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Abstract: The effect of learning on climate policy is not straightforward when climate 

policy is concerned. It depends not only on the ways that climate feedbacks, preferences, 

and economic impacts are considered, but also on the ways that uncertainty and learning 

are introduced. Deep (or fat-tailed) uncertainty does matter for the optimal climate policy 

in that it requires more stringent efforts to reduce carbon emissions. However, learning 

may reveal thin-tailed uncertainty, weakening the case for emission abatement: learning 

reduces the stringency of the optimal abatement efforts relative to the no learning case 

even when we account for deep uncertainty. In order to investigate this hypothesis, we 

construct an endogenous (Bayesian) learning model with fat-tailed uncertainty on climate 

change and solve the model with stochastic dynamic programming. In our model a 

decision maker updates her belief on the total feedback factors through temperature 

observations each period and takes a course of action (carbon reductions) based on her 

belief. With various scenarios, we find that the uncertainty is partially resolved over time, 

although the rate of learning is relatively slow, and this materially affects the optimal 

decision: the decision maker with a possibility of learning lowers the effort to reduce 

carbon emissions relative to the no learning case. This is because the decision maker fully 

utilizes the information revealed to reduce uncertainty, and thus she can make a decision 

contingent on the updated information. In addition, with incorrect belief scenarios, we find 

mailto:R.Tol@sussex.ac.uk


2 

that learning enables the economic agent to have less regrets (in economic terms, sunk 

benefits or sunk costs) for her past decisions after the true value of the uncertain variable is 

revealed to be different from the initial belief.  
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1. Introduction  

“The acquisition of information has value, which it would not have in a world of certainty.” (Arrow, 1957: 524) 

Following this notion, economists have investigated the effects of learning on policy, including the irreversibility 

effect, the value of information, the optimal timing of action, the rate of learning, the direction of learning, and the 

cost of learning.
1 The answers to these questions, however, are not straightforward especially when climate policy is 

concerned. They depend not only on the ways that climate feedbacks, preferences, and economic impacts are 

considered, but also on the ways that uncertainty and learning are introduced.  

The general framework for the problem of decision making under uncertainty and learning about climate change is 

as follows (Pindyck, 2000; 2002). In an economy where the impacts of climate change are uncertain with a 

possibility of learning, a decision maker encounters conflicting risks: a risk that stringent emissions control today 

turns out to be unnecessary ex post (sunk costs) and a risk that much stronger efforts are required in the future (sunk 

benefits). If there is no irreversibility to be considered, the problem becomes trivial since the decision maker can 

revise her actions as and when required. However, both the investment in emissions control and the accumulation of 

greenhouse gases are, at least partially, irreversible. In the presence of the irreversibility, the decision maker 

generally favors an option that preserves flexibility (Arrow and Fisher, 1974; Henry, 1974). As far as climate policy 

is concerned, since there are two kinds of counteracting irreversibility, the problem becomes complicated. The 

relative magnitude of the effects of the irreversibility determines the direction and the magnitude of the effect of 

learning on policy: the irreversibility related to carbon accumulation strengthens abatement efforts whereas the 

capital irreversibility lowers abatement.  

Alternatively, we can think of the problem as an optimal experimentation with emissions in the framework of 

learning by doing (Arrow, 1961; Grossman et al., 1977). The decision maker confronted with uncertainty and a 

possibility of learning about the impacts of climate change can be interpreted as a Bayesian statistician who 

experiments with a level of carbon emissions to gain information about uncertainty. The more emissions (in turn, 

higher temperature increases) are more informative in the sense that it provides more precise information about 

uncertain parameters such as climate sensitivity. However, the acquisition of information comes at an implicit cost: 

higher emissions induce consumption losses (via increased temperature). As a result, the decision maker should 

choose an optimal level of emissions by comparing gains and losses from the acquisition of information.  

In the literature, the possibility of learning generally changes the near-term policy towards higher emissions relative 

to the case where the uncertainty is not reduced (for the summary of the literature see Ingham et al., 2007). One 

reason for this is that constraints such as the non-negativity of carbon emissions rarely bite in climate change models 

(Ulph and Ulph, 1997).
2
 In addition, even if they do bind, the effect of the (partially) irreversible accumulation of 

carbon stocks is smaller than the effect of the irreversible capital investment in emissions control (Kolstad, 1996).
3
 If 

                                                           
1
 The relevant literature for these issues on climate change is as follows: the irreversibility effect (Kolstad, 1996a; Ulph and Ulph, 

1997), the value of information (Peck and Teisberg, 1993; Nordhaus and Popp, 1997), the optimal timing of action (Pindyck, 

2000, 2002; Guillerminet and Tol, 2008), the rate of learning (Kolstad, 1996b; Kelly and Kolstad, 1999; Leach, 2007; Webster et 

al., 2008), and the direction of learning (Oppenheimer et al., 2008).  

2
 Regarding this, Webster (2002) argues that if the non-negativity matters, the effect of the irreversible accumulation may 

outweigh the effect of the irreversible investment. 

3
 Some literature finds the case where the irreversibility constraint (i.e. nonnegative emissions) binds with various methods, 

including the alternative parameterization of some critical equations (Ulph and Ulph, 1997; Webster, 2002), the introduction of 

catastrophic events (Keller et al., 2004), and the presence of stringent climate targets (Webster et al., 2008). However, their 

models do not find a case where sunk benefits outweigh sunk costs.  
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we think of the results in the framework of learning by doing, these results imply that the experimentation with more 

carbon emissions is more informative in the sense that the decision maker can attain more utility from the 

experimentation (Blackwell, 1951).  

