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cannot find a significant impact of temperature on the demand for cooling energy.  
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1. Introduction 

During the last century, the global average temperature rose by about one degree Celsius, and may easily rise by 

another 1.8 to 4.0 degrees over the current century, depending on the emission scenario (IPCC 2007). Among the 

various economic consequences of a global temperature rise, the impact on energy use is of particular importance 

and may well represent a large part of the total economic impact of climate change (Tol 2009). Furthermore, 

greenhouse gases emitted by the energy sector are themselves a main driver of climate change and responsible for a 

good quarter of global greenhouse gas emissions (IPCC 2007). Energy use thus affects and is affected by both 

climate change and climate policy. This paper aims to disentangle the impact of temperature changes on energy use 

and to calculate the temperature sensitivity of energy demand for selected fuels. 

By now a number of studies (see below) analyse the driving forces behind the temperature sensitivity of energy 

under specific conditions. Usually based on micro level data, these analyses tend to take into account as many socio-

economically and geographically relevant determinants as possible. For assessing particular policy measures targeted 

at region specific problems (e.g. number of energy poor households, distributional effects of different policies etc.) 

or for analysing the energy demand reaction to temperature changes in a specific country or region, this micro-

perspective is advantageous. The aim of our paper is to go beyond the single country analysis. Data from multiple 

countries exhibit a wider range of energy uses, technologies, economic circumstances, and climates. The estimated 

relationships are therefore better suited for extrapolation to future climate and economic conditions. Information 

about the temperature sensitivity of energy demand is essential for a thorough understanding of the consequences of 

climate change – e.g. as a basis for calibrating general equilibrium or integrated assessment models. 

We concentrate on residential energy demand, because previous studies showed that energy use in the services and 

manufacturing sectors reacts only minimally to temperature variations; see Bigano et al. (2006) for a discussion on 

that point.  

We add to the existing literature (see Agrawala et al., 2011, for an overview) by combining many of the conceptual 

achievements of previous studies as well as by introducing new features. Most previous studies, both on the micro 

and on the macro level, focused solely on electricity use. We extend our analysis to heating oil, natural gas and solid 

fuels as well. We use a large sample of countries to increase confidence in the estimated relationships, not only 
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because we have more observations, but also because we measure the effects over a wider range of income and 

temperature levels.  

Instead of estimating the temperature effect on energy use only linearly, we allow for the temperature elasticity to 

depend on temperature itself by estimating non-linear specifications. We account not only for a smooth non-linear 

dependency, but also account for a discontinuous heating threshold by introducing heating degree months. 

Additionally, we consider that the temperature elasticity of energy use may also depend on other variables, namely 

income. 

In the following section, we give a brief overview of the existing literature. In Section 0, we describe how we model 

the determinants of energy use, including the concept of heating degree months. We describe our data in Section 3. 

In Section 4, we present our results on the heating effect and the cooling effect as well as some supplementary and 

sensitivity analysis. Section 5 discusses the results and concludes. 

2. Existing Work 

As mentioned above, most contributions so far addressed the topic either on a micro-level (e.g. Quayle and Diaz 

1980; Rosenthal and Gruenspecht 1995; Henley and Peirson 1997, 1998; Florides et al. 2000; Vaage 2000, Zarnikau 

2003; Larsen and Nesbakken 2004; Mansur et al. 2005; Mansur et al. 2007) or using country or regional time series 

data (e.g. Al-Zayer and Al-Ibrahim 1996; Hunt et al. 2003; Mirasgedis et al. 2004; Amato et al. 2005; Pezzulli et al. 

2006). Naturally, these studies concentrate on specific countries without aiming at large-scale representativeness. 

Often, the impact of temperature is not the central focus. Methodologies vary greatly, as do the results. 

Studies using multi-country panel data are less common. Bigano et al. (2006) study the impact of temperature 

changes on several fuels in OECD countries from 1978 to 2000. Even though they include “a few” non-OECD 

countries, their focus is on the developed world. They find a significant negative impact of average annual 

temperature on electricity, natural gas and oil use in the residential sector. Elasticities vary between -0.57 for 

electricity and -3.05 for oil. The authors find a positive effect of temperature changes on coal use, with an elasticity 

of 2.85.  

Asadoorian et al. (2008) study the impact of temperature changes on electricity demand in urban versus rural 

Chinese provinces from 1995 to 2000, thus including several climate zones and some variation in development 
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levels. They find that the temperature elasticity of electricity demand varies between 0.59 and 0.76. Neither Bigano 

et al. (2006) nor Asadoorian et al. (2008) report semi-elasticities or marginal effects.
1
  

Bessec and Fouquau (2008) study the impact of temperature changes on electricity use in 15 member states of the 

European Union for the period 1985 to 2000. Since they use a panel threshold model, they can in detail model a 

smooth, non-linear transition from a heating regime with negative temperature elasticities to a cooling regime with 

positive temperature elasticities. They conclude that both non-linearity and a cooling effect are not very pronounced 

in cold countries, as opposed to southern EU member states. They also report an increasing impact of warmer 

summers on electricity demand for cooling. 

Lescaroux (2011) focuses on the impact of income on energy demand, but includes temperature as a control variable. 

