Productivity and Firm Selection: Intra-National and International Trade.

Gregory Corcos (NHH) Massimo Del Gatto (University of Cagliari) Giordano Mion (Université Catholique de Louvain and FNRS) Gianmarco I.P. Ottaviano (University of Bologna)

ECORE Seminar

# Overview

Objective:

Quantify the productivity gains from inter- and intra-national trade.

What we do in this paper:

model the effect of trade frictions on productivity distributions estimate these frictions using gravity equations

estimate TFP at the firm level

simulate a change in trade costs, and infer counterfactual productivity distributions

perform a number of robustness checks

Taking the case of France, we find that:

intra-national trade raises TFP by more than intra-European trade 'eliminating' border effects further increases TFP by a similar amount gains vary substantially across regions

## **Motivation**

- Assess the empirical relevance of the gains from trade predicted by heterogenous firm models.
- Understand how different inter-regional and inter-national trade are.
- Evaluate European market integration 15 years after the Cecchini report on the "costs of non-Europe".
- Complement trade and productivity studies that lack coverage of Europe (cf Trefler 2004, Bernard et al. 2003).

# Plan of the presentation

Related Literature The closed-economy model Trade integration in the model Data and calibration results Conclusions and discussion

# Trade Liberalization and Firm Selection

Evidence:

- Self-selection into export activities Bernard and Jensen, 1999; Tybout, 2002
- Exit of the least productive firms Clerides, Lach and Tybout, 1998; Bernard and Jensen, 1999; Aw, Chung and Roberts, 2000
- Market share reallocation towards the most productive firms Pavcnik, 2002; Bernard, Jensen and Schott, 2003

Theory

- ▶ Melitz (2003), Bernard et al. (2003), Melitz and Ottaviano (2005).
- Combination of greater import competition and easier market access:
  - \* losses at home compensated by new profits abroad for some firms only
  - \* the other exit or restrict themselves to domestic sales
  - ★ reallocation of productive resources towards survivors creates an aggregate productivity gain

# Quantifying the Gains from Trade Due to Firm Selection

This paper:

- quantifies productivity gains from intra- and inter-national trade
- evaluates the gains from eliminating 'border effects' in EU trade

Antecedents:

- CGE literature (e.g. Smith and Venables, 1988).
   We introduce endogenous productivity distributions.
- Bernard et al. (2003) simulate the effect of a 5% trade cost reduction on US firm productivity.
   Our model endogenizes the number of firms. We exploit comparable firm-level data on 11 European countries. We have sunk entry costs.
- Del Gatto, Mion and Ottaviano (2006) calibrate the Melitz-Ottaviano model to estimate the gains from international trade.
   We extend their analysis to the gains from intra-national trade and 'behind-the-border' trade barriers.

# The Model

Based on Melitz and Ottaviano (2005):

- ▶ similar to Melitz (2003) but with non-CES (linear) demand
- distinctive features:
  - $\star$  more productive firms set higher markups
  - ★ larger markets exhibit larger firms with lower markups and lower prices, and less dispersion overall
  - \* supportive evidence: Hopenhayn and Campbell (2002), Syverson (2004ab) for the retail, cement, construction industries in the US

Here:

- We generalize the model to many sectors and allow for different sunk entry costs.
- We calibrate the model to give magnitudes.

The model maps trade costs into ex-post productivity distributions.

# Autarky: Setup

Preferences. Linear inverse demand for all varieties:

$$p_i = \alpha - \gamma q_i - \eta \int_{i \in \Omega} q(i) di$$

Technology. CRS, Pareto distribution of productivity z=1/c, with G(c) defined over  $[0, c_M]$ , parameter k. Zero Cutoff Profit condition:

$$p(c_D) = c_D \tag{ZCP}$$

c<sub>D</sub> completely summarizes the competitive environment:

$$p(c) = rac{1}{2}(c_D + c)$$
 prices  
 $p(c) - c = rac{1}{2}(c_D - c)$  markups  
 $q(c) = rac{L}{2\gamma}(c_D - c)$  quantities  
 $\pi(c) = rac{L}{4\gamma}(c_D - c)^2$  profits

Corcos, Del Gatto, Mion, Ottaviano (2007) Firm Selection: Intra- vs International Trade

Autarky: Industry Equilibrium

Free Entry condition:

$$\int_0^{c_D} \pi(c) dG(c) - f_E = 0 \tag{FE}$$

Combining (ZCP) and (FE) yields the endogenous cutoff cost:

$$c_D = \left(\frac{2(k+1)(k+2)\gamma(c_M)^k f_E}{L}\right)^{\frac{1}{k+2}}$$

The cost average and variance are equal to  $\frac{k}{k+1}c_D$  and  $\frac{2(c_D)^2}{(k+1)(k+2)}$ .

# Open Economy: Setup

Many Sectors. Many Economies (*countries and regions*) that differ by their:

- market size  $L^{I}$ , I = 1..M
- ex ante productivity supports  $c'_{M,s}$  and sunk entry costs  $f'_s$

Exporters incur 'iceberg' trade costs:  $\tau_s^{lh} > 1$ . Markets are segmented. Exporters' (Mill) cutoff:  $c_s^{lh} \equiv \frac{c_s^{hh}}{\tau_s^{lh}}$ 

Firm selection:

• 
$$0 \le c \le c_s^{lh}$$
: export to destination h.

• 
$$c_s^{lh} < c \le \frac{c_s^{"}}{\tau^{ll}}$$
: domestic market only.

• 
$$\frac{c_s''}{\tau_s''} < c \le c_s^M$$
: exit.

Zero ex-ante expected profit condition (FE) holds everywhere.

