFI standard vocabulary.

All queries should result in a response as per the HTTP protocol. RDF/XML
responses to queries should be contained in the body of a response unless an
unexpected server error has occurred, in which case regular HTTP status codes
will be returned in order to facilitate error detection.

Required interactions

A query to the server will require the combination of the standard vocabulary, to
describe the specific properties being requested, and a specific query vocabulary.

Queries for getting and setting data of a specific class must exist, as described
in Table 4.2.

Query class Description
GetQuery reading from database query
SetQuery query for adding to or editing model
Result wrapper for the query response

Table 4.2: Query vocabulary classes

The result of a GetQuery will contain references to all of the database items
matching the query, if there are any, up to a limit, maxItems. These references
will be contained in an RDF:Bag and wrapped in an ItemList.

A SetQuery should be used to add, edit or delete all of part of an existing
database item. The behaviour of the query with respect to adding or editing is
determined by the server, for example - if the item does not exist, it should be
added, or else it should be edited.

Additional properties are required in order to restrict the size of the tree of
results returned, as described by Table 4.3. A facility should be provided to
restrict the depth and the initial branching factor of the tree.

34

Query property Description
GetQuery properties
depth a depth limit, indicating the level of information to

be returned
maxItems the maximum number of items (at depth 1)

matching this query
SetQuery properties
username required for modifying database entries, stored

against changes
password a hashed password must be presented to

authenticate user
reason either a string literal or reference to a modification

type
deleteItems a flag to determine whether a set operation involves

deleting the specified items or modifying/adding to
the database

rollbackTo facilitates the return to some previous state as
indicated by the modelHistory

Result properties
status an indicator of whether the query was successful

- a property of Result
itemList URI container of items matching a query

Table 4.3: Query vocabulary properties

Prototyping the query vocabulary

As with the regular vocabulary, the query vocabulary should be prototyped.
The combination of standard and query vocabularies can be accomplished using
XML namespaces. Examples of a query and response are illustrated in Figures
4.5 and 4.6 respectively.

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi="http://doafi.4angle.com/elements/s-0.1/"
xmlns:quafi="http://doafi.4angle.com/elements/q-0.1/">

<quafi:GetQuery>
<doafi:title>Worcestershire Sauce</doafi:title>
<quafi:depth>1</quafi:depth>
<quafi:maxItems>1</quafi:maxItems>

</quafi:GetQuery>
</rdf:RDF>

Figure 4.5: Database query example combining the DOAFI and QUAFI vocab-
ularies

The result should return the solution using an rdf:Bag. This construct is a

35

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi="http://doafi.4angle.com/elements/s-0.1/"
xmlns:quafi="http://doafi.4angle.com/elements/q-0.1/"
xml:base="http://doafi.4angle.com/">

<quafi:Result>
<quafi:status>OK</quafi:status>
<quafi:ItemList>

<rdf:Bag>
<rdf:li
rdf:resource="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml" />

</rdf:Bag>
</quafi:ItemList>

</quafi:Result>
</rdf:RDF>

Figure 4.6: Database response example combining the DOAFI and QUAFI
vocabularies

container for holding multiple unordered properties in RDF, although in Figure
4.6 it contains only one food item. The number of items to return (at the first
depth level) is explicitly stated in maxItems. Had a depth greater than 1 been
specified, the server would continue to expand the model, following URIs to
expand the graph until the depth limit is reached.

4.4.2 Server administration module

This servlet provides a web interface for user account administration..

Subsequent versions of the system should allow these functions to be performed
using regular queries, as discussed in Section 7.2.2.

4.5 Test specification

In the following two subsections I discuss testing strategies for the server and
vocabularies. The results of these tests are included in 6.

4.5.1 Server

The only public interaction with the server during the development phase is via
the RDF interface. All testing will involve RDF queries, where the test results

36

are the responses, or if applicable, the modification to the underlying database
structure.

Test Anticipated result
1 Add a FoodItem FoodItem is added to database with

associated properties
Query response is ‘OK’

2 Remove a FoodItem FoodItem and associated properties are
removed from database
Query response is ‘OK’

3 Edit a FoodItem FoodItem entry in database is altered to
reflect specified modifications
Query response is ‘OK’

4 Retrieve a FoodItem FoodItem is returned to stated depth and
maxItems
Query response is ‘OK’

5 Add a pre-existing item Database is not modified
6 Edit a non-existent item Query response is ‘Error’ with a relevant
7 Remove a non-existent item message
8 Semantically incorrect query
9 Syntactically incorrect query

Table 4.4: Server query execution test specification

Queries and responses in RDF/XML are discussed in Sections 5.3.1 and 5.3.2.

4.5.2 Vocabulary

There is no general-purpose procedure for ‘debugging’ a vocabulary. Relevant
aspects include the ‘accuracy’ of the domain-specific nature of the ontology,
including the definition of classes and properties. RDF specific aspects relate to
the graph structure underlying the data model and how this affects the access
and reference to specific elements.

On designing vocabularies, Powers [38] suggests an iterative and incremental ap-
proach to testing (verification and validation) which involves prototyping and
using the vocabulary as defined. This use will naturally highlight errors, omis-
sions and optimisations.

I therefore propose no formal testing for the content of the vocabulary at this
stage, but will continue to test all RDF for semantic and syntactic validity using
the W3 RDF Validator [47] and the ICS-FORTH Validating RDF Parser [26].
Vocabulary modifications are discussed further in Section 5.3.3.

37

4.6 System overview

The area of information delivery via the Internet is well explored, and an initial
aim of this project was to deliver the required information as a web service.
It seems inevitable that the server should follow an approach like Fielding’s
Representational State Transfer (REST) [16], which loosely fits that of the web
today and is discussed in the next section. The interface of the web service is
to be made possible using HTTP requests (GET and POST) and RDF/XML
for the description of queries and responses.

4.6.1 REST

The primary behaviour will be implemented by posting a query to the server,
using RDF/XML for the accurate description of such a query. Assuming there
are no server errors, it will then reply with the result of the query, also in
RDF/XML.

Many queries may be straightforward, but will still require the overhead of
encoding in RDF/XML, and it may be suggested that this approach is too
heavyweight. In order to facilitate interoperability and compatibility, I propose
that the data model and query language be unified, where possible. This was
an important factor in selecting RDF over the combination of XML Schema,
WSDL and UDDI for the provision of the web service, as discussed in Section
3.4.2.

It could also be possible to provide a ‘short cut’ facility for retrieval of sim-
ple data classes using GET. For example, if requesting the URI of a Food-
Item in a web browser, such as http://doafi.4angle.com/FoodItem/Lea_
and_Perrins/Worcestershire_Sauce/150ml/, the server could respond with a
response to a predefined query, such as URIs of the components of the FoodItem.

Currently existing systems, including MusicBrainz [31], allow shortcuts such as
this. While this may simplify access to the database in pre-specified ways, this
may be of limited use, given that client-server interaction should be a machine
to machine process. This data store is not intended to be operated on directly
by human users.

4.6.2 Components in place

The web service will execute on an Apache HTTP server [3]. In order to use Java
as the server programming language, Tomcat [4] will be required to augment
Apache.

Jena [27] is a Java-based RDF database engine. While Jena can be queried
directly over HTTP, DOAFI adds a layer of abstraction using a Java servlet
which will read queries from the web server, perform the necessary database

38

administration via Jena, and then return the corresponding RDF response.

Jena supports a number of methods for storing RDF data. For persistent storage
of RDF data it is able to use a relational database, via JDBC interface. In this
case I use a MySQL database, as it is freely available, well supported and easily
configurable. Figure 4.7 illustrates the proposed server components in place.

Figure 4.7: Component structure of the DOAFI server

39

Chapter 5

Implementation

In this chapter I explain the detail of implementing the design from the previous
chapter and continue to discuss this according to the primary themes of users
and participation, data representation and management and system delivery.
A walkthrough of the code is provided in Appendix A.3.1 and is briefly dis-
cussed in the first section. This is followed by a section on authorisation and
authentication. In the third section I explain the representation of queries and
database entries in RDF/XML. Following this, I describe mechanisms to protect
and manage the database content. In the final section I explain delivery of the
shared database as a web service - from server configuration to user interface.

5.1 System structure

The server comprises a single package, ds. This is to be used in combination with
a vocabulary package and the admin package for user administration. I discuss
the general structure of the system in the following sections. A walkthrough
and class diagram of the ds code is included in Appendix A.3.1.

5.2 Users and participation

As discussed in Section 4.1.2, a single level of authorisation is implemented
for making modifications to the database. This level is dictated by an integer
which would allow differing levels of authorisation, should they become a future
requirement. Users are authenticated using a username and a password which
must be provided with the query. Authentication is not required when using a
GetQuery. An example SetQuery is given in Figure 5.1.

Passwords must be supplied hashed using MD5 [40] and are compared with those
supplied in the ‘users’ table (as described in Section 5.5.2). If authentication

40

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi = "http://doafi.4angle.com/elements/s-0.1/"
xmlns:quafi="http://doafi.4angle.com/elements/q-0.1/"
xml:base = "http://doafi.4angle.com/FoodItem/">

<quafi:SetQuery
rdf:about="Lea_And_Perrins/Worcestershire_Sauce/150ml/">
<doafi:biography

rdf:resource="Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography" />
<quafi:username>tom</quafi:username>
<quafi:password>5f4dcc3b5aa765d61d8327deb882cf99</quafi:password>
<quafi:editComment>changed the name of the product</quafi:editComment>

</quafi:SetQuery>
<doafi:Biography
rdf:about="Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography">
<doafi:title>Worcestershire Sorce</doafi:title>

</doafi:Biography>
</rdf:RDF>

Figure 5.1: An example SetQuery involving modification to title field of a
FoodItem

fails, the requested modification will not be made.

In this implementation, user accounts are managed using a server administration
module, discussed in Section 5.5.5.

5.3 Data representation

In this section I explain the structure of RDF/XML as implemented in the query
and standard vocabularies. In the first subsection I provide detail about how
to structure queries. The second subsection explains the response a user would
expect to receive from their query. Use of the standard vocabulary is described in
the third subsection, followed by a discussion of a data inconsistency difficulty I
overcame when storing the history of the metadata model in the final subsection.

Formalisation of the query and standard vocabularies using RDF Schema is
provided with comments in Appendix A.2.2.

5.3.1 Query structure

Queries are structured in RDF/XML and take 2 primary formats, SetQuery and
GetQuery, as illustrated in Figures 5.1 and 5.2 respectively. Both have required

41

and optional properties, as previously defined in Section 4.4.1.

The depth and maxItems properties of a GetQuery determine the amount of
information returned. The query in Figure 5.2 requests a maximum of 10 items
which match the desired properties (those indicated by the doafi namespace).
Each of the returned items is explored by following URIs to the constituent
parts of the model. The depth indicates how many levels of the graph, from
the base, to explore.

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi = "http://doafi.4angle.com/elements/s-0.1/"
xmlns:quafi = "http://doafi.4angle.com/elements/q-0.1/">

<quafi:GetQuery>
<quafi:depth>2</quafi:depth>
<quafi:maxItems>10</quafi:maxItems>
<doafi:biography rdf:parseType="Resource">

<doafi:title>Worcestershire Sauce</doafi:title>
<doafi:useBefore>2005-03-01T00:00:00-00:00</doafi:useBefore>

</doafi:biography>
</quafi:GetQuery>

</rdf:RDF>

Figure 5.2: GetQuery request to a depth of 2, returning a maximum of 10 items
at the first level. The request is for a FoodItem with title ‘Worcestershire Sauce’
and a use before date of 01 March 2005

Queries must be made in context. In the pictured GetQuery example, the
useBefore and title properties are contained within a biography property.
This part of the query dictates that these properties are of the class associated
with the biography property. This context must be given to enforce the use
of these properties in the model, to ensure accuracy and specifically to avoid
misinterpretation of a generic property such as title.

Context is equally important when issuing a SetQuery. The URI of the Food-
Item being modified in Figure 5.1 is included in the SetQuery statement, using
rdf:about. This provides the context for the biography property, and hence
the modification to the correct Biography class.

Scrutiny of Figures 5.1 and 5.2 reveals a difference in the way details associated
with the biography property are included in Get and Set queries. When mod-
ifying a FoodItem, the concrete URI of a class being modified must be given
- here the URI of Biography is given using rdf:resource. When executing a
GetQuery it is not necessary to know the concrete URI of classes. In the given
example, the URI of the Biography class is not given. This facilitates queries
where concrete URIs are unknown, and the desired behaviour is to match some
FoodItems with biography properties corresponding to those given.

42

5.3.2 Query result

<rdf:RDF
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi = "http://doafi.4angle.com/elements/s-0.1/"
xmlns:quafi="http://doafi.4angle.com/elements/q-0.1/"
xml:base = "http://doafi.4angle.com/FoodItem/">

<quafi:Result>
<quafi:status>OK</quafi:status>
<quafi:itemList>

<rdf:Bag>
<rdf:li
rdf:resource="Lea_And_Perrins/Worcestershire_Sauce/150ml" />

</rdf:Bag>
</quafi:itemList>

</quafi:Result>

<doafi:FoodItem rdf:about="Lea_And_Perrins/Worcestershire_Sauce/150ml">
<doafi:biography

rdf:resource="Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography" />
<doafi:produced

rdf:resource="Lea_And_Perrins/Worcestershire_Sauce/150ml/Produced" />
<doafi:history

rdf:resource="Lea_And_Perrins/Worcestershire_Sauce/150ml/History" />
<doafi:alternatives

rdf:resource="Lea_And_Perrins/Worcestershire_Sauce/150ml/Alternatives" />
<doafi:ingredients

rdf:resource="Lea_And_Perrins/Worcestershire_Sauce/150ml/Ingredients" />
<doafi:certification

rdf:resource="Lea_and_Perrins/Worcestershire_Sauce/150ml/Certification" />
</doafi:FoodItem>

</rdf:RDF>

Figure 5.3: GetQuery response to the query in Figure 5.2

Figure 5.3 illustrates a response to the GetQuery in Figure 5.2. The response is
wrapped in a Result class, and at the base of the graph is an rdf:Bag containing
all of the matching FoodItems. This base of the tree is considered to be ‘level
1’ according to the depth property in the query. The number of items in the
rdf:Bag has an upper limit, as indicated in maxItems in the query.

As the original query indicated a depth of 2, each URI in the rdf:Bag (in this ex-
ample, there is only http://doafi.4angle.com/FoodItem/Lea_And_Perrins/
Worcestershire_Sauce/150ml) is expanded to include all properties directly
related to this item (the 2nd level in the graph). This expansion includes the
addition of Biography, Produced, History, Alternatives, Ingredients and Certi-
fication classes.

43

A graph representation of this result model, with an indication of depth, is
included in Figure 5.4.

genid:ARP1318351

quafi:Resultrdf:type

OK
quafi:status

genid:ARP1318352

quafi:ItemList rdf:Bagrdf:type

http://doafi.4angle.com/
FoodItem/Lea_And_Perrins/
Worcestershire_Sauce/150ml

rdf:_1

doafi:FoodItem
rdf:type

http://doafi.4angle.com/FoodItem/Lea_And_Perrins/
Worcestershire_Sauce/150ml/Biography

doafi:biography

http://doafi.4angle.com/FoodItem/Lea_And_Perrins/
Worcestershire_Sauce/150ml/Produceddoafi:produced

http://doafi.4angle.com/FoodItem/Lea_And_Perrins/
Worcestershire_Sauce/150ml/History

doafi:history

http://doafi.4angle.com/FoodItem/Lea_And_Perrins/
Worcestershire_Sauce/150ml/Alternatives

doafi:alternatives

http://doafi.4angle.com/FoodItem/Lea_And_Perrins/
Worcestershire_Sauce/150ml/Ingredients

doafi:ingredients

http://doafi.4angle.com/FoodItem/Lea_and_Perrins/
Worcestershire_Sauce/150ml/Certification

doafi:certification

1 2

Figure 5.4: Graph representation of the model in Figure 5.3, with a depth limit
of 2. Depths are indicated at the base. The items up to and including those at
the 1st level would be returned if a depth limit ‘1’ had been specified.

5.3.3 Standard vocabulary

During the development of the project, the vocabulary has been modified to
enforce strict classification of properties within their respective classes. The
FoodItem root is implemented as a wrapper for each of these classes. A user
of the vocabulary can make use of the pre-defined classes as they are, or in a
modified form. They may use the vocabulary as a part of the shared-database
system or for a stand-alone metadata model. By using a unique namespace,
users are able to create their own classes, subclass existing classes and add or
modify the intended properties.

The vocabulary provides a loose framework for describing FoodItems, however
there is no requirement to use any part of it. When a FoodItem is entered
into the database, there are no restrictions placed on the amount of informa-
tion entered - any or all of the classes and properties can be specified, as can
use-defined properties. Interested parties are able to create their own com-
plementary vocabularies and description involving multiple vocabularies allows
software developers to include or ignore any specific vocabulary they wish.

44

5.3.4 Recording changes

The use of URIs and a structure as simple as subject-predicate-object used in
RDF makes the storage of a history of changes made to the database non-trivial.
As a URI references unique items, storing previous versions of an item using the
original URI, even in a specific ‘changes’ construct, would lead to the belief that
previous versions were still current when searching the database. An example
of such a mis-representation is given in Table 5.1 for clarity.

In order to rectify this, I implemented functions to modify all of the URIs stored
in the modelHistory of an item in order to make them unique, but consistently
so. This allows the storage of previous versions, without interfering with the
remainder of the model.