His estimation results report a temperature semi-elasticity of total residential energy use between -0.03% (in the short 

run) and -0.08% (in the long run) per degree centigrade. Based on a comprehensive panel of 101 countries and three 

aggregates over the period 1960 to 2006, the results are representative for a large number of development levels and 

climate zones. However, only country average temperature levels are considered. Since he utilizes an autoregressive 

specification, he can distinguish short-run and long-run effects. He does not include non-linearities in the reaction of 

electricity use on temperature changes.  

De Cian et al. (forthcoming) study residential energy use in 26 OECD and five non-OECD countries for the period 

1978-2000, covering a wider variety of development levels and climate zones than many previous macro-panel 

studies. They conclude that demand for heating and cooling and its response to changes in temperature depend on 

region, season and fuel type. They account for non-linearities in the reaction to temperature changes by clustering 

their sample into three groups, cold, mild and hot, depending on the baseline temperature level of countries. They 

also distinguish seasonal impact by utilizing four seasonal average temperature levels per year and country. Long-run 

and short-run temperature elasticities are estimated as constants within climate clusters using an error correction 

specification. For the different groups and seasons, they estimate long-run temperature elasticities between -3.33 and 

5.42 for electricity, -2.6 for natural gas and between -3.45 and 3.36 for oil products. Short-run temperature 

                                                           
1
 By“semi-elasticities”,wemean thepercentagechange inenergyuse (oranyotherdependentvariable)per one-

degree temperature change (or a change in any other explanatory variable by one unit). The use of semi-elasticities 

instead of real elasticities is advisable in the case of temperature, since temperature in degrees centigrade (as well as 

Fahrenheit) is measured on an interval scale but not on a ratio scale. The problem does not arise if degree days are 

used instead of (average) temperature levels. 
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elasticities are smaller, spanning from -0.39 to 0.92 for electricity, from -0.95 to -0.18 for gas and from -0.7 to -0.02 

for oil products.Modeling determinants of residential energy use and empirical strategy 

In our model, households adapt their use of energy to income, fuel prices and temperature. The role of income, the 

price of the fuel, and the price of other fuels is clear from microeconomic theory: for the time being, we assume that 

energy fuels are normal goods with positive income elasticities, negative price elasticities and zero or positive cross 

price elasticities towards other energy fuels. We show below that fuels are not necessarily normal or ordinary goods, 

e.g. due to substitution effects from low-quality fuels such as coal towards high-quality fuels such as natural gas. We 

assume that households (and thus also countries) need a lag of one year to adapt to changes in prices. This addresses 

common adaptation lags due to information lags, habit persistence, stock holding or contractual obligations. We 

cannot implement shorter lags due to the yearly frequency of our data. 

We account for differences in temperature as well. With rising temperatures, households need less heating, whereas 

the demand for cooling is likely to rise. With rising temperatures the heating effect, therefore, reduces energy use, 

while the cooling effect increases it.  

A vital question is the nature of the interdependence between temperature changes and adjustments in the use of 

energy. Assuming a linear relationship seems rather counterintuitive.
2
 One would expect that the impact of 

temperature changes differs depending on the historical temperature level. Presumably, if temperature rises, the 

reduced heating demand would be smaller for warmer countries than for colder ones; while increased cooling 

demand would be larger.
3
 To address this issue, firstly, we use heating degree months instead of untransformed 

temperature values to cover the impact of heating and cooling thresholds (see below for more details on the concept 

of heating degree months). Secondly, we estimate a non-linear relationship between degree months and energy. For 

each fuel type we estimate three functional forms, linear, quadratic and logarithmic, and compare with a baseline 

specification without any temperature impact. Furthermore, we interact temperature and (per-capita) income. Richer 

households might have a higher ability to adapt to climate change, e.g. by investing in insulation, heating appliances, 

                                                           
2
 See for example Bigano et al. (2006), who identify the use of a linear model as a major drawback of their analysis. 

3
 Since the specific process of the adaptation of energy use in the course of changes in temperature depends on local 

conditions like insulation, heating and cooling equipment, local conventions etc., the link between temperature and 

energy use may of course be linear on a small scale, e.g. for a country that is located in only one climate zone. In this 

case, variation in annual average temperature levels in that country is limited. On a global scale however, where 

annual average temperature varies more, a non-linear relationship is much more likely. The question concerning the 

interpretation of the results of the global analysis is of course whether patterns derived from comparisons between 

countries also hold within a country, given that temperatures rise significantly in the future.  
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air conditioning etc. At the same time, poorer households might be less responsive to changing temperature levels 

since they are constrained in their adaptation options. The same rationale applies to rich and poor countries – if 

temperature rises, the decrease in energy use may be steeper if a country is richer. In this case, the level of income 

has an effect on the temperature elasticity of energy demand – the elasticity will increase (in absolute value) with 

rising income. 

Note that heating demand is insensitive to temperature changes above a certain temperature threshold, the heating 

threshold. The heating threshold is the temperature level at which it is warm enough so that households feel 

comfortable enough not to use their heating equipment. The analogue is true for cooling and temperature changes 

below a cooling threshold. The traditional approach to this problem is the use of heating (HDD) and cooling degree 

days (CDD),
4
 as for example in Al-Zayer and Al-Ibrahim (1996) or Amato et al. (2005). Since HDD and CDD are 

not available for a sufficiently broad range of countries, their use is not an option for our analysis. 

