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Abstract

Weitzman’s Dismal Theorem has that the expected net present value of a stock problem
with a stochastic growth rate with unknown variance is unbounded. Cost-benefit analysis
can therefore not be applied to greenhouse gas emission control. We use the Generalized
Central Limit Theorem to show that the Dismal Theorem can be tested, in a finite sample,
by estimating the tail index. We apply this test to social cost of carbon estimates from three
commonly used integrated assessment models, and to previously published estimates. Two
of the three models do not support the Dismal Theorem, but the third one does for low
discount rates. The meta-analysis cannot reject the Dismal Theorem. Keywords : climate

policy; dismal theorem; fat tails; social cost of carbon
JEL codes : C46, D81, Q54

1. Introduction

The Dismal Theorem (Weitzman, 2009a) has that the uncertainty about climate change
is too large for expected utility maximisation. Specifically, Weitzman showed that the
expected value of the social cost of carbon, the marginal net present impact of greenhouse

∗Jubilee Building, BN1 9SL, UK
Email address: r.tol@sussex.ac.uk (Richard S.J. Tol)
URL: http://www.ae-info.org/ae/Member/Tol_Richard (Richard S.J. Tol)

1We fondly remember lengthy conversations with Marty Weitzman on this topic. Tommi Ekholm, Samuel
Okullo, Antonin Pottier, and Gernot Wagner graciously shared their estimates of the social cost of carbon.
Bill Nordhaus had good suggestions on the tail-index estimator.
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gas emissions or, if evaluated along the optimal emissions trajectory, the Pigou (1920) tax, is
unbounded. Weitzman’s is an analytical result for a highly stylized model.2 We here test for
the existence of the first moment of the social cost of carbon in three integrated assessment
models and in a meta-analysis of previously published estimates. We find that, under more
realistic assumptions, the Dismal Theorem stands.

We test the Dismal Theorem by estimating the tail-index of social cost of carbon distribu-
tions. The Generalized Central Limit Theorem holds that the distribution of a sum (and
so the mean) of independent, identically distributed variables tends to a stable distribution,
and that its right tail will follow a power law with index α. If the variance of the summands
is finite, α = 2 and the distribution of the sum is Gaussian—this is the Central Limit The-
orem, ungeneralized. α < 2 indicates that the variance is infinite, α < 1 that the average
does not exist. Weitzman’s Dismal Theorem can thus be restated as: The tail-index of the
social cost of carbon is less than one.

Weitzman (2009a) pointed out that the expectation of the discount factor is the Moment
Generating Function (MGF) of the discount rate. If the growth rate of the economy is
Normally distributed with unknown variance, then the estimated growth rate has a Student
t distribution. In a stroke of genius, Weitzman combined these two basic insights to show
that the MGF of the social cost of carbon does not exist.

The MGF is an alternative specification of a Probability Distribution. It can be thought of as
an expansion in its moments: The nth partial derivative of the MGF equals the nth moment.
The MGF thus specifies mean, variance, skewness, kurtosis and all higher moments, and
reveals whether or not these moments exist. The tail-index similarly reveals which moments
exists. Tail-index and MGF are thus connected. However, while we can estimate the MGF
from the empirical MGF M(t) = n−1

∑
j e

txj , in a finite sample, empirical moments are by
definition finite. We would then need to design a test whether the empirical moments are
truly finite.3 On the other hand, there are ready-made estimators of the tail-index, also for
small α. Estimating the tail-index thus provides a direct test of the Dismal Theorem. We
refer to tails with α < 1 as fat, we call tails with 1 ≤ α < 2 thick, while thin tails have
α ≥ 2.

We estimate the tail-index of the social cost of carbon for three Integrated Assessment
Models—dice, fund, and page—that have been previously used to estimate the social
cost of carbon, including by the Obama administration (on the Social Cost of Carbon, 2010,
2013). These models are implemented in mimi, which allows for parametric uncertainty
analysis, scenario analysis, and structural uncertainty analysis.