Subject Predicate Object
<blankNode> doafi:change <http://doafi.4angle.com/FoodItem/

Lea_And_Perrins/Worcestershire_
Sauce/150ml>

<http://doafi.4angle.com/FoodItem/
Lea_And_Perrins/Worcestershire_
Sauce/150ml> doafi:title ‘Worcestershire Sorce’

Table 5.1: Misinterpretation of a historical version of an item. While these
2 valid RDF triples are intended to indicate that this change was a previous
modification, taken out of context - which in a database consisting entirely of
triples is unavoidable - the second triple implies that this doafi:title is current.

Each URI is modified to be identified as a ‘Change’, and then appended to this
is a counter of the actual sequential change to this model. Thus, a URI such as
http://doafi.4angle.com/FoodItem/Lea_And_Perrins/Worcestershire_Sauce/
150ml, modified for the first time, would become http://doafi.4angle.com/
Change/1/FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml.

5.4 Data management

In this section I described the mechanisms implemented to protect and manage
the content of the database, as discussed in Section 4.3. In the first subsection
I explain the process by which users may efficiently revert incorrect changes to
the database. The second subsection describes a mechanism to prevent database
inconsistency arising from concurrent or failed writes.

5.4.1 Rollback implementation

Despite a native implementation of transactions in the Jena API, there is cur-
rently no support for rolling back changes (any further than the current trans-
action) in any RDF-specific database solution.

45

I implemented a simple mechanism to roll back FoodItem changes to any pre-
vious state. The modelHistory, associated with every FoodItem as part of
the History class, stores modifications to the model. The process of modify-
ing a FoodItem (add, edit, delete or rollback) involves recording the difference
between the new (post-modification) state and the previous.

In a SetQuery, the property rollbackTo indicates the edit sequence number
to revert to. Reverting changes involves sequentially using statements from the
modelHistory as if they were requested query modifications, from the most
recent modification, to the value of rollbackTo. During this process, it is also
necessary to revert the URI modifications indicated in the previous section.

5.4.2 Transactions

Database transaction methods - begin, commit and abort - are used in order to
ensure integrity of the database when dealing with concurrent access and failure.
These ensure atomicity of operations such that, if necessary, operations take
place in isolation and for interactions involving modification of the database, an
‘all or nothing’ approach is taken - either all of the modifications are made or,
in the case of some failure, none are.

Locks are implemented on the database to avoid modification conflicts, in ad-
dition to synchronisation of the Java servlets. For example, if a write, w1, is
executing, and a second write, w2 begins executing, w1 will complete before any
modification by w2 takes place.

Section 6.1.2 details multi-threaded testing of concurrent access to the database.

5.5 Delivery mechanism

In this section I address delivery of the web service, the interaction of compo-
nents and the user interface provided. The first and second subsections detail
configuration of the host machine and deployment of the DOAFI server. In the
third and fourth sections I explain how the user interface interacts with the
other server modules. Finally, in the fifth section I describe how user accounts
can be administered in this implementation.

5.5.1 Server configuration

As indicated in Section 4.6.2, the DOAFI server is built in Java and executes
as a servlet using a combination of Tomcat and the Apache HTTP server. The
servlet provides the web service interface and uses the Jena API to construct
read and write queries to the underlying database of RDF entries. For storage,
the system uses a single MySQL database and is accessed using JDBC.

46

I used Apache Ant [2] to build and deploy the servlet. Both the server and
administration module are packaged as WAR (Web Application Archive) files
suitable for deployment using Tomcat, combined with Jena and a configured
database.

5.5.2 Database

A single MySQL database is used for storing RDF data, as accessed and config-
ured by Jena. In addition, a ‘users’ table was added to this database for storing
usernames and associated hashed passwords with authorisation levels.

5.5.3 Receiving queries

The server receives RDF/XML queries using HTTP post. Queries comprising
a combination of query and DOAFI or other vocabularies must be posted alone
in the body of an HTTP packet.

The server is not capable of handling multiple queries in one packet and no
additional data should be posted to the server.

5.5.4 Interpreting queries

Upon receipt of a query, the servlet executes and begins by parsing the query and
constructing an in-memory representation of it. It is then determined whether
the query is of type SetQuery or GetQuery. A corresponding operation is ini-
tialised by instantiating a relevant class to process the request, passing on the
remainder of the query, now in an in-memory model format.

The result of the query execution is a further in-memory model which represents
an answer to the query. This answer contains query status (either success or
failure), and in the case of a GetQuery, the answer to the corresponding query.
This is serialised using RDF/XML and returned to the user in a return HTTP
packet.

5.5.5 Administration module

A trusted individual or party is required in this first implementation to create
and administer user accounts. The administration module facilitates this, al-
lowing the creation, deletion and modification of users. It consists of 3 XHTML
interfaces which are processed using a servlet for each respective operation.

Development further than the test-phase of the server would require a more
universal interface. At present, the creation is restricted to a single party. Ideally

47

an interface should be provided to allow users to administer themselves, with
an additional interface such as this for the purpose of system administration.

Source for the module is provided in Appendix B.3.

48

Chapter 6

Testing

In this chapter I outline the testing which has been undertaken on both the
server and vocabularies. The first section is based upon the receipt of responses
to the execution of queries on the server. In the second section I evaluate the
vocabularies according to the desired characteristics discussed in Section 3.4.

6.1 Server

In this section I detail testing the functional behaviour of the server by executing
queries. All queries are written in RDF/XML and wrapped in an HTTP packet.
The process of testing involves posting the packet to the DOAFI server using
GNU Netcat [20], followed by observation of the responses to those queries and
modifications to the underlying database structure.

The following subsections provide brief observations regarding the state and
response of the server to queries. The first subsection is concerned with single
queries to see how the server performs in normal and exceptional circumstances.
The following subsection illustrates the results of testing concurrent access to
the database. The third subsection briefly describes the results of testing au-
thentication for making modifications.

6.1.1 Execution of regular operations

Tables 6.1 and 6.2 contain a summary of the results to the execution of these
queries.

49

GetQuery operations

GetQuery operations perform as specified, and as indicated in Table 6.1. Actual
responses to the classes of query are contained in Appendix A.4.1.

The only anomalous query is an exceptional one, where a query is made for a
non-existent item. In this case, rather than explicitly specifying that no item
matches the query, it returns an empty rdf:Bag.

Test Result
1 Direct request for a FoodItem is returned, followed by the

FoodItem by URI amount of detail specified in depth
Response status is ‘OK’

2 Request FoodItems which rdf:Bag of matching results are returned,
match specified properties followed by the amount of detail specified

in depth
Response status is ‘OK’

3 Direct or indirect request empty rdf:Bag is returned
for a FoodItem not present Response status is ‘OK’

Table 6.1: Generalised results to execution of GetQuery operations, organised
by class of query

SetQuery operations

The ‘regular’ SetQuery operations (in Table 6.2, tests 1-4) provide output and
modifications to the database as desired. Test classes 5 and 6 do not perform as
originally intended. Rather than provide an error to these queries, the DOAFI
server recognises them as different queries. An attempt to add an item which
already exists is the same as editing that item, if there is nothing new in this
‘addition’, the database is not modified. The opposite is true for editing an item
which does not exist, this is treated as an adding operation.

The remaining queries execute as desired, except that test 7 returns a generic
error message.

In Appendix A.4.2 I provide detail of a sequence of database queries. This
demonstrates a modelHistory after the execution of an addition, an edit, a
deletion and a rollback. The database properties were as anticipated after com-
pletion of these operations, and the modelHistory was as illustrated in Figure
A.8.

50

Test Result
1 Add a FoodItem FoodItem is added to database with associated

Response properties
status is ‘OK’

2 Remove a FoodItem FoodItem is removed from database, along with
associated properties
Response status is ‘OK’

3 Edit a FoodItem FoodItem entry in database is altered to reflect
specified property modifications, previous
properties are stored in modelHistory
Response status is ‘OK’

4 Rollback changes FoodItem entry in database is returned to
previous state and changed properties are
stored in modelHistory
Response status is ‘OK’

5 Add a pre-existing item Treated like an Edit query, FoodItem is
modified (if different)
Response status is ‘OK’

6 Edit a non-existent item Treated as an Add query, FoodItem is added
to database
Response status is ‘OK’

7 Remove a non-existent Database is not modified
item Response status is ‘Error’ with a generic

message
8 Query is semantically Database is not modified

incorrect Response status is ‘Error’ with parsing error
message

9 Query is syntactically Database is not modified
incorrect Response status is ‘Error’ with parsing error

message

Table 6.2: Generalised results to execution of SetQuery operations, organised
by class of query

6.1.2 Concurrency

Testing concurrent reading and writing involved performing simultaneous queries.
Queries were either dispatched at the same instance, or one timed briefly after
the other. Queries are processed in the order they are received, but due to
processing and network delays, it is not possible to say which will arrive first.

The implementation of SingleThreadModel in the QueryProcessor servlet re-
stricted the execution of queries to be performed in serial. This was shown to
be the case in testing, and the result of these tests is depicted graphically in
Figure 6.1.

51

Figure 6.1: Testing concurrent requests. The first query to arrive at the server is
the first to be served. During this time, the second query will wait. All concurrent
requests are handled in this manner.

6.1.3 User access

All authentication testing was concerned with failure - successful authentication
is extensively visible in the SetQuery tests. Testing was based upon a common
modification query, with modified properties for the respective tests. The base
query is pictured in Figure A.9 in Appendix A.4.3. Tests included incorrect
username, incorrect password, missing username or password property and an
authorisation level which was less than 1 (the level currently required to make
database modifications).

<rdf:RDF
xmlns:doafi="http://doafi.4angle.com/elements/s-0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:quafi="http://doafi.4angle.com/elements/q-0.1/" >

<rdf:Description rdf:nodeID="A0">
<rdf:type

rdf:resource="http://doafi.4angle.com/elements/q-0.1/Result"/>
<quafi:status>

Error: You are not authorised to make this modification
</quafi:status>

</rdf:Description>
</rdf:RDF>

Figure 6.2: Server response to failed authentication

All of the tests returned a common response, pictured in Figure 6.2. In this ex-
ample, it would be possible to associate specific RDF resources with the status
property for machine-processable error reading and recovery. Advanced error
reporting is a possible area for future work.

52

6.2 Vocabulary

The requirements for a vocabulary were determined in Section 3.4. There is no
formal process for determining whether a vocabulary suits a purpose, however
the examples have been tested for semantic (using the RDF Schema in Appendix
A.2.2) and XML syntactic validity. Use of the vocabulary, through the process
of testing - instantiating queries and records, has illustrated that the model is
capable of representing food items.

<rdf:RDF
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi = "http://doafi.4angle.com/elements/s-0.1/"
xml:base = "http://doafi.4angle.com/FoodItem/"
xmlns:geo = "http://www.w3.org/2003/01/geo/wgs84_pos#">

<doafi:Produced
rdf:about="Lea_And_Perrins/Worcestershire_Sauce/150ml/Produced">
<doafi:producer rdf:resource="Producer/Lea_And_Perrins" />
<doafi:timestamp>2004-01-01T00:00:00-00:00</doafi:timestamp>
<doafi:location rdf:parseType="Resource">

<geo:lat>52.1903</geo:lat>
<geo:long>-2.2086</geo:long>

</doafi:location>
</doafi:Produced>

</rdf:RDF>

Figure 6.3: Example data model illustrating combined vocabularies. DOAFI is
combined with Geo, for representing geospacial data

The vocabulary may be combined with other vocabularies, as illustrated in
Figure 6.3, where it is combined with a vocabulary for representing geospacial
data. Using RDF Schema, it is possible to subclass DOAFI properties.

A primary motivation was to produce a truly machine-processable description of
food items. The current vocabulary is limited, for example where the property
unitAmount is currently used, it stores literal values, such as ‘ml’ to denote a
measurement. Ideally, the vocabulary should be combined with a weights and
measures vocabulary for concrete definitions.

Finally, there are no constraints place upon the definition of multiple properties
using the DOAFI vocabulary, where they should not be supported. For example,
at present, it is possible to include 2 title properties for a FoodItem, at the
vocabulary level. At the server level, this is not allowed, as properties will
overwrite each other unless an explicit container such as an rdf:Bag or rdf:Seq
is used.

53

Chapter 7

Conclusions

In this chapter I provide closing remarks and a critical review of the project as
it has been implemented. In the first section I evaluate the project according
to the terms of reference. I criticise the technical implementation of the server
in the second section. In the third section I indicate some conditions to be met
in order to deploy the server. In the final section I outline areas of future work
which I have discovered during my work on this project.

7.1 Project evaluation

I have successfully implemented a loosely-structured shared database with a web
service interface, which can be used for the storage of food metadata. I have
also designed a generic and extensible vocabulary for the description of food
items using RDF/XML and an interface for reading and writing information to
the database. Throughout this document I have discussed the position of the
project in the Semantic Web, the ability to add or modify the vocabularies with
no further intervention and for disparate parties to utilise one single database
for multifarious uses. With regard to the technical aspects of database imple-
mentation, I have provided solutions to problems with data modelling, data
integrity, communication protocols, authorisation and authentication and con-
current access. In particular, in addition to the stated aims, I have provided a
unique solution for rolling back RDF databases.

I believe that in the domain of food, this project is a stepping stone towards
the proliferation of metadata, which is often regarded as a potential remedy to
matching problems with solutions [23].

As it happens, the end product contains little reference to food, and as such
could form a general solution for adding authorisation and data integrity to an
RDF database. The additional work I chose to carry out with database rollbacks
was at the expense of any illustrative stub software, which I had intended to

54

use as proof of concept. I feel this project should be sufficient to demonstrate
the need for and use of the database.

Without a higher-level application to experiment with at this time, a food pro-
ducer or related organisation is unlikely to be interested in this detail. However,
I would hope that deployment of the system would create sufficient interest for
them to become involved.

HP Foods and Unilever both declined to participate in an evaluation of the
system and without substantial public pressure, it seems unlikely that large
food manufacturers would take part in populating the database.

At this statge, it would seem that the majority of aspects relating to the success
of the system are related to participation and deployment. I therefore discuss
this in detail in Section 7.3.

7.2 System criticism

In this section I discuss the shortcomings of the system which may need to be
addressed prior to deployment. In the first subsection I consider the semantic
web applicability of the system. I discuss barriers to participation in the second
subsection. Finally, I suggest speed and overhead improvements in the third
section.

7.2.1 Data representation and semantics

The FoodItem and query vocabularies are designed to be generic and exten-
sible. At present, they say little about classification or relationship of items,
except that one may be an ingredient of another. To use the database as a true
‘Semantic Web service’ will require additional work on the part of a developer.
This may include the addition of more specialised user-defined vocabularies and
combination with an ontology language, such as OWL [32]. The use of OWL
would allow the inclusion of more complex semantic relationships.

Furthermore, when combining the server and vocabulary, properties may take
only one value. One may assert multiple properties about a FoodItem, but a
specific property, may only be asserted once - any attempt to add a further
value to the property will replace the previous value. This was implemented in
the interest of reducing data duplication.

An alternative approach would be to store multiple values, rather then replacing
existing properties. Users of the data would then be free to use the multiple
assertions as they wish, for example, if 100 people assert that a title is ‘Worces-
tershire Sauce’ and 2 assert that it is ‘Worcestershire Sorce’, then one could
conclude that the former is probably correct - popularity and reinforcement
dictates which option to select. This could allow, for example, the automated

55

discovery of synonyms.

I discuss the idea of multiple assertions for collaborative classification in Section
7.4.2.

7.2.2 Users and access

Shirky [42] suggests that there must be some barrier to participation in an
open-access project; to prevent vandalism there should be a notion of user seg-
mentation. In the present implementation, this segmentation is total - either
you can or cannot participate in writing. When deployed, users should be able
to create their own accounts, and hence begin editing immediately. However,
in the interest of data integrity (preventing both vandalism and genuine misun-
derstanding), perhaps a partial segmentation would be preferable. This would
involve undertaking some initialisation process in order to be considered a ‘gen-
uine’ user. This is discussed further in Section 7.4.1.

The server currently has an implementation of user access control and records
details of database modifications against those changes, however there is no fa-
cility or process for specifically dealing with vandalism. An administrator could
manually disable a user account, but an automated heuristic would be prefer-
able. For example, a user account could be temporarily suspended if x changes
made by a user are reverted in one 24-hour period. Any solution avoiding the
need for manual intervention by an administrator would be preferable.

7.2.3 Efficiency

Using an XML-based language for communication involves sizable resources to
parse, which could become particularly computationally expensive when sup-
porting multiple concurrent users. However, standardisation and reusability are
a desirable trade-off for this additional processing. In addition, the combination
of queries in one packed also results in reduced network overhead.

Optimisation of the server would be useful prior to deployment; for example a
queue of locking transactions may be reordered such that some operations may
execute concurrently.

If load were too high on the server, it may be necessary to consider a distributed
approach. This could involve complete copies of the database stored across
multiple machines, or individual machines could be responsible for a section of
the database, as in a distributed hash table.

56

7.3 Deployment requirements

In this section I explain the necessary conditions which must be met in order for
the database to be used. In the first subsection I describe the integration of the
server into a useful application. In the second subsection I detail a modification
to aid user contribution.

7.3.1 System integration

Fundamentally, for the database to be of use, it must be integrated into an
application, whether in the traditional sense or a web application. Use of the
database in multiple applications would encourage varied participation.

The database and content will be in the commons, and for that reason, open-
source developers may be the first to implement it. To develop the concept
further, I would invite participation from independent food-related organisa-
tions, particularly those interested in the certification of food, as a means of
providing this description electronically.