As we investigate annual and national data, we face the problem of how to represent heterogeneous temperature 

levels (and changes) within countries and years in the aggregate – especially if countries and seasonal temperature 

variation are large. We therefore use gridded monthly data instead of annual country averages. To account for the 

heating and cooling thresholds, we construct regionalized heating (HDM) and cooling degree months (CDM) from 

the monthly, gridded temperature averages. Our regionalized HDM and CDM are closely linked to the concept of 

heating degree months used in Maddison and Rehdanz (2011). To construct HDM and CDM, we calculate deviations 

of the monthly mean temperature from the threshold temperature
5
 for each 0.5 degree grid cell in the grid. The 

deviation is set to zero if the monthly mean temperature is higher (lower for CDM) than the threshold temperature. 

The mean of the remaining differences is the heating/cooling degree value for that month and that country. Finally, 

all months of a year are summed up and form the yearly (regionalized) HDM/CDM value for the country: 

       ∑ (       (   (         )))    and (1) 

                                                           
4
 Heating degree days are usually defined as the difference between the average temperature of a period and the 

heating threshold, multiplied with the number of days within that period if the average temperature is below the 

heating threshold and zero if the average temperature is above (e.g. EUROSTAT 2008). Cooling degree days are the 

difference between the cooling threshold and the average temperature of the period, also multiplied with the number 

of days if the average temperature is above the threshold and zero if it is below. 
5
 In accordance with the literature, we use 18.3 degrees centigrade as threshold temperature. Cf. e.g. Uri (1979) or 

Dublin and McFadden (1984).  
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       ∑ (       (   (         )))   , (2) 

where the function POS returns only positive deviations, MEANxϵy returns the arithmetic mean over all x within y 

and Σxϵy returns the sum over all x within y. T is the monthly mean temperature, indices m, t, g and i denote month, 

year, 0.5-degree grid cell and country, respectively. 

Apart from temperature, income and prices, household energy demand is determined by a multitude of factors that 

are unobservable by nature or for practical reasons, such as limited data availability. This is especially true on a 

cross-country scale. Since we employ a panel data set, we are able to address the problem of time-invariant, country-

specific unobserved determinants of energy use by including fixed effects in our regression model. However, some 

unobserved characteristics, although being highly persistent, will still be time-variant and therefore unaccounted for 

in the standard fixed-effects model. This includes classical unobservables like habits, but also long-run changes in 

the prevailing and available technology, capital stock or government policies. Furthermore, transient (or so 

perceived) shocks of the explanatory variables will have a smaller impact on energy demand than sustained changes. 

To include some of the persistent but time-variant omitted explanatory power, and to differentiate between transient 

and sustained shocks, weincludethehistoryofacountries’energyuseintheformofa lagged dependent variable 

additional to the country-specific fixed effects.
6
 To rule out that we interpret time-invariant factors as being highly 

persistent and thus overestimate long-run shocks, we reject any specification with an autoregressive term that is not 

significantly different from one for standard significance levels. As a sensitivity test, we also estimate each 

specification with either fixed effects or lagged dependent variables.  

Since we include lagged dependent variables in addition to fixed effects, the standard fixed effects least squares 

estimator will be biased due to endogeneity of the lagged dependent variable (Nickell 1981). The literature on 

dynamicpanel datamodels contains avarietyof estimators that overcome this “Nickell bias” and yield unbiased

estimators by instrumenting for the endogenous lagged variable, such as the estimators by Anderson and Hsiao 

(1981), Arellano and Bond (1991) or Blundell and Bond (1998). However, the generalized-method-of-moments 

(GMM) estimators by Arellano and Bond as well as by Blundell and Bond are constructed to suit large N, small T 

panels, while their usefulness for macroeconomic panels (such as ours) with small N and moderate T has been 

                                                           
6
 The interpretation of a lagged dependent variable as a representation of persistent shocks is based on the Koyck 

transformation. Koyck (1954) showed that an infinite distributed lag model of geometric structure can be 

transformed into a model with one lagged dependent variable. 
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doubted based on a root-mean-square error (RMSE) criterion in favor of a corrected least squares dummy variable 

(LSDVC) estimator proposed by Kiviet (1995; see also Judson and Owen, 1999). Kiviet’s LSDVC estimator is

meant to combine the merits of the conventional, biased least squares dummy variables estimator in terms of 

efficiency with the consistency of the GMM approaches. It was extended by Bruno (2005a) to suit also unbalanced 

panels. Since our panel is a macroeconomic panel similar to the one used in the Monte Carlo study by Judson and 

Owen(1999),wechooseBruno’s(2005a) LSDVC estimator as our estimator of choice. The GMM-based estimator 

of Arellano and Bond (1991) withWindmeijer’s (2005) variance correction for small samples is used to test for 

sensitivity with regards to the estimator, see Section 4.3.  

