Fiona Williamson (National University of Malaysia and University of East Anglia):

Report on Potential Regional Archival Holdings for Digitisation Project: Malaysia and Singapore

I have secured agreement from the following organisations to work with us on a pilot digitisation project:

National Meteorological Services Singapore Forestry Research Institute Malaysia (FRIM) National Archives of Malaysia

The collection(s) that each institution is prepared to share is detailed below:

Meteorological Services Singapore:

Meteorological Service Singapore are prepared to contribute thermograph logbooks of hourly data starting from 1929. They reside as images in the National Archives of Singapore – see sample image below. However, they will not need any of the project funding obtained. Please also note that Singaporean policy regarding data from Malaysian stations is that it belongs to Malaysia, and the relevant Malaysian authorities must make the decision on its release. I am currently seeking clarification as to the extent of these documents. I am aware that the time period of the documents exceeds that of the current project scope but they could be a valuable inclusion, perhaps in conjunction with the meteorological records contained in the annual Blue Books reports from the nineteenth century as contained in colonial administrative correspondence for the Straits Settlements.

Observatory Gengaper Nount Tuber Readings of the Thermograph Unit Bandard of Time 105 E = 1 (0 + 90) + 1 + 2 +														·et	I	Read	ings o	of the	-24	un	rogr	aph		1 (0	+ 24)	+1+	Unit.	1%	12		+ 23				
Hou		o de	1		3		8		,		9	10	n	12	19	14	15	16	17	18	10	20	ni	22	25	Midsight 24	S.	Mean = S/S		innum g & Time		nissem g & Time	Range	Non eyelic Charge \$4-0	
Day	1 2	00	14.2	751	73.4	72.5	71.2	7/3	721	732	755	714	136	871	171	149	13.6	133	111	778	75 8	758	767	759	75.8	154	1596	77:	179	12.00	7/2	0500	167	25.3	r
	3 7.	5.0	146	731	73/	73.2	73	728	73.9	77 1	79.0	719	10.3	814	190	192	761	773	77.0	76.0	754	749	74.2	735	139	740	18566	75.	120	1200	124	0600	96	24.3	
-	5 7	32	731	731	72 2	72.5	72	728	73 1	74.7	718	807	113	142	77.0	119	73.1	73 6	73.9	139	131	740	137	140	733	132 740	17176	756	140	12/0	783	0600	143	24-2	
-	8 2	40	TH 0	739	73.9	200	750	736	736	75.6	715	715	102	141	810	103	803	190	77.2	753	100	741	740	759	73.9	732	11294	763	141	1200	735	0500	106	24.6	
-	4 10		400	200	-d- d	40.1			2000	V 5 . 6	71 7	-rx &	N7.1	75.4	1 166 3	761	75.6	26.1	25.00	741.00	1 72 1	1 123.6	400	20.6	723	700	1786.8	100	1700	1150	Ve. 0	0300	1 /5	123%	-
	9 7	4.5	741	73.7	794 9	740	72	73 8	734	75 1	776	11.9	116	818	120	119	130	101	192	777	75.2	741	731	139	13/	102	1844 0 1843 8 11393	766	133	1108	73.1	2300	142	24.9	F
																																			F
1	12 2	10	70.7	700	699	694	191	699	71.0	74.4	191	123	147	162	143	134	151	131	795	1/3	760	747	799	738	132	730	1/42	16.9	141	115	100	0200	17.1	24.7	F
	14 7	30	120	71.9	71.9	119	711	711	72/	760	795	131	139	140	160	143	132	128	801	776	753	744	73.9	755	73.1	750	1141.8	769	113	1340	71.8	-	143	24.9	F
-	-				_	1	14.		1	1	60.	60.	400	111	6	100	600	6	-fu a			ne.			W-10 -	100.0		111	200	1000		- 140	111	24.7	F
	17 7	10	7/9	71.2	7/1	710	709	710	7/7	753	196	12/	156	110	157	154	101	100	77.4	774	160	254	74.7	134	121	720	1131 f 11322 1160 f 1157 9	76.6	11.1	13.20	709	0500	17.2	24.8	F
-	19 7	20	71.6	71.7	71.1	71.6	71.6	71.1	12/	77/	506	138	136	160	173	162	150	133	HE	191	750	759	74 5	73 8	73.1	121	11606	77.5	190	12/0	7/0	-	110	25:3	
-	20 7.	2.8	123	12.0	7/4	9/2	7/14	7/3	7.00	77.0	711	52.9	121	100	100	121	140	14.3	-10.1	194	79.0	703	111.5	73.2	21.0	72.9	14019	7/10	111	1000	7/2	0000	108	19.0	=
	21 Z	30	727	113	71.9	71.9	7/	711	121	170	11.5	536	168	170	177	100	151	141	120	109	760	162	74 5	733	13.0	122	15754	781	90.1	13/0	711	-	190	256	Ξ