7.3.2 Users and contribution

One test I have been unable to perform is how users will make use of the
system. With few participants, a shared database is not particularly useful -
part of the motivation is that many participants will populate a database much
faster than could otherwise be achieved. How data is entered, for example what
vocabulary and which properties are included or ignored is unknown. This is
inevitable when a primary run-time variable is a group of (as yet unknown)
users - which makes it very different from a ‘traditional’ application where most
of the runtime variables can be determined in advance. The success or failure
of a shared database relies almost entirely on participation.

Prior to deployment, it is therefore important that a mechanism be introduced
to permit users to create and administer their own accounts and hence their
ability to modify the database. Ultimate centralised control of the issuing of
user accounts will not allow the system to scale.

7.4 Extensions and future work

In this section I describe modifications and modular additions which could be
included in future DOAFI releases. In the first subsection I outline further
mechanisms for the reduction of erroneous data. I discuss the potential benefits
of user-generated vocabularies in the second subsection. In the third subsection
I suggest a means of communication for users and in the fourth section I ex-

57

plain the potential use and benefit of digital signatures for verifying food item
properties.

7.4.1 Accuracy

In addition to the ideas in Section 7.4.4, I also propose further modification
which could lead to a greater degree of database accuracy.

In Section 3.5.1 I discussed algorithmically determining the similarity of entries
in the database, in order to prevent similar duplicate entries. This could be im-
plemented as a module to be executed when adding a new item to the database.
The module would determine and return to the user possible duplicate entries,
based on a similarity measure. Reliance is still placed upon the judgment of the
user to determine whether to finally add the entry or not, but it would reduce
the accidental addition of duplicate data.

In response to my criticism of user segmentation (in Section 7.2.2), I propose
that further development could facilitate partial segmentation by implementing
a modification queue. For example, new users could provide edits, which would
be queued and manually approved by a user with a higher level of authorisation.
Their modifications would continue to be queued until some predefined number
of their edits have been approved, after which they obtain a higher authorisation
level.

This queuing mechanism could also be used by those with no user account. It
could encourage new users to participate with little knowledge or understanding,
leading to a wider applicability of the system. Both of these applications would
be aimed at reducing juvenile vandalism and inaccurate modifications by new
users, but without discouraging them from participating.

7.4.2 Collaborative categorisation

Classification and description is often carried out by librarians or information
specialists. These professionals provide formal frameworks for object categorisa-
tion and specifications for metadata description using taxonomies or ontologies.

Mathes [30] describes a more recent development in user-generated metadata -
‘folksonomy’ - combining folk and taxonomy. He illustrates this example with
tools such as the shared bookmarking web application Del.icio.us [15] and Flickr
[17], a photo sharing service. These applications allow users to associate key-
words with the respective objects they are describing. This gives rise to common
(and less common) patterns of classification for web resources and photos. This
form of metadata generation benefits from few ‘cognitive costs’ or barriers re-
quired to generate the metadata, and as explained by Merholz [33], gives rise to
‘ethnoclassification’ - a categorisation of objects in the world by regular people.

While there are disadvantages to this simplistic model such as a lack of hierar-

58

chy and flat namespaces, the simplicity encourages participation and facilitates
classification in a democratic fashion. The rise in popularity of this technique
led me to consider the storage of multiple values for the same FoodItem prop-
erty, as detailed in Section 7.2.1. Perhaps there would also be a use here for a
folksonomy classification of food.

7.4.3 Social software

Some of the most popular web applications today could be considered ‘social
software’, including weblogs: a platform for personal publishing and individual
comment, wikis: which allow any user to add or edit web content in real time,
or social bookmarking projects, which allow others to view your bookmarks.
The success of these tools has been a consequence of individual participation as
part of a group, and importantly - a group which communicates and interacts.

With the inclusion of greater individual control for user account maintenance,
as outlined in Section 7.3.2, it may be beneficial to provide an additional facility
for communication between users. At present, there is no mechanism for users to
discuss differences of opinion, formal or informal goals and generally self-organise
as a group. For a system reliant on user collaboration for the population of the
database, a communication tool may increase confidence in the data through
awareness of other participants.

7.4.4 Identity and trust

In the past, trust was not the problem it is today. In the context of food
production, much of the food we ate was locally produced and belief in the
quality of the product was a consequence of direct trust of the producer, or trust
in your immediate social network, who perhaps trusted the producer. Following
the rise of global trade, it is no longer likely that you will have this direct
relationship with a producer, giving rise to the need for some other mechanism.
For this reason, there has been recent increase in the popularity of independent
organisations involved in the certification of food.

Foster et al. [18] discuss the need for the ability to uniquely identify users on the
Internet, such that the occurrence of trust in social networks can be extended
electronically to the global community.

As an extension to the DOAFI server implementation, I suggest a combination
of these concepts. A simple implementation of digital certificates could be used,
as is used by current certification authorities such as VeriSign to provide au-
thentication for e-commerce. Food certification bodies could then be involved
in issuing electronic public key certificates which attest that specific FoodItem
properties have been independently verified. This would allow applications to
use this information for the purpose of the automated verification of specified
properties.

59

A facility has been provided in the DOAFI vocabulary for the assertion of any
property about a FoodItem using a Certificate. At present, this notion does
not imply any authentication or trust as detailed in this section, however public
key certificates could be included as a property of the Certificate.

60

Bibliography

[1] Alexa web search. http://www.alexa.com Traffic Rank: 3 month average
- referenced 2004-12-01.

[2] Apache ant. The Apache Software Foundation. http://ant.apache.org/
referenced 2005-01-21.

[3] Apache http server project. The Apache Project. http://httpd.apache.
org/ referenced 2005-01-19.

[4] Apache jakarta tomcat. The Apache Jakarta Project. http://jakarta.
apache.org/tomcat/ referenced 2005-01-19.

[5] Beckett, D. (Feb 2004). Rdf/xml syntax specification (revised): W3c
recommendation. Technical report, W3C. http://www.w3.org/TR/
rdf-syntax-grammar/ referenced 2005-02-10.

[6] Beech, D., Maloney, M., Mendelsohn, N., and Thompson, H. S. (Oct 2004).
Xml schema part 1: Structures second edition. Technical report, W3C.
http://www.w3.org/TR/xmlschema-1/ referenced 2005-02-10.

[7] Berners-Lee, T. (Sep 1998). Relational databases on the semantic web.
http://www.w3.org/DesignIssues/RDB-RDF.html.

[8] Biron, P. V. and Malhotra, A. (Oct 2004). Xml schema part 2:
Datatypes second edition. Technical report, W3C. http://www.w3.org/
TR/xmlschema-2/ referenced 2005-02-10.

[9] Bray, T., Paoli, J., and Sperberg-McQueen, C. M. (Feb 1998). Extensible
markup language (xml) 1.0: W3c recommendation. Technical report, W3C.
http://www.w3.org/TR/1998/REC-xml-19980210 referenced 2005-02-10.

[10] Brickley, D. Geo. http://www.w3.org/2003/01/geo/ referenced 2005-02-
10.

[11] Brickley, D. and Guha, R. V. (Feb 2004). Rdf vocabulary description
language 1.0: Rdf schema: W3c recommendation. Technical report, W3C.
http://www.w3.org/TR/rdf-schema/ referenced 2005-02-10.

[12] Bricklin, D. (2001). The cornucopia of the commons. In Peer-to-Peer:
Harnessing the Power of Disruptive Technologies, O’Reilly and Associates,
Inc., Sebastopol, CA, United States of America, chapter 4. pages 59–63.

61

[13] Bricklin, D. (2001). The cornucopia of the commons. In Peer-to-Peer:
Harnessing the Power of Disruptive Technologies [12], chapter 4, page 62.

[14] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (Mar
2001). Web services description language (wsdl) 1.1. Technical report,
W3C. http://www.w3.org/TR/wsdl referenced 2005-03-18.

[15] del.icio.us. http://del.icio.us referenced 2005-03-06.

[16] Fielding, R. T. (2000). Architectural Styles and the Design of Network-
based Software Architectures. Ph.D. thesis, University of California, Irvine,
United States of America. http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm referenced 2005-02-20.

[17] Flickr. http://www.flickr.com referenced 2005-03-06.

[18] Foster, S., Hauser, J., and Jordan, K. (Aug 2003). The augmented so-
cial network: Building identity and trust into the next-generation inter-
net. First Monday, 8(8). http://firstmonday.org/issues/issue8_8/
jordan/index.html referenced 2005-02-15.

[19] freedb.org. http://www.freedb.org referenced 2004-11-06.

[20] Gnu netcat 0.7.1. http://netcat.sourceforge.net/ referenced 2005-03-
28.

[21] Gracenote cddb. http://www.cddb.com referenced 2004-11-06.

[22] Greenberg, J., Pattuelli, M. C., Parsia, B., and Robertson, W. D. (Nov
2001). Author-generated dublin core metadata for web resources: A base-
line study in an organization. Journal of Digital Information, Volume 2
Issue 2, 2(2)(78). http://jodi.ecs.soton.ac.uk/Articles/v02/i02/
Greenberg/ referenced 2005-03-20.

[23] Griffin, L. S. and Thomas, C. F. (Dec 1999). Who will create the metadata
for the internet? First Monday, 3(12). http://www.firstmonday.dk/
issues/issue3_12/thomas/index.html referenced 2005-03-25.

[24] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., and Nielsen, H. F.
(Jun 2003). Soap version 1.2 part 1: Messaging framework: W3c rec-
ommendation. Technical report, W3C. http://www.w3.org/TR/soap12/
referenced 2005-03-18.

[25] Guha, R. V. rdfdb. http://www.guha.com/rdfdb/ referenced 2004-11-05.

[26] Ics-forth validating rdf parser. Institute of Computer Science - Foundation
of Research Technology Hellas, Greece. http://athena.ics.forth.gr:
8080/RDF/ referenced 2005-03-01.

[27] Jena semantic web framework. http://jena.sourceforge.net referenced
2004-11-05.

[28] Lawrence, F. (2004). Not On The Label: What really goes into the food on
your plate, Penguin Books, London, United Kingdom, chapter unknown.
page 204.

62

[29] Leaf tracks. http://www.leafuk.com/leaf/consumers/tracks.asp ref-
erenced 2004-11-06.

[30] Mathes, A. (Dec 2004). Folksonomies - cooperative classification and
communication through shared metadata. http://www.adammathes.com/
academic/computer-mediated-communication/folk%sonomies.html
referenced 2005-03-25.

[31] Mayhem and Chaos (Feb 2003). Musicbrainz metadata initiative 2.1. http:
//www.musicbrainz.org/MM/ referenced 2004-11-02.

[32] McGuinness, D. L. and van Harmelen, F. (Feb 2004). Owl web ontology lan-
guage. Technical report, W3C. http://www.w3.org/TR/owl-features/
referenced 2005-03-15.

[33] Merholz, P. (Oct 2004). Metadata for the masses. http://www.
adaptivepath.com/publications/essays/archives/000361.php refer-
enced 2005-03-20.

[34] Miller, E., Swick, R., Brickley, D., McBride, B., Hendler, J., Schreiber, G.,
and Connolly, D. (2004). W3 semantic web. http://www.w3.org/2001/sw/
referenced 2004-12-01.

[35] Musicbrainz. http://www.musicbrainz.org referenced 2004-11-06.

[36] Ogbuji, U. (Feb 2002). Using rdf with soap: Beyond remote procedure
calls. IBM. http://www-128.ibm.com/developerworks/webservices/
library/ws-soaprdf/ referenced 2004-11-29.

[37] (2002). Farming and food a sustainable future. Policy Commission on the
Future of Farming and Food, Cabinet Office, London.

[38] Powers, S. (2003). Practical RDF, O’Reilly and Associates, Inc., Se-
bastopol, CA, United States of America, chapter 6. page 106.

[39] Rheingold, H. (2003). Smart Mobs: The Next Social Revolution, Perseus
Publishing, Cambridge, MA, United States of America, chapter 5. page
116.

[40] Rivest, R. (Apr 1992). The md5 message-digest algorithm. Technical re-
port, Network Working Group, MIT Laboratory for Computer Science.
http://www.ietf.org/rfc/rfc1321.txt referenced 2005-03-30.

[41] Sesame. http://www.openrdf.org referenced 2004-11-05.

[42] Shirky, C. (Apr 2003). A group is its own worst enemy. Networks, Eco-
nomics, and Culture mailing list. http://shirky.com/writings/group_
enemy.html referenced 2005-03-05.

[43] Thornton, C. (2000). Truth From Trash, The MIT Press, Cambridge, Mas-
sachusetts, United States of America, chapter 2. pages 19 – 30.

[44] Various (2004). Agricultural ontology service project. Food & Agriculture
Organisation of the United Nations. http://www.fao.org/agris/aos/
referenced 2004-11-28.

63

[45] Various (Dec 2004). Wikipedia:replies to common objections. http://en.
wikipedia.org/wiki/Wikipedia:Replies_to_common_objections ref-
erenced 2004-12-05.

[46] Various (Feb 2005). Wikipedia:replies to common objections: Accepting ed-
its. http://en.wikipedia.org/wiki/Replies_to_common_objections#
Errors_and_om%issions referenced 2005-02-20.

[47] W3 rdf validator. W3C. http://www.w3.org/RDF/Validator/ referenced
2004-11-27.

[48] Wikipedia. http://www.wikipedia.org referenced 2004-11-06.

64

Appendix A

Report appendices

This chapter contains items which are referenced from the body of the report.
It primarily contains detail which was too extensive for the main body of the
report. The sections are structured according to the parts of the report they
relate to.

A.1 Requirements Analysis

User requirements

Software developers will require a well known, cross platform interface to the
database. They will need to be able to implement functionality to query the
database to the fullest extent of the data contained within it. It should be
possible for them to augment the data extracted from the system with their
own data, should they wish to. Access to the database is covered more fully in
Sections 3.5.1 and 3.6.

End users, regardless of the application they are using, will require the ability
to edit and query the database.

Producers

In particular, producers following ethical or other noteworthy practices may
consider it beneficial to participate and actively market the particular features
of their product; whereas producers of more homogenous products may not be
so willing to disclose their production practices, especially where they may be
considered undesirable.

65

XML and RDF compared

The choice of model appears to come down to whether to use XML to model the
data (either using DTDs or XML Schema) or RDF and RDF/XML, a totally
different paradigm. The points can be summarised as below:

• XML documents are naturally hierarchical

– When parsing XML, an element is not ‘complete’ until the end tag has
been reached. For nested XML documents, many tags will need to
reside in memory as the document is processed; for large documents
this could be an expensive task.

While it does not seem likely a system such as the proposed one would
generate documents of sufficient size to cause problems for modern
computers, it is still a consideration. It would also be preferable to
not make an assumption about document size in the outset.

– Searching non-RDF XML for a specific piece of data requires viewing
the tree up until the point the data is found in order to determine that
the context of the data is correct. This is not necessary in RDF/XML,
where searches can be done for a specific triple, independent of the
remainder of the document.

It would be particularly useful to make searching as fast as possible.
Potentially RDF triples could easily be stored in a database, which
would speed up access if the search triple is known directly.

– While fundamentally the same syntactically, XML documents using
the RDF model are not as human readable as a ’regular’ XML doc-
ument, that is one where the tree structure is intentionally intended
to reflect the structure of the data.

The use of RDF here should not pose a problem as the documents
are not meant to be read by humans, the system is concerned with
information interchange using a web services approach. Interaction
can be via some either via language support for RDF or some API,
meaning that little RDF will be viewed by humans. Tools for viewing
and validating RDF data can be used for debugging purposes.

• XML Schema ‘understanding’ must be complete

– As non-RDF XML is based on a tree structure, a whole schema must
be complete in order for it to be used. Using RDF this is not the
case and it is possible to work with what you have.

If it is possible to devise some way to uniquely determine food prod-
ucts then this feature of RDF could be useful where only partial in-
formation is available for a particular product being described. This
could be particularly useful for interference engines working with only
partial knowledge.

• Combining vocabularies and documents

66

– Using RDF the ordering of RDF triples is unimportant, however for
non-RDF XML the ordering is important - there is only one valid
XML tree.

Using RDF would ease the merging of multiple documents and vo-
cabularies, no attention need be paid to correctly ordering the data
according to a tree-like structure.

– Using XML Schema or DTDs requires thought early on in the devel-
opment process to determine where ’foreign’ elements may be present,
ie elements from other vocabularies. Also one must state which el-
ements are optional, obligatory etc. RDF and RDF Schema do not
require this, people using an RDF Schema are free to make use of
elements from any other namespaces while describing relationships.

This property makes RDF naturally extensible, which is particularly
useful as it is beyond the scope of this project to create concrete and
comprehensive vocabularies for every available form of food. Using
RDF will facilitate this at a later stage by anybody interested in
using the schemas.

• Communication of XML requires common syntax

– Parties (physical or electronic) wishing to communicate must first
determine a common syntax for their documents - the idea behind
the Schemas. In the case of DOAFI, the syntax would be up to me as
a designer. Using RDF communication could take place, independent
of syntax, using the notion of equivalence.

Using RDF, other developers would not be bound by the syntax I
specify, meaning that they could work independently of any mistakes
I make. By making the database open access using a web services
approach, and making the schema definitions and data publicly avail-
able could aid further development of the system by others.

Essentially and in addition to the above points, the difference between ap-
proaches of non-RDF XML and RDF seems to be that XML and the available
schema definition specifications are concerned with data types and simple and
complex element structures to describe data for data interchange. Conversely,
using pre-existing or user defined RDF vocabularies/ontologies lead to the de-
scription of the meaning of the data in the real world, but in a way which still
facilitates data interchange.