In the current paper we add another perspective on the literature. That is, where previous papers studied thin-tailed 

distributions, we here focus on fat-tailed ones.
4
 Fat-tailed uncertainty (or deep uncertainty) may lead to different 

results since the marginal damage costs of climate change become far larger, if not arbitrarily large, under deep 

uncertainty (Tol, 2003; Weitzman, 2009). Consequently, sunk benefits may outweigh sunk costs under the 

possibility of learning, and this may change climate policy in favor of more stringent efforts to reduce emissions 

compared to the no learning case.  

However, learning may of course reveal thin-tailed uncertainty (about social welfare), weakening the case for 

emissions abatement.
5
 That is, learning reduces the optimal level of emissions control rates even when we account 

for deep uncertainty. We develop a dynamic model on climate change introducing deep uncertainty and learning to 

investigate this hypothesis. Learning in our model is endogenous: the decision maker updates her belief about a 

parameter, expressed in a probability distribution, by the acquisition of information. Our approach on endogenous 

learning is not new in the literature on the economics of climate change. For instance, Kelly and Kolstad (1999) 

introduce uncertainty about a climate parameter (linearly related to climate sensitivity) into the DICE model, and 

then investigate the expected learning time. Leach (2007) follows a similar model and approach, but introduces an 

additional uncertainty on climate parameters. Webster et al. (2008) investigate the effect of learning on the near term 

policy using the DICE model with a discrete four-valued climate sensitivity distribution and exogenous learning. In 

the second part of their paper, they investigate the time needed to reduce the uncertainties about climate sensitivity 

and heat uptake by using a simplified climate model. They incorporate fat-tailed uncertainty and Bayesian learning 

into the model but their model does not analyze policy. The current paper is different from the literature in that we 

investigate the effect of learning on climate policy using an endogenous learning model incorporating fat-tailed 

uncertainty.
6
 In specific, unlike the literature, we investigate the optimal level of emissions control under the 

possibility of endogenous learning as well as the rate of learning. In addition, through various scenarios such as the 

incorrect belief cases, we compare the benefits of learning.  

The paper proceeds as follows. Section 2 describes the model and computational methods. We revise the DICE 

model (Nordhaus, 2008) to represent (deep) uncertainty and endogenous learning about the equilibrium climate 

sensitivity through the framework of feedback analysis (Hansen et al, 1984; Roe and Baker, 2007). We solve the 

infinite time horizon model using the method of dynamic programming.
 
Section 3 presents the posterior distribution 

of the total feedback factors and the climate sensitivity. We compare the rate of learning with various sensitivity 

analyses. Section 4 illustrates the effect of learning on climate policy. We investigate the case where the initial belief 

on the climate sensitivity is correct in the sense that the true value of the climate sensitivity turns out to be the same 

as the expected value of the initial belief of the decision maker. Then we compare the results with the other cases 

where the initial belief of the decision maker turns out to be incorrect. Section 5 investigates the value of learning. 

Finally, Section 6 concludes.  

                                                           
4
 We follow the definition of fat tails as follows: “a PDF [probability density function] has a fat tail when its moment generating 

function is infinite ‐ that is, the tail probability approaches 0 more slowly than exponentially.” (Weitzman, 2009: 2) 

5 Notice that the posterior distributions of climate sensitivity always have fat tails in the specification of our learning model since 

the variance of the total feedback factors does not become zero (asymptote) (see Section 2). However, the uncertainty on social 

welfare may have thin tails as the variance of the total feedback factors approaches zero.  

6 Kelly and Tan (2012) do a similar analysis to ours in that they also incorporate fat-tailed uncertainty and learning into a climate-

economy model. However, they do not present any policy analysis yet in their preliminary working paper.  



3 
 

2. Model and methods 

2.1. The revised DICE model  

We revise the DICE model to introduce uncertainty and learning. There are several distinct differences with the 

original DICE model. First, the current model incorporates (deep) uncertainty. The key uncertain parameter in the 

model is the equilibrium climate sensitivity. Second, the probability density function (PDF) of the total feedback 

factors, and thus the PDF of the climate sensitivity, changes over time through temperature observations.
7
 As a 

result, the mean and the variance of the total feedback factors become endogenous state variables (see below). Third, 

we apply a simple variant of energy balance model for atmospheric temperature evolution to represent the total 

feedback factors explicitly. Furthermore, we introduce stochastic shocks into the temperature equation for Bayesian 

updating on the PDF of the total feedback factors (Equation (5)). Temperature shocks reflect uncertainty about 

observational errors, model’s biases to match observations, and the natural variability (Webster et al., 2008). Fourth, 

we consider an infinite time-horizon problem and apply a solution method suitable for the endogenous learning 

model (see Section 2.3). To this end, we modify some specifications of the DICE model for computational 

convenience. In specific, we apply a simple one-box model for the evolution of carbon stocks (Equation (4)). Our 

model does not consider a backstop technology for the abatement costs function. In addition, unlike the DICE model, 

the time period t in our model is annual and thus some parameter values including    and the parameters in 

Equation (5) and (6) are adjusted. There is an upper limit of 6,000 GtC for the accumulated carbon emissions in 

DICE but the current model does not include this constraint. Finally, the utility of consumption is not weighted by 

the level of population in the objective function (Equation (1)).
8
  

As with the original DICE model, the (partial) irreversibility is represented by the depreciation rates of carbon 

stocks and capital stocks (Equation (3), (4)) together with the non-negativity of emissions (   ≤ 1). We assume that 

learning is costless. 

