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1 Introduction 

 

The liberalisation of electricity markets has given rise to a new focus on investment 

incentives in electricity generation technologies. In the past, investment decisions were 

taken by government-owned utility companies whose notional mandate was to provide 

electricity generation, transmission and supply at least cost. Generation investments were 

therefore determined primarily based on the cost and availability of fuel Hobbs (1995) and 

the size of system demand. Concerns over climate change and energy security have led to a 

new focus on the environmental impacts of electricity generation, as well as a reluctance to 

depend heavily on energy imports. Thus the objectives of electricity generation have 

become multi-faceted. Given that the contributions of electricity generation mixes towards 

these objectives are largely no longer determined by a central planner, but instead are 

dependant on private investment decisions, it is prudent to examine the risks and returns of 

investment in various electricity generation plants. Such examination should account for 

uncertain fuel and carbon prices, with generator remuneration based on the marginal cost 

of electricity provision. Increasing amounts of variable renewable generation, which 

demand increased flexibility of operation from conventional generation, require that unit 

commitment and economic dispatch be employed in performing such analyses. 

 

In determining optimal portfolios when accounting for both risk and return, we utilise the 

methodology of mean-variance portfolio (MVP) theory. MVP theory was initially 

developed to analyse diversification portfolios of financial securities (Markowitz, 1952) 

and has since been applied in many other areas, including electricity generation portfolios. 

The utilisation of MVP theory allows the methodologies and results of this paper to 

compare well with other work undertaken in this area. 

 

1.1 Literature review 

The majority of the literature in this area concentrates on determining the mean-variance 

efficient frontier from a system or social planner perspective. Historically this was 

appropriate due to the reasons outlined above but least-cost scheduling is now no longer 

sufficient as it ignores generator returns from a private investor’s perspective. Bar-Lev and 

Katz (1976) apply MVP theory to the electric utility industry in the USA. They found that 

US electric utilities were sufficiently diversified but that their portfolios generally had high 

risks and high returns. They propose the ’cost-plus’ regulatory regime, in which costs are 

always recovered, as the reason for the move towards high risk portfolios. Humphreys and 

McClain (1998) evaluated the energy consumption mix in the USA using MVP methods 

and found that the electric utility industry was operating at a position of low risk. They 

postulate that the move of the electric utility industry toward more efficient points of 

production since 1980 is due to the relative risk aversion of the industry, but that a desire 

for higher returns under liberalisation had given rise to a switch to gas in the 1990s. 

 

Awerbuch (2000, 2004, 2005) uses MVP theory to examine the impact of adding 

renewable technologies to generation mixes. Awerbuch’s approach maximises return on 

investment (MWh/€) for a given level of risk and finds that renewables can decrease 

portfolio cost and risk in spite of the fact that their stand-alone costs are high. These results 

are again arrived at from a focus on system returns and risks, rather than those of private 

investors. Jansen et al. (2006) analyse the efficiency of the Dutch generation mix under 

various scenarios by attempting to minimise cost for a given level of cost risk. Their focus 

is on the societal benefit from reduced cost risk and renewable generation peneration. 

Doherty et al. (2006) examine optimal electricity generation portfolios for higher levels of 
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wind generation, again by minimising system costs while accounting for increased levels 

of cost risk. Roques et al. (2010) use MVP methods to identify the optimal wind power 

deployment portfolio across Europe from a cost minimisation perspective. Instead of cost 

level and risk, they examine the level and variability of wind generation under different 

wind capacity installations across Europe. They find that both the current and the planned 

renewable portfolios are not on the efficient frontier, and a coordinated approach across 

Europe for renewable deployment would result in a lower level of risk for the same wind 

capacity investment. 

 

Delarue et al. (2011) use MVP theory, again from a system cost minimisation perspective, 

to identify the efficient frontier using quadratic constrained programming (QCP) to account 

for both investment and fuel costs. Thus the capacity factor for each type of generation is 

determined within the analysis. They find by taking capacity factor as an endogenous 

variable arising from the economic dispatch of the generation technologies available that 

changes are seen in the optimal portfolio. As QCP is used, however, economic dispatch 

only can be modelled with no way of including unit commitment and start costs. Such 

omissions become increasingly significant as renewable generation increases, as noted 

above. Furthermore there is no examination of electricity prices or the incentives 

generators will face in choosing their efficient portfolio for investment purposes. 