# Open Economy: Useful Properties of the Model

*Domestic* cutoffs  $c_s^{\parallel}$  summarize the competitive environment:

- Average sector-country productivity is proportional to  $1/c_s^{\prime\prime}$ .
- A % change in  $1/c_s^{ll}$  translates into a % change in average productivity.
- A % change in  $c_s^{\prime\prime}$  has the same effect on the average markup and price.
- Average profit (quantity) is a power function of  $c_s^{\parallel}$  with power  $-k_s$   $(-k_s 1)$ .

Domestic welfare only depends on *domestic* cutoffs  $c_s^{\parallel}$ :

$$\forall l, U' = \sum_{s=1}^{S} \frac{1}{2\eta_s} \left( \alpha_s - c_s'' \right) \left( \alpha_s - \frac{k_s + 1}{k_s + 2} c_s'' \right)$$

Utility decreases with  $c_s^{\prime\prime}$ : summarizes effects on price distribution and product variety.

[But no obvious values for the preference parameters, hence no numerical analysis.]

Open Economy: Equilibrium Cutoffs

Denote by  $\rho_s^{lh} \equiv \left(\tau_s^{lh}\right)^{-k_s} \in (0,1]$  the 'freeness' of trade from l to h.

$$P_{s} \equiv \begin{pmatrix} \rho_{s}^{11} & \rho_{s}^{12} & \cdots & \rho_{s}^{1M} \\ \rho_{s}^{21} & \rho_{s}^{22} & \cdots & \rho_{s}^{2M} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{s}^{M1} & \rho_{s}^{M2} & \cdots & \rho_{s}^{MM} \end{pmatrix}$$

Rewriting the free entry condition we solve for the cutoffs:

$$c_{s}^{hh} = \left(\frac{2(k_{s}+1)(k_{s}+2)\gamma_{s}}{L^{h}} \frac{\sum_{l=1}^{M} \left|C_{s}^{lh}\right| / (\psi_{s}^{l}/f_{s}^{l})}{|P_{s}|}\right)^{\frac{1}{k_{s}+2}}$$
(1)  
$$c_{s}^{lh} = \frac{c_{s}^{hh}}{\tau^{lh}}$$

where  $\psi_s^l = (c_{M,s}^l)^{-k_s}$  is an index of absolute advantage in sector s $|P_s|$  is the determinant of  $P_s$  and  $|C_s^{lh}|$  is the cofactor of its  $\rho_s^{lh}$  element.

Corcos, Del Gatto, Mion, Ottaviano (2007) Firm Selection: Intra- vs International Trade

# Open Economy: Bilateral Trade Flows

Number of entrants:

$$N_{E,s}^{l} = \frac{2(k_{s}+1)\gamma_{s}}{\eta_{s}|P_{s}|\psi_{s}^{l}}\sum_{h=1}^{M}\frac{(\alpha-c_{s}^{hh})|C_{s}^{lh}|}{(c_{s}^{hh})^{k_{s}+1}}$$

Export sales:

$$EXP_{s}^{lh} = \frac{1}{2\gamma_{s}\left(k_{s}+2\right)}N_{E,s}^{\prime}\psi_{s}^{\prime}L^{h}\left(c_{s}^{hh}\right)^{k_{s}+2}\rho_{s}^{lh}.$$
(2)

From (1) and (2), we have a relationship between the 'freeness-of-trade' matrix  $P_s$ , equilibrium cost cutoffs, and trade flows.

# From Theory to the Data: Methodology

We apply our framework to 31 economies: 10 EU countries and 21 French regions. We focus on the year 2000.

- STEP 1: estimate the sectoral freeness of trade matrix  $P_s$  running a gravity regression with trade and geographical data.
- STEP 2: estimate productivity distributions (shape parameters  $k_s$  and cutoffs  $c_s^{\parallel}$ ) using firm-level data.

STEP 3: (Calibration) solve for the absolute advantage and entry costs parameters  $(\psi_s^l/f_s^l)$  in (1), up to a sector-specific constant (due to the unobservable  $\gamma_s$ ).

STEP 4: recompute  $c_s^{\parallel}$  for counterfactual trade freeness matrices  $P_s$ :

- "Costs of non-Europe": no international (EU) trade
- "Costs of non-France": no intra-national (France) trade
- "United Europe": no border effects between EU countries.
- "United Legal Europe": no legal dissimilarities between EU countries.

### Data

**Gravity.** CEPII, 2000. Data are used to recover trade freeness  $\rho_s^{lh}$ :

- international trade data at the 3-digits ISIC rev 2 disaggregation
- common language indicator
- distances: calculated at the NUTS3 level using a GIS software based on the formulas provided by Head and Mayer (2002).
- TFP. Firm-level data for the year 2000:
  - ▶ 11 EU countries: Amadeus (Bureau Van Dijk) + MIP (ZEW) ⇒ 22,820 firms classified in 18 manufacturing sectors, used to recover k<sub>s</sub> and national cut-offs (c<sup>ll</sup><sub>s</sub>)
  - ▶ 21 French regions: EAE (SESSI & SCEES)  $\implies$  23,203 French firms, used to recover French regional cut-offs  $(c_s^{ll})$

Population. New Cronos, EUROSTAT, 2000

# STEP 1: Gravity

We run a gravity regression using *international* trade data. We use the distance elasticity to compute *intra*-national trade costs. Rewriting (2) in logs yields:

$$\ln(EXP_{s}^{lh}) = EX_{s}^{l} + IM_{s}^{h} + \delta_{s} \ln(d^{lh}) + \beta^{h} Border^{lh} + \lambda Lang^{lh} Border^{lh} + \epsilon_{s}^{lh}$$
(3)