Unlike many existing studies, we study not only electricity, where data availability is good. We include four fuels 

that represent the vast majority of fuels used for heating and cooling worldwide: Coal and solid biomass
7
 as well as 

electricity, natural gas and fuel oil. Demands for the four fuels are estimated individually, not as a system. However, 

we estimate cross price elasticities as a sensitivity analysis. 

3. Data 

Data on energy use, prices and real GDP are retrieved from ENERDATA (2005) for up to 176 countries and the 

period 1970 to 2002.
8
 Data availability differs considerably between the four fuels, coal, electricity, natural gas and 

oil types; both regarding use and price data (see Table 1 for details). Data on the use of gas and coal are available for 

about 70 countries; for oil and electricity there are time series for almost every country in the world. In comparison, 

data on prices are scarce. Reliable price data are available mostly for developed countries and only from 1978 

onwards (for information about the geographical coverage of the data, cf. Figures A1-A4 in the appendix). This 

limits the estimation sample to 25 years at most if price data are included. Regarding geographic coverage, coal is 

again the fuel type with the lowest coverage: the price of coal for residential use is available for only 22 countries. 

Even though the share of coal in residential energy demand is usually of minor (and diminishing) importance, both 

from a global and from national perspectives, this constitutes a shortcoming of the analysis. It was however 

impossible to impute the price of residential coal by other prices, e.g. coal prices from other sectors. Data availability 

                                                           
7
 We cannot differentiate between coal and solid biomass due data restrictions. Coal and biomass are represented in 

one aggregate variable, which we will call coal in the further course of the paper. 
8
 Enerdata is a research & consulting firm that compiles and publishes global energy use data. The database is 

compiled from various international organizations as well as national statistical offices and other national 

institutions, for details see ENERDATA (2012). 
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is better for the prices of other fuel types. For natural gas and light fuel oil, more than 30 countries are covered. 

Electricity prices are available for 63 countries. Nonetheless, also for those energy types, limited availability of price 

data imposes a drawback of the analysis in terms of representativeness, reliability and quality of the estimation 

results. We solve this drawback by testing the robustness through regressions without prices on the same sample. As 

a proxy for household income we use per-capita GDP in purchasing power parities (converted to 1995 international 

dollars). Compared to information on energy prices and use, data availability is good. 

We use monthly average temperature values taken from the High Resolution Gridded Dataset of the Climatic 

Research Unit of the University of East Anglia (CRU 2008, Mitchell and Jones 2005) available at a 0.5 degree grid. 

We transform the gridded, monthly temperature averages to annual HDM and CDM on the country level according 

to the procedure described in Section 0. Temperature data are available for most countries and all years of interest. 

All temperature variables are in degrees centigrade. 

- Table 1 ABOUT HERE - 

4. Results 

To identify the best (in terms of explanatory power) and most robust specification for each fuel type, we compare 

three functional forms of temperature impact on energy use, namely linear, quadratic and logarithmic, and one 

baseline specification without temperature impact. For each functional form, we compare specifications with and 

without fuel prices. The impact of cross prices and temperature-income interactions is studied as a sensitivity 

analysis in Section 4.3. To choose our specification-of-choice, we discard all specifications with insignificant 

temperature impact and choose from the remaining set the specification with the best score on the Akaike 

Information Criterion (AIC).  

4.1. Heating Effect 

For all fuels we find a significant heating effect (cf. Table 2). We find that the quadratic specification is superior to 

the others in terms of parameter significance and AIC for all fuels (for an overview of all relevant specifications, cf. 

Table A 1).
9
 This confirms our hypothesis that the response in energy use to temperature changes is non-linear, even 

beyond the discontinuity imposed by the heating threshold. While in warmer countries less energy is used for heating 

                                                           
9
 Logarithmic specifications do either not yield significant results or copy the quadratic specification closely. Since 

fit is usually better for the quadratic specifications, we do not present the logarithmic models here.  
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than in colder countries, the marginal impact of temperature changes on fuel use decreases in absolute tons of oil 

equivalents with increasing temperature (see Figure 1). At the same time, the relative impact, i.e. the elasticity, 

increases with rising temperature levels (see Figure 2).  

- Table 2 ABOUT HERE - 

- Figure 1 ABOUT HERE - 

- Figure 2 ABOUT HERE - 

The size of the non-linear effect is different among the four fuels. As Figure 1 shows, electricity demand is almost 

constant, even for very cold countries, and the squared parameter is small compared to coal, gas and oil. This is 

reasonable since electricity has a multitude of other uses apart from space heating that accordingly reduce 

temperature dependence of the fuel. Non-linearities play a much larger role for the other three fuels. For 

temperatures below 90 HDM, where 75 % of the observations are located, predicted coal, gas and oil use is 

particularly curved, leading to a decelerating rise in the temperature elasticity of fuel use. For example, we estimate 

that a country with only around 10 HDM (e.g. Saudi Arabia, India or Namibia), although 15 times hotter than a 

country with around 150 HDM (e.g. China, the USA or North Korea), has a short-run temperature elasticity of oil 

that is only 10 times smaller (0.32 versus 3.12) – all other explanatory variables equal. Non-linearities aside, coal is 

the most temperature-elastic fuel in the short run, followed by gas, oil and electricity.
10

 Interestingly, this order is 

changed in the long run due to the relatively low persistence of shocks of coal use. Short-run and long-run elasticities 

are compared in Figure 2. Persistence of shocks is similar for electricity, gas and oil products. 