 

Roques et al. (2008) use MVP theory to determine the optimal generation portfolio from a 

private investor’s perspective, rather than from a system perspective. They use Monte 

Carlo analysis to obtain a distribution for the net present value per MW of three types of 

baseload generation (Combined Cycle Gas Turbine, nuclear and coal) and thus to find 

mean-variance efficient portfolios. They find that the level of correlation between fuel, 

carbon and electricity prices plays a significant role in the determination of the optimal 

portfolio. Their work does not calculate generator returns based on the economic dispatch 

of these generation technologies but instead assumes a fixed capacity factor for each 

generation type. This also means there is no meaningful way of calculating the electricity 

price and so the price is assumed to follow a normal distribution, along with fuel and 

carbon prices. As well as the obvious shortcomings that this methodology entails, it cannot 

be used to consider mid-merit and peaking technologies, and furthermore is unsuited to 

analysing systems with increasing penetrations of variable renewable generation. 

 

This paper identifies the efficient frontier of electricity generation investments by 

simulating both unit commitment and economic dispatch from a least-cost system 

perspective rather than assuming a capacity factor, and then by using the dispatch arrived 

at to calculate the returns on each type of plant. This means that the analysis need not be 

restricted to baseload technologies. By simulating full unit commitment rather than 

economic dispatch alone, the generator schedule arrived at will prove robust even when the 

issues surrounding variability which can arise with wind generation are included. The 

hourly electricity price can also be calculated from the marginal cost of electricity 

provision at each hour, eliminating the need to obtain the electricity price by sampling 

from a distribution. In this way the returns of generators under least-cost dispatch and 

marginal-cost pricing can be determined for any given generation technology. 

 

 

2 Methodology 
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The annual operational dispatch and costs are determined by a sub-model, a unit-

commitment algorithm called FAST, which determines and quantifies the cost of an 

optimal schedule for each expansion combination. The FAST algorithm (described in Fig. 

2) was originally designed to replicate the input-output relationship of a Mixed-Integer 

Program (MIP) that is outlined in Shortt et al. (2012). In this formulation, units whose size 

or cycling characteristics are such that a linear representation of their costs would not yield 

accurate schedules, have been given a mixed-integer formulation. The remaining units, 

which tend to be numerous, small and flexible, have linear variables to represent their 

production costs. This substantially reduces computation for the mixed-integer 

formulation, but the computation time still tends to be impractically high. The FAST 

algorithm is a response to this problem. 

 

The logic of the algorithm is given in Fig. 2. At each hour, the algorithm will consider a 

start if the quantity of online inflexible plant is less than the Net Capacity Demand (NCD), 

which equals demand less wind, plus reserve. If this is the case, it will incrementally move 

forward in time, determining the cumulative saving and the cumulative profit from starting 

an inflexible unit of each type that has available offline units (if a unit does not start, the 

flexible plant must generate, at a higher cost). If the type with the largest positive 

cumulative profit is also the type with the largest cumulative save, or, there has been a type 

with a positive profit and consideration of further time-steps would not make sense, this 

type will be committed. 

 

  

Figure 1: Logical structure of FAST algorithm, in somewhat simplified form. 

 

Reciprocally, where the quantity of online inflexible plant is greater than the net-capacity 

demand, a similar set of calculations is performed to determine whether a unit stop would 

be cost-optimal or would be necessary (as where demand falls below the minimum 

collective output of the inflexible plant). 
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The FAST model, as described above, is run for a test system. The algorithm also 

computes the price of electricity as the marginal cost of electricity provision. In order to 

calculate the Net Present Value (NPV) of each type of investment under consideration over 

the lifetime of the investment, the simulation is run over thirty years. The legacy plant on 

the test system is disposed of according to a pre-determined retirement schedule; this 

mechanism along with an annual increase in demand necessitates the modelling of a 

capacity expansion. Capacity expansions occur only for those years where the capacity 

available in the given year proves insufficient to meet the demand for that year. The 

capacity expansion is determined based on the most profitable plant within a given year. 