The model is specified as follows:
 9
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7
 The equilibrium climate sensitivity is a measure of the responsiveness of climate system to radiative forcing. It denotes how 

much atmospheric temperature changes when carbon concentration doubles. The feedback factor refers to the impact of a 

physical factor such as water vapor and cloud on radiative forcing in a way that amplifies the response of climate system (Hansen 

et al., 1984). 

8
 Simulations with population-weighted objective function produce the similar results qualitatively as the results in this paper.  

9
 Unless otherwise noted, the parameter values and the initial values for the state variables (in the year 2005) are the same as in 

DICE 2007. The exceptions are the elasticity of marginal utility of consumption ( ) and the exponent of the abatement cost 

function (  ). We use 1 for   and 2 for    (instead of 2 and 2.8, respectively in DICE 2007) because of the computational 

convenience in deriving the first-order conditions (see Section 2.3 and Appendix A). The value of 1 for   is in the plausible range 

of the elasticity of marginal utility of consumption (Gollier 2000). A logarithmic utility function ( =1) is used in the older 

version of DICE, for instance. The lower   implies the less concavity of utility function, and thus the less aversion to risk and the 

more aversion to inequality. The marginal abatement costs are linear in our model since we use 2 for   . Ulph and Ulph (1997) 

apply the quadratic abatement costs function, among others.  
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where    is the expectation operator given information at point in time t,   is the instantaneous utility of per capita 

consumption,    is consumption,    is the level of population (exogenous),    is the total factor productivity 

(exogenous),    (=    
  ) is the abatement cost function,    (=1/(        

       

  )) is the damage function,    

(=    
 
  
   

) is the production function,  
 
 is the emissions control rate,     is the gross investment,    is the capital 

stock,    is the carbon stock in the atmosphere,     
 is the atmospheric temperature deviation (from 1900),      

 is 

the lower ocean temperature deviation (from 1900),   is the total feedback factors normally distributed with mean   ̅ 

(the initial value is 0.65 following Roe and Baker (2007)) and variance    (the initial value is 0.13
2
 following Roe 

and Baker (2007)),    is the stochastic temperature shocks normally distributed with mean 0 and variance    (=0.11
2
 

following Leach (2007)),    is the emission-output ratio (exogenous),     is the radiative forcing from non-CO2 

gases (exogenous),       
 is carbon emissions from the sources other than energy consumption (exogenous),   is 

the elasticity of marginal utility of consumption (=1),           is the discount factor,   is the pure rate of time 

preference (=0.015),   is the elasticity of output with respect to capital (=0.3),    (= 0.1) and    (=0.00833 

following Leach (2007)) are the depreciation rates, respectively of the capital stock and the carbon stock,    is the 

pre-industrial carbon stocks in the atmosphere (=596.4GtC),    (=0),    (=0.0028388),    (=2),    (=0.0561),    

(=2),   (=0.005),    (=0.06967),    (=0.92373),    (=0.12061),    (=0.0066),    (=0.022) are parameters.  

2.2. Bayesian learning 

The temperature response model in the current paper is a simple variant of the energy balance model of Baker and 

Roe (2009). In their model, the temperature of the ocean mixed layer obeys the following equation:     
   

  
 

       

  
  

    

  
|       , where   is the density,    is the specific heat,   is the depth of the mixed layer,   is the 

thermal conductivity, z is the ocean depth below the mixed layer, and    is the temperature at depth z. With a two-

box (mixed layer and deep ocean) simplification, the above equation reduces to Equation (5) (without stochastic 

shocks) and Equation (6) (Marten, 2011).
10

  

The decision maker updates her belief on the total feedback factors through temperature observations each time-

period in our model. This representation enables us to consider deep uncertainty because the climate sensitivity is 

related to the total feedback factors as in Equation (9) (Roe and Baker, 2007). In this relation together with the 

                                                           
10

 Equation (5) can also be derived from the climate model in DICE using the relationship as in Equation (9).  
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assumption on the distribution of the total feedback factors described below, the climate sensitivity has a highly 

skewed distribution to the upper end (see Figure 1).
11

 

           ⁄  (9) 

where    is the equilibrium climate sensitivity,     (=1.2°C following Roe and Baker (2007)) is the reference 

climate sensitivity in the grey-body planet (no feedback effects).  

We introduce stochastic shocks into the atmospheric temperature equation. The stochastic shocks are assumed to 

have a normal distribution with mean 0 and a constant variance. Although the shocks are independent, Equations (5) 

and (6) imply a first-order autoregressive model (Kelly and Kolstad, 1999). In this representation, the decision 

maker expects that the atmospheric temperature in the next period is determined by the following equation: 

                
                    

      
 . However, the actual realization of the atmospheric temperature 

is determined by the true value of the total feedback factors (which is not known to the decision maker ex ante with 

certainty: parametric uncertainty) and the realized stochastic shocks (which is never known to the decision maker 

before realization: stochasticity). Put differently, there is deviation between the decision maker’s expectation and 

observations, which leads to the modification of the prior belief. The decision maker in our model obtains the 

posterior distribution of the total feedback factors by the Bayes Rule as follows.  

   |          |        (10) 

where      is the prior belief on the total feedback factors,      |   is the likelihood function of the observations 

given  , and    |     is the posterior belief.  

We use an expert prior for the distribution of the total feedback factors: namely, the normal distribution of Roe and 

Baker (2007). The normal priors have some advantages over the other priors. First, the posterior calculated from the 

normal prior is also normally distributed, provided that the likelihood function is also normal. In this case, it is easy 

to calculate the posterior just by investigating the posterior mean and the variance (Cyert and DeGroot, 1974). 