Because of the differences in methodology, data and especially due to the use of degree months, our results are not 

easily comparable to the results of previous studies (cf. Section 2). For average HDM levels, our estimated 

elasticities are about the same order of magnitude as those in Bigano et al. (2006) for electricity and natural gas, 

while our elasticity is larger for coal and smaller for oil. Compared to the results of De Cian et al. (forthcoming), our 

elasticities are within the range of their estimates for electricity and oil, but larger for natural gas. De Cian et al. 

(forthcoming) do not estimate coal use.  

                                                           
10

 Note that the representativeness of our coal model is limited, since it uses only 270 observations from 20 countries. 

For an overview of the regional coverage of our data for the different fuels, see Figure A2 to Figure A5. 
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Although not at the core of our analysis, the estimated price and income elasticities of the four fuels show interesting 

differences (for a detailed picture, see Figure A 1 in the appendix). Electricity, gas and oil are normal goods. This is 

not true for coal. Coal use reacts negatively to changes in income and positively to changes in coal price. Coal is an 

inferior good. The income effect more than offsets the substitution effect in the price reaction, leading to an overall 

positive price elasticity. Thus, coal is a Giffen good according to our estimation. As mentioned before, our coal 

model relies on a relatively small sample and is not as representative as in the cases of the other fuels (cf. Footnote 

10). In all countries except China, residential coal use has remained constant or declined over the last decades, both 

per capita and in absolute terms. Nowadays coal plays a substantial role for residential space heating only in a 

limited number of countries, namely in the CIS countries and China. In the rest of the world, it competes on a very 

low level with oil and gas on the one hand and with firewood on the other. 

Gas reacts most strongly to changes both in income and price. Gas is the superior fuel. Not surprisingly and 

supposedly due to the broad use of electricity for a large variety of applications with few substitution possibilities, 

income and price elasticities of electricity use are lowest. Since persistence of shocks is similar for electricity, gas 

and oil, the responsiveness ranking between those three does not change in the long run.   

4.2. Cooling Effect 

An increase in cooling demand is one of the predicted effects of climate change. Although quantifying the cooling 

effect was one of our declared goals, we are unable to find a significant cooling effect on energy use, irrespective of 

the functional form and irrespective of whether we estimated the cooling effect jointly with the heating effect or 

separately. This does not necessarily mean that there is no cooling effect. The geographical scope of our data set is 

broad, it includes developed as well as many developing countries. So far on the macro scale, the cooling effect has 

been derived mainly for developed countries (De Cian et al., forthcoming, for example cover the OECD countries 

and in addition South Africa, India, Thailand and Venezuela; Bessec and Fouquau 2008 cover the EU-15 countries). 

However, households in developing countries will most probably respond differently to temperature changes. 

Although most developing countries are located in warm climates, the endowment with air conditioning and other 

coolingdevicesissupposedlybelowaverage,since thehouseholds’incomesare so low. Also, including only per-

capita GDP might not be sufficient for capturing these structural differences. Furthermore our sample covers a rather 

long time period, starting in the 1970s. Since cooling is a relatively new phenomenon in the household sector outside 

the USA, the cooling effect might be obscured by the long time span.  
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Then again, estimations restricted to all OECD countries, to all warm OECD countries, and to the European 

Mediterranean did not yield a significant cooling effect either, even if we restrict the sample to the 10 most recent 

years. However, the estimation of a single-country time series model based only on data for the US suggested a 

significant cooling effect.
11

 We conclude that within our observation period cooling is still only a regional issue, if 

not an US-issue – although this finding is likely to change in the future.
12

  

While Bigano et al. (2006) do not test for a cooling effect, De Cian et al. (forthcoming) find a significant positive 

influence of summer temperature on electricity demand for a subsample of mild and hot countries. Asadoorian et al. 

(2008) find a cooling effect for the residential sector in China. We cannot confirm their result with our data. 

4.3. Supplementary and sensitivity analyses 

4.3.1. The price of oil 

To capture the impact of substitutes or complements, we include oil prices into the various specifications. Since the 

oil price and the prices of the other three fuels are highly correlated, we refrain from including more than one cross 

price to avoid multi-collinearity.
13

 Generally, the oil price does not have a significant impact on the demand for any 

of the fuels, for most of the functional forms and especially for our specifications of choice. A notable exception is 

natural gas. Gas and oil prices are either both significant or both insignificant. We therefore exclude oil prices from 

the final natural gas specification, not least for consistency reasons. The impact of prices on gas use is to a 

considerable extent governed by a small group of outliers, as we describe below. 