-	94 7	24	120	718	7/4	11.0	7/1	701	71.4	160	129	141	162	152	115	157	120	118	79.5	1/0	77.6	760	750	745	733	130	1816	773	196	1201	711	1600	11.8	252	Ξ
=	95 7	3.0	722	722	72.2	123	76.	7/7	723	74.2	79.6	601	833	160	854	132	14.0	to a	(2.0	700	774	755	74.2	24	121	726	1/2/2	77.6	110	1158	7/7	4/00	110	0 (33)	Ξ
-	26 2 27 7	20	111	108	711	69	69	69.0	697	74.4	79#	124	151	173	171	90	174	159	130	100	769	753	741	72 F	142	716	11547 11547 11159 11153	773	991	1350	190	-	23.1	252	
=	98 7	3.0	71.0	16.5 72.2	71.9	718	7/1	701	120	156	11.5	146	153	170	113	173	119	151	122	100	111	769	760	130	146	73.0 740	11153	75.5	909	13.00	714	0600	196	25.4	
/ Montenan																																			
	81 7	50	74.5	742	14./	74-0	7.3	73.6	74.6	790	120	159	113	16.7	179	137	\vdash				74.2	75.4	740	73:7	727	720	1879.0	7/3	97.0	1140	720	2400	110	82.7	-
Ben	. 5	Llab the	2.234	2399	2223	2225	22.23	2219	92 HZ	23H5	g H 2H	25511	25913	21318	21000	2.09	25105	25307	2HER	21413	23121	2333	23107	290	29.753	9.7kH 9	372 lil 9	2336	27015	/	22143	/	H \$13		
Mes		51	187	19	2		1/2	11,0	100	75	Yas	42	3	40	113	10	23	8/10	40.3	44	1/2	100	443	1,9	13	700	15473	170	41	الملبلة		/	121		
Control Instrum Correc	reil nemt nies Sy	0.2	1.0	xo.\	1. Ox	×o ¹	×01	80.1	xo.	_ p-l	,01	.0	03		03	0.2	10.1	0,			×03	x0.3	40.2	x02	×0.2	x DE	1	/	0.7		0.2		05		
Gorres	oird to	35	125	12.4	42.2	125	71	71.7	127	159	79.1	8.2.5	1	فاللهم	129	837	(93.	815	19.6	(1.9)	163	75.5	14.7	741	73.	75.2	/	-110	46°		71.2		15.2		
Departure N	Sare Sean	1.0	30	2.7º	333	22	327	230	224	5W3	3/63	275	35%	230	364	297	30%	275	300	25.5	300	24,2	037	2311	44	3	19.6	250	30.0		31.8		1		
Hon o	for yello							Ľ												Ľ				1			100						2.0		

Forest Research Institute Malaysia (FRIM):

FRIM has been operating independently since 1929 but prior to that, the 'FRI' was a Research Branch of the Forest Department. The Research Branch came into existence with the appointment of F. W. Foxworthy as Forest Research Officer in 1918 and the Forest Department itself was established in 1901 with the appointment of A. M. Burn Murdoch (previously an officer in Burma) as Chief Forest Officer on advice from H. C. Hill Inspector-General of Forests to the Government of India. Prior to 1901, the forests in the Straits Settlements were managed by the Directors of Gardens (1883-1889) with a brief period of management by the Land Office. The establishment of the Forest Department resulted in the biggest redirection of forest policy in the history of Straits Settlements and the Federated Malay States (FMS). Thus, despite being rather late in the stipulated timeframe for this project, the period 1880s-1920s is probably the most significant in Malaysian forest history. The history of forestry in Malaysia is relatively new but surprisingly rich and The Library at FRIM have kept and preserved a substantial volume of information on the botanical research undertaken in the country. However, as Malaysian forestry itself only started in early 1900's, much of the documentation available originates from that era. The content of these documents include research progress reports, forest administration and correspondence. However, as Malaya was at that time a British colony; forestry documentation from other colonies are also available in the library. These records have virtually no public presence currently yet are an invaluable resource for researchers interested in forestry, colonial management, intersections between British colonies including Malaya and India, and environmental issues. They also connect with documents at Kew Gardens (see below) and those at the Malaysian National Archives (see below).