Thus the algorithm assumes that other players in the market do not have perfect foresight 

and make their investments based on which plants are most profitable in the year under 

study. 

 

Seven generation technologies are considered in this work. They are Sub-Critical Coal 

(SubC Coal), Super-Critical Coal (SupC Coal), Advanced Super-Critical Coal (ASupC 

Coal), Combined Cycle Gas Turbine (CCGT), Advanced Combined Cycle Gas Turbine 

(ACCGT), Aeroderivative Gas Turbine (ADGT) and Open Cycle Gas Turbine (OCGT). 

The annual returns for each plant can be calculated by multiplying the dispatch of each 

plant over the course of the year by the electricity price at each hour (for those hours which 

saw the plant dispatched). The annual fixed costs for each plant are given by the Weighted 

Annual Cost of Capital (WACC), as calculated according to the parameters in Table 1. The 

source of the plant characteristics and capital costs is NREL (2011). The annual variable 

costs are calculated based on fuel and carbon costs, as well as the plant’s particular 

characteristics, such as efficiency. Thus the NPV of each plant type over the thirty years 

can be calculated as the sum of the stream of revenues minus costs. 

 

 Build time Efficiency WACC Start Cost Max 

Output 

Min 

Output 

Plant Life 

Units years % /MW € MW MW years 

SubC Coal 5 34 92,400 40,000 500 150 30 

SupC Coal 4 40 115,600 40,000 500 150 30 

ASupC 

Coal 

5.5 46 138,700 40,000 500 150 30 

CCGT 4.5 54 63,900 120,000 500 250 20 

ACCGT 3.4 60 76,600 120,000 500 250 20 

ADGT 2.5 43 50,400 0  0 20 

OCGT 1 33 34,700 0  0 20 

 

Table 1: Generation technology characteristics 

 

Fuel and carbon prices are sampled from a lognormal distribution. A lognormal 

distribution was chosen as prices are assymmetrically distributed, due to the fact that they 

cannot be negative. Furthermore, an examination of historical gas, coal and carbon prices 

from the Energy Information Administration (EIA - www.eia.gov) found that they were 

well-approximated by a lognormal distribution. The mean values for carbon prices were 

based on the IEA’s World Energy Outlook’s price projections IEA (2011) while fuel prices 

were derived from various sources and the author’s own estimates (Figure 2). The standard 

deviations and correlations of fuel and carbon prices were based on those found in Roques 
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et al. (2008). This facilitates comparison between the results of this paper and those of 

Roques et al. (2008). These statistics are given in Table 2. 

  

Figure 2 : Fuel and carbon price projections 

 

Correlation 

coefficient 

Gas price Coal price CO2 price 

Gas price 1 0.56 0.73 

Coal price  1 -0.46 

CO2 price   1 

 

Table 2: Price correlations 

 

The test system chosen is the Irish electricity market which comprises electricity systems 

of the Republic of Ireland and Northern Ireland. The Irish system was chosen as it is a 

small island system with limited interconnection to other systems. For the purposes of this 

study the interconnection which does exist on the Irish system was ignored. This means 

that the returns on each of these plants can be calculated without reference to infeeds from 

another system, and the impact of wind generation on the operation of conventional 

generation could be captured, rather than seeing high exports at times of high wind. The 

initial generation portfolio used for this analysis is 1500MW of coal generation, 3500MW 

of CCGT and 3000MW of peaking generation. The peak demand of the system in the first 

year is 5000MW with demand increasing over time according to estimates from the system 

operator, EirGrid plc. 

 

The projected growth in wind generation for the Irish system is also included. The installed 

wind capacity in the start year (2012) is 2000MW with installed wind capacity reaching 

6000MW by the year 2020. No further wind expansion is modelled after 2020. The 
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projected wind production values corresponding to the projected installed capacity figures 

are were also obtained from EirGrid plc. 