A.2 Design

A.2.1 RDF instantiation

The following is an example instantiation of a model for Worcestershire Sauce
using the DOAFI vocabulary combined with the Geo vocabulary for geospacial
data.

67

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi = "http://doafi.4angle.com/elements/s-0.1/"
xml:base = "http://doafi.4angle.com/"
xmlns:geo = "http://www.w3.org/2003/01/geo/wgs84_pos#">

<doafi:FoodItem rdf:about="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml">
<doafi:biography
rdf:resource="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography" />
<doafi:produced
rdf:resource="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Produced" />
<doafi:history
rdf:resource="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/History" />
<doafi:alternatives
rdf:resource="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Alternatives" />
<doafi:ingredients
rdf:resource="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Ingredients" />
<doafi:certification
rdf:resource="FoodItem/Lea_and_Perrins/Worcestershire_Sauce/150ml/Certification" />

</doafi:FoodItem>

<doafi:Ingredients
rdf:about="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Ingredients">
<doafi:ingredientList>

<rdf:Seq>
<rdf:_1>

<doafi:IngredientItem>
<doafi:ingredient rdf:resource="FoodITem/Generic/Malt_Vinegar" />
<doafi:amount>50</doafi:amount>
<doafi:amountUnit>ml</doafi:amountUnit>
<doafi:reason>it is the main flavour in Worcestershire Sauce</doafi:reason>

</doafi:IngredientItem>
</rdf:_1>
<rdf:_2>

<doafi:IngredientItem>
<doafi:ingredient rdf:resource="FoodItem/Generic/Spirit_Vinegar" />

<doafi:amount>20</doafi:amount>
<doafi:amountUnit>ml</doafi:amountUnit>
<doafi:reason>it is the main flavour in Worcestershire Sauce</doafi:reason>

</doafi:IngredientItem>
</rdf:_2>
<!-- ... -->

</rdf:Seq>
</doafi:ingredientList>

</doafi:Ingredients>

<doafi:History rdf:about="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/History">
<doafi:modelHistory>

<rdf:Seq>
<rdf:_1>

<doafi:ModelHistoryItem>
<doafi:username>tom2</doafi:username>
<doafi:editComment>added item to database</doafi:editComment>
<doafi:timestamp>2005-03-05 19:01:06</doafi:timestamp>
<doafi:changes>

<rdf:Description
rdf:about="http://doafi.4angle.com/Change/1/FoodItem/Lea_And_Perrins/
Worcestershire_Sauce/150ml">
<doafi:title>Worcestershire Sorcerer</doafi:title>

</rdf:Description>
</doafi:changes>

68

</doafi:ModelHistoryItem>
</rdf:_1>
<rdf:_2>

<doafi:ModelHistoryItem>
<doafi:username>steve</doafi:username>
<doafi:editComment>modified nothing</doafi:editComment>
<doafi:timestamp>2005-02-01 11:21:22</doafi:timestamp>
<doafi:changes>changing</doafi:changes>

</doafi:ModelHistoryItem>
</rdf:_2>

</rdf:Seq>
</doafi:modelHistory>

</doafi:History>

<doafi:Biography rdf:about="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography">
<doafi:title>Worcestershire Sauce</doafi:title>
<doafi:useBefore>2005-03-01T00:00:00-00:00</doafi:useBefore>
<doafi:amount>150</doafi:amount>
<!--reference to ml definition would be preferable to literal below-->
<doafi:amountUnit>ml</doafi:amountUnit>

</doafi:Biography>

<!-- information about the most recent stage of production -->
<doafi:Produced rdf:about="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Produced">
<doafi:producer rdf:resource="Producer/Lea_And_Perrins" />
<doafi:timestamp>2004-01-01T00:00:00-00:00</doafi:timestamp>
<doafi:location rdf:parseType="Resource">

<geo:lat>52.1903</geo:lat>
<geo:long>-2.2086</geo:long>

</doafi:location>
<doafi:process>mix all the ingredients together</doafi:process>

</doafi:Produced>

<!-- properties are asserted -->
<doafi:Certification
rdf:about="FoodItem/Lea_and_Perrins/Worcestershire_Sauce/150ml/Certification">
<!-- certification about the properties of the food item -->
<doafi:type rdf:resource="Certificate/HM_the_Queen" />
<doafi:issuedBy>Royal Palace</doafi:issuedBy>
<doafi:reason>The queen uses it</doafi:reason>
<doafi:issueDate>2004-01-01T00:00:00-00:00</doafi:issueDate>

</doafi:Certification>

<doafi:Certificate rdf:about="Certificate/HM_the_Queen">
<doafi:title>By appointment to Her Majesty the Queen</doafi:title>
<doafi:webAddress>http://www.royalwarrant.org</doafi:webAddress>

</doafi:Certificate>

<doafi:Alternatives
rdf:about="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Alternatives">
<doafi:alternativeList>

<rdf:Seq>
<rdf:_1>

<doafi:AlternativeItem>
<doafi:alternative rdf:resource="FoodItem/Tiparos/Fish_Sauce/23floz" />
<doafi:reason>provides a good seasoning flavour</doafi:reason>

</doafi:AlternativeItem>
</rdf:_1>
<!-- ... -->

</rdf:Seq>
</doafi:alternativeList>

69

</doafi:Alternatives>

<doafi:Producer rdf:about="Producer/Lea_And_Perrins">
<doafi:name>Lea Perrins</doafi:name>
<doafi:webAddress>http://www.leaperrins.com</doafi:webAddress>
<doafi:location rdf:parseType="Resource">

<geo:lat>52.1903</geo:lat>
<geo:long>-2.2086</geo:long>

</doafi:location>
</doafi:Producer>

</rdf:RDF>

A.2.2 Formalising the vocabularies with RDFS

The following two subsections contain the RDF Schema for the DOAFI and
QUAFI (query) vocabularies. These can be used for the purpose of semantic
validation, and discovery of the items and relationship of vocabulary elements.

DOAFI vocabulary

<?xml version="1.0"?>
<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/FoodItem">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Class for food item</rdfs:label>
<rdfs:comment xml:lang="en">Wrapper for all of the properties of a food item</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/AlternativeItem">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Alternative to this FoodItem</rdfs:label>
<rdfs:comment xml:lang="en">A product which could be used instead of this product</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/Producer">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Producer of a FoodItem</rdfs:label>
<rdfs:comment xml:lang="en">Defines the producer of the specified FoodItem</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/Ingredients">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Ingredients of a FoodItem</rdfs:label>
<rdfs:comment xml:lang="en">Container class for list of ingredients</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/ModelHistoryItem">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Recording changes to a FoodItem</rdfs:label>
<rdfs:comment xml:lang="en">Wrapper class for change metadata to a FoodItem in the

database</rdfs:comment>

70

</rdfs:Class>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/Certificate">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Defines a food certificate</rdfs:label>
<rdfs:comment xml:lang="en">A certificate is used to assert a property about a

FoodItem</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/Biography">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">FoodItem biography</rdfs:label>
<rdfs:comment xml:lang="en">Biographical detail about a FoodItem</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/Alternatives">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">FoodItem alternatives</rdfs:label>
<rdfs:comment xml:lang="en">Wrapper for list of alternative FoodItems</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/Certification">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">FoodItem certification</rdfs:label>
<rdfs:comment xml:lang="en">Wrapper for list of certificates associated with this

FoodItem</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/Produced">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">FoodItem production detail</rdfs:label>
<rdfs:comment xml:lang="en">Information about the production of a FoodItem</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/IngredientItem">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">FoodItem ingredient wrapper</rdfs:label>
<rdfs:comment xml:lang="en">Wraps a FoodItem as an ingredient with ingredient

metadata</rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/History"/>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/s-0.1/DeleteOnRevert">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Delete on revert</rdfs:label>
<rdfs:comment xml:lang="en">Was new item at this modification sequence, when reverting it

should be deleted</rdfs:comment>
</rdfs:Class>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/name">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Object name</rdfs:label>
<rdfs:comment xml:lang="en">Literal name for an object, such as a Producer,

not a FoodItem</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Producer"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/title">
<rdfs:label xml:lang="en">Object title</rdfs:label>
<rdfs:comment xml:lang="en">Literal title for an Object, such as FoodItem or

Certificate</rdfs:comment>

71

<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Biography"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Certificate"/>
<rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/ingredient">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">FoodItem ingredient</rdfs:label>
<rdfs:comment xml:lang="en">The object of this property is an ingredient of the parent

FoodItem</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/IngredientItem"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/type">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Certificate type</rdfs:label>
<rdfs:comment xml:lang="en">Defines the type of Certificate issued in this

Certification</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Certification"/>
<rdfs:range rdf:resource="http://doafi.4angle.com/elements/s-0.1/Certificate"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/amountUnit">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Amount unit of FoodItem</rdfs:label>
<rdfs:comment xml:lang="en">Defines the unit of amount of the item being described</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Biography"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/IngredientItem"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/username">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Username</rdfs:label>
<rdfs:comment xml:lang="en">DOAFI username, as recorded when making model

modifications</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/ModelHistoryItem"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/issuedBy">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Certificate issuing body</rdfs:label>
<rdfs:comment xml:lang="en">Detail of who issued the Certificate</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Certification"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/alternatives">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Alternatives wrapper</rdfs:label>
<rdfs:comment xml:lang="en">This property indicates the alternatives to a FoodItem</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/FoodItem"/>
<rdfs:range rdf:resource="http://doafi.4angle.com/elements/s-0.1/Alternatives"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/alternativeList">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">List of alternative FoodItems</rdfs:label>

72

<rdfs:comment xml:lang="en">Wrapper for bag of alternative FoodItems</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Alternatives"/>
<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/issueDate">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Certificate issue date</rdfs:label>
<rdfs:comment xml:lang="en">Date of issue of a certificate</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Certification"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/certification">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Certification pointer</rdfs:label>
<rdfs:comment xml:lang="en">Indicates the URI of certification details</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/FoodItem"/>
<rdfs:range rdf:resource="http://doafi.4angle.com/elements/s-0.1/Certification"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/amount">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">FoodItem amount</rdfs:label>
<rdfs:comment xml:lang="en">Amount of a FoodItem being described as a literal

value</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/IngredientItem"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Biography"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/useBefore">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Use before date</rdfs:label>
<rdfs:comment xml:lang="en">Date indicating when FoodItem should b e consumed by</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Biography"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/history">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">History pointer</rdfs:label>
<rdfs:comment xml:lang="en">Pointer to URI of History of this FoodItem</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/FoodItem"/>
<rdfs:range rdf:resource="http://doafi.4angle.com/elements/s-0.1/History"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/produced">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Produced pointer</rdfs:label>
<rdfs:comment xml:lang="en">Pointer to URI of Produced of this FoodItem</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/FoodItem"/>
<rdfs:range rdf:resource="http://doafi.4angle.com/elements/s-0.1/Produced"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/alternative">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Alternative FoodItem</rdfs:label>
<rdfs:comment xml:lang="en">Concrete pointer to the FoodItem which is an alternative

to this</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/AlternativeItem"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>

73

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/location">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Geographic location</rdfs:label>
<rdfs:comment xml:lang="en">Location at which something happened</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Producer"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Produced"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/biography">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Biography pointer</rdfs:label>
<rdfs:comment xml:lang="en">Pointer to URI of Biography of this FoodItem</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/FoodItem"/>
<rdfs:range rdf:resource="http://doafi.4angle.com/elements/s-0.1/Biography"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/changes">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">FoodItem history of changes</rdfs:label>
<rdfs:comment xml:lang="en">Pointer to the changes which took place at each

modification</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/ModelHistoryItem"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/ingredientList">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Ingredient sequence pointer</rdfs:label>
<rdfs:comment xml:lang="en">Pointer to sequence of Ingredients</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Ingredients"/>
<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/webAddress">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Web address</rdfs:label>
<rdfs:comment xml:lang="en">Web address with more information about this entity</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Producer"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Certificate"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/timestamp">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Timestamp of modification</rdfs:label>
<rdfs:comment xml:lang="en">Timestamp of modification</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/ModelHistoryItem"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Produced"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/editComment">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Edit comment</rdfs:label>
<rdfs:comment xml:lang="en">Comment relating to each edit of the FoodItem</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/ModelHistoryItem"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

74

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/reason">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Reason</rdfs:label>
<rdfs:comment xml:lang="en">Reason for.. relationship, modification etc. </rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/AlternativeItem"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Certification"/>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/IngredientItem"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/modelHistory">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Model history pointer</rdfs:label>
<rdfs:comment xml:lang="en">Pointer to sequence of history changes to this

FoodItem</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/History"/>
<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/producer">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Producer pointer</rdfs:label>
<rdfs:comment xml:lang="en">Pointer to Producer of who Produced this FoodItem</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Produced"/>
<rdfs:range rdf:resource="http://doafi.4angle.com/elements/s-0.1/Producer"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/ingredients">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Ingredient pointer</rdfs:label>
<rdfs:comment xml:lang="en">Pointer to Ingredients of this FoodItem</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/FoodItem"/>
<rdfs:range rdf:resource="http://doafi.4angle.com/elements/s-0.1/Ingredients"/>

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/s-0.1/process">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/s-0.1/" />
<rdfs:label xml:lang="en">Production process</rdfs:label>
<rdfs:comment xml:lang="en">Detail about how this FoodItem was produced</rdfs:comment>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/s-0.1/Produced"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

</rdf:RDF>

QUAFI vocabulary

<?xml version="1.0"?>
<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/q-0.1/GetQuery">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/q-0.1/" />
<rdfs:label xml:lang="en">Class for reading</rdfs:label>
<rdfs:comment xml:lang="en">Look up query for a FoodItem using DOAFI in the query</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/q-0.1/SetQuery">

75

<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/q-0.1/" />
<rdfs:label xml:lang="en">Class for modifying</rdfs:label>
<rdfs:comment xml:lang="en">Like GetQuery, but used to set/delete/add items in a query instead
of getting them</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:about="http://doafi.4angle.com/elements/q-0.1/Result">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/q-0.1/" />
<rdfs:label xml:lang="en">Result response</rdfs:label>
<rdfs:comment xml:lang="en">A wrapper for the result of a query response</rdfs:comment>

</rdfs:Class>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/q-0.1/depth">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/q-0.1/" />
<rdfs:label xml:lang="en">Query depth</rdfs:label>
<rdfs:comment xml:lang="en">a depth limit, indicating the level of information to be
returned</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/q-0.1/GetQuery" />

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/q-0.1/deleteItems">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/q-0.1/" />
<rdfs:label xml:lang="en">Delete or update items?</rdfs:label>
<rdfs:comment xml:lang="en">A flag to set to true if these items should be deleted rather
than updated</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/q-0.1/SetQuery" />

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/q-0.1/maxItems">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/q-0.1/" />
<rdfs:label xml:lang="en">Maximum number of first-level items to return</rdfs:label>
<rdfs:comment xml:lang="en">the maximum number of items (at depth 1) matching this
query</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/q-0.1/GetQuery" />

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/q-0.1/status">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/q-0.1/" />
<rdfs:label xml:lang="en">Query status</rdfs:label>
<rdfs:comment xml:lang="en">an indicator of whether the query was successful - a property
of Result</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/q-0.1/Result" />

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/q-0.1/itemList">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/q-0.1/" />
<rdfs:label xml:lang="en">Item List</rdfs:label>
<rdfs:comment xml:lang="en">List of items matching a GetQuery, stored in an RDF:bag, if
there are any</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/>
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/q-0.1/Result" />

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/q-0.1/username">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/q-0.1/" />
<rdfs:label xml:lang="en">DOAFI username</rdfs:label>
<rdfs:comment xml:lang="en">DOAFI username for making database modifications (required for

a SetQuery)</rdfs:comment>

76

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/q-0.1/SetQuery" />

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/q-0.1/rollbackTo">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/q-0.1/" />
<rdfs:label xml:lang="en">Rollback to sequence number</rdfs:label>
<rdfs:comment xml:lang="en">Modification version state to rollback to, according to the

items in movementHistory</rdfs:comment>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/q-0.1/SetQuery" />

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/q-0.1/password">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/q-0.1/" />
<rdfs:label xml:lang="en">DOAFI hashed password</rdfs:label>
<rdfs:comment xml:lang="en">DOAFI password, hashed using md5, for making database

modifications (required for a SetQuery)</rdfs:comment>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/q-0.1/SetQuery" />

</rdf:Property>

<rdf:Property rdf:about="http://doafi.4angle.com/elements/q-0.1/editComment">
<rdfs:isDefinedBy rdf:resource="http://doafi.4angle.com/elements/q-0.1/" />
<rdfs:label xml:lang="en">Edit comment</rdfs:label>
<rdfs:comment xml:lang="en">Comment explaining database modifications</rdfs:comment>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />
<rdfs:domain rdf:resource="http://doafi.4angle.com/elements/q-0.1/SetQuery" />

</rdf:Property>

</rdf:RDF>

A.3 Implementation

A.3.1 Code walkthrough

In this section I provide an overview of the classes and objects which make
up the DOAFI server, their interactions and flow of execution. The complete,
commented source code is included in Appendix B.1. In the first subsection
I explain how the server receives queries and dispatches them to be executed.
The following subsections detail query execution.

Query execution and interface

The QueryProcessor class provides the web services interface to the DOAFI
database. It is a subclass of javax.servlet.http.HttpServlet and overrides
the doGet and doPost methods. It implements SingleThreadModel in order
to synchronise access to the database. Assuming no errors occur in the reading
and parsing of a query, either a SetQuery or GetQuery is instantiated to process
and execute the query and return a response.

77

Figure A.1: DOAFI server class diagram illustrating the primary classes and
methods in the ds package

QueryBase is a superclass for query execution whose constructor receives the
query and db Models from QueryProcessor via the instantiation of the sub-
classes, SetQuery and GetQuery. It also creates an empty Model - answer.