4.3.2. Sample size  

As mentioned in Section 3, data availability is low for residential energy prices. We therefore repeat the analysis 

without prices to determine the impact of sample size. See Figure A2 to Figure A5 in the appendix. To differentiate 

between the effect of increased sample size and the effect of including prices, we additionally estimate all 

specifications restricted to the sample for which price data is available. In the case of coal, we find that the income 

effect is lower in the large sample. The temperature effect has about the same size, but the quadratic term becomes 

                                                           
11

 For the USA, the cooling effect turned out to be linear, with a short-run elasticity of 0.13 and a long-run elasticity 

of 0.26. The cooling effect is significant on the 1% level, but it has to be kept in mind that this single-country 

estimation is based on 24 observations only. 
12

 Note that our observation period ends already 2002. 
13

 Correlation coefficients (p-values) with oil prices are -3.8 (0.0) for coal prices, 0.3 (0.0) for gas prices and -0.1 

(0.03) for electricity prices. 
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insignificant (the linear term remains significant). The persistence parameter is considerably higher, but still 

significantly different from one. The parameter changes for the lagged dependent variable, income and temperature 

squared are also present in the small sample and thus attributed to the omitted price variable. For electricity, income 

and persistence parameters are stable, but the temperature effect is considerably smaller. The linear and quadratic 

temperature parameters are insignificant individually, but jointly significant. The temperature parameter is also 

insignificant for the small sample if prices are excluded. In the case of natural gas, the income and temperature 

effects are lower but still significant, including the quadratic term. The income and HDM parameters do not change 

as much if prices are excluded from the small sample, suggesting that the changes can indeed be attributed mostly to 

the larger sample. For oil, the persistence, income and temperature parameters are lower and become insignificant for 

the large sample. Contrary to the income effect, the temperature effect is also insignificant for the small sample if 

prices are excluded, meaning that the insignificance of the temperature effect might be caused by the exclusion of the 

oil price and not the larger sample. 

4.3.3. Interactions 

Above, we study non-linearities in temperature. Here we turn to non-linearities in income. The impact of changes in 

temperature on energy demand might not only depend on the level of temperature itself, but also on income. 

Households with higher income have more options to adapt to temperature changes than low-income households 

(e.g. by improving insulation or heating systems); the same rationale holds for high and low income countries. If 

temperatures rise, the decrease in energy use should be steeper if a country is richer. In this case, the level of income 

has an effect on the temperature elasticity of energy demand – the elasticity will increase (in absolute value) with 

rising income. We allow for this effect by including an interaction term into the regression. Income-temperature 

interaction terms are insignificant for practically all specifications and fuels. We find some weak indication for 

income dependence of the temperature elasticity of fuel use in the case of natural gas. Although the interaction term 

is in some cases significant, it usually renders the temperature coefficient itself insignificant. We therefore regard the 

specification without interactions more credible.  

4.3.4. Outliers 

Natural gas is not only an interesting fuel because it shows some signs of weak impacts of cross prices and income-

temperature interaction, but also because the result is driven to some extent by a small number of outliers in the 
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original sample, in particular with respect to the impact of gas prices. For that reason, the results for natural gas 

presented so far are purged of those outliers. We excluded 14 observations from 7 countries.
14

 The outliers were 

identified by iteratively deleting the most influential observation until the parameter changes remained sufficiently 

small.
15

 The single qualitative difference between the specifications including and excluding outliers is that the gas 

price parameter is significant if outliers are excluded and insignificant if they are included for all specifications. 

4.3.5. Estimator 

Some authors have advocated the use of either fixed effects or lagged dependent variables in applied econometrics 

(cf. Angrist and Pischke 2009), since the price of including both (having to cope with the Nickell bias, cf. Section 0) 

is too high compared to the gains (being able to correctly map our theoretical model onto an estimation equation). 

We feel that by choosing the LSDVC estimator we made a viable compromise between estimation effort and 

validity. Still, as a sensitivity check, we estimate each of our specifications with only fixed effects as well as with 

only a lagged dependent variable, excluding the respective other. We used standard OLS procedures for the 

estimation. We found that, apart from electricity, exclusion of either fixed effects or lagged dependent variables leads 

to a significant, even qualitative, alteration of the results. Especially the omission of time-invariant heterogeneity, i.e. 

the fixed effects, renders the impact of temperature, income and fuel prices insignificant for all fuels except 

electricity and for most specifications. The exclusion of lagged dependent variables has a large impact as well, even 

though it is less consistent throughout all specifications compared to the exclusion of fixed effects. Again, electricity 

remains comparably stable. Temperature impact remained significant and non-linear for oil but not for coal and gas. 

We could not confirm a significant effect of income on oil use, while income remained significant for coal and gas. 

We conclude from our comparison of estimations using either fixed effects or lagged dependent variables or both 

that it is important to account for both time-variant as well as time-invariant heterogeneity across countries and 

include both lagged dependent variables as well as fixed effects.  