 

The distributions of NPV of each technology which are obtained as described above are 

used to identify which portfolios lie on the mean-variance efficient frontier. Investors then 

choose the portfolio which suits them best according to their own preferences and risk 

aversion. The portfolio return 
)( prE
 for each portfolio P  is given by the average of the 

returns of each component i  of the N  components of the portfolio weighted by their 

proportion iX
 in the portfolio: 
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where ij  is the correlation between asset i  and asset j . Thus the inclusion of two assets 

with negative correlation in any portfolio will decrease the overall risk for that portfolio. 

 

 

3 Results and discussion 

 

In order to study the returns of each of the generation technologies under study, the 

simulation is run seven times. Each time, 500MW of the generation technology under 

consideration is present in year one and remains (ie will not be retired) for the duration of 

the simulation. The rest of the portfolio evolves around this fixed generation block. While 

this means that some of the interactions between the various types of generation 

technologies may not be fully captured, as there is no guarantee that investment will occur 

in all seven technologies during each simulation, it avoids requiring 3500MW of 

generation capacity to remain fixed for the duration of the simulation, which would have 

an undue effect on the evolution of the rest of the generation capacity on the system. 

 

3.1 Efficient baseload portfolios 

The efficient frontier of all possible portfolios of inflexible baseload generation is first 

examined. The space of potential portfolios is searched by increasing the percentage of the 

portfolio which is made up by each baseload technology in increments of ten percentage 

points. Figure 2 illustrates the risk-return plot of all baseload portfolios, with the efficient 

frontier marked. 
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Figure 3: Risk-return plot of baseload portfolios 

 

The composition of the baseload portfolios which appear on the efficient frontier appears 

in Figure 3. The efficient portfolio of highest risk (and therefore highest return) is that of 

full investment in advanced CCGT; this is unsurprising as advanced CCGT has the highest 

net present value on a stand-alone basis. However it appears that the inclusion of coal 

generation can reduce the risk of baseload-only portfolios. Sub-Critical coal plants do not 

feature at all, which is unsurprising due to their low efficiency; however Super- and 

Advanced Super-Critical coal appear in small quantities. This is due to the fact that the 

minimum generation of coal plants is thirty percent of total output, while the minimum 

production of CCGT plants is fifty percent. Thus coal units can part-load better than 

CCGT. Coal plants also have start costs which are significantly lower than those of CCGT 

plants. These factors combined mean that coal plants can vary their output in response to 

changes in net load, allowing CCGT units to remain at full operation as much as possible 

and thus to increase their returns. The increase of variable renewable generation will see 

such considerations increasing in importance as the increased renewable generation leads 

to higher variability in net load. Figure 3 does however illustrate that even the baseload 

portfolio of lowest risk consists of at least seventy per cent advanced CCGT. Thus the 

incentives to diversify away from gas are limited. 
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Figure 4: Composition of mean-variance efficient baseload portfolios 

 

The fact that there is indeed a frontier of efficient baseload investments, rather than one 

optimal portfolio, is in contrast to Roques et al. (2008). They find there is only one 

efficient portfolio, that of full investment in CCGT. Thus it appears that the inclusion of 

unit commitment and endogenously determined dispatch can capture some variation which 

affects the profitability of pure baseload portfolios. This is unsurprising as the 

consideration of the risk-reducing effects outlined above, such as the ability of coal plants 

to part-load, cannot be captured by assuming a capacity factor and ignoring start costs as 

Roques et al. (2008) did. Furthermore, in order to further explore the source of the 

difference between our findings and those of Roques et al. (2008) we examine the 

electricity prices which arise from the FAST model. Taking a fixed data set for demand 

and wind, and a fixed generation portfolio, we run the FAST model one hundred times, 

taking fuel and carbon prices from lognormal distributions as described above. The 

electricity prices found are given in Figure 4. The prices have two clusters, one around the 

lower price seen when a baseload plant is the marginal unit, and another cluster around the 

higher prices seen when peaking plants are the marginal unit. 