Structure is imposed upon SetQuery and GetQuery by implementing a QueryInterface.
In this release, this ensures the provision of an executeQuery method.

Figure A.1 provides a graphical overview of the main features and class struc-
ture.

SetQuery

A SetQuery object is responsible for any query requiring modification to the
database. After instantiation, execution of the query processing begins with a
call to executeQuery. Prior to making any modifications, the authenticateUser
method is called, which returns an authorisation level. Execution continues

78

by calling setQuery, which first begins a transaction and determines the URI
(setURI) of the item to modify. Based on the inclusion of a rollbackTo query
property and the existence of the FoodItem URI in the database, the method de-
termines whether to execute rollback, setEdit, setDelete or setAdd. Upon
the successful completion of any of these methods, an answer is returned to the
QueryProcessor which confirms this success and the transaction is committed;
otherwise it is aborted and an error returned. Each method also adds modifi-
cation metadata (username, editComment, timestamp and the changes) to the
end of the modelHistory sequence to facilitate rollbacks.

When adding new FoodItems, a call to setAdd simply inserts the new items to
the database and records the changes.

If the item already exists in the database, setEdit is used to modify the existing
entry. The new statements to be included in this model are calculated using a set
difference operation between query and db. This is also used for calculating
changes for rollbacks, as stored in the modelHistory. A subsequent call to
modifyStatements determines whether statements are new or alterations to
previous statements.

If the deleteItems flag is set, setDelete is called and an intersection is
used to determine the common statements in the query and database, which
are then removed. This works as setEdit except that dependencies must be
calculated to determine which statements not to remove. As a query must be
made in context, the statements relating to that context may also required for
other properties (possibly not being deleted), and so these must be deleted.

The rollback method takes an integer parameter which determines the mod-
ification sequence number to revert to. It then iterates backwards over the
changes from the most recent to the desired state, rolling back changes during
each iteration. The new state is therefore reached by sequentially aggregating
of all of the changes.

As indicated in Section 5.3.4, addChangeToURI and removeChangeFromURI are
implemented to modify URIs in a given in-memory Model to contain an addi-
tional ‘Change’ parameter, when stored in a modelHistory.

GetQuery

Two primary methods are used to read from the database, getElementsByProperty
and getElementByURI. In case the query simply requires the return of an item
specified by a URI, the latter is called.

Alternatively, getElementsByProperty is called to determine matches (up to
the maximum supplied in maxItems to a query where an explicit URI is not
supplied. Both approaches return a QueryWrapper object, which includes a
visitQueue of items to expand in the next level of the graph and an answerModel
of statements to be included in an answer.

79

The getQuery method then performs a breadth-first search of the visitQueue
by iterating over the URIs in the queue, calling getElementByURI on each one.
Each call to getElementByURI returns further visitQueue and answerModel
objects - the contents of which are added to their local equivalents. This itera-
tion continues until the depth is reached in the graph. At this point, the answer
is returned to the QueryProcessor.

Rollback implementation

Figure A.2 illustrates a rollback query

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi = "http://doafi.4angle.com/elements/s-0.1/"
xmlns:quafi="http://doafi.4angle.com/elements/q-0.1/"
xml:base = "http://doafi.4angle.com/FoodItem/">

<quafi:SetQuery
rdf:about="Lea_And_Perrins/Worcestershire_Sauce/150ml/">
<quafi:username>tom</quafi:username>
<quafi:password>5f4dcc3b5aa765d61d8327deb882cf99</quafi:password>
<quafi:editComment>reverted incorrect name change</quafi:editComment>
<quafi:rollbackTo>2</quafi:rollbackTo>

</quafi:SetQuery>
</rdf:RDF>

Figure A.2: Example of a rollback query. This will return the model for the
stated FoodItem to the state it was in after the 2nd edit.

A.4 Testing

A.4.1 GetQuery

Figure A.3 illustrates a sample of a response to a GetQuery for properties (not
a concrete URI). Figure A.4 illustrates a sample response to a GetQuery where
a URI was specified. Figure A.5 is a response to a query for an item which was
not present in the database. It contains an empty rdf:Bag of solutions, because
there are none.

A.4.2 SetQuery

Figure A.6 illustrates a query to delete the title from a Biography of a Food-
Item. Figure A.7 illustrates a SetQuery to rollback changes to a previous version
of the model.

80

<rdf:RDF
xmlns:doafi="http://doafi.4angle.com/elements/s-0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xml:base="http://doafi.4angle.com/"
xmlns:quafi="http://doafi.4angle.com/elements/q-0.1/" >

<rdf:Description rdf:nodeID="A0">
<quafi:status>OK</quafi:status>
<quafi:itemList rdf:nodeID="A1"/>
<rdf:type rdf:resource="http://doafi.4angle.com/elements/q-0.1/Result"/>

</rdf:Description>
<rdf:Description rdf:nodeID="A1">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/>
<rdf:_1 rdf:resource="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml"/>

</rdf:Description>
</rdf:RDF>

Figure A.3: Response to query by properties with depth = 1, maxItems = 5

<rdf:RDF
xmlns:doafi="http://doafi.4angle.com/elements/s-0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xml:base="http://doafi.4angle.com/FoodItem/"
xmlns:quafi="http://doafi.4angle.com/elements/q-0.1/" >

<rdf:Description rdf:about="Lea_And_Perrins/Worcestershire_Sauce/150ml">
<doafi:alternatives rdf:resource="Lea_And_Perrins/Worcestershire_Sauce/150ml/Alternatives"/>
<doafi:produced rdf:resource="Lea_And_Perrins/Worcestershire_Sauce/150ml/Produced"/>
<doafi:history rdf:resource="Lea_And_Perrins/Worcestershire_Sauce/150ml/History"/>
<rdf:type rdf:resource="http://doafi.4angle.com/elements/s-0.1/FoodItem"/>
<doafi:biography rdf:resource="Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography"/>
<doafi:certification rdf:resource="Lea_and_Perrins/Worcestershire_Sauce/150ml/Certification"/>
<doafi:ingredients rdf:resource="Lea_And_Perrins/Worcestershire_Sauce/150ml/Ingredients"/>

</rdf:Description>
</rdf:RDF>

Figure A.4: Response to query by URI with depth = 1, maxItems = 5

Figure A.8 illustrates the modelHistory of a FoodItem after a number of mod-
ifications, finishing with a rollback.

A.4.3 User access

Figure A.9 illustrates the base query on which all of the authentication was
based, as referenced from Section 6.1.3.

81

<rdf:RDF
xmlns:doafi="http://doafi.4angle.com/elements/s-0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:quafi="http://doafi.4angle.com/elements/q-0.1/" >

<rdf:Description rdf:nodeID="A0">
<rdf:type rdf:resource="http://doafi.4angle.com/elements/q-0.1/Result"/>
<quafi:itemList rdf:nodeID="A1"/>
<quafi:status>OK</quafi:status>

</rdf:Description>
<rdf:Description rdf:nodeID="A1">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/>

</rdf:Description>
</rdf:RDF>

Figure A.5: Response to query for non-existent item

<rdf:RDF
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi = "http://doafi.4angle.com/elements/s-0.1/"
xmlns:quafi = "http://doafi.4angle.com/elements/q-0.1/"
xml:base = "http://doafi.4angle.com/"
xmlns:geo = "http://www.w3.org/2003/01/geo/wgs84_pos#">

<quafi:SetQuery rdf:about="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml">
<quafi:username>dave1</quafi:username>
<quafi:password>9f9d51bc70ef21ca5c14f307980a29d8</quafi:password>
<quafi:editComment>deleted product</quafi:editComment>
<quafi:deleteItems>1</quafi:deleteItems>
<doafi:biography

rdf:resource="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography" />
</quafi:SetQuery>
<doafi:Biography rdf:about="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography">
<doafi:title>Worcestershire Sauca</doafi:title>

</doafi:Biography>
</rdf:RDF>

Figure A.6: SetQuery operation to delete a property. The title property of
the item biography is removed.

82

<rdf:RDF
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi = "http://doafi.4angle.com/elements/s-0.1/"
xmlns:quafi="http://doafi.4angle.com/elements/q-0.1/"
xml:base = "http://doafi.4angle.com/FoodItem/">

<quafi:SetQuery
rdf:about="Lea_And_Perrins/Worcestershire_Sauce/150ml">
<quafi:username>tom</quafi:username>
<quafi:password>5f4dcc3b5aa765d61d8327deb882cf99</quafi:password>
<quafi:editComment>reverted incorrect name change</quafi:editComment>
<quafi:rollbackTo>1</quafi:rollbackTo>

</quafi:SetQuery>
</rdf:RDF>

Figure A.7: SetQuery operation to rollback changes to the data model. The
model is reverted to the state of the first edit.

83

<rdf:RDF
xmlns:doafi="http://doafi.4angle.com/elements/s-0.1/"
xml:base="http://doafi.4angle.com/Change/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<doafi:modelHistory>
<rdf:Seq>
<rdf:li>

<doafi:ModelHistoryItem>
<doafi:editComment>modified product title</doafi:editComment>
<doafi:timestamp>2005-04-26 17:54:04</doafi:timestamp>
<doafidoafi:username>dave1</doafi:username>

</doafi:ModelHistoryItem>
</rdf:li>
<rdf:li>

<doafi:ModelHistoryItem>
<doafi:changes

rdf:resource="2/FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography"/>
<doafi:editComment>modified product title</doafi:editComment>
<doafi:timestamp>2005-04-26 17:54:10</doafi:timestamp>
<doafi:username>dave1</doafi:username>

</doafi:ModelHistoryItem>
</rdf:li>
<rdf:li>

<doafi:ModelHistoryItem>
<doafi:changes>

<rdf:Description
rdf:about="3/FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography">
<doafi:title>Worcestershire Sauca</doafi:title>

</rdf:Description>
</doafi:changes>
<doafi:editComment>deleted product</doafi:editComment>
<doafi:timestamp>2005-04-26 17:55:00</doafi:timestamp>
<doafi:username>dave1</doafi:username>

</doafi:ModelHistoryItem>
</rdf:li>
<rdf:li>

<doafi:ModelHistoryItem>
<doafi:changes

rdf:resource="4/FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography"/>
<doafi:editComment>reverted incorrect name change</doafi:editComment>
<doafi:timestamp>2005-04-26 17:55:17</doafi:timestamp>
<doafi:username>tom</doafi:username>

</doafi:ModelHistoryItem>
</rdf:li>

</rdf:Seq>
</doafi:modelHistory>
<rdf:Description

rdf:about="4/FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography">
<doafi:title>Worcestershire Sauca</doafi:title>

</rdf:Description>
<rdf:Description

rdf:about="2/FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography">
<doafi:title>Worcestershire Sauce</doafi:title>

</rdf:Description>
</rdf:RDF>

Figure A.8: The FoodItem modelHistory after compound changes. This rep-
resents the changes made and stores the previous values of modified properties.
In order (to be read top to bottom), this includes addition of this item, editing
it once, a further edit, a delete (from Figure A.6) and a rollback to the first state
(using query in Figure A.7.

84

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:doafi = "http://doafi.4angle.com/elements/s-0.1/"
xmlns:quafi = "http://doafi.4angle.com/elements/q-0.1/"
xml:base = "http://doafi.4angle.com/"
xmlns:geo = "http://www.w3.org/2003/01/geo/wgs84_pos#">

<quafi:SetQuery rdf:about="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml">
<quafi:username>robert</quafi:username>
<quafi:password>9f9d51bc70ef21ca5c14f307980a29d8</quafi:password>
<quafi:editComment>modified product title</quafi:editComment>
<doafi:biography

rdf:resource="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography" />
</quafi:SetQuery>

<doafi:Biography
rdf:about="FoodItem/Lea_And_Perrins/Worcestershire_Sauce/150ml/Biography">
<doafi:title>Worcestershire Saucerer</doafi:title>
<doafi:useBefore>2005-03-01T00:00:00-00:00</doafi:useBefore>
<doafi:amount>150</doafi:amount>
<doafi:amountUnit>ml</doafi:amountUnit>

</doafi:Biography>
</rdf:RDF>

Figure A.9: Base example of authentication query. Properties of the SetQuery

are modified for the various tests

85

Appendix B

Source code

B.1 DOAFI package

A walkthrough and class diagram for the server package are provided in Ap-
pendix A.3.1.

B.1.1 QueryProcessor

package ds;

import vocabulary.*;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import org.apache.xalan.*;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import com.hp.hpl.jena.rdf.model.*;
import com.hp.hpl.jena.db.*;
import com.hp.hpl.jena.vocabulary.*;

/**
* A servlet for processing HTTP POSTed input requests for information from the DOAFI database.
* This class is an extension of HttpServlet and implements a SingleThreadModel to ensure that
* execution takes place in isolation and database access is not performed concurrently.
* As data is posted, it is processed by the doPost method, which generates an instance of the
* relevant classto deal with the query.
*
* @author Tom Betts
*/

public class QueryProcessor extends HttpServlet implements SingleThreadModel {

86

private PrintWriter out; // for writing back to the client
private BufferedReader in; // for reading from the client
private QueryInterface queryInstance = null; // instance of GetQuery or SetQuery
private IDBConnection conn; // database connection
private ModelRDB dbModel; // database Jena model
private String DB_URL = "jdbc:mysql://localhost/doafi"; // URL of database server
private String DB_USER = "root"; // database user id
private String DB_PASSWD = ""; // database password
private String DB = "MySQL"; // database type

/* Passes any requests received via GET to POST
* Could cause problems because data input of GET is limited */
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException {
this.doPost(request, response);

}

/* Posted requests are processed here
* Parsing of the input data is attempted, on success - a GetQuery or
* SetQuery is instantiated and dispatched to carry out the requested
* operations. */
public void doPost(HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException {

queryInstance = null; // make sure previous query is dead

// empty model for responses
Model answerModel = ModelFactory.createDefaultModel();

response.setContentType("text/xml");
out = response.getWriter();
try {

in = request.getReader();
}
catch (Exception e) {

System.err.println("getReader exception");
}

try { // open database connection to RDF store
Class.forName("com.mysql.jdbc.Driver").newInstance();
// Create database connection
conn = new DBConnection (DB_URL, DB_USER, DB_PASSWD, DB);
// open the default model in the database
dbModel = ModelRDB.open (conn);

}
catch (Exception e) {

answerModel = addError(answerModel, "Unable to connect to database - "
+ e.getMessage());

}

// create an empty in memory model of query
Model model = ModelFactory.createDefaultModel();
try {

model.read(in, QUAFI.NS);
}
catch (Exception e) {

answerModel = addError(answerModel, "Unable to parse RDF/XML");
}

87

// determine whether to create GetQuery or SetQuery
if (model.contains(null, RDF.type, QUAFI.GetQuery)) {

// model will just be queried
Resource root = null;

// default GetQuery parameters
int maxItems = 10;
int depth = 2;

ResIterator rootIterator = model.listSubjectsWithProperty(RDF.type,
QUAFI.GetQuery);

if (rootIterator.hasNext()) { // no need to loop, only want 1
root = rootIterator.nextResource();

}

// get depth
Statement depthStmt = model.getProperty(root, QUAFI.depth);
if (depthStmt != null) {
depth = depthStmt.getInt();
// remove from query model before passing to Query handler
model.remove(depthStmt);

}

// get maxItems
Statement maxItemsStmt = model.getProperty(root, QUAFI.maxItems);
if (maxItemsStmt != null) {
maxItems = maxItemsStmt.getInt();
// remove from query model before passing to Query handler
model.remove(maxItemsStmt);

}

queryInstance = new GetQuery(depth, maxItems, dbModel, model);

}
else if (model.contains(null, RDF.type, QUAFI.SetQuery)) {

// model will be written to / modified
Resource root = null;

// default SetQuery parameters
boolean deleteItems = false;
String username = null;
String password = null;
String editComment = null;
int rollbackTo = -1;

// locate the root
ResIterator rootIterator = model.listSubjectsWithProperty(RDF.type,

QUAFI.SetQuery);
if (rootIterator.hasNext()) { // no need to loop, only want 1
root = rootIterator.nextResource();
// remove the SetQuery wrapper from query before processing
model = model.remove(model.createStatement(root,

RDF.type,
QUAFI.SetQuery));

// but add a type of FoodItem
model = model.add(model.createStatement(root,

RDF.type,
DOAFI.FoodItem));

}

// get deleteItems
Statement deleteStmt = model.getProperty(root, QUAFI.deleteItems);

88

if (deleteStmt != null) {
// if there is any mention of deleteItems in query,
// then it is a delete
deleteItems = true;
// remove from query model before passing to Query handler
model.remove(deleteStmt);

}

// get username
Statement usernameStmt = model.getProperty(root, QUAFI.username);
if (usernameStmt != null) {
username = usernameStmt.getString();
model.remove(usernameStmt);

}

// get password
Statement passwordStmt = model.getProperty(root, QUAFI.password);
if (passwordStmt != null) {
password = passwordStmt.getString();
model.remove(passwordStmt);

}

// get editComment
Statement editCommentStmt = model.getProperty(root, QUAFI.editComment);
if (editCommentStmt != null) {
editComment = editCommentStmt.getString();
model.remove(editCommentStmt);

}

// get rollbackTo
Statement rollbackToStmt = model.getProperty(root, QUAFI.rollbackTo);
if (rollbackToStmt != null) {
rollbackTo = rollbackToStmt.getInt();
model.remove(rollbackToStmt);

}

if (username != null && password != null) {
queryInstance = new SetQuery(deleteItems, dbModel, model,

username, password, editComment, rollbackTo);
}
else {
// error: username or password was not instantiated

}
}
else {

// no idea what to do with this model - not get or set
if (answerModel.size() == 0) {
answerModel = addError(answerModel, "Unable to determine query type");

}
}

// if the query has been correctly instantiated
if (queryInstance != null) {

// perform query and return
answerModel = queryInstance.executeQuery();

// close database connection
try {
conn.close();

}
catch (Exception e) {
System.err.println("Error closing database connection");

89

}
}
else {

answerModel = addError(answerModel, "Query incorrectly instantiated");
}

answerModel.write(out);
}

/* takes a query return and adds result with status error + msg */
public Model addError(Model answerModel, String errorMsg) {
answerModel = answerModel.remove(answerModel);
// will throw exception ^^ ?