- Border<sup>*lh*</sup>: border dummy (equals one if *l* and *h* belong to  $\neq$  countries).
- Lang<sup>lh</sup>: common language dummy.
- $d^{lh} = \left(\sum_{p \in I} \sum_{r \in h} (pop^p/pop^l)(pop^r/pop^h) (d^{pr})^{\theta}\right)^{1/\theta}$  where  $pop^p$  $(pop^r)$  is the population of agglomeration p(r) belonging to country l(h).  $\theta = 1$  gives the arithmetic mean,  $\theta = -1$  the harmonic mean.
- We use data on trade flows for 1999, 2000, and 2001.

| Industry                              | $\delta_s$ |
|---------------------------------------|------------|
| Food beverages and tobacco            | -1.8739    |
| Textiles                              | -1.1218    |
| Wearing apparel except footwear       | -1.4483    |
| Leather products and footwear         | -1.1913    |
| Wood products except furniture        | -2.1968    |
| Paper products                        | -1.5381    |
| Printing and Publishing               | -2.6793    |
| Chemicals                             | -1.5035    |
| Rubber and plastic                    | -1.7645    |
| Other non-metallic mineral products   | -1.8935    |
| Metallic products                     | -1.5784    |
| Fabricated metal products             | -1.8642    |
| Machinery except electrical           | -1.6296    |
| Electric machinery                    | -1.2096    |
| Professional and scientific equipment | -1.6514    |
| Transport equipment                   | -1.6065    |
| Other manufacturing                   | -1.8721    |
| Average                               | -1.6837    |

Table: Distance elasticities of trade flows by sector

# STEP 2: TFP estimation

Simple OLS regression for firm i:

 $\ln(VA_i) = const + a \ln(CAP_i) + b \ln(EMPL_i) + \varepsilon_i$ 

- VA<sub>i</sub> is value added
- CAP<sub>i</sub> is capital (fixed assets)
- EMPL<sub>i</sub> is the number of employees

Productivity of firm *i*:

$$\hat{Prod}_{i,OLS} = \exp(\hat{const} + \hat{\varepsilon}_i)$$

Country averages of OLS productivities are highly correlated to GDP (Corr = 0.61, or 0.88 without Germany). The same applies to French regions (Corr = 0.87).

# STEP 2: Recovering the Pareto parameters

Use  $\hat{Prod}_{i,OLS}$  to recover  $k_s$  and the cutoff costs  $c_s^{hh}$  *Properties of the Pareto distribution*: if X is distributed Pareto with shape parameter  $k_s$  and one runs:

$$\ln(1 - F(X)) = a + b \ln(X)$$

where F(X) is the observed cumulative distribution of X, then the OLS estimator  $-\hat{b}$  is a consistent estimator of  $k_s$  and the associated  $R^2$  is close to one.. The the cutoff  $c_s^{hh}$  is then just a simple scaling (once you know  $k_s$ ) of the mean.

| Industry                              | ks    | R <sup>2</sup> |
|---------------------------------------|-------|----------------|
| Food beverages and tobacco            | 2.004 | 0.898          |
| Textiles                              | 2.248 | 0.872          |
| Wearing apparel except footwear       | 1.804 | 0.904          |
| Leather products and footwear         | 2.345 | 0.893          |
| Wood products except furniture        | 2.454 | 0.871          |
| Paper products                        | 1.966 | 0.827          |
| Printing and Publishing               | 1.988 | 0.898          |
| Chemicals                             | 1.811 | 0.848          |
| Rubber and plastic                    | 2.372 | 0.868          |
| Other non-metallic mineral products   | 2.156 | 0.826          |
| Metallic products                     | 2.206 | 0.848          |
| Fabricated metal products             | 2.450 | 0.875          |
| Machinery except electrical           | 2.346 | 0.898          |
| Electric machinery                    | 1.930 | 0.881          |
| Professional and scientific equipment | 1.844 | 0.856          |
| Transport equipment                   | 2.062 | 0.861          |
| Other manufacturing                   | 2.128 | 0.900          |
| Average                               | 2.124 | 0.872          |

Table: Sectoral  $k_s$  and the R<sup>2</sup> from the regression method

Corcos, Del Gatto, Mion, Ottaviano (2007) Firm Selection: Intra- vs International Trade

STEP 3: Competitiveness (Absolute Advantage and Entry Costs)

Taking the log of (1) yields:

$$\ln(c_s^{hh}) = \ln(a_s) + \frac{1}{k_s + 2} \left[ \ln(b_{sh}) + \ln\left(\frac{\sum_{l=1}^{M} |C_s^{lh}|}{|P_s|} \frac{1}{(\psi_s^l/f_s^l)}\right) \right]$$
(4)

where  $a_s = \gamma_s$  and  $b_s = 2(k_s + 1)(k_s + 2)/L^h$ 

 $(\psi_s^l/f_s^l)$ , an ex-ante absolute advantages and entry costs are unobservable.

but  $a_s$  cancels out when comparing different trade cost scenarios.

(4) generates a non-linear system of 31 equations (10 countries plus 21 French regions). We solve for the 31  $(\psi_s^l/f_s^l)$ , setting  $a_s = 1$ .

# STEP 4: Counterfactual scenarios

We simulate productivity changes induced by changes in trade frictions.

We compute  $c_s^{hh}$  for several freeness-of-trade matrices  $P_s$ :

"Costs of non-Europe": no international (EU) trade

"Costs of non-France": no intra-national (France) trade

"**United Europe**": no border effects between EU countries (equivalent to a 31% decrease in trade costs).

"**United Legal Europe**": elimination of legal dissimilarities, that is just *one* component of border effects, across EU countries (equivalent to a 4.6% decrease in trade costs).