                                                           
14

 This includes four observations from Chile, three from Romania, two from Bolivia and Finland as well as one 

from Colombia, Czech Republic and Ireland. 
15

 The most influential observation was identified by calculating the changes in the parameter of the most sensitive 

variable(inthiscasegasprice)ifeachobservationwasincludedorexcludedusingStata’s -dfbeta- post-estimation 

routine. 
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Referring to the debate about what is the most appropriate dynamic panel estimator for small N, moderate T panels, 

we further compareour resultswithArellano andBond’s (1991)GMMestimator (AB estimator from now on).
16

 

Since the LSDVC estimator has been argued to be favourable based on an RMSE criterion, we expect to find larger 

standard errors when using the AB estimator. Since the bias will be smaller or about equal for the AB estimator 

compared to the LSDVC estimator, the difference between the parameter values will give some indication about the 

unbiasedness of our estimates. We find the differences between the two estimation procedures to be generally small 

for our specifications of choice, in any case qualitatively. As expected, standard errors estimated using the AB 

estimator are generally higher. In some cases, this affects the significance of the results. Fuel prices are generally 

insignificant in the AB model, as are the temperature effects for electricity and oil. The parameter values are 

remarkably stable. One exception is the parameters of the lagged dependent variables. The AB models estimate a 

considerably smaller persistence parameter, which at the same time is less significantly different from one. In 

general, the parameters of the two estimators differ most for the coal model. Since the sample size for coal is 

considerably smaller than for the other fuels, this is not surprising. Most important, the size of the HDM coefficients 

is generally unaffected by changing the estimator. 

5. Discussion and conclusion 

In this paper, we examine the impact of temperature changes on residential energy use and calculate temperature 

elasticities of energy use. We use heating degree months as a temperature measure. The responsiveness of energy use 

to temperature changes depends on the temperature level itself, even beyond the threshold effect included in the 

heating degree months. Energy use is non-linear in temperature, but the curvature differs between fuels. Energy use 

decreases with rising temperatures (because of a decreased demand for heating), but above the heating threshold the 

marginal decrease declines with rising temperature levels.  

                                                           
16

 For this sensitivity analysis, we use the two-step GMM estimation procedure of Arellano and Bond’s (1991)

estimator with Windmeijer’s (2005) robust standard errors and forward orthogonal deviations instead of first 

differences (Arellano and Bover 1995) to avoid loss of observations. As recent debates indicate, a large instrument 

collection, which easily evolves with panels with sufficiently large time dimension, overfits the model and leads to 

invalid estimates for the standard errors (cf. e.g. Roodman 2009 on this issue). To confine this problem, we limited 

thenumberofinstrumentsusedinourestimationsby“collapsing”theinstrumentmatrix. “Collapsing”instruments

means that one instrument for each variable and lag distance is used, rather than one for each time period, variable 

and lag distance. See Roodman (2009) and the references given there for details. Arellano and Bond’s (1991)

estimatorwasimplementedusingStata10.1andRoodman’s(2006)-xtabond2- procedure.  
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The geographical scope of our paper is considerably larger than in most previous studies, and covers both developed 

and developing countries. This allows us to form conclusions of general validity. However, this generality 

necessarily involves a loss of provision for specific circumstances: For example, we are not able to identify a cooling 

demand of worldwide impact, a result that is due to the fact that cooling is not a global issue, yet – however it 

certainly is a regional. 

What are the implications of our findings for economic impacts of climate change? Private households would benefit 

from the reduced spending on heating energy. Energy suppliers would be hit as their markets shrink. This effect is 

largest in the cold and rich North. According to our elasticity ranking, gas suppliers will suffer most from climate 

change, since the temperature elasticity of natural gas is highest. Gas is followed by oil and electricity. However, gas 

is at the same time also most responsive to income changes. Thus the contractive effect of climate change on gas use 

would be offset by economic growth. The same is true to a lesser extent for oil and electricity. Coal use will decrease 

due to warming, but also if incomes rise or coal prices fall, due to it being an inferior Giffen good. 

The reduction in heating energy demand could be partly or even completely offset by two developments: Firstly, an 

increased use of cooling devices, though not important in our observation period, could in the future increase energy 

use. Secondly, economic growth in warm developing countries will increase energy use. 

Adding energy demand in industry and services would be a natural extension of this study. Even if the residential 

sector is the one with the highest sensitivity towards temperature changes with respect to energy demand, other 

sectors may feature similar effects as well. Furthermore, broadening the analysis to include other fuel types could be 

a sensible extension. Especially the consideration of (traditional) biomass would lead to a more complete picture of 

the interrelations in developing countries, since a considerable fraction of residential energy use falls upon fire wood 

and other biomass-based fuels. Availability of data prevents progress in that respect at the moment. An empirical 

study of the impact of weather and climate on energy supply would be another valuable extension. All this is 

deferred to future research. 
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Tables and Figures 

Table 1: Descriptive Statistics. 

Variable Mean Std. Dev. Min Max 
Included Observations 

N n T 

Fuel use (tonnes of oil equivalent (toe) per person per year) 

    Solid fuels (coal) 44.25 87.33 0.00 632.49 1 346 69 20 

    Electricity 56.93 98.02 0.15 692.71 4 290 176 24 

    Gas 90.29 140.66 0.00 806.86 1 580 72 22 

    Light fuel oil 65.88 127.73 0.03 1 170.27 4 351 174 25 

Fuel price (PPP(95USD) per toe)      