Resource answerRoot = answerModel.createResource()
.addProperty(RDF.type, QUAFI.Result)
.addProperty(QUAFI.status, "Error: " + errorMsg);

return answerModel;
}

}

B.1.2 QueryBase

package ds;

import vocabulary.*;

import java.util.*;
import com.hp.hpl.jena.rdf.model.*;
import com.hp.hpl.jena.db.*;
import com.hp.hpl.jena.vocabulary.*;

/**
* A base class with common functionality, present in SetQuery and GetQuery objects. Instantiated
* via QueryProcessor, but indirectly as the specialised query will be instantiated and make use
* of the provided common methods.
*/

public class QueryBase {

StmtIterator queryStmtIterator; // iterator for statements of query, deconstructed
Model queryModel; // in memory model of the query
ModelRDB dbModel; // model access to database
Model answerModel; // in memory model to return answers

public QueryBase(ModelRDB dbModel, Model queryModel) {
this.dbModel = dbModel;
this.queryModel = queryModel;

}

/* takes a query return and adds status OK to QUAFI.Result */
public Model addOK(Model answerModel) {
Resource answerRoot;
ResIterator ri = answerModel.listSubjectsWithProperty(

RDF.type,
QUAFI.Result);

if (ri.hasNext()) {
answerRoot = ri.nextResource();
answerRoot.addProperty(QUAFI.status, "OK");

90

}
else {

// error - there was no Result class!
}
return answerModel;

}

/* takes a query return and adds result with status error + msg */
public Model addError(Model answerModel, String errorMsg) {
answerModel = answerModel.remove(answerModel);
// will throw exception ^^ ?

Resource answerRoot = answerModel.createResource()
.addProperty(RDF.type, QUAFI.Result)
.addProperty(QUAFI.status, "Error: " + errorMsg);

return answerModel;
}

/* get item properties (direct URI and via b-node) from database
* must add all items linked by bnodes directly and add others
* to visitQueue */

public QueryWrapper getElementByURI(Resource thisURI) {
Vector visitQueue = new Vector(); // named nodes to visit next
StmtIterator queryStmtIterator;
Model URIAnswerModel = ModelFactory.createDefaultModel();
// ugly hack requires casting of nulls for method overloading
if (dbModel.contains(thisURI, (Property)null, (RDFNode)null)) {

// get all the properties directly linked to this subject
// ugly hack, casting nulls to facilitate method overloading
queryStmtIterator = dbModel.listStatements(thisURI, (Property)null, (RDFNode)null);
// check out properties
while (queryStmtIterator.hasNext()) {
Statement thisQueryStatement = queryStmtIterator.nextStatement();

try { // to access it as a resource
Resource thisObject = thisQueryStatement.getResource();
if (thisObject.isAnon()) { // is a bNode - explore!
// get statements which this object as subject
// via recursive call + add to answer
QueryWrapper qw = getElementByURI(thisObject);
visitQueue.addAll(qw.getVisitQueue());
URIAnswerModel.add(qw.getAnswerModel());

}
// add this statement to the model
// also add to some sort of agenda?
URIAnswerModel.add(thisQueryStatement);
visitQueue.add(thisObject);

}
// if object is a literal, add it to the answerModel
catch (ResourceRequiredException e) { // it was a literal

URIAnswerModel.add(thisQueryStatement);
}

}
}
else {

// error: not in model
}
return new QueryWrapper(visitQueue, URIAnswerModel);

}
}

91

B.1.3 QueryInterface

package ds;

import com.hp.hpl.jena.rdf.model.*;

/** An interface to use for GetQuery and SetQuery to enforce the use of executeQuery */

public interface QueryInterface {
public Model executeQuery();

}

B.1.4 GetQuery

package ds;

import vocabulary.*;

import java.util.*;
import com.hp.hpl.jena.rdf.model.*;
import com.hp.hpl.jena.db.*;
import com.hp.hpl.jena.rdql.*;
import com.hp.hpl.jena.vocabulary.*;

/**
* Query for reading from the database. Instantiated via QueryProcessor, and requiring no authorisation.
* executeQuery() is called and returns an answer, either the items requested with an OK status, or an
* appropriate error.
**/

public class GetQuery extends QueryBase implements QueryInterface {

Hashtable subjectMap; // maps subject nodes to variable names for RDQL

int depth; // query depth
int maxItems; // query maxItems field
String queryString; // to be built up with RDQL query

public GetQuery(int depth, int maxItems, ModelRDB dbModel, Model queryModel) {
super(dbModel, queryModel);
if (depth <=6) {

this.depth = depth;
}
else {

this.depth = 6;
}
if (maxItems <= 10) { // set upper limit on maxItems to 10 to limit branching

this.maxItems = maxItems;
}
else {

this.maxItems = 10;
}
queryString = "";

}

/* Used to determine the answer to queries where an explict URI for an item is not
* requested. Instead, properties are provided and the server attempts to find matches
* to that query using RDQL to the data store. */
public QueryWrapper getElementsByProperty(Model db, Model prop, Model answerModel) {

92

Vector visitQueue = new Vector(); // items to visit next, ultimately we’re doing DFS
Resource answerRoot = answerModel.createResource()

.addProperty(RDF.type, QUAFI.Result);
Bag answerBag = answerModel.createBag();
answerRoot.addProperty(QUAFI.itemList, answerBag);

// begin building up RDQL queryString
queryString = "SELECT ?subject WHERE \n" ;

StmtIterator queryToRemove = prop.listStatements((Resource)null,
RDF.type,
QUAFI.GetQuery);

prop = prop.remove(queryToRemove);

// build queryString from queryModel
queryStmtIterator = prop.listStatements();
subjectMap = new Hashtable();
while (queryStmtIterator.hasNext()) {

String queryPredicate;
String queryObject;
Resource objectResource;
String querySubject = "";
Resource subjectResource;

Statement thisQueryStatement = queryStmtIterator.nextStatement();

// subject
subjectResource = thisQueryStatement.getSubject();

// if it is a blank node:
if (subjectResource.isAnon()) {
if (subjectMap.containsKey(subjectResource)) {

// subject of current statement has been seen before
querySubject = (String)subjectMap.get(subjectResource);

}
else { // the subject hasn’t been seen before

// check - is it the root?
// s-p-o: if this subject is an object in this model,
// it isn’t the root
if (prop.contains(null, null, subjectResource)) {
// generate a name for the bNode
// it might be messy, but get the bNode ID
// use substring to get first 6 characters
// include an ’a’ at the beginning of variable
// name to ensure char
querySubject = "?a" + subjectResource.toString()

.substring(0, 6);

}
else { // this is the root
querySubject = "?subject";

}
subjectMap.put(subjectResource, querySubject);

}
}
else { // it will be a URI - subjects are not literals
try {

querySubject = "<" + subjectResource.getURI() + ">";
}
catch (ResourceRequiredException e) {

// error: this was not a URI as expected

93

}
}

// predicate
queryPredicate = "<" + thisQueryStatement.getPredicate().toString() + ">";

// object
try { // to see if object is a resource (URI or bNode)
// get resource value (URI)
objectResource = thisQueryStatement.getResource();
if (objectResource.isAnon()) {

// deal with a bNode
queryObject = "?a" + objectResource.toString().substring(0, 6);
// any need to verify from the queryMap?

}
else { // it is a URI

queryObject = "<"+thisQueryStatement.getResource().getURI()+">";
}

}
// object was not a resource, it was a literal
catch (ResourceRequiredException e) {
// get the literal value (eg String)
queryObject = "\"" + thisQueryStatement.getString() + "\"";

}

// concatenate predicates/objects on to queryString
// if this statement is at depth 1 - we are trying to find this subject
queryString += "("+querySubject+", "+queryPredicate+", "+queryObject+") \n";
// else if this statement is greater than 1 level deep + has bnode as subject

}
Query query = new Query(queryString) ;

// Need to set the source as the RDQL query does not.
query.setSource(dbModel);
QueryExecution qe = new QueryEngine(query) ;

QueryResults results = qe.exec();
Iterator iter = results;
// loop through statements using iterator
// stop at maxItems
for (int i = 0; iter.hasNext() && i < this.maxItems; i++) {

ResultBinding res = (ResultBinding)iter.next();
Resource querySubject = (Resource)res.get("subject");
//queryAnswer += "querySubject = " + querySubject;
answerBag.add(querySubject);
visitQueue.add(querySubject);

}
results.close();

return new QueryWrapper(visitQueue, answerModel);
}

/* Wrapper for the query, called by executeQuery to determine which action to take,
* whether to search by URI or by properties */
public Model getQuery(Model answer, Model query, Model dbModel) {
dbModel.enterCriticalSection(true); // gain read lock

Vector visitQueue = new Vector(); // queue for URIs to visit
QueryWrapper qw = null;

// determine if need to call getElementsByProperty
if (query.size() == 1 && query.contains((Resource)null, RDF.type, (RDFNode)null)) {

94

// URI to get is the subject of this statement
ResIterator r = query.listSubjects();
Resource thisURI = r.nextResource();
qw = getElementByURI(thisURI);

}
else { // item request isn’t just for a URI

qw = getElementsByProperty(dbModel, query, answer);
}
answer.add(qw.getAnswerModel());
visitQueue.addAll(qw.getVisitQueue());

// loop through queue until empty or depth limit is reached
for (int i = 0; i < this.depth; i++) {

int currentQueueLength = visitQueue.size();
// call getElementByURI on each URI in queue
for (int j = 0; i < currentQueueLength && !visitQueue.isEmpty(); j++) {
// remove subject from front of queue (Vector(0))
System.out.println(visitQueue.toString());
Resource thisSubject = (Resource)visitQueue.remove(0);
qw = getElementByURI(thisSubject);
// add queued items from this URI to our queue
visitQueue.addAll(qw.getVisitQueue());
// add statements from this URI query to our model
answer.add(qw.getAnswerModel());

}
}
answer = addOK(answer);
dbModel.leaveCriticalSection(); // get rid of db lock

return answer;
}

/* Obligatory to implement this method due to QueryInterface. This begins the execution
* process and returns an answerModel answer. */
public Model executeQuery() {
// create empty in memory model to build up answer to query
answerModel = ModelFactory.createDefaultModel();
answerModel.setNsPrefix("quafi", QUAFI.NS);
answerModel.setNsPrefix("doafi", DOAFI.NS);

answerModel = getQuery(answerModel, queryModel, dbModel);

return answerModel;
}

}

B.1.5 SetQuery

package ds;

import vocabulary.*;

import java.util.*;
import java.util.regex.*;
import java.sql.*;
import com.hp.hpl.jena.rdf.model.*;
import com.hp.hpl.jena.db.*;
import com.hp.hpl.jena.rdql.*;
import com.hp.hpl.jena.vocabulary.*;

95

/**
* Query for writing to the database including add, edit, delete and rollback queries. This is
* called by QueryProcessor and has an executeQuery method which returns the answer to
* QueryProcessor for return to the user.
* */

public class SetQuery extends QueryBase implements QueryInterface {

StmtIterator queryStmtIterator; // iterator for statements of query, deconstructed
boolean deleteItems; // is this a delete query? flag
String username; // quafi:username
String password; // quafi:password
String editComment; // quafi:editComment
int authorisationLevel; // from database, determines how important user is
int rollbackTo; // quafi:rollbackTo

String DB_URL = "jdbc:mysql://localhost/doafi"; // URL of database server
String DB_USER = "root"; // database user id
String DB_PASSWD = ""; // database password
String DB = "MySQL"; // database type

Connection conn; // database connection for user table access

public SetQuery(boolean deleteItems, ModelRDB dbModel, Model queryModel,
String username, String password, String editComment,
int rollbackTo) {

super(dbModel, queryModel);
this.deleteItems = deleteItems;
this.username = username;
this.password = password;
this.editComment = editComment;
this.rollbackTo = rollbackTo;

}

/* Called to determine the authentication level of a user, if authentication fails
* then -1 is returned. */
public int authenticateUser(String username, String password) {
String sql;
try { // connect to db

Class.forName("com.mysql.jdbc.Driver").newInstance();
// Create database connection
conn = DriverManager.getConnection (DB_URL, DB_USER, DB_PASSWD);

}
catch (Exception e) {

System.err.println("authenticateUser: error connecting to db");
}

sql = "SELECT authorisation FROM users WHERE username = ’"
+ username + "’ AND password = ’" + password + "’";

try {
java.sql.Statement s = conn.createStatement(

java.sql.ResultSet.TYPE_SCROLL_INSENSITIVE,
java.sql.ResultSet.CONCUR_UPDATABLE);

java.sql.ResultSet rs = s.executeQuery(sql);

if (rs.first()) { // open first row in resultset
// return value of 1st column - authorisation level
int authorisationLevel = rs.getInt(1);
conn.close();
return authorisationLevel;

}

96

else {
System.err.println("authenticateUser: no matching username"

+ " /password\n" + sql);
}
conn.close();

}
catch (Exception e) {

System.err.println("authenticateUser: error executing query\n" +
sql + "\n" + e.getMessage());

}
return -1; // fail to authenticate user

}

/* Wrapper for query operations which determines which operation to
* perform based on the supplied parameters */
public Model setQuery(Model answer, Model queryModel, ModelRDB dbModel,

boolean deleteItems) {
Resource setURI = null; // base URI of item requiring modification
boolean noErrors; // flag to indicate whether errors were found on the way
dbModel.enterCriticalSection(false); // get write lock
dbModel.begin(); // begin database transaction

// get the URI
queryStmtIterator = queryModel.listStatements();
// continue to look through statements until setURI is instantiated
while (queryStmtIterator.hasNext() && setURI == null) {

Resource subjectResource;
com.hp.hpl.jena.rdf.model.Statement thisQueryStatement =
queryStmtIterator.nextStatement();

subjectResource = thisQueryStatement.getSubject();
// if this subject is not a object in the model
// AND it is a bNode - likely to be the root
if (!queryModel.contains(null, null, subjectResource)) {
setURI = subjectResource; // root URI - FoodItem to modify

}

}

// if a URI was actually given
if (setURI != null) {

// user requested a rollback
if (rollbackTo >= 0) {
noErrors = rollback(rollbackTo, dbModel, setURI);

}
// if it is already in the dbModel
else if (dbModel.contains(setURI,

RDF.type,
DOAFI.FoodItem)) {

if (deleteItems) { // query is to delete
noErrors = setDelete(queryModel, dbModel, setURI);

}
else { // query is to edit

noErrors = setEdit(queryModel, dbModel, setURI);
}

}
else { // it isn’t in the dbModel - add it
noErrors = setAdd(queryModel, dbModel, setURI, deleteItems);

}
}

97

else {
// error: URI was null, can’t do anything
noErrors = false;

}
if (noErrors) {

answer = addOK(answer);
dbModel.commit(); // commit db transaction

}
else { // there was an error at some point

answer = addError(answer, "Error using set command");
dbModel.abort(); // abort db transaction

}
dbModel.leaveCriticalSection();
return answer;

}

/* deals with additions to the database (ie new entries)
* adds entry to database and then records entry metadata in modelHistory */
public boolean setAdd(Model queryModel, Model dbModel, Resource setURI,

boolean deleteItems) {
if (deleteItems) { // can’t delete something which doesn’t exist

return false;
}
Model newerItems = ModelFactory.createDefaultModel();
// it is new - try and add it to the dbModel
dbModel.add(queryModel);

// create blank node to wrap changes+parameters in
Resource changesRoot = newerItems.createResource();

newerItems = addChangeMetadata(newerItems, username, editComment,
changesRoot);

// need tomake new seq because FoodItem is new
Seq historySeq = dbModel.createSeq();

dbModel.add(newerItems);

// add newItems to seq (at end)
historySeq = (Seq)historySeq.add(changesRoot);

// add the modelHistory to the dbModel
// create History class

Resource addHistory = dbModel.createResource(setURI + "/History");

dbModel.add(dbModel.createStatement(setURI,
DOAFI.history,
addHistory));

dbModel.add(dbModel.createStatement(addHistory,
DOAFI.modelHistory,
historySeq));

return true;
}

/* Used to edit an existing entry in the database, makes modifications
* and then stores a record of the previous entries in modelHistory */
public boolean setEdit(Model queryModel, Model dbModel, Resource setURI) {
Model newItems;
Model newerItems = ModelFactory.createDefaultModel();

98

Model revertChanges = ModelFactory.createDefaultModel();
// ADD / EDIT
// take the diff of db and query models
newItems = realDifference(queryModel, dbModel);

// modify dbmodel
// iterate through newItems
StmtIterator newIterator = newItems.listStatements();
while (newIterator.hasNext()) {

com.hp.hpl.jena.rdf.model.Statement s =
newIterator.nextStatement();