FRIM would be very pleased to become part of this project. I have attached the report they have compiled for us detailing some of their key collections.

National Archives of Malaysia:

The Director General and Officer for Reference and Archives are very happy to collaborate with us on a project bid. I have requested that they highlight a collection/series of relevent documents that could be incorporated and need to wait for further details. However my own researches have highlighted a substantial body of documentation relating to the Land Office (responsible for forests before 1901); district offices; and colonial correspondence between Resident and regional state offices. Much of this relates to the natural environment (research and development of rubber, gambier, pepper and coffee, plantations, botanic gardens, forest management and policing) and connects well with the records at FRIM. For instance:

- 1. criminal proceedings and correspondence records relating to the 'illegal' cutting of timber/burning of charcoal, 'misue' of forest resources by native inhabitants and immigrants as the colonial administration sought to restrict and manage the use of the land and forests. This led to an interesting conflict over traditional rights and those of the colonial authorities and plantation owners
- 2. Botanic and agricultural research. The transfer of seeds and information across the colonies. Experiemental plantations and experiments in growing tobacco,

- gutta percha, coconut etc. Reservation of land. Clearing of forest land. Research into the environmental impact of the same.
- 3. Administrative records relating to forests and botanic gardens, annual reports etc. Management of 'native' and migrant labour: schemes to employ convicts in botanic gardens; working conditions for coolies etc.
- 4. Weather: accounts of bad weather/flooding and its impact on local agriculture and villages e.g. severe floods (and droughts) devastated rural areas in 1891,6,7,8, 1901, 1926.

There are also useful journals and gazettes including: Garden's Bulletin Straits Settlements, Penang Gazette.

Many of the records can be connected with (but do not replicate) Colonial Office files held at the British National Archives, Kew and as such, illuminate and add great value to our understanding of nineteenth century Malaysia.

Other:

National Archives of Singapore

They are willing to discuss futher. They are currently part of the major project of the Biodiversity Heritage Library: http://biodivlib.wikispaces.com/BHL+Consortium As a member, they are working with Singapore partners to digitise and upload the Singapore collections. See http://www.biodiversitylibrary.org/

They suggest that they could contribute to more than one digital platform but they would need more information at this stage. However, I would recommend that we pursue this avenue after finding out more information about possible overlaps with the abovementioned projects. They also wish to know whether the Royal Botanic Gardens, Kew and the Natural History Museum (as members of the Biodiversity Heritage Library) will also be contributing their collections to our proposed digital infrastructure?

Kew Botanic Gardens

In conjunction with the above collections, it might be worth approaching the Royal Botanic Gardens Archives at Kew. The have the papers of Henry Ridley (1855-1956), Director of Gardens and Forests for the Straits Settlements from 1888. These papers are not available in Malaysia and would be a very welcome addition for any regional researcher interested in the environmental history of this period when key developments were taking place in developmental forestry, plant and rubber research (including the establishment of botanic gardens in Penang, Kuala Lumpur and Singapore). Ridley's correspondence reveals him as connected to a global network of directors, enthusiasts, and societies in the field of botanical experimentation, exploration, and research. 'Rubber Ridley' as he became known colloquially had been inspired by Joseph Hooker who suggested that he research rubber plants in Sri Lanka whilst on his way to Singapore. Apparently, Ridley was so enthused by what he found that on arrival in Singapore he established an experimental rubber plantation.

According to staff that I spoke to at the archive during June, Ridley's papers were not included in the Andrew Mellon Foundation funded digitization of the Directors' Correspondence (DC) held at Kew but it would be worth double checking as they were not sure whether there were plans afoot to digitize this material in the future.

Extent: 1 box, 3 photographic albums, 49 volumes and 52 folders