In the model, a fall in intra-national trade costs expands international trade [Increase in domestic productivity dominates ambiguous effect on number of firms]

# The Model's fit (1/2)

We assess the model's fit using a number of statistics:

#### The share of firms that export.

France in 2000: 22.26 %; our calibration: 14.73% US in 1992: 21% ; Bernard et al. (2003): 51%

### The size advantage of exporters (sales).

France in 2000: 4.33; our calibration: 3.85 US in 1992: 4.8; Bernard et al. (2003): calibrated.

#### The productivity advantage of exporters.

France in 2000: 27.32%; our calibration: 132% (with a different shape parameter: 33%).

Bernard et al. (2003): calibrated. Underestimation issues.

### The standard deviation of (the log of) domestic sales.

France in 2000: 1.30; our calibration: 1.08; we explain 69% of the cross-sectoral variance.

US in 1992: 1.67 ; Bernard et al. (2003): 0.84; they explain 25% of the variance.

# The Model's fit (2/2)

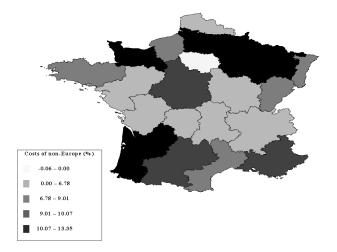
#### The fraction of revenues from export.

No data for France; close to the US distribution (EKK 2004):

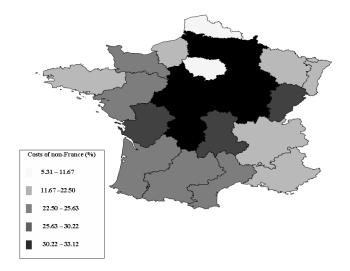
Table: Export Intensity

| Export intensity of exporters in % | Observed US | Simulated BEJK | Our Simulations |
|------------------------------------|-------------|----------------|-----------------|
| 0 to 10                            | 66          | 76             | 15.6            |
| 10 to 20                           | 16          | 19             | 19.4            |
| 20 to 30                           | 7.7         | 4.2            | 15.2            |
| 30 to 40                           | 4.4         | 0.0            | 11.6            |
| 40 to 50                           | 2.4         | 0.0            | 10.3            |
| 50 to 60                           | 1.5         | 0.0            | 9.5             |
| 60 to 70                           | 1           | 0.0            | 7.9             |
| 70 to 80                           | 0.6         | 0.0            | 7.8             |
| 80 to 90                           | 0.5         | 0.0            | 2.7             |
| 90 to 100                          | 0.7         | 0.0            | 0.0             |

#### Standard deviation in log-productivity.


Our TFP estimates: 0.58. This is estimated for us. US in 1992 (VA/worker): 0.75; Bernard et al. (2003): 0.35. Sectoral breakdown is important: productivity differences across sectors explaining as much as 40% of the overall variability

# STEP 4: "Costs of non-Europe vs Costs of non-France"


#### Table: Intra vs. inter-national trade: by region (OLS).

| Region name          | c <sub>s</sub> <sup>hh</sup><br>obs. | c <sub>s</sub> <sup>hh</sup><br>no EU trade | Variation(%)<br>cost of non-Europe | c <sub>s</sub> <sup>hh</sup><br>no FR trade | Variation (%)<br>cost of non-France |
|----------------------|--------------------------------------|---------------------------------------------|------------------------------------|---------------------------------------------|-------------------------------------|
| lle de France        | 0.042                                | 0.044                                       | -0.06                              | 0.046                                       | 5.31                                |
| Champagne-Ardennes   | 0.052                                | 0.063                                       | 13.35                              | 0.081                                       | 32.99                               |
| Picardie             | 0.053                                | 0.064                                       | 12.42                              | 0.080                                       | 31.76                               |
| Haute-Normandie      | 0.051                                | 0.056                                       | 8.04                               | 0.067                                       | 21.10                               |
| Centre               | 0.053                                | 0.061                                       | 10.07                              | 0.079                                       | 31.80                               |
| Basse-Normandie      | 0.059                                | 0.067                                       | 12.58                              | 0.078                                       | 23.77                               |
| Bourgogne            | 0.053                                | 0.056                                       | 5.48                               | 0.081                                       | 33.12                               |
| Nord-Pas de Calais   | 0.052                                | 0.057                                       | 6.78                               | 0.060                                       | 11.67                               |
| Lorraine             | 0.052                                | 0.058                                       | 11.87                              | 0.067                                       | 22.50                               |
| Alsace               | 0.05                                 | 0.054                                       | 8.84                               | 0.064                                       | 21.95                               |
| Franche-Comté        | 0.054                                | 0.058                                       | 8.9                                | 0.077                                       | 29.87                               |
| Pays de la Loire     | 0.052                                | 0.055                                       | 5.61                               | 0.070                                       | 25.50                               |
| Bretagne             | 0.053                                | 0.062                                       | 8.15                               | 0.069                                       | 22.39                               |
| Poitou-Charentes     | 0.055                                | 0.058                                       | 5.32                               | 0.079                                       | 30.06                               |
| Aquitaine            | 0.051                                | 0.059                                       | 13.09                              | 0.069                                       | 25.63                               |
| Midi-Pyrénées        | 0.051                                | 0.056                                       | 9.31                               | 0.069                                       | 24.75                               |
| Limousin             | 0.056                                | 0.06                                        | 2.63                               | 0.085                                       | 32.34                               |
| Rhône-Alpes          | 0.049                                | 0.051                                       | 4.52                               | 0.062                                       | 20.17                               |
| Auvergne             | 0.053                                | 0.055                                       | 4.34                               | 0.078                                       | 30.22                               |
| Languedoc-Roussillon | 0.053                                | 0.058                                       | 9.01                               | 0.070                                       | 25.48                               |
| PAČA                 | 0.047                                | 0.052                                       | 9.45                               | 0.059                                       | 20.02                               |
| Average              | 0.052                                | 0.057                                       | 8.08                               | 0.071                                       | 24.88                               |