// WHAT IF THERE IS MORE THAN ONE S-P combination?
if (dbModel.contains(s.getSubject(), s.getPredicate())) {
// get the old version of this statement
com.hp.hpl.jena.rdf.model.Statement oldS =

dbModel.getProperty(s.getSubject(),
s.getPredicate());

// store it in revertChanges
revertChanges = revertChanges.add(oldS);

// delete the old one from the dbModel
dbModel.remove(oldS);

}
else { // item is new
// add delete statement for this subject,predicate combo
// denotes that this statement is new+should be removed

// if rolling back to this iteration
}
// add the new one
dbModel.add(s);
}

// get seq of modelHistory
Seq historySeq = dbModel.getProperty(

dbModel.getProperty(setURI, DOAFI.history).getResource(),
DOAFI.modelHistory)
.getSeq();

// add Change/i/ to concrete URIs
// +1 reflects next seq
newerItems = addChangeToURI(revertChanges, historySeq.size()+1);

// create blank node to wrap changes+parameters in
Resource changesRoot = dbModel.createResource();

newerItems = addChangeMetadata(newerItems, username, editComment,
changesRoot);

// add newItems to seq (at end)
historySeq = (Seq)historySeq.add(changesRoot);

// need to add this back into the dbModel?
dbModel.add(newerItems);

return true;
}

/* Used to delete specified items from the database. It is required to
* determine dependencies in order to do this because it is necessary to
* provide context in order to delete an entry, but if other entries rely
* on that context, you don’t want to delete it */

99

public boolean setDelete(Model queryModel, Model dbModel, Resource setURI) {
Model newItems;
Model temp = ModelFactory.createDefaultModel();
Model newerItems = ModelFactory.createDefaultModel();
Model revertChanges = ModelFactory.createDefaultModel();
// DELETE
// take the intersection of db and query models
// to determine which items to delete
// ie discard request to delete items which aren’t present
newItems = queryModel.intersection(dbModel);

// iterate through newItems to determine which not to delete
StmtIterator newIterator = newItems.listStatements();
while (newIterator.hasNext()) {

temp = ModelFactory.createDefaultModel(); // empty temporary model
com.hp.hpl.jena.rdf.model.Statement s =
newIterator.nextStatement();

// rdf:type nodes are shared by others
if (s.getPredicate().equals(RDF.type)) {
// dealing with rdf:type nodes first
StmtIterator innerIterator =

dbModel.listStatements(s.getSubject(),
(Property)null, (RDFNode)null);

temp = temp.add(innerIterator);
if (temp.difference(newItems).size() > 0) {

// if some statements in the dbModel share share
// this subject as theirs, not being deleted
// then delete from deleteItems to avoid
// deletion from dbModel
newIterator.remove();

}
else { // it is going to be deleted

// so get old version to store in modelHistory
// store it in revertChanges

revertChanges = revertChanges.add(dbModel.getProperty(
s.getSubject(),s.getPredicate()));

}
}
else {
// remove from underlying representation
try {

Resource r = s.getResource();
StmtIterator innerIterator = dbModel.listStatements(r,

(Property)null, (RDFNode)null);

temp = temp.add(innerIterator);
if (temp.difference(newItems).size() > 0) {
// object is subject of some statement not
// being deleted
newIterator.remove();

}
else { // item is not subject of some statement not
// being deleted
revertChanges = revertChanges.add(

dbModel.getProperty(
s.getSubject(),
s.getPredicate()));

}
}
catch (Exception e) {

// object was literal, fine to delete

100

revertChanges = revertChanges.add(dbModel.getProperty(
s.getSubject(),s.getPredicate()));

}
}

}
dbModel.remove(newItems);
// get seq of modelHistory
Seq historySeq = dbModel.getProperty(

dbModel.getProperty(setURI, DOAFI.history).getResource(),
DOAFI.modelHistory)
.getSeq();

// add Change/i/ to concrete URIs
// +1 reflects next seq
newerItems = addChangeToURI(revertChanges, historySeq.size()+1);

// create blank node to wrap changes+parameters in
Resource changesRoot = dbModel.createResource();

newerItems = addChangeMetadata(newerItems, username, editComment, changesRoot);

historySeq = (Seq)historySeq.add(changesRoot);

// need to add this back into the dbModel?
dbModel.add(newerItems);

return true;
}

/* The difference() method provided in Jena.Model is not great, it doesn’t recognise b-nodes
* as blank nbecause they are given unique identifiers, so I implement a method to do this */
public Model realDifference(Model queryModel, Model dbModel) {
Model newItems = queryModel.difference(dbModel);
// don’t trust the diff - bnodes don’t work
// modify bnodes to be same as in dbModel - if they are in dbModel
ResIterator theseSubjects = newItems.listSubjects();
while (theseSubjects.hasNext()) {

// begin at roots of possibly mislabelled new items
// truly new items won’t be anon at base
try {
Resource thisSubject = theseSubjects.nextResource();
if (!thisSubject.isAnon()) {

newItems = modifyBNodes(thisSubject, newItems, dbModel);
}

}
catch (Exception e) {
// subject has changed / broken - continue

}
}
// now with modified bNodes, take new diff
newItems = newItems.difference(dbModel);

return newItems;
}

/* take a model newerItems just containing changes and add metadata */
public Model addChangeMetadata(Model newerItems, String username,

String editComment, Resource changesRoot) {

// add changes to changesRoot
ResIterator changes = newerItems.listSubjects();

101

while (changes.hasNext()) {
Resource r = changes.nextResource();
// if r isn’t a bnode then it needs to be indicated
// that this subject points to a change
if (!newerItems.contains((Resource)null, (Property)null, r)) {
newerItems.add(newerItems.createStatement(changesRoot,

DOAFI.changes,
r));

}
}
// add username
newerItems = newerItems.add(newerItems.createStatement(changesRoot,

DOAFI.username,
newerItems.createLiteral(username)));

// add timestamp
java.text.SimpleDateFormat sdf = new
java.text.SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
newerItems = newerItems.add(newerItems.createStatement(changesRoot,

DOAFI.timestamp,
newerItems.createLiteral(

sdf.format(new java.util.Date(
System.currentTimeMillis()
)))));
// add editComment

newerItems = newerItems.add(newerItems.createStatement(changesRoot,
DOAFI.editComment,
newerItems.createLiteral(editComment)));

// add RDF type of ModelHistoryItem
newerItems = newerItems.add(newerItems.createStatement(changesRoot,

RDF.type,
DOAFI.ModelHistoryItem));

return newerItems;
}

/* rollback changes to change indicated by i, modify db to reflect these changes
* and store the previous values in changeHistory */
public boolean rollback(int rollbackTo, ModelRDB dbModel, Resource setURI) {
int historyLeft;
// start a new diff model
Model newDiffs = ModelFactory.createDefaultModel();

//get the modelHistory of this item
Seq historySeq = dbModel.getProperty(

dbModel.getProperty(setURI, DOAFI.history).getResource(),
DOAFI.modelHistory)

.getSeq();
// look through from historySeq.size (upper limit) down to
// rollbackTo
for (int i = historySeq.size(); i > rollbackTo; i--) {

// rolling back each iteration
Resource thisHistory = historySeq.getResource(i);
// start a new model
Model changesToBeMade = ModelFactory.createDefaultModel();
// get all subjects of the changes in this seq
StmtIterator objectIterator = dbModel.listStatements(

thisHistory, DOAFI.changes, (RDFNode)null);

// add all statements to be modified to changesToBeMade
// have to do BFS of model from thisHistory to find them all
while (objectIterator.hasNext()) {
Vector visitQueue = new Vector(); // items to visit
// get all statements in the model matching one subject

102

// and add them to changesToBeMade
Resource subject = null;
try {

subject = objectIterator.nextStatement()
.getResource();

}
catch (Exception e) {

// subject was literal-not really possible
}
StmtIterator si = dbModel.listStatements(subject,

(Property)null, (RDFNode)null);
changesToBeMade.add(si);
while (si.hasNext()) {

com.hp.hpl.jena.rdf.model.Statement bfsStatement =
si.nextStatement();

try {
visitQueue.add(bfsStatement.getResource());

}
catch (Exception e) {
// item was a literal

}
}
while (!visitQueue.isEmpty()) {

// remove last element of Vector
Resource subjectURI =
(Resource)visitQueue.remove(visitQueue.size());

QueryWrapper innerQuery = getElementByURI(subjectURI);
visitQueue.add(innerQuery.getVisitQueue());
changesToBeMade.add(innerQuery.getAnswerModel());

}
}

// reverting the URIs from Change/0/.. to /
changesToBeMade = removeChangeFromURI(changesToBeMade, i);

// create diff between current dbModel and these changess
Model thisDiff = realDifference(changesToBeMade, dbModel);

StmtIterator newIterator = changesToBeMade.listStatements();
while (newIterator.hasNext()) {
com.hp.hpl.jena.rdf.model.Statement s =

newIterator.nextStatement();
if (dbModel.contains(s.getSubject(), s.getPredicate())) {

// get the old version of this statement
com.hp.hpl.jena.rdf.model.Statement oldS =
dbModel.getProperty(s.getSubject(),

s.getPredicate());

// delete the old one from the orig
dbModel.remove(oldS);
newDiffs.add(oldS);

}
// add the new one
dbModel.add(s);
// record deletions?

}
}
// create blank node to wrap changes+parameters in
Resource changesRoot = dbModel.createResource();

// add changes to URIs before storing here?
newDiffs = addChangeToURI(newDiffs, historySeq.size()+1);

103

// add username, editComment, timestamp and newDiffs to some bnode
newDiffs = addChangeMetadata(newDiffs, username, editComment, changesRoot);

// add the bnode to the rollback history
historySeq = (Seq)historySeq.add(changesRoot);

dbModel.add(newDiffs);

return true;
}

/* called by realDifference to replace BNodes with those in the dbModel
* such that items can be compared using Jena set operations */
public Model modifyBNodes(Resource toReplace, Model m, Model dbModel) {
Model newItems = ModelFactory.createDefaultModel();
StmtIterator st = m.listStatements(toReplace, (Property)null, (RDFNode)null);
while (st.hasNext()) {

com.hp.hpl.jena.rdf.model.Statement thisSt = st.nextStatement();
try {
Resource oldObj = thisSt.getResource();
if (oldObj.isAnon() &&

dbModel.contains(thisSt.getSubject(),
thisSt.getPredicate())) { // might need to be replaced

Resource newObj = null;
// want to find value for newObj
StmtIterator st1 = dbModel.listStatements(

thisSt.getSubject(),
thisSt.getPredicate(),
(RDFNode)null);

if (st1.hasNext()) { // assume there is only 1
newObj = st1.nextStatement().getResource();
// if it literal,will throw exception - fine

}
if (newObj.isAnon()) {
// if it isn’t, don’t our statements are new
StmtIterator st2 = m.listStatements(

oldObj, (Property)null,
(RDFNode)null);

//thisSt.changeObject(newObj);
newItems.add(newItems.createStatement(

thisSt.getSubject(),
thisSt.getPredicate(),
newObj));

while (st2.hasNext()) {
com.hp.hpl.jena.rdf.model.Statement innerSt =

st2.nextStatement();
// add statement to model with newObj as subj
m = m.add(m.createStatement(newObj,

innerSt.getPredicate(),
innerSt.getObject()));

// remove old statement with oldObj as subj
st2.remove();

}
// continue to replace bNodes with DFS
m = modifyBNodes(newObj, m, dbModel);

}
else {

104

// this statement is different from dbModel
}

}
else {

// this statement is different from dbModel
}

}
catch (Exception e) {
System.err.println(thisSt + "\n" + e.getMessage());
// oldObj was a literal
// or
// newObj was a literal

}
}
m = modifyStatements(m, newItems);
return m;

}

/* Used for replacing existing statements, or adding new ones. If a statement
* already exists in the model with this subject,predicate - this method will
* overwrite it. */
public Model modifyStatements(Model orig, Model changes) {
StmtIterator newIterator = changes.listStatements();
while (newIterator.hasNext()) {

com.hp.hpl.jena.rdf.model.Statement s =
newIterator.nextStatement();

if (orig.contains(s.getSubject(), s.getPredicate())) {
// get the old version of this statement
com.hp.hpl.jena.rdf.model.Statement oldS =

orig.getProperty(s.getSubject(),
s.getPredicate());

// delete the old one from the orig
orig.remove(oldS);

}
// add the new one
orig = orig.add(s);

}
return orig;

}

/* Modifies URIs to contain /Change/i/ where i is the supplied integer
* Used for storing changes in modelHistory */
public Model addChangeToURI(Model m, int i) {
StmtIterator st = m.listStatements();
Model newM = ModelFactory.createDefaultModel();
Pattern doafiBase = Pattern.compile("http://doafi.4angle.com/");

while (st.hasNext()) {
com.hp.hpl.jena.rdf.model.Statement s =
st.nextStatement();

Resource newSubject = s.getSubject();
// if the subject is concrete
if (!newSubject.isAnon()) {
// replace oldURI with a new one using regex
String oldURI = newSubject.getURI();
String newURI = doafiBase.matcher(oldURI)

.replaceFirst("http://doafi.4angle.com/Change/" + i + "/");
newSubject = newM.createResource(newURI);

}
try {

105

Resource newObject = s.getResource();
if (!newObject.isAnon()) {

// replace oldURI with a new one using regex
String oldURI = newObject.getURI();
String newURI = doafiBase.matcher(oldURI)
.replaceFirst("http://doafi.4angle.com/Change/"

+ i + "/");
newObject = newM.createResource(newURI);

newM.add(newM.createStatement(newSubject,
s.getPredicate(), newObject));

}
}
catch (Exception e) {
// object was not a resource

}
// if the object is concrete
newM.add(newM.createStatement(newSubject, s.getPredicate(),

s.getObject()));
}
return newM;

}

/* Removes Change.. from URIs as added by addChangeToURI */
public Model removeChangeFromURI(Model m, int i) {
StmtIterator st = m.listStatements();
Pattern p = Pattern.compile("http://doafi.4angle.com/Change/" + i + "/");
Model newM = ModelFactory.createDefaultModel();

while (st.hasNext()) {
com.hp.hpl.jena.rdf.model.Statement s =
st.nextStatement();

Resource newSubject = s.getSubject();
// if the subject is concrete
if (!newSubject.isAnon()) {
// replace oldURI with a new one using regex
String oldURI = newSubject.getURI();
String newURI = p.matcher(oldURI)

.replaceFirst("http://doafi.4angle.com/");
newSubject = newM.createResource(newURI);

}
try {
Resource newObject = s.getResource();
// if the object is concrete
if (!newObject.isAnon()) {

// replace oldURI with a new one using regex
String oldURI = newObject.getURI();
String newURI = p.matcher(oldURI)
.replaceFirst("http://doafi.4angle.com/");

newObject = newM.createResource(newURI);

newM.add(newM.createStatement(newSubject,
s.getPredicate(), newObject));

}
}
catch (Exception e) {
// object was literal

}
newM.add(newM.createStatement(newSubject, s.getPredicate(),

s.getObject()));
}
return newM;

106

}

/* Method begins the execution of this query, delegates responsibility and
* ultimately returns the answerModel to the client */
public Model executeQuery() {
// create empty in memory model to build up answer to query
answerModel = ModelFactory.createDefaultModel();
answerModel.setNsPrefix("quafi", QUAFI.NS);
answerModel.setNsPrefix("doafi", DOAFI.NS);
Resource answerRoot = answerModel.createResource()

.addProperty(RDF.type, QUAFI.Result);

// check if user exists for modifying model
authorisationLevel = authenticateUser(username, password);

if (authorisationLevel >= 0) {
answerModel = setQuery(answerModel, queryModel, dbModel, deleteItems);

}
else {

// error: not authenticated
System.err.println("not authenticated");
answerModel = addError(answerModel,
"You are not authorised to make this modification");

}
return answerModel;

}
}

B.1.6 QueryWrapper

package ds;

import java.util.*;
import com.hp.hpl.jena.rdf.model.*;

/**
* Used to wrap responses from some queries which require the use of a visitQueue and an answerModel
* */

public class QueryWrapper {

private Vector visitQueue;
private Model answerModel;
private Model dbModel;
private Model oldAnswer;

// get query wrapper
public QueryWrapper(Vector v, Model m) {
this.visitQueue = v;
this.answerModel = m;

}

// set query wrapper
public QueryWrapper(Model m, Model a) {
this.answerModel = m;
this.oldAnswer = a;

}

public Vector getVisitQueue() {
return visitQueue;

107

}

public Model getAnswerModel() {
return answerModel;

}

public Model getOldAnswers() {
return oldAnswer;

}
}

B.2 Vocabulary package

B.2.1 DOAFI

package vocabulary;

import com.hp.hpl.jena.rdf.model.*;

/**
* Wrapper for the DOAFI vocabulary, for easy reference in the ds package.
* Generated using an RDF Schema.
* Vocabulary definitions from prototype6.rdfs
* @author Auto-generated by schemagen on 25 Apr 2005 11:12
*/
public class DOAFI {

/** <p>The RDF model that holds the vocabulary terms</p> */
private static Model m_model = ModelFactory.createDefaultModel();

/** <p>The namespace of the vocabalary as a string ({@value})</p> */
public static final String NS = "http://doafi.4angle.com/elements/s-0.1/";

/** <p>The namespace of the vocabalary as a string</p>
* @see #NS */
public static String getURI() {return NS;}

/** <p>The namespace of the vocabalary as a resource</p> */
public static final Resource NAMESPACE = m_model.createResource(NS);

/** <p>Reason for.. relationship, modification etc.</p> */
public static final Property reason = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/reason");

/** <p>Date of issue of a certificate</p> */
public static final Property issueDate = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/issueDate");