Second, as Annan and Hargreaves (2011) point out, uniform priors usually used in a Bayesian analysis assign too 

much probability to extreme parameter values (say, climate sensitivity of 10°C/2xCO2) beyond the current scientific 

knowledge.
12

 This assignment may dominate the calculation of the expected damage costs. 

The resulting posterior has the normal distribution with mean     
̅̅ ̅̅ ̅ and variance      as in Equation (7) and (8).

13
 In 

the subsequent period, the decision maker uses the previously calculated posterior as the prior. In this way, the 

decision maker updates her belief every time-period.  

The variance of the total feedback factors decreases over time. Put differently, the acquisition of information in our 

model always increases the precision of the decision maker’s belief. Furthermore, as the variance gets smaller, the 

                                                           
11

 Kelly and Kolstad (1999) and Leach (2007) apply the similar approach to ours, but the decision makers in their models update 

beliefs on the (normally distributed) climate parameter so they do not account for fat-tails. In addition, updating the PDF of the 

total feedback factors is more appropriate than updating the PDF of the climate sensitivity in that the observable parameters are 

not the climate sensitivity but the feedback factors (Allen et al., 2005).  

12
 For instance, compare the peer-reviewed climate sensitivity distribution in Solomon et al. (2007) and a uniform distribution 

such as U(0, 20). The probability assigned to climate sensitivity of 4.5°C/2xCO2 or more in each case is 15% and 77.5%, 

respectively.   

13
 These equations are derived from a direct application of Bayes’ Theorem (Equation (10)) with the above mentioned 

assumptions on the likelihood function and the prior. For more on Bayesian updating methods, see Lee (2012). 
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mean approaches to the true value of the total feedback factors, on average (Equation (7)). That is, there is no 

‘negative’ learning (Oppenheimer et al., 2008) in this model. One thing to add is that, although the variance 

becomes smaller as the temperature observations accumulate, the climate sensitivity has still fat tails, unless the 

variance becomes equal to 0, in the sense that its density diminishes more slowly than exponentially (Kelly and Tan, 

2012).  

2.3. Computational methods 

There are generally two kinds of methods for solving a learning model numerically: stochastic optimization and 

dynamic programming. The first one is to consider possible states of the world on parameter values of interest with 

corresponding probability distributions, and solve for the optimal time path of policy variables that maximize the 

expected value of the objective function over a finite time horizon (e.g. Kolstad, 1996; Webster et al., 2008). The 

second one is to formulate the problem in a recursive way (a functional equation) and then solve the problem over 

an infinite time horizon (e.g. Kelly and Kolstad, 1999; Leach, 2007). The current paper takes the second approach: 

dynamic programming.
14

 We illustrate the general approach of the current paper below and the solution methods in 

detail are given in Appendix A. 

We formulate the problem as the following. The Bellman equation is:  

            
  

                              (11) 

where          is the value of the maximized objective function, Equation (1), starting from period t (value 

function),   is the vector of control variables ( ,  ),   is the vector of state variables ( , M,    ,    ,  ,̅ v), and   is 

the vector of uncertain variables (f,  ).  

Then we approximate value function   with flexible basis function   having a specific analytic form such as 

polynomials or a logarithmic function.  

                    ∑             
 

 (12) 

where   is the basis function,   is the vector of coefficients for the basis function.  

Following this way, we change the maximization problem into the regression problem: finding   of the basis 

function that minimizes the approximation errors. The algorithm for finding   is summarized as follows. First, 

choose an initial guess on    Second, simulate a time series satisfying the first order necessary conditions (see 

Appendix A), the initial conditions (the initial values for the state variables), and the transitional equations (Equation 

(3) – (8)) with the initial guess.
15

 Third, compare the left-hand side and the right-hand side of Equation (11), and 

then iterate simulations with updated   if the difference is higher than the pre-specified tolerance level (see 

Appendix A for the updating rule and the stopping rule).
16

 Fourth, if the difference meets the stopping rule, stop the 

iteration. This is the method proposed by Maliar and Maliar (2005), and it reduces the computational burden in that 

                                                           
14

 For the general discussion on recursive methods and applications of computational methods for dynamic programming, see 

Stocky and Lucas (1989), Rust (1996), and Judd (1998).  

15 If the initial guess is chosen, we can calculate the control variables from the first order necessary conditions, the initial values 

for state variables, and the transitional equations. In this way, the resulting time series depend on  .   

16 For the calculation of the conditional expectation, we use the Gauss-Hermite quadrature method (Judd, 1998). 
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it searches for a solution in a set satisfying the necessary conditions (an ergodic set).
17

 Once found, the solution   

attains the fixed point of the Bellman equation, which is the unique solution for the maximization problem (Equation 

(1)) (Stocky and Lucas, 1989).    

3. The resolution of uncertainty  

3.1. Climate sensitivity distribution 

According to the updating procedure presented in the previous section, the belief of the decision maker on the true 

value of the total feedback factors changes as the (annual) temperature observations accumulate. Figure 1 shows the 

evolution of the parameter values of the total feedback factors distribution, the corresponding distributions of the 

climate sensitivity, and the tail probabilities. Following the current scientific knowledge on the total feedback factors 

distribution (Roe and Baker, 2007), we present the case where the true value of the total feedback factors is 0.65 

(except the top left panel: we use 0.70 there for an illustration purpose. From the top left panel, we can observe how 

the expected value of the decision maker approaches the true value as observations accumulate over time) and the 

initial belief on the total feedback factors is the normal distribution with mean 0.65 and standard deviation 0.13. 