We further estimate the tail-index for the population of published estimates of the social
cost of carbon. These estimates use the above integrated assessment models but also other

2See Cato (2020) for an even simpler version that can be used in class: The Dismal Theorem is the dual
of the St Petersburg Paradox.

3Anthoff and Tol (2014) repurpose stationary tests for this.
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models, thus extending the analysis of the impact of model structure on the social cost of
carbon and the tail of its distribution. The published estimates were screened by authors and
referees prior to publication, reducing the risk that estimates in the tail of the distribution are
the result of the mechanical extrapolation that sometimes happens in Monte Carlo exercises.

This is not the first paper to test the Dismal Theorem. Millner (2013) notes that the
Dismal Theorem holds if relative risk aversion is constant but not if absolute risk aversion is
hyperbolic, echoing Geweke (2001). Millner (2013) further finds that the Dismal Theorem
does not stand if greenhouse gas emission reduction is added to the model. Horowitz and
Lange (2014) show that the Dismal Theorem holds in partial but not in general equilibrium:
Changes in savings and investment would also prevent a collapse of the economy.

Anthoff and Tol (2014) take the Dismal Theorem literally—you cannot apply expected cost-
benefit analysis to climate policy—and explore alternative decision criteria. They also design
a statistical test for the fatness of the tail. This test relies on the recursive estimates of net
present welfare for an expanding Monte Carlo sample. They show that, in fund, mean
net present welfare does not converge, violating the Law of Large Numbers and thus the
Central Limit Theorem—as predicted by the Dismal Theorem. However, their statistical
test—Augmented Dickey-Fuller—was designed for a different purpose. In this paper, we use
statistical tests explicitly designed for the tail-index. We also use a wider range of models.

The paper proceeds as follows. We discusses the models, data and statistical tests used in
Section 2. More details are presented in the Appendix. Section 3 presents and discusses the
results. Section 4 concludes.

2. Methods

2.1. Integrated Assessment Models

Integrated Assessment Models (IAMs) come in many shapes and forms. The ones used in
this paper combine representations of population, economic output, energy use, greenhouse
gas emissions, carbon cycle, climate, and impacts of climate change. These models were
designed to inform the optimal course of action on greenhouse gas emission reduction either
by maximising net present welfare or, approximately, equating the marginal costs and ben-
efits of emission abatement. The three models used in this paper were selected to advice
the Obama Administration on the social cost of carbon, the internal carbon price used for
regulatory cost-benefit analysis.4

2.1.1. DICE

dice is the oldest and most prominent of IAMs (Nordhaus, 1992, 1993, 2018). It extends
a Ramsey/Cass/Koopmans model of economic growth with a Maier-Reimer/Hasselmann
model of the carbon cycle and a Schneider/Thompson model of climate change. The impacts

4The Trump Administration uses the same three models, but limits the social cost of carbon to impacts
that fall on the USA and uses a higher discount rate than the previous administration.
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of climate change are given by a power function. Energy is modelled as a derived demand.
Emission reduction costs are another power function. The model solves optimal investment
and optimal emission abatement.

2.1.2. FUND

fund uses scenarios of economic growth rather than a growth model. The carbon cycle and
climate parts are very similar to dice (Tol, 1999). Instead of a single damage function, fund
models impacts of climate change separately for each sector (Tol, 2002a,b). The model can
be used to solve optimal emission abatement, but also to estimate impacts along arbitrary
emission or climate scenarios (Anthoff et al., 2016).

2.1.3. PAGE

page has an economy as simple as fund and climate change impacts as simple as dice.
Carbon cycle and climate are similar to those in the other two models (Plambeck et al.,
1997, Hope and Schaefer, 2016). The key strength of the page model is that it is centred
on the analysis of parametric uncertainty.