 



10 

 
Figure 5: Electricity prices arrived at by the FAST model 

 

Roques et al. (2008) used a unimodel distribution, rather than a bimodal one as in Figure 4. 

roques thus did not take account of the variation of prices during the course of the day due 

to the difference in marginal cost between baseload and peaking plant. This, along with the 

unit commitment and economic dispatch considerations outlined above, explain the 

observation of a frontier of efficient baseload portfolios rather than the single efficient 

point which was observed by Roques et al. (2008). 

 

3.2 Efficient portfolios considering all generation technologies 

The whole space of possible portfolios, including those with flexible peaking generation 

technologies, is then searched, also in increments of ten percentage points. The risk-return 

plot of each of these portfolios is given in Figure 5, with the mean-variance efficient 

frontier marked in. 
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Figure 6: Risk-return plot of electricity generation portfolios 

 

It is clear again that, in contrast to Roques et al. (2008), there is an efficient frontier of 

investment portfolios; thus there is no one portfolio that provides the best return for any 

level of risk. Figure 6 shows the composition of portfolios on the efficient frontier arranged 

according to portfolio risk. None of the coal technologies are to be found on the efficient 

frontier, and only advanced CCGT units are on the frontier. The portfolio of full 

investment in advanced CCGT remains the portfolio with the highest return but also the 

highest risk; the presence of other technologies on the frontier reduce risk. 
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Figure 7: Composition of portfolios on the efficient frontier 

 

ADGT investment features heavily in the efficient frontier as ADGT also has a positive net 

present value. This is due to its low start-up costs and the fact that OCGT has high 

marginal cost; thus when both ADGT and OCGT are online ADGT receives high infra-

marginal rent. The fact that ADGT appears in lower risk portfolios which also include 

CCGT suggests that ADGT units decrease the risk of CCGT units. This is in spite of the 

fact that there is positive (but low) correlation between ADGT and CCGT units. This is 

most likely due to the fact that the expansion is run seven different times with a fixed block 

of a different generation type each time, and so some of the cross-benefits of different plant 

types may not be captured. The same can be said of OCGT investment, which features in 

many of the efficient portfolios in spite of the fact that on a stand-alone basis OCGT is 

always a loss-making plant under marginal-cost pricing. 

 

Given that the baseload-only portfolios were dominated by investment in advanced CCGT, 

it is not surprising that the generation technologies which appear on the efficient frontier 

are more flexible technologies. The role which coal played in the efficient baseload 

portfolios (partloading and facilitating higher output from advanced CCGT units) is better 

performed by flexible units when investment in all technologies in considered. This is 

because the start costs and minimum production values, which are lower in the case of coal 

plants compared to those of CCGT, are negligible in the case of more flexible generation 

technologies such as ADGT and OCGT. Furthermore ADGT and OCGT have faster start 

times and also can ramp at faster rates than coal plants. Thus they can adapt to variable net 

load even better than coal plants can and can reduce variation in output from CCGT units 

more effectively. 
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Given that investment in coal technologies does not feature heavily in the optimal baseload 

portfolio or at all on the efficient frontier of all optimal portfolios, we can conclude that 

fuel price risk is not sufficient to justify fuel diversification. This is due to the fact that gas 

plants are nearly always the marginal unit, and so the electricity price is a function of the 

gas price. Therefore the risk the gas generator faces due to gas price risk is reflected in the 

return they make and the incentive to diversify between fuels is diminished. The benefits of 

diversification appear to be confined to diversifying between types of technology taking 

operational issues into account. The detailed nature of the FAST algorithm allows these 

effects to be incorporated when determining the schedule and thus the returns of each 

plant. Therefore the inclusion of unit commitment and detailed scheduling is necessary if 

the operational interactions between the various plant types is to be properly quantified. 