Regarding other assumptions for simulation, see Appendix A. Considering random realizations of the temperature 

shocks, throughout the paper for the learning case, we present the average of 10,000 Monte Carlo simulations.   

Since the mean changes, we consider the coefficient of variation -- the standard deviation divided by the mean -- as 

a measure of uncertainty. We define learning as a decrease in the coefficient of variation as Webster et al. (2008) 

do.
18

 In this definition, the decision maker learns every year as we can see from the top left panel. As argued in the 

previous section, the mean approaches the true value of the total feedback factors and the variance decreases as the 

temperature observations accumulate over time. The coefficient of variation also falls over time. The top right and 

the bottom left panel show the climate sensitivity distributions corresponding to the baseline case: the true value of 

the total feedback factors is 0.65 and the prior belief on the total feedback factors is normal distribution with mean 

0.65 and standard deviation 0.13. The density on the tails becomes much smaller as time goes by, and thus the 

precision (defined as the reciprocal of variance) of the belief increases. The bottom right panel illustrates the (right) 

tail property of the climate sensitivity distribution of the reference case. As expected, the tail probability decreases 

as learning takes place. For instance, the probability that climate sensitivity is above 6°C is 0.12 in 2005, but it 

decreases to 0.076 and 0.014 in 2050 and 2100, respectively. Since the tail probability gets smaller over time, the 

value of climate sensitivity below which a significant percent lie (a percentile) also decreases.
19

 For instance, 95
th

 

percentile of climate sensitivity decreases from 8.8°C in 2005 to 5.0°C in 2100. One of the important questions in 

climate science is whether we can provide constraints (or an upper bound) on climate sensitivity (for further 

discussion on this issue, see Knutti et al., 2002; Annan and Hargreaves, 2006). If we use a percentile to impose an 

upper bound on climate sensitivity, the bottom right panel gives useful information. For instance, based on 95
th

 

(respectively, 99
th

) percentile, it takes 65 years (resp., 100 years) to set an upper bound on climate sensitivity below 

6°C. 

  

                                                           
17

 For further discussion on this issue, see Judd et al. (2011) 

18
 Kelly and Kolstad (1999) and Leach (2007) define learning as the estimated mean approaching its true value. Learning takes 

place in their model when the mean of an uncertain variable becomes statistically close to the pre-specified true value (with 

significance level 0.05). 

19
 Of course we are concerned about a high percentile, say 95th percentile in this sentence. Note that a low percentile (say 5th 

percentile) increases since the left tail also shrinks over time.  
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3.2. The rate of learning 

The rate of learning is as important as the magnitude of learning since slow learning may lead to incapability for us 

to take appropriate actions on time because of the irreversibility. Especially when we consider the possibility of 

(discontinuous) climate catastrophes such as a collapse of the West-Antarctic Ice Sheet (Guillerminet and Tol, 2008) 

and the thermohaline circulation collapse (Keller et al., 2004), we should put more importance on the rate of 

learning. Furthermore, fast learning enables more efficient allocation of resources. In order to investigate the rate of 

learning, we normalize the coefficient of variation so that the initial value (in 2005) is equal to 1. Figure 2 shows the 

results. We present some sensitivity analyses together with the baseline case. First of all, the time needed to reduce 

the uncertainty (about the total feedback factors) is relatively long in the baseline case: it takes 67 years 

(respectively, 164 years) to reduce the uncertainty by 50% (resp., 90%).
20

 Learning is faster (respectively, slower) 

when the true value of the total feedback factors is higher (resp., lower) than the initial belief. This is intuitive in that 

the higher total feedback factors imply the higher temperature increases, resulting in the lower variance (see 

Equation (5) and (8)). In the similar fashion, the rate of learning is increasing in emissions. In order to verify this, we 

perturb emissions by one unit (1GtC) per year from the optimal solution.
21

 The top right panel shows the results. A 

unit increase (respectively, decrease) in emissions from the optimal path reduces (resp., increases) the uncertainty. 

The more deviations in emissions are, the higher deviations in the rate of learning are.  

The rate of learning is highly sensitive to the variance of the temperature shocks. For instance, if the standard 

deviation of temperature shocks is reduced to 0.05 (the baseline case is 0.11), the time needed to reduce the 

uncertainty is almost halved relative to the baseline case: it takes 32 years (respectively, 88 years) to reduce the 

uncertainty by 50% (resp., 90%). The bottom right panel illustrates the sensitivity of the rate of learning to the initial 

level of uncertainty. Since the coefficient of variation differs from case to case, we do not normalize the coefficient 

of variation in this panel. We observe that the coefficient of variation converges to a certain (low) level during the 

late 22
nd

 century. In other words, differences in the initial level of uncertainty become irrelevant after 150 years or 

so in our learning model. This is because the rate of learning is higher in a more uncertain world. Nevertheless, there 

are substantial differences in uncertainty in the near future.  

 

4. The effect of learning  

We investigate the effect of learning on climate policy. To this end, we compare 3 cases: (1) Deterministic, (2) 

Uncertainty (no learning), and (3) Learning. The deterministic case refers to the case where the decision maker does 

not consider uncertainty. The uncertainty case refers to the case where the decision maker accounts for uncertainty, 

but her belief remains unchanged. The information may accumulate, but the decision maker simply ignores the 

possibility of learning or chooses to ignore the information gathered. Finally, the belief of the decision maker is 

subject to change in the learning case. The decision maker fully utilizes the information acquired from the 

temperature observations so that she can make a decision contingent on the information. Throughout this section, the 

initial belief on the total feedback factors is represented by the normal distribution with mean 0.65 and standard 

deviation 0.13. The true value of the total feedback factors is 0.65 in Section 4.1.  