2.1.4. MIMI

Mimi is a Julia package that splits large models like dice, fund and page into smaller
components, as recommended by National Academies of Sciences and Medicine (2017). Each
of the component corresponds to a well-delineated part of the cause-effect chain, often with
strong disciplinary roots—the carbon cycle, for instance, or the impacts of climate change
on heat stress. Each component can be tested and used separately, and combined in any
logical permutation with other components. See Moore et al. (2018). For instance, mimi
makes it easy to combine page’s climate model with dice’s impact function, or replace
fund’s carbon cycle without reprogramming the entire model. mimi also offers facilities for
Monte Carlo analysis and data management. It is those features we use in this paper.

2.2. Meta-analysis

There is a large literature on the social cost of carbon spanning four decades, from Nordhaus
(1982) to Okullo (2020). Tol (2020) updates a previous meta-analysis of the social cost of
carbon (Tol, 2018). He counts 2786 estimates in 148 papers. These are estimates of the
social cost of carbon of carbon dioxide emitted in the recent past.

The estimates are treated in three different ways. First, all estimates are treated equally.
Second, estimates are weighted such that the total weight per paper equals one. Within each
paper, estimates that are favoured by the authors are given higher weight than estimates
that are presented for robustness or replication. Third, papers are weighted by quality, as
measured by peer-review, age, scenario use, completeness, and mathematical consistency.

2.3. The Tail-Index and its Estimation

Hill (1975) derives the Maximum Likelihood estimator for the tail-index and shows that it is
unbiased. If the right tail of distribution follows a power law, then its natural logarithm is a
straight line. Hill estimates the slope of that line. A key consideration is the definition of the
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tail. We here follow the literature and estimate the tail-index for the 10 largest observations
up to the 10% largest observations. In addition, we use the Huisman et al. (2001) estimator
that combines estimatess across tail-sample sizes.

Much of the literature that follows Hill (1975) is concerned with estimators in cases where
the tail only approximately follows a power law. Many estimators have been proposed
(Fedotenkov, 2018). We here use those with properties that are widely accepted: maximum
likelihood (ML), best linear unbiased (BLUE), least squares (LS), method of moments (MM),
and quantile-quantile (QQ). Furthermore, we estimate, using numerical maximum likelihood,
the tail-index for a specific deviation from the Pareto Distribution: The Generalized Pareto
Distribution. Details are given in Appendix A.

3. Results

3.1. Integrated Assessment Models

Estimates of the social cost of carbon are based on a large number of parameters, all of which
are uncertain or disputed, if not very uncertain or controversial. Parametric uncertainty is
here reflected by Monte Carlo analysis, which of course replaces an assumption about the
value of a particular parameter with assumptions about its distribution and moments. For
the sake of space, we do not test every assumption in a sensitivity analysis. Instead, we
select a core set of assumptions, and vary the key parameters one or two at a time. The
pure rate of time preference is set to 1% per year, with 0.1% and 3% as sensitivities. The rate
of risk aversion is set to 1, with 0.5 and 1.5 as alternatives. Discounting follows the Ramsey
Rule, but as the projected growth rate is uncertain, the certainty-equivalent discount rate
falls with the time horizon. As an alternative, we use a constant consumption discount rate,
as was done in the official US federal social cost of carbon estimates. In addition, we also
test social cost of carbon estimates that use equity weighting. In those estimates we set the
inequality aversion parameter equal to the chosen risk aversion parameter. In graphs, we
show all six estimators of the tail-index for a range of tail-sample sizes. In tables, we show
the Huisman-type estimators that synthesize across tail-sample sizes.

All these choices are debatable, but making a choice is preferred to showing results for every
permutation of parameters, models, and estimators. Data and code are available to the
reader who wants to test alternative choices.