    Coal 163.53 65.03 13.38 305.23 308 22 14 

    Electricity 1 329.18 1 014.09 40.45 8 835.40 1 029 63 16 

    Gas 429.12 233.04 5.10 1 300.17 614 38 16 

    Light fuel oil 412.79 189.57 112.36 1 352.68 662 33 20 

Income (1000 PPP(95USD) per 

person per year) 
6.68 6.82 0.42 43.94 4 265 162 26 

Average temperature (°C, 

country-year-median)
a 

19.74 8.35 -9.00 31.75 6 768 183 37 

Regionalized Heating Degree 

Months (HDM)
b
 

44.26 63.84 0.00 331.11 6771 183 37 

Regionalized Cooling Degree 

Months (CDM)
b
 

55.29 39.67 0.00 132.57 6771 183 37 

N: Total number of observations; n: Number of countries with at least one observation; T: Average 

number of periods per country. 
a
: Median average temperature is not used in regressions and displayed 

solely for the information of the reader. 
b
: For the definition of Regionalized Heating and Cooling Degree 

Months (HDM and CDM), cf. Section 2. 
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Table 2: LSDVC estimation of coal, electricity, gas and oil use for heating purposes. 

Dependent variable: 

log(fuel use per capita) 
Coal Electricity Gas Oil 

log(fuel use per capita)(t-1) 0.83*** 0.94*** 0.92*** 0.95*** 

 

(0.04) (0.01) (0.02) (0.01) 

log(gdp per capita in PPP) -0.82*** 0.07*** 0.2*** 0.1** 

 

(0.16) (0.01) (0.06) (0.04) 

log(fuel price in PPP)(t-1) 0.26** -0.01*** -0.08** 0.03 

 

(0.11) (0.003) (0.04) (0.02) 

log(HDM) 0.21 0.02** 0.31*** 0.12* 

 

(0.21) (0.01) (0.07) (0.06) 

(log(HDM))
2
 0.05** 0.002* 0.02*** 0.01** 

 

(0.02) (0.001) (0.01) (0.005) 

     Observations 270 884 527 597 

No. of countries 20 56 36 32 

AIC  727.25 518.15 1216.4 1540.8 

p((b_log(fuel use per capita)(t-1))=1) 0.00 0.00 0.00 0.00 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Gas: Excluding outliers. 14 

observations from Bolivia (2), Chile (4), Colombia (1), Czech Republic (1), Finland (2), 

Ireland (1) and Romania (3) were determined using DFBETA influence statistics. HDM: 

Regionalized Heating Degree Months. 
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Figure 1: Non-linear response in energy use to temperature changes. 

 

Predicted values using average explanatory variables. 
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Figure 2: Short-run and long run temperature elasticity of fuel use. 

 

Predicted values using average explanatory variables. Note the different scales of the vertical axes. 
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Appendix 

Table A 1: LSDVC Estimation results for various functional forms. 

 coal electricity gas oil 

  

no  

temp. linear quadr. 

no  

temp. linear quadr. 

no  

temp. linear quadr. no temp. linear quadr. 

log(fuel use per capita)(t-1) 0.93*** 0.83*** 0.83*** 0.93*** 0.94*** 0.94*** 0.91*** 0.91*** 0.92*** 0.95*** 0.95*** 0.95*** 

 

(0.03) (0.04) (0.04) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) 

log(gdp per capita in PPP) -0.64*** -0.86*** -0.82*** 0.07*** 0.07*** 0.07*** 0.11* 0.13** 0.2*** 0.06 0.07 0.1** 

 

(0.17) (0.17) (0.16) (0.02) (0.02) (0.02) (0.06) (0.06) (0.06) (0.04) (0.04) (0.04) 

log(fuel price in PPP)(t-1) 0.20** 0.25** 0.26** -0.01*** -0.01*** -0.01*** -0.07** -0.07* -0.08** 0.02 0.03 0.03 

 

(0.1) (0.11) (0.11) (0.004) (0.004) (0.004) (0.03) (0.04) (0.04) (0.03) (0.02) (0.02) 

log(HDM) 

 

0.35* 0.22 

 

0.01 0.02** 

 

0.12*** 0.31*** 

 

0.02 0.12* 

  

(0.19) (0.21) 

 

(0.01) (0.01) 

 

(0.05) (0.07) 

 

(0.05) (0.06) 

(log(HDM))
2
 

  

0.05** 

  

0.002* 

  

0.02*** 

  

0.01** 

   

(0.02) 

  

(0.001) 

  

(0.01) 

  

(0.005) 

             Observations 293 270 270 971 884 884 547 527 527 633 597 597 

No. of countries 21 20 20 62 56 56 37 36 36 33 32 32 

AIC (smaller is better) 882.2 729.7 727.3 963.5 521.6 518.2 1 304.1 1 233.6 1 216.4 1 663.2 1 547.3 1 540.8 

p((b_log(fuel use)(t-1))=1) 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Gas: Excluding outliers. HDM: Regionalized Heating Degree Months. The logarithmic model does usually not 

yield significant temperature impact or copies the quadratic specification closely. We therefore do not present the logarithmic model here. 

 

 



 

 24 

Figure A 1: Income and price elasticities of fuel use. 

 

Predicted values using average explanatory variables. 
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Figure A2: Geographical coverage of coal data 
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Figure A3: Geographical coverage of electricity data 
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Figure A4: Geographical coverage of natural gas data 
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Figure A5: Geographical coverage of oil data 

 

: Use data available; : Use and price data available; blank: no data. 

 