                                                           
20  The time needed to reduce the uncertainty is, of course, sensitive to the specification of the model, especially to the 

assumptions on the prior and the likelihood function. However, notice that the results we present in this section are based on the 

current scientific knowledge on the distribution of the total feedback factors following Roe and Baker (2007).  

21 We simulate the model with an additional one unit of exogenous carbon emissions and then find the solution. For simulation, 

we use the solution b of the reference case as the initial guess. The other specifications are the same as the reference case.   
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In our learning model, atmospheric temperature evolves according to the true value of the total feedback factors, but 

the decision maker conducts a course of action according to her belief. Then what if our belief on uncertain variables 

turns out to be incorrect? In order to answer to this question we simulate our model with an assumption that the true 

value of the total feedback factors, ex post, turns out to be different from the decision maker’s initial belief in 

Section 4.2. We consider two scenarios. First, the true value of the total feedback factors turns out to be higher than 

the initial belief (‘H’ case: f=0.70 >    =0.65). Second, the true value turns out to be lower than the initial 

expectation (‘L’ case: f =0.60 <     =0.65).  

4.1. Correct belief 

Figure 3 summarizes the effect of learning, which is generally consistent with the literature as we briefly introduced 

in Section 1. First, fat-tailed uncertainty greatly increases the abatement efforts relative to the deterministic case. 

This is because the uncertainty model considers the less probable but the more dismal future as well as the most 

probable (mode) or the expected state of the world. For instance, the optimal emissions control rate around the year 

2030 reaches 50% and the irreversibility constraints (nonnegative emissions) start to bind after the year 2180 when 

we account for fat tailed uncertainty. Whereas in the deterministic case, the optimal level of emissions control rates 

in 2030 is below 30%. Second, the possibility of learning reduces the abatement efforts relative to the uncertainty 

case. Although the atmospheric temperature increases more in the learning case than in the uncertainty case (see the 

right panel, this is because carbon emissions are greater in the learning case as a result of lower emissions control 

rates), the decision maker attains (slightly) more consumption (in turn, utility) from the learning case. This implies 

that the experimentation with more emissions (or learning) is beneficial to the decision maker.  

 

4.2. Incorrect belief 

Figure 4 illustrates the results for the case of incorrect belief. The first thing we observe is that the optimal decision 

changes a lot according to the true value of the total feedback factors. Especially in the uncertainty case the 

emissions control rates are very sensitive to the true values, and thus the resulting temperature increases and the 

consumption vary a lot more relative to the learning case. Compared to the uncertainty case, the changes in optimal 

emissions, temperature deviations, and consumption are small in the learning case. This is because learning enables 

the decision maker to adjust her actions according to the information revealed. Second, the possibility of learning 

lowers the optimal level of emissions control rates in the incorrect belief case as in the correct belief case. Third, as 

one would expect, the optimal control rates are lower (respectively, higher) when the true value of the total feedback 

factors turns out to be lower (resp., higher). Atmospheric temperature deviations change in the opposite direction of 

the control rates. Fourth, the decision maker attains higher consumption when the true value of the total feedback 

factors turns out to be lower than expected.  

 

5. The benefits of learning 

In this section we investigate the benefits of learning. Table 1 illustrates the optimal carbon tax and the net present 

value of utility of each scenario in Figure 4. The optimal carbon tax is much higher in the uncertainty case than in 

the deterministic case and it is decreased in the learning case. When the true value of the uncertain variable turns out 

to be higher (respectively, lower) than expected the gain from learning becomes higher (resp., lower). We also 

observe that learning is valuable in that it increases social welfare. The net present value of utility (or social welfare 

to be maximized by the decision maker) is increased when we account for the possibility of learning. In addition, 

social welfare is higher (respectively, lower) when the true value turns out to be lower (resp., higher). The only 

exception is UNC_L case, where the decision maker does not account for the possibility of learning and the true 

value turns out to be lower than her belief. In this scenario, social welfare is higher than in the learning case 
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(LRN_L). One of the possible reasons for this is that 1) investment is higher in the learning case than in the 

uncertainty case (see Appendix B) and 2) as we can see from Figure 4, there are no significant differences in 

abatement efforts and temperature increases between UNC_L and LRN_L cases (see the green lines in top and 

bottom panels), hence no significant differences in abatement costs and damage costs (see Figure 5). Since 

consumption is calculated as production net of investment, damage costs, and abatement costs (see Equation (2)), 

consumption is higher in UNC_L case than in LRN_L case, and hence the higher utility in the uncertainty case. 

However, the gross income defined as the sum of consumption and investment (or the gross production net of 

abatement costs and damage costs) is higher in LRN_L case than in UNC_L case (see Appendix B).  