# Costs of non-Europe



# Costs of non-France



# STEP 4: "Costs of non-Europe vs Costs of non-France"

Table: Intra vs. inter-national trade: by sector (OLS).

| Industry                              | Cost of non-Europe (%) | Cost of non-France (%) |
|---------------------------------------|------------------------|------------------------|
| Food beverages and tobacco            | 6.63                   | 23.82                  |
| Textiles                              | 15.93                  | 28.71                  |
| Wearing apparel except footwear       | 15.07                  | 33.02                  |
| Leather products and footwear         | 22.68                  | 27.03                  |
| Wood products except furniture        | 5.45                   | 17.54                  |
| Paper products                        | 8.86                   | 29.45                  |
| Printing and Publishing               | 2.31                   | 13.01                  |
| Chemicals                             | 6.92                   | 30.84                  |
| Rubber and plastic                    | 3.06                   | 20.32                  |
| Other non-metallic mineral products   | 8.26                   | 22.51                  |
| Metallic products                     | 7.16                   | 28.19                  |
| Fabricated metal products             | 2.63                   | 17.06                  |
| Machinery except electrical           | 5.03                   | 20.66                  |
| Electric machinery                    | 5.2                    | 32.44                  |
| Professional and scientific equipment | 9.04                   | 27.89                  |
| Transport equipment                   | 9.93                   | 27.78                  |
| Other manufacturing                   | 7.92                   | 22.63                  |
| Average                               | 8.08                   | 24.88                  |

Corcos, Del Gatto, Mion, Ottaviano (2007) Firm Selection: Intra- vs International Trade

# Costs of non-Europe and non-France: Summary

On average, French regions benefit more from intra-national trade:

- 8.8% productivity loss from losing trade with European countries. This maps into an increase in prices and markups by 10.31% and a decrease of average profits (quantities) of 13.64% (14.63%)
- 24.88% productivity loss from losing trade with other French regions. This maps into an increase in prices and markups by 36.03% and a decrease of average profits (quantities) of 43.94% (56.24%)

Yet export and intranational trade shares of output are roughly equal (22% and 22.5%).

Substantial heterogeneity

- across regions: geography (moderate), competitiveness (very important)
- across sectors: gains strongly correlated with distance-elasticities. Corr = 0.59 for non-Europe and Corr = 0.83 for non-France.

# STEP 4: Gains from "United Europe"

#### Table: Gains from eliminating border effects: OLS estimations.

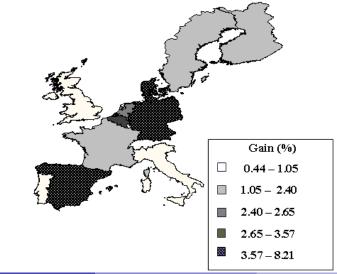
| Region name          | Gains from no border effect (%) | Country name     | Gains from no border effect (%) |
|----------------------|---------------------------------|------------------|---------------------------------|
| Ile de France        | 0.06                            | Belgium          | 42.30                           |
| Champagne-Ardennes   | -7.18                           | Germany          | 60.18                           |
| Picardie             | 3.52                            | Denmark          | 35.98                           |
| Haute-Normandie      | 13.91                           | Spain            | 18.37                           |
| Centre               | 9.62                            | Finland          | 15.01                           |
| Basse-Normandie      | 23.04                           | France           | 8.86                            |
| Bourgogne            | 6.66                            | Great Britain    | 3.61                            |
| Nord-Pas de Calais   | -2.46                           | Netherlands      | 9.66                            |
| Lorraine             | -2.22                           | Italy            | 6.37                            |
| Alsace               | 1.83                            | Portugal         | 1.17                            |
| Franche-Comté        | 5.37                            | Sweden           | 16.28                           |
| Pays de la Loire     | 8.57                            |                  |                                 |
| Bretagne             | 16.32                           |                  |                                 |
| Poitou-Charentes     | 5.12                            |                  |                                 |
| Aquitaine            | 38.23                           |                  |                                 |
| Midi-Pyrénées        | 15.24                           |                  |                                 |
| Limousin             | 2.86                            |                  |                                 |
| Rhône-Alpes          | 6.07                            |                  |                                 |
| Auvergne             | 4.32                            |                  |                                 |
| Languedoc-Roussillon | 17.13                           |                  |                                 |
| PAČA                 | 19.98                           |                  |                                 |
| French average       | 8.86                            | European average | 19.80                           |

# Border Effects and Non-tariff Trade Barriers

Are border effects illusory?

- Hillberry (1999), Head and Mayer (2000): tariffs, NTBs, regulation costs don't explain border effects. Agglomeration patterns?
- Chen (2004) finds the sectoral structure of border effects to be correlated with that of TBTs and product-related information costs.
- ▶ Wolf (1999), Combes et al. (2005) suggest border effects exist in intra-national trade.

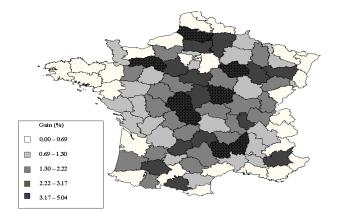
Legal dissimilarity costs can partly explain these effects:


- ► 43% of European retailers think their cross-border sales would increase with the harmonization of laws regulating consumer transactions.
- Turrini and van Ypersele (2006) find legal dissimilarity to reduce trade between and within countries (24% for French regions).

We re-run gravity equations with a legal similarity variable and a common jurisdiction-of-appeal dummy.

[To be extended in future work with sunk entry costs and product market regulation measures...]