/** <p>Detail about how this FoodItem was produced</p> */
public static final Property process = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/process");

/** <p>Indicates the URI of certification details</p> */
public static final Property certification = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/certification");

/** <p>Pointer to URI of History of this FoodItem</p> */
public static final Property history = m_model.createProperty(

108

"http://doafi.4angle.com/elements/s-0.1/history");

/** <p>Literal title for an Object, such as FoodItem or Certificate</p> */
public static final Property title = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/title");

/** <p>Pointer to URI of Biography of this FoodItem</p> */
public static final Property biography = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/biography");

/** <p>Pointer to Ingredients of this FoodItem</p> */
public static final Property ingredients = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/ingredients");

/** <p>Literal name for an object, such as a Producer, not a FoodItem</p> */
public static final Property name = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/name");

/** <p>Timestamp of modification</p> */
public static final Property timestamp = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/timestamp");

/** <p>Pointer to sequence of Ingredients</p> */
public static final Property ingredientList = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/ingredientList");

/** <p>Pointer to URI of Produced of this FoodItem</p> */
public static final Property produced = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/produced");

/** <p>The object of this property is an ingredient of the parent FoodItem</p> */
public static final Property ingredient = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/ingredient");

/** <p>This property indicates the alternatives to a FoodItem</p> */
public static final Property alternatives = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/alternatives");

/** <p>Pointer to Producer of who Produced this FoodItem</p> */
public static final Property producer = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/producer");

/** <p>Wrapper for bag of alternative FoodItems</p> */
public static final Property alternativeList = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/alternativeList");

/** <p>Detail of who issued the Certificate</p> */
public static final Property issuedBy = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/issuedBy");

/** <p>Defines the type of Certificate issued in this Certification</p> */
public static final Property type = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/type");

/** <p>DOAFI username, as recorded when making model modifications</p> */
public static final Property username = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/username");

/** <p>Web address with more information about this entity</p> */
public static final Property webAddress = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/webAddress");

109

/** <p>Comment relating to each edit of the FoodItem</p> */
public static final Property editComment = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/editComment");

/** <p>Pointer to sequence of history changes to this FoodItem</p> */
public static final Property modelHistory = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/modelHistory");

/** <p>Location at which something happened</p> */
public static final Property location = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/location");

/** <p>Concrete pointer to the FoodItem which is an alternative to this</p> */
public static final Property alternative = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/alternative");

/** <p>Date indicating when FoodItem should b e consumed by</p> */
public static final Property useBefore = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/useBefore");

/** <p>Defines the unit of amount of the item being described</p> */
public static final Property amountUnit = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/amountUnit");

/** <p>Amount of a FoodItem being described as a literal value</p> */
public static final Property amount = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/amount");

/** <p>Pointer to the changes which took place at each modification</p> */
public static final Property changes = m_model.createProperty(

"http://doafi.4angle.com/elements/s-0.1/changes");

/** <p>Defines the producer of the specified FoodItem</p> */
public static final Resource Producer = m_model.createResource(

"http://doafi.4angle.com/elements/s-0.1/Producer");

public static final Resource History = m_model.createResource(
"http://doafi.4angle.com/elements/s-0.1/History");

/** <p>Wrapper class for change metadata to a FoodItem in the database</p> */
public static final Resource ModelHistoryItem = m_model.createResource(

"http://doafi.4angle.com/elements/s-0.1/ModelHistoryItem");

/** <p>Wrapper for list of alternative FoodItems</p> */
public static final Resource Alternatives = m_model.createResource(

"http://doafi.4angle.com/elements/s-0.1/Alternatives");

/** <p>A certificate is used to assert a property about a FoodItem</p> */
public static final Resource Certificate = m_model.createResource(

"http://doafi.4angle.com/elements/s-0.1/Certificate");

/** <p>Wrapper for list of certificates associated with this FoodItem</p> */
public static final Resource Certification = m_model.createResource(

"http://doafi.4angle.com/elements/s-0.1/Certification");

/** <p>Container class for list of ingredients</p> */
public static final Resource Ingredients = m_model.createResource(

"http://doafi.4angle.com/elements/s-0.1/Ingredients");

/** <p>Wraps a FoodItem as an ingredient with ingredient metadata</p> */
public static final Resource IngredientItem = m_model.createResource(

"http://doafi.4angle.com/elements/s-0.1/IngredientItem");

110

/** <p>A product which could be used instead of this product</p> */
public static final Resource AlternativeItem = m_model.createResource(

"http://doafi.4angle.com/elements/s-0.1/AlternativeItem");

/** <p>Information about the production of a FoodItem</p> */
public static final Resource Produced = m_model.createResource(

"http://doafi.4angle.com/elements/s-0.1/Produced");

/** <p>Was new item at this modification sequence, when reverting it should be deleted</p> */
public static final Resource DeleteOnRevert = m_model.createResource(

"http://doafi.4angle.com/elements/s-0.1/DeleteOnRevert");

/** <p>Biographical detail about a FoodItem</p> */
public static final Resource Biography = m_model.createResource(

"http://doafi.4angle.com/elements/s-0.1/Biography");

/** <p>Wrapper for all of the properties of a food item</p> */
public static final Resource FoodItem = m_model.createResource(

"http://doafi.4angle.com/elements/s-0.1/FoodItem");
}

B.2.2 QUAFI

package vocabulary;
import com.hp.hpl.jena.rdf.model.*;

/**
* Wrapper for the DOAFI vocabulary, for easy reference in the ds package.
* Generated using an RDF Schema.
* @author Auto-generated by schemagen on 17 Apr 2005 17:43
*/
public class QUAFI {

/** <p>The RDF model that holds the vocabulary terms</p> */
private static Model m_model = ModelFactory.createDefaultModel();

/** <p>The namespace of the vocabalary as a string ({@value})</p> */
public static final String NS = "http://doafi.4angle.com/elements/q-0.1/";

/** <p>The namespace of the vocabalary as a string</p>
* @see #NS */
public static String getURI() {return NS;}

/** <p>The namespace of the vocabalary as a resource</p> */
public static final Resource NAMESPACE = m_model.createResource(NS);

/** <p>List of items matching a GetQuery, stored in an RDF:bag, if there are any</p> */
public static final Property itemList = m_model.createProperty(

"http://doafi.4angle.com/elements/q-0.1/itemList");

/** <p>DOAFI password, hashed using md5, for making database modifications (required
* for a SetQuery)</p>
*/
public static final Property password = m_model.createProperty(

"http://doafi.4angle.com/elements/q-0.1/password");

/** <p>Comment explaining database modifications</p> */
public static final Property editComment = m_model.createProperty(

"http://doafi.4angle.com/elements/q-0.1/editComment");

111

/** <p>a depth limit, indicating the level of information to be returned</p> */
public static final Property depth = m_model.createProperty(

"http://doafi.4angle.com/elements/q-0.1/depth");

/** <p>Modification version state to rollback to, according to the items in movementHistory</p> */
public static final Property rollbackTo = m_model.createProperty(

"http://doafi.4angle.com/elements/q-0.1/rollbackTo");

/** <p>an indicator of whether the query was successful - a property of Result</p> */
public static final Property status = m_model.createProperty(

"http://doafi.4angle.com/elements/q-0.1/status");

/** <p>DOAFI username for making database modifications (required for a SetQuery)</p> */
public static final Property username = m_model.createProperty(

"http://doafi.4angle.com/elements/q-0.1/username");

/** <p>A flag to set to true if these items should be deleted rather than updated</p> */
public static final Property deleteItems = m_model.createProperty(

"http://doafi.4angle.com/elements/q-0.1/deleteItems");

/** <p>the maximum number of items (at depth 1) matching this query</p> */
public static final Property maxItems = m_model.createProperty(

"http://doafi.4angle.com/elements/q-0.1/maxItems");

/** <p>Look up query for a FoodItem using DOAFI in the query</p> */
public static final Resource GetQuery = m_model.createResource(

"http://doafi.4angle.com/elements/q-0.1/GetQuery");

/** <p>A wrapper for the result of a query response</p> */
public static final Resource Result = m_model.createResource(

"http://doafi.4angle.com/elements/q-0.1/Result");

/** <p>Like GetQuery, but used to set/delete/add items in a query instead of getting
* them</p>
*/
public static final Resource SetQuery = m_model.createResource(

"http://doafi.4angle.com/elements/q-0.1/SetQuery");

}

B.3 Administration module package

B.3.1 AddUser

package admin;

import javax.servlet.*;
import javax.servlet.http.*;
import org.apache.xalan.*;
import java.sql.*;
import java.security.*;
import java.io.*;
import java.math.BigInteger;

/**
* Servlet called to add a new user to the access list, it takes the parameters username,
* password and authorisation level. Password should be supplied plain and is hashed here.

112

* */

public class AddUser extends HttpServlet {

public Connection conn;
public PrintWriter out;

String DB_URL = "jdbc:mysql://localhost/doafi"; // URL of database server
String DB_USER = "root"; // database user id
String DB_PASSWD = ""; // database password
String DB = "MySQL"; // database type

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {

this.doPost(request, response);

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {

String username;
String password;
String authorisation;
String sql;
int affectedRows = 0;

response.setContentType("text/html");
out = response.getWriter();

try { // connect to db
Class.forName("com.mysql.jdbc.Driver").newInstance();
// Create database connection
conn = DriverManager.getConnection (DB_URL, DB_USER, DB_PASSWD);

}
catch (Exception e) {}

username = request.getParameter("username");
password = request.getParameter("password");
authorisation = request.getParameter("authorisation");

// hash password with md5
password = hashPassword(password);

sql = "INSERT INTO users(username, password, authorisation) VALUES(’";
sql += username;
sql += "’, ’";
sql += password;
sql += "’, ";
sql += authorisation;
sql += ")";

try {
Statement s = conn.createStatement();
affectedRows = s.executeUpdate(sql);

}
catch (Exception e) {}
if (affectedRows == 1) {

113

// great
out.println("OK: ");
out.println(password);

}
else {

// bad
out.println("not OK");

}
try {

conn.close();
}
catch (Exception e) {

out.println("Error closing database connection");
}

}

public static String hashPassword(String password) {
String hashword = null;
try {

MessageDigest md5 = MessageDigest.getInstance("MD5");
md5.update(password.getBytes());
BigInteger hash = new BigInteger(1, md5.digest());
hashword = hash.toString(16);

}
catch (NoSuchAlgorithmException nsae) {

// ignore
}
return hashword;

}
}

B.3.2 EditUser

package admin;

import javax.servlet.*;
import javax.servlet.http.*;
import org.apache.xalan.*;
import java.sql.*;
import java.security.*;
import java.io.*;
import java.math.BigInteger;

/**
* Servlet called to edit a user in the access list, it takes the parameters username,
* password and authorisation level. Password should be supplied plain and is hashed here.
* */

public class EditUser extends HttpServlet {

public Connection conn;
public PrintWriter out;
public boolean errorBit;

String DB_URL = "jdbc:mysql://localhost/doafi"; // URL of database server
String DB_USER = "root"; // database user id
String DB_PASSWD = ""; // database password
String DB = "MySQL"; // database type

114

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
this.doPost(request, response);

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {

String username;
String password;
String authorisation;
String passwordconfirm;
String sql;
int affectedRows = 0;
String errorMsg = "";
errorBit = false; // no errors yet

response.setContentType("text/html");
out = response.getWriter();

try { // connect to db
Class.forName("com.mysql.jdbc.Driver").newInstance();
// Create database connection
conn = DriverManager.getConnection (DB_URL, DB_USER, DB_PASSWD);

}
catch (Exception e) {}

username = request.getParameter("username");
password = request.getParameter("password");
authorisation = request.getParameter("authorisation");
passwordconfirm = request.getParameter("passwordconfirm");

if (username == null ||
password == null ||
authorisation == null ||
passwordconfirm == null) {

errorBit = true;
errorMsg = "field not set in form";

}
else if (!password.equals(passwordconfirm)) {

errorBit = true;
errorMsg = "passwords do not match";

}

// hash password with md5
password = hashPassword(password);

sql = "UPDATE users set username = ’";
sql += username;
sql += "’, password = ’";
sql += password;
sql += "’, authorisation = ";
sql += authorisation;
sql += " WHERE username = ’";
sql += username;
sql += "’";

if (!errorBit) {// no errors detected so far
try {

115

Statement s = conn.createStatement();
affectedRows = s.executeUpdate(sql);

}
catch (Exception e) {}

}
if (affectedRows == 1) { // only if the db mod took place

// great
out.println("OK: ");
out.println(password);

}
else {

// bad
out.println("not OK: ");
out.println(errorMsg);

}
try {

conn.close();
}
catch (Exception e) {

out.println("Error closing database connection");
}

}

public static String hashPassword(String password) {
String hashword = null;
try {

MessageDigest md5 = MessageDigest.getInstance("MD5");
md5.update(password.getBytes());
BigInteger hash = new BigInteger(1, md5.digest());
hashword = hash.toString(16);

}
catch (NoSuchAlgorithmException nsae) {

// ignore
}
return hashword;

}
}

B.3.3 DeleteUser

package admin;

import javax.servlet.*;
import javax.servlet.http.*;
import org.apache.xalan.*;
import java.sql.*;
import java.security.*;
import java.io.*;
import java.math.BigInteger;

/**
* Servlet called to delete a user from the access list, it takes the parameter username
* and deletes the user.
* */

public class DeleteUser extends HttpServlet {

public Connection conn;
public PrintWriter out;

116

String DB_URL = "jdbc:mysql://localhost/doafi"; // URL of database server
String DB_USER = "root"; // database user id
String DB_PASSWD = ""; // database password
String DB = "MySQL"; // database type

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
this.doPost(request, response);

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {

String username;
String sql;
int affectedRows = 0;

response.setContentType("text/html");
out = response.getWriter();

try { // connect to db
Class.forName("com.mysql.jdbc.Driver").newInstance();
// Create database connection
conn = DriverManager.getConnection (DB_URL, DB_USER, DB_PASSWD);

}
catch (Exception e) {}

username = request.getParameter("username");

sql = "DELETE FROM users WHERE username = ’";
sql += username;
sql += "’";

try {
Statement s = conn.createStatement();
affectedRows = s.executeUpdate(sql);

}
catch (Exception e) {}
if (affectedRows == 1) {

// great
out.println("OK: deleted ");
out.println(username);

}
else {

// bad
out.println("not OK");

}
try {

conn.close();
}
catch (Exception e) {

out.println("Error closing database connection");
}

}
}

117

Appendix C

Administration

C.1 Project schedule

There are 4 deliverables for the project. These will form the major milestones
of the project.

• Project proposal: submitted 21 October 2004

• Interim report: due 09 December 2004

• Draft report: due 17 March 2005

• Final report: due 28 April 2005

The scope of this document will include up to (and including) the final report.
In addition, an oral presentation must be given upon completion of the final
report.

Minor milestones (as defined below) are scheduled to be completed as follows:

• Complete constituent parts for Interim Report: 06 December 2004

• Completion of Design - phase 1: 04 January 2005

• Completion of Coding / Implementation - phase 1: 25 January 2005

• Completion of Design - phase 2: 05 February 2005

• Completion of Coding / Implementation - phase 2: 28 February 2005

• Completion of Testing & Evaluation - phase 2: 09 March 2005

Progress is recorded on the attached GANTT chart.

118

C.2 Project phases

As the project domain is not entirely well known to me, I will pursue an iterative
and incremental approach to development. In the first phase, I will design and
build an advanced prototype, and in the 2nd phase I will revise this according
to the overall aims of the system. This should facilitate evaluation after the first
phase which can be taken into consideration for development.

Requirements analysis

• Requirements analysis sections

• Project plan

• Interim report

Design

Phase 1:

• Create a basic ontology for description of food items, considering just
simple properties

• Convert ontology to extensible RDF Schema

• Create a query ontology

• Convert ontology to extensible RDF Schema

• Unique identifiers

• A format of unique IDs for products and producers to become URIs

• Low-level design for server

Phase 2:

Bug fixes and refactoring

Continuing development: (not dependent on Coding phase 1)

• Data protection / integrity: authentication and restriction system

• How to roll back changes

• Users and authentication for adding data (modifications to Schema for
’contributer’ information)

• Increase information content of ontologies: more advanced properties

119

• Augment original Schema with properties from other ontologies (eg Dublin
Core Metadata Initiative, Geo, Wine, Vegetarian)

• Low-level design for web-based client to add,view,edit

– Create RDF queries based on user input

– Interpret responses from server and present to user

Coding and implementation

Phase 1:

• Configure server tools required (MySQL, Jena, Apache Tomcat etc.)

• Create database structure

• Build server query processor

– Receive queries over HTTP from client

– Interpret RDF queries

– Interface to database (for reading and writing)

Phase 2:

• Bug fixing

• User support system (for creation of user accounts and identity)

• Support for users with respect to RDF add/edit queries

• Authentication and restrictions

• Create web-based client interface for demonstration and testing

Testing and evaluation

Phase 1:

• Create instantiations of RDF Schema to try different domains

• View, add, edit items using RDF to query the server

• Evaluate shortcomings of the product and bugs

Phase 2:

120

• View, add, edit items using RDF to query the server

• Internal evaluation, based on previous evaluation and further development

• Independent evaluation: farmer / food organisation to add data to the
system

Final evaluation:

Evaluation of progress, pitfalls and intractable problems

Draft report

Documentation of project phases to be continuous. The writing of the report is
broken down into the various sections of the report.

• Introduction

• Requirements analysis (modifications)

• Implementation

• Testing

• Conclusions

Final report

• Revisions to Draft

• New material which didn’t make it in to the Draft

• Appendices

• References

C.3 Progress report

121