 

In order to see the value of learning in a different perspective, let us suppose that the decision maker in the 

uncertainty case somehow choose to change her strategy about learning in a specific time period, say in the year 

2100. That is, the decision maker starts to update her belief after the year 2100 based on temperature observations. 

With this assumption, we can calculate sunk benefits or sunk costs of the decision maker’s past decisions: the 

difference in the total costs (sum of damage costs and the abatement costs) between the uncertainty case and the 

learning case represents the benefits of learning. Figure 5 shows the results. Considering the differences in the gross 

production and investment in each case, we present the costs as a fraction of the gross production of each case. As 

illustrated in the previous section, the optimal emissions control rates are lower in the learning case than in the 

uncertainty case, and thus the abatement costs are lower but the damage costs are higher in the learning case. The 

total costs are lower in the learning case than in the uncertainty case. For instance, the total costs are 0.26% point (as 

a fraction of the gross world output) lower in the learning case than in the uncertainty case in 2100. When the true 

value of the total feedback factors turns out to be higher (respectively, lower) than expected, the decision maker will 

find that emissions control rates have been unnecessarily lower (resp., higher) than required, but she cannot revise 

her past actions. That is, there are sunk benefits in H case and sunk costs in L case. The benefits of learning (or 

penalties for no-learning) become higher (respectively, lower) when the true value of the uncertain variable turns out 

to be higher (resp., lower) than the initial belief. Those values in 2100 are 2.10% point and 0.05% point (as a 

fraction of the gross world output) in H case (f=0.70 >    =0.65) and L case (f=0.60 <    =0.65), respectively.  

 

6. Conclusion 

We constructed an endogenous (Bayesian) learning model with a fat-tailed uncertainty on climate change and solved 

the model with a stochastic dynamic programming. In our model the decision maker updates her belief on the total 

feedback factors through temperature observations and takes a course of action (carbon reductions) each period 

based on her belief. With various scenarios, we find that the uncertainty is partially resolved over time, although the 

rate of learning is relatively slow, and this materially affects the optimal decision. Consistent with the literature, the 

decision maker with a possibility of learning lowers the effort to reduce carbon emissions relative to the no learning 

case (or the uncertainty case). This is because the decision maker fully utilizes the information revealed to reduce 

uncertainty, and thus she can make a decision contingent on the updated information. In addition, with incorrect 

belief scenarios, we find that learning enables the economic agent to have less regret (in economic terms, sunk 

benefits or sunk costs) for the past decisions after the true value of the uncertain variable is revealed to be different 

from the initial belief. The optimal decisions in the learning case are less sensitive to the true value of the uncertain 

variable than those in the uncertainty case. The reason is that learning lets uncertainty converge to the true value of 

the state in a sense that the variance approaches 0 as information accumulates. Deep uncertainty does matter for the 

optimal climate policy in that it requires more stringent efforts to reduce emissions. However, learning reduces such 

effect of deep uncertainty on climate policy. As one learns more, the effect of uncertainty becomes less.   
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Finally, we raise some caveats and suggest further researches. First, our model does not take into account the 

possibility of negative learning. Indeed, as Oppenheimer et al. (2008) argued, learning does not necessarily converge 

to the true value of the uncertain variable. The effect of the negative learning will be different from the results of this 

paper, of course. Since it is beyond the scope of this paper, we refer this to further researches. Second, for simplicity, 

we assume that learning is costless in this paper, but in reality learning comes at a cost. The value and the rate of 

learning depend on the cost of learning as well as on the benefit of learning. The inclusion of the cost of learning 

may complicate the model, but the main implications of this paper will hold unless learning costs more than it earns. 

Third, we only consider learning from temperature observations. In reality, there are more active forms of leaning 

such as research and development (Kolstad, 1996). An active learning model incorporates the optimal decision on 

activities such as R&D investment for reducing uncertainty, which is an important issue that should be considered in 

further research. Fourth, we use the logarithmic utility function and the quadratic abatement costs function for 

computational convenience. Since a climate-economy model includes many nonlinear functions, it is not easy to 

derive the optimal policy rules satisfying the first order conditions, which is a necessary step for the solution method 

of this paper. Approximations of such nonlinear functions to tractable functional forms may help apply the solution 

method.  
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Table 1 The optimal carbon tax and the net present value of utility 

 Deterministic 

Uncertainty Learning 

Correct H L Correct H L 

Optimal carbon tax in 2005 

(2005US$/tonC) 
23.9 89.0 112.5 83.0 80.8 80.9 78.7 

Net present value of utility 

(arbitrary unit) 
0 18.8 13.4 23.9 19.8 17.8 18.4 

Note: the net present values are normalized for the deterministic case to be 0. 
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Figure 1 The resolution of uncertainty. Top left: parameter values for the total feedback factors 

distribution. Top right: climate sensitivity distribution (left segment). Bottom left: climate sensitivity 

distribution (right segment). In 2200, the density approaches 0 far faster than the other cases, and thus it 

does not show up in the panel. Bottom right: tail probability of climate sensitivity distribution. 

Throughout the figure, the true value of the total feedback factors is assumed to be 0.65 (except the top 

left panel: 0.70) and the prior belief on the total feedback factors is normal distribution with mean 0.65 

and standard deviation 0.13. 
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Figure 2 The rate of learning. Top left: sensitivity to the true value of the total feedback factors. Top right: 

sensitivity to changes in emissions. Bottom left: sensitivity to temperature shocks. Bottom right: 

sensitivity to the initial level of uncertainty. The true value of the total feedback factors is assumed to be 

0.65 (except the top left panel: different true values) and the prior belief on the total feedback factors is 

normal distribution with mean 0.65 and standard deviation 0.13 (except the bottom right panel: different 

initial variances). Note that the coefficient of variation is normalized by the initial value (0.026 in 2005) 

throughout the figure, except the bottom right panel. 