# STEP 4: "United Legal Europe"


The average gain for our 11 countries is 3.38% (2.40% for France).



Corcos, Del Gatto, Mion, Ottaviano (2007) Firm Selection: Intra- vs International Trade

### STEP 4: "United Legal France"

The average gain for the 94 French 'Departements' is 1.48%.



# Robustness Checks

- Restrict the French sample to single-region firms (SR)
- Use the Levinsohn-Petrin TFP estimation technique to control for simultaneity bias (LP)
- Recover cutoffs  $c_s^{hh}$  from aggregate data on sector-country productivity from the GGDC (AP)
- Apply alternative productivity dispersion figures computed by Bernard et al. (2003) (k)
- Use unit internal distances (ID) and a CES distance aggregator (ABE) to check the robustness of our results to distance measurement.
- Address heteroscedasticity in the gravity estimation (PPML)
- Use regional international trade data and inter-regional commodity flows data to have a better measure of internal freeness (RT1 and RT2)

Table: Costs of non-Europe: robustness checks.

| Economy | OLS   | LP    | AP    | SR    | k     | ID    | ABE   | PPML  | RT1   | RT2   |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| BE      | 18.78 | 13.65 | 28.53 | 18.78 | 16.99 | 25.71 | 19.32 | 26.06 | 19.98 | 18.80 |
| DE      | 16.94 | 21.19 | 7.61  | 16.96 | 22.51 | 11.47 | 21.02 | 23.82 | 18.35 | 16.97 |
| DK      | 22.04 | n.a.  | 33.21 | 22.06 | 22.24 | 24.22 | 20.15 | 33.54 | 25.43 | 22.08 |
| ES      | 10.40 | 9.66  | 10.62 | 10.41 | 10.97 | 3.73  | 3.39  | 12.14 | 9.79  | 10.40 |
| FI      | 11.98 | 13.70 | 23.63 | 11.99 | 10.63 | 7.78  | 18.46 | 13.97 | 13.92 | 11.99 |
| GB      | 3.22  | n.a.  | 5.51  | 3.22  | 3.71  | 2.25  | 3.04  | 5.63  | 3.91  | 3.22  |
| IT      | 6.58  | 5.29  | 12.81 | 6.59  | 5.57  | 2.56  | 7.55  | 9.86  | 7.34  | 6.59  |
| NL      | 13.99 | 15.15 | 21.39 | 13.99 | 13.24 | 17.63 | 16.85 | 20.33 | 14.67 | 14.00 |
| PT      | 3.27  | -3.79 | 2.11  | 3.27  | 3.07  | 5.14  | 4.65  | 6.62  | 3.79  | 3.27  |
| SE      | 12.06 | 6.54  | 25.43 | 12.06 | 8.92  | 6.03  | 14.08 | 18.07 | 13.25 | 12.06 |
| FR10    | -0.06 | -0.10 | -0.05 | -0.08 | -0.02 | 8.30  | 0.39  | -0.11 | -0.10 | -0.05 |
| FR21    | 13.35 | 19.37 | 29.63 | 12.89 | 14.79 | 21.17 | 20.87 | 14.17 | 16.00 | 19.67 |
| FR22    | 12.42 | 8.16  | 21.83 | 12.87 | 9.16  | -3.63 | 16.20 | 13.32 | 12.05 | 15.44 |
| FR23    | 8.04  | 1.79  | 16.29 | 8.19  | 7.42  | 20.31 | 21.15 | 12.15 | 6.28  | 9.77  |
| FR24    | 10.07 | 6.12  | 20.10 | 10.06 | 9.58  | 12.96 | 15.32 | 11.08 | 10.54 | 13.06 |
| FR25    | 12.58 | 1.68  | 21.57 | 13.13 | 10.04 | 23.04 | 22.52 | 15.90 | 12.37 | 15.12 |
| FR26    | 5.48  | 3.74  | 14.57 | 5.67  | 5.50  | 11.68 | 12.34 | 3.26  | 5.71  | 7.94  |
| FR31    | 6.78  | 8.60  | 15.25 | 7.73  | 5.18  | 18.40 | 17.23 | -2.38 | 10.26 | 10.33 |
| FR41    | 11.87 | 11.26 | 24.97 | 11.61 | 8.15  | 16.82 | 18.13 | 13.44 | 12.49 | 14.32 |
| FR42    | 8.84  | 8.38  | 25.28 | 8.77  | 8.03  | 25.37 | 17.54 | 15.65 | 9.73  | 10.78 |
| FR43    | 8.90  | 7.75  | 20.72 | 10.54 | 8.90  | 19.52 | 16.40 | 11.80 | 9.49  | 10.93 |
| FR51    | 5.61  | 4.12  | 12.93 | 5.90  | 4.87  | 13.26 | 12.26 | 3.65  | 6.47  | 7.75  |
| FR52    | 8.15  | 6.18  | 31.30 | 9.67  | 16.76 | 21.85 | 22.86 | 20.57 | 10.97 | 14.48 |
| FR53    | 5.32  | 3.63  | 12.80 | 5.20  | 6.56  | 15.53 | 13.10 | 1.00  | 6.35  | 7.18  |
| FR61    | 13.09 | 11.63 | 24.90 | 13.39 | 13.68 | 21.68 | 23.28 | 17.28 | 12.53 | 15.78 |
| FR62    | 9.31  | 8.25  | 20.30 | 8.77  | 9.32  | 20.43 | 19.55 | 14.41 | 11.27 | 11.55 |
| FR63    | 2.63  | 1.87  | 9.72  | 2.52  | 1.42  | 12.01 | 11.23 | 1.33  | 3.18  | 4.06  |
| FR71    | 4.52  | 3.92  | 13.00 | 4.55  | 3.63  | 8.91  | 8.66  | 5.95  | 5.13  | 6.08  |
| FR72    | 4.34  | 3.19  | 11.10 | 4.41  | -2.21 | 14.58 | 12.13 | 3.62  | 4.98  | 5.98  |
| FR81    | 9.01  | 7.31  | 18.33 | 6.43  | 9.74  | 18.42 | 18.23 | 13.02 | 10.50 | 11.16 |
| FR82    | 9.45  | 8.21  | 19.90 | 9.55  | 10.66 | 18.61 | 15.92 | 12.83 | 4.04  | 11.59 |
| France  | 8.08  | 6.09  | 18.31 | 8.18  | 7.67  | 16.15 | 15.97 | 9.62  | 8.58  | 10.62 |
| Europe  | 11.58 | 9.72  | 17.20 | 11.59 | 11.41 | 11.15 | 13.13 | 16.33 | 12.64 | 11.82 |