 

The interaction between risk and return, and the efficient frontier which arises as a result, is 

significant. Figures 7 and 8 give the fifteen portfolios of highest return and lowest risk 

(with positive return) respectively. The composition of such portfolios differs greatly from 

those on the efficient frontier. It can be seen that those portfolios which yield the highest 

returns include some coal (both super-critical and advanced super-critical) and 

conventional CCGT. In fact each of these portfolios are at least eighty per cent inflexible 

baseload technologies. By contrast, those portfolios of lowest risk (with positive return) 

include at most ten per cent baseload technologies. The fact that the efficient frontier 

features a mix of both flexible and inflexible technologies suggests that there may be 

sufficient incentives when both risk and return are taken into account to ensure diversity in 

the electricity generation mix. This is significant as many systems are considering specific 

incentives to ensure sufficient flexibility in the generation mix (EirGrid, 2011; Abdul-

Rahman et al., 2012). While considerations of generator returns alone may lead system 

operators and regulators to conclude that such incentives are necessary, the consideration 

of risk may mean that such incentives in fact prove unwarranted. A further examination of 

this possibility is recommended before any such policies are advanced. 
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Figure 8: Composition of fifteen portfolios of highest return 

 

  

Figure 9: Composition of fifteen portfolios of lowest risk and positive return 

 

The inclusion of a make-whole payment, by means of which a generator is guaranteed to 

recover their costs over a certain period of time, could have an effect on the results. This 

would remove the risk faced by baseload units regarding their start costs. The inclusion of 

a capacity-payment mechanism, which is a fixed payment received by generators based on 

their availability for generation, would change the average returns of each generation 

technology and therefore of each portfolio as well. Finally the consideration of 

interconnection to neighbouring systems, which can provide further diversification options 

to investors, could change the composition of the efficient frontier. We leave such 

considerations for further work. 

 

 

4 Conclusion 

 

This paper used a sophisticated scheduling algorithm to determine least-cost electricity 

generation schedules. The FAST algorithm avoids many of the pitfalls of similar modelling 

in this area by including start costs and no load costs. Thus the model can legitimately 

identify the least-cost schedule in the presence of variable generation, which gives rise to 

larger changes in net demand. 

 

A Monte Carlo analysis was performed under varying fuel and carbon prices. The FAST 

algorithm determined the least-cost generation schedule and marginal pricing was used to 

calculate the returns for each generator. A distribution of the net present value of each type 

of electricity generation technology was attained and the mean-variance efficient frontier 

of generation investment portfolios was found. 
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The efficient portfolios for baseload generation saw high amounts of investment in 

advanced CCGT, with some investment in coal seen to reduce risk. When all types of 

generation technology were considered, efficient portfolios on the frontier consist of 

advanced CCGT, ADGT and OCGT, in varying quantities. Full investment in advanced 

CCGT provided the highest return, therefore ADGT and OCGT are incorporated to reduce 

the overall risk of the portfolio. This reduction in risk is due to a reduction in the number 

of costly starts that baseload units, including CCGT units, have to perform, and by 

increasing the online production capacity factor of advanced CCGT units. The 

consideration of the effect of make-whole payments, capacity payments and 

interconnection on the efficient frontier is proposed as an extension to this work. A more 

robust examination of the incentives faced by generators regarding investment in flexible 

generation technologies is also recommended. 
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Appendix Distribution of NPV of each generation technology 

 

The mean and standard deviation for the NPVs of the seven generation technologies under 

study, as well as their correlations, are given in Tables 3 and 4. 

 

Generation 

technology 

SubC 

Coal 

SupC 

Coal 

ASupC 

Coal 

CCGT ACCGT ADGT OCGT 

Mean -269 -95 116 -80 207 51 -1,042 

Standard 

deviation 

46 38 82 61 23 3 0 

 

 Table 3: Summary statistics of the NPV of each generation technology (M) 

  

  

Generation 

technology 

SubC Coal SupC Coal ASupC Coal CCGT ACCGT ADGT 

SubC Coal 1 0.19 0.06 0.07 -0.23 0.01 

SupC Coal  1 0.89 0.52 -0.03 0.29 

ASupC Coal   1 0.58 0.06 0.34 

CCGT    1 -0.19 0.65 

ACCGT     1 0.17 

ADGT      1 

  

Table 4: Correlation coefficients for the NPV of each generation technology 

  

The zero standard deviation seen for OCGT plants is due to the fact that as the unit with 

the highest marginal cost, the OCGT plant will always set the electricity price, and always 

break even on energy costs. The return on an OCGT plant is therefore determined by its 

fixed costs on 

 