  

0.0

0.2

0.4

0.6

0.8

1.0

2005 2055 2105 2155 2205

N
o
r
m

a
li

ze
d

 c
o
e
ff

ic
ie

n
t 

o
f 

v
a
r
ia

ti
o
n

 

Year 

f=0.65, Ef=0.65

f=0.60, Ef=0.65

f=0.70, Ef=0.65

0.0

0.2

0.4

0.6

0.8

1.0

2005 2055 2105 2155 2205

N
o
r
m

a
li

ze
d

 c
o
e
ff

ic
ie

n
t 

o
f 

v
a
r
ia

ti
o
n

 

Year 

f=0.65, Ef=0.65

perturbed -2GtC/yr

perturbed -1GtC/yr

perturbed +1GtC/yr

perturbed +2GtC/yr

0.0

0.2

0.4

0.6

0.8

1.0

2005 2055 2105 2155 2205

N
o
r
m

a
li

ze
d

 c
o
e
ff

ic
ie

n
t 

o
f 

v
a

r
ia

ti
o
n

 

Year 

σ_ε=0.11 

σ_ε=0.01 

σ_ε=0.05 

σ_ε=0.15 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2005 2055 2105 2155 2205

C
o
e
ff

ic
ie

n
t 

o
f 

v
a

r
ia

ti
o
n

 

Year 

σ_f=0.13 

σ_f=0.05 

σ_f=0.10 

σ_f=0.20 



17 
 

 

  

 

Figure 3 The effect of learning (Correct belief case). Top left: emissions control rates. Top right: 

atmospheric temperature increases. Bottom: consumption. The true value of the total feedback factors is 

assumed to be 0.65 and the initial belief on the total feedback factors is normal distribution with mean 

0.65 and standard deviation 0.13. 
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Figure 4 The effect of learning (Incorrect belief case). Top: emissions control rates. Middle: atmospheric 

temperature evolution. Bottom: consumption. UNC and LRN refer to the uncertainty case and the 

learning case, respectively. H (L) refers to the case where the true value of the total feedback factors turns 

to be higher (lower) than expected (H: f=0.70 >    =0.65, L: f =0.60 <     =0.65). The initial belief on 

the total feedback factors is normal distribution with mean 0.65 and standard deviation 0.13. 
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Figure 5 Social cost of climate policy. Top left: damage costs. Top right: abatement costs. Bottom: total 

costs. 
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Appendix A: computational methods for the learning model. 

This Appendix illustrates the detailed solution methods for the learning model of the current paper. This provides 

additional information to Section 2.3. We approximate the value function in Equation (11) as the following Equation 

(A1). We use the logarithmic function as the basis function.
22

 Since f represents a parametric uncertainty and   is a 

white noise by assumptions, Equation (12) reduces into Equation (A1).  

 

                                            (    
     )

     (    
     )      ( 

 
̅     )                (A1) 

 

where the notations are the same as in the core text except    is the per capita capital and    is the normalized 

carbon stock.  

In order to avoid an ill-conditioned problem during regression, we normalize the economic variables by the level of 

population and the carbon stocks by the preindustrial level (  ). In addition, we apply the least-square method using 

a singular value decomposition (SVD) (Judd et al., 2011).  

The first order necessary conditions for the Bellman equation (Equation 11) are as follows. 
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where   is the law of motions for state variables (Equation (3) – (8)). The resulting policy rules for the emissions 

control rates and the gross investments are functions of the current state variables and the coefficients   of the basis 

function as follows (for analytical tractability, we assume that the elasticity of marginal utility of consumption is 1 

and    of the abatement costs function is 2).  

 

   
   

     

    
        

   

         
       

   
 

        

       

 

 (A3) 

  
         

    
       ,        

      
                

          
                    

                     
   

 
(A4) 

                                                           
22 As a basis function we choose a logarithmic function because it is convenient for finding the solutions (Equation (A3) and (A4)) 

satisfying the first order conditions. The alternatives as a basis function are ordinary polynomials or Chebyshev polynomials 

(Judd et al, 2011). The logarithmic function has an advantage in that the objective function of the decision maker has the similar 

functional form (Note that we use a logarithmic utility function).   
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We calculate the expectation operator with a deterministic integration method, namely, the Gauss–Hermite 

quadrature (GH).  

 

               ∑                

 

    

 (A5) 

 

where   is the integration nodes,    is the corresponding weights, J is the total number of integration nodes (we run 

the model with J from 5 to 10). The integration nodes and the integration weights are calculated from the GH 

formula (Judd, 1998).  

The updating rule and the stopping rule are as follows, respectively.  
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where  ̂ is the vector of coefficients estimated from the regression Equation (12),   is the damping parameter (0 <   

< 1) (we choose   from 0.01), T is the simulation length (we set T at 1,000),   is the maximum tolerance level (we 

set   at 10
-6

), ( ) refers to the p
th

 iteration.  

This method finds the equilibrium paths for the economy. For illustration, we present the results for a simple 

deterministic economic growth model. The problem of the decision maker is to maximize the social welfare defined 

as in Equation (A8) subject to Equation (A9).  
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subject to                        (A9) 

 

 

where   is the production function. The other notations are the same as our main model. We construct the Bellman 

equation for this problem (Equation A10) and approximate the value function with a logarithmic function (Equation 
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A11). Applying the above mentioned method, we find the optimal time paths for consumption and capital (the 

maximum tolerance level   is 10
-9

). We use the same parameter values for solving this simple model. 

 

         
  

                      (A10) 

                           (A11) 

 

Figure A1 shows the results. The economy approaches the equilibrium and the variables stabilize. Note that since we 

are dealing with an infinite time horizon problem, consumption is small relative to income (for more on this point, 

see Gollier, 2000).  

 

 

Figure A1 Solutions for the economic growth model (A8-A9). All variables have per capita values (1,000US$ per person).   
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Appendix B: Investment and gross income flow of UNC_L and LRN_L cases (see Section 5). 

 

Figure B1 Investment and gross income flow of UNC_L and LRN_L cases (see Section 5)  
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