Corcos, Del Gatto, Mion, Ottaviano (2007) Firm Selection: Intra- vs International Trade

#### Table: Costs of non-France: robustness checks.

| Economy | OLS   | LP    | AP    | SR    | k     | ID    | ABE   | PPML  | RT1   | RT2   |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| FR10    | 5.31  | 4.69  | 6.89  | 1.69  | 6.35  | 22.56 | 6.38  | 18.46 | 5.61  | 4.33  |
| FR21    | 32.99 | 36.40 | 34.73 | 33.05 | 24.06 | 38.80 | 35.76 | 44.04 | 34.91 | 32.38 |
| FR22    | 31.76 | 35.18 | 32.32 | 32.56 | 18.69 | 36.72 | 33.86 | 40.28 | 33.00 | 31.74 |
| FR23    | 21.10 | 22.27 | 20.47 | 21.05 | 15.58 | 32.19 | 27.33 | 32.71 | 21.21 | 20.23 |
| FR24    | 31.80 | 34.11 | 32.48 | 31.45 | 23.77 | 24.74 | 33.31 | 38.87 | 31.96 | 31.27 |
| FR25    | 23.77 | 25.36 | 23.43 | 24.51 | 16.01 | 26.61 | 26.27 | 33.62 | 24.70 | 22.99 |
| FR26    | 33.12 | 35.16 | 33.28 | 33.97 | 25.30 | 33.17 | 35.75 | 42.58 | 34.00 | 32.48 |
| FR31    | 11.67 | 15.42 | 12.04 | 12.77 | 7.10  | 26.28 | 18.47 | 24.36 | 14.81 | 12.43 |
| FR41    | 22.50 | 24.39 | 23.63 | 22.10 | 16.95 | 28.36 | 26.30 | 33.88 | 24.10 | 21.89 |
| FR42    | 21.95 | 23.95 | 23.35 | 21.99 | 13.99 | 32.48 | 26.29 | 34.96 | 23.82 | 21.09 |
| FR43    | 29.87 | 32.68 | 31.85 | 32.56 | 21.85 | 36.05 | 33.02 | 40.88 | 31.52 | 29.02 |
| FR51    | 25.50 | 26.84 | 25.35 | 26.36 | 18.97 | 22.22 | 26.23 | 34.60 | 25.84 | 24.93 |
| FR52    | 22.39 | 23.34 | 24.83 | 22.46 | 16.90 | 18.19 | 23.41 | 33.47 | 21.20 | 21.77 |
| FR53    | 30.06 | 31.86 | 31.30 | 29.17 | 21.98 | 28.25 | 32.17 | 39.24 | 30.65 | 29.29 |
| FR61    | 25.63 | 26.06 | 26.43 | 26.64 | 18.53 | 21.88 | 26.73 | 35.13 | 25.02 | 24.96 |
| FR62    | 24.75 | 25.39 | 26.12 | 24.23 | 13.55 | 23.11 | 25.36 | 34.32 | 25.68 | 24.08 |
| FR63    | 32.34 | 33.46 | 32.49 | 32.42 | 23.32 | 39.69 | 36.19 | 42.43 | 33.75 | 31.19 |
| FR71    | 20.17 | 21.68 | 21.54 | 20.30 | 15.90 | 18.07 | 20.03 | 30.05 | 21.14 | 19.69 |
| FR72    | 30.22 | 31.47 | 31.76 | 30.80 | 20.32 | 34.64 | 33.57 | 40.20 | 31.62 | 29.33 |
| FR81    | 25.48 | 26.13 | 26.43 | 22.36 | 17.78 | 23.81 | 26.35 | 35.53 | 27.13 | 25.21 |
| FR82    | 20.02 | 20.80 | 21.54 | 21.65 | 16.80 | 19.20 | 20.59 | 32.07 | 21.96 | 20.42 |
| France  | 24.88 | 26.51 | 25.82 | 24.96 | 17.80 | 27.95 | 27.30 | 35.32 | 25.89 | 24.32 |

| Economy | OLS   | LP     | AP    | SR    | k     | ABE   | PPML  | RT1   | RT2   |
|---------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| BE      | 42.30 | 28.00  | 17.21 | 42.48 | 12.89 | 12.38 | 16.35 | 47.64 | 30.12 |
| DE      | 60.18 | 39.33  | 6.87  | 47.08 | 42.32 | 21.51 | 20.66 | 40.76 | 49.17 |
| DK      | 35.98 | n.a.   | 88.54 | 36.48 | 17.08 | 14.74 | 37.78 | 37.34 | 35.10 |
| ES      | 18.37 | 30.43  | 35.43 | 18.52 | 9.18  | 1.76  | 14.64 | 18.23 | 16.57 |
| FI      | 15.01 | 36.76  | 37.27 | 15.03 | 12.44 | 5.65  | 26.05 | 24.15 | 14.80 |
| GB      | 3.61  | n.a.   | 10.12 | 3.63  | 3.64  | 0.93  | 3.34  | 2.75  | 3.14  |
| IT      | 6.37  | 5.47   | 18.56 | 6.50  | 4.59  | 0.98  | 6.51  | 5.42  | 5.81  |
| NL      | 9.66  | 4.49   | 16.93 | 9.61  | 19.99 | 3.40  | 23.33 | 8.17  | 10.21 |
| PT      | 1.17  | 8.96   | 0.86  | 1.17  | 0.49  | 1.40  | 1.47  | 1.60  | 1.16  |
| SE      | 16.28 | 5.36   | 10.59 | 16.30 | 7.69  | 5.22  | 12.14 | 18.20 | 15.81 |
| FR10    | 0.06  | 0.06   | 0.21  | 0.08  | 0.06  | 0.00  | 0.05  | 0.06  | 0.08  |
| FR21    | -7.18 | -10.12 | 19.06 | -7.61 | -1.68 | -2.92 | -8.51 | -8.71 | -5.56 |
| FR22    | 3.52  | -4.27  | 18.11 | 10.34 | 3.53  | 0.34  | 8.44  | 7.63  | 6.29  |
| FR23    | 13.91 | -3.14  | 13.89 | 7.00  | 6.22  | -0.55 | 16.75 | 9.29  | 10.78 |
| FR24    | 9.62  | 2.77   | 18.14 | 10.17 | 10.10 | 1.62  | 11.85 | 28.22 | 18.70 |
| FR25    | 23.04 | -6.33  | 19.67 | 26.47 | 13.05 | -0.40 | 27.02 | 29.22 | 35.83 |
| FR26    | 6.66  | 4.09   | 19.18 | 6.92  | 6.14  | 3.17  | 5.44  | 5.81  | 11.65 |
| FR31    | -2.46 | -5.97  | 1.49  | -2.39 | -1.50 | -3.23 | -3.19 | -2.35 | 0.78  |
| FR41    | -2.22 | -4.07  | 29.09 | -2.57 | -2.67 | -0.78 | -4.41 | -3.47 | 2.69  |
| FR42    | 1.83  | 6.77   | 54.55 | 1.64  | -1.05 | 5.97  | 1.17  | 4.19  | 7.55  |
| FR43    | 5.37  | 7.89   | 54.58 | 7.08  | 0.24  | 10.37 | 14.97 | 6.86  | 8.70  |
| FR51    | 8.57  | 5.38   | 16.15 | 9.58  | 7.27  | 1.61  | 4.83  | 6.74  | 12.52 |
| FR52    | 16.32 | 13.08  | 3.28  | 46.75 | 27.89 | 2.55  | 15.49 | 16.41 | 48.30 |
| FR53    | 5.12  | 5.80   | 34.39 | 4.53  | 11.01 | 1.11  | 6.85  | 5.63  | 9.34  |
| FR61    | 38.23 | 23.05  | 31.39 | 31.99 | 24.28 | 11.53 | 27.26 | 34.05 | 58.04 |
| FR62    | 15.24 | 8.46   | 19.37 | 11.63 | 3.23  | 15.82 | 17.95 | 29.69 | 24.56 |
| FR63    | 2.86  | 2.03   | 12.04 | 2.63  | 3.34  | 2.12  | -1.47 | 2.42  | 5.17  |
| FR71    | 6.07  | 5.34   | 43.26 | 6.07  | 3.24  | 5.10  | 6.51  | 4.92  | 11.86 |
| FR72    | 4.32  | 2.38   | 30.65 | 4.46  | 8.27  | 1.85  | 2.81  | 3.50  | 7.50  |
| FR81    | 17.13 | 12.69  | 39.86 | 15.29 | 14.32 | 11.50 | 21.66 | 18.02 | 26.43 |
| FR82    | 19.98 | 22.16  | 46.74 | 25.35 | 10.87 | 19.17 | 30.72 | 30.43 | 33.46 |
| France  | 8.86  | 4.19   | 25.00 | 10.26 | 6.96  | 4.09  | 9.63  | 10.88 | 15.94 |
| Europe  | 19.80 | 18.11  | 24.31 | 18.82 | 12.48 | 6.55  | 15.63 | 19.56 | 17.98 |

Table: Gains from United Europe: robustness checks.

Corcos, Del Gatto, Mion, Ottaviano (2007) Firm Selection: Intra- vs International Trade

# Conclusions

We have calibrated a multi-economy multi-sector model on firm-level data and trade figures for 10 EU countries and 21 French regions. Intra-national French trade has a more important effect on French productivity than trade with 10 EU partners.

- "Costs of non-Europe": productivity loss (8.08%).
- "Costs of non-France": productivity loss (24.88%).

Substantial gains from eliminating border effects:

- Productivity gain for European countries (19.80%), for France (8.86%). Big changes in prices, markups, profits and quantities.
- Caveat: not all border effects can be attributed to trade frictions.
- Still, 15% of these effects can be eliminated by legal harmonization.

Our results are robust to various alternative measures of TFP and distance-elasticities of trade.

# Directions for further research

I have now access to a wider range of data for both France and Europe and I would like to

- Enrich both the theoretical and empirical model with FDI (joint with K. Behrens and G. Ottaviano, CORE DP)
- Evaluate the impact of specific trade impediments (legal costs and technical barriers) as well as product market regulation and sunk entry costs on productivity in a theoretically consistent model (joint with K. Behrens, G. Corcos and G. Ottaviano, work in progress)
- Evaluate the interplay between the various forms of internationalization (Export, FDI, Outsourcing) **at the firm level** (joint with G. Corcos and T. Verdier, work in progress)