Weitzman (2009b, see also Weitzman (2010)) notes the key distinction between additive and
multiplicative damages. If U denotes utility, C consumption, and D damage, for multiplica-
tive damages, U = U(C(1 − D)−1) so that U → −∞ for D → ∞. For additive damages,
U = U(C − D) so that U → −∞ for D → C. In either representation, there is an upper
limit to damage, D ≤ Dmax, but the maximum willingness to pay to avoid negative impact is
everything you earn plus everything you own and can borrow, Dmax > C. Additive damages
are thus much more likely to lead to large utility losses than multiplicative damages. dice
has multiplicative damages, fund and page have additive damages.
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Table C.7 shows the mean and standard deviation of the social cost of carbon for the 100,000
runs in the Monte Carlo analysis with the three integrated assessment models, for a pure
rate of time preference of 1% and a rate of risk aversion of 1. page is the most pessimistic
and fund the most optimistic, with dice in between. However, dice is the most confident
and page the least, which fund in between. Mean and standard deviation do not fully
describe the characteristics of the Monte Carlo results. Figures C.6, C.7 and C.8 show the
probability densities for the whole sample and the 1000 largest observations for the three
models. The probability densities are unimodal and right-skewed, but the similarity between
models ends there. The density for dice looks like a lognormal distribution, while page is
much like an exponential distribution. fund has a more pronounced left tail—this model
explicitly accounts for savings in winter heat costs, for avoided cold-related deaths, and for
carbon dioxide fertilization—and a much thicker right tail than the other two models.

3.1.1. DICE

Figure C.6 shows the histogram of all 100,000 Monte Carlo runs, and for the 1,000 largest.
Figure 1 shows results for the tail-index for dice. The rate of risk aversion is 1, the pure
rate of time preference 1%. All six estimators are shown.

The moments estimator is unreliable, moving from very high to very low estimates and
back. The Generalized Pareto puts the tail-index around zero, but the maximum likelihood
estimators warns that these results are unreliable. These are signs of a thin tail, as shown
in Appendix A.

The other estimators are more robust to deviations from the null hypothesis. These estima-
tors indicate that the social cost of carbon has a thin tail: The tail-index is greater than two,
both mean and variance exist. In fact, the first seven moments exist. The quantile-quantile
estimator shows a thinner tail than the three analytic estimators. The tail thins somewhat
if we consider fewer, more extreme observations.

Table 1 gives Huisman-type estimates for a range of parameters. Apart from the unreliable
moments and Generalized Pareto estimators, estimates of the tail-index are significantly
greater than two, regardless of the pure rate of time preference and the regardless of the
rate of risk aversion.

3.1.2. FUND

Figure 2 shows the six estimators of the tail-index for a range of tail-sample sizes for fund,
with risk aversion equal to 1 and the pure rate of time preference equal to 1%, using equity
weights.

In the deep tail, the tail-index is smaller than one and the Dismal Theorem holds. If we
consider more than 0.5% of the largest observations, the tail is thick but not fat. According
to the maximum likelihood, least squares and best linear unbiased estimators, the tail thins
quickly as we add less extreme observations. The moments and quantile-quantile estimator
show less rapid thinning. The Generalized Pareto estimator shows very rapid thinning
followed by a thickening.
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ML BLUE LS MM QQ GP

0.5 0.1% 7.8856 7.8366 7.7385 -133.0361 8.8574 -0.14203
(1.2766e-21) (1.2504e-21) (1.1864e-21) (3918.7396) (3.1179e-23) (0.067771)

1.0 0.1% 6.5847 6.5464 6.4697 11.6932 6.6153 0.086826
(1.7019e-18) (1.6862e-18) (1.707e-18) (8.5067) (4.4255e-20) (2.6108)

1.5 0.1% 7.1006 7.0593 6.9768 39.6014 7.2656 0.063021
(1.7728e-18) (1.7987e-18) (1.8672e-18) (39.5804) (1.5567e-20) (0.053028)

0.5 1.0% 10.2106 10.1519 10.0343 207.6101 10.6491 -0.011441
(1.605e-25) (1.6559e-25) (1.7891e-25) (1519.12) (4.3116e-29) (0.046044)

1.0 1.0% 8.9743 8.9197 8.8106 -1752.9251 9.6979 -0.078542
(9.2298e-26) (9.015e-26) (8.5354e-26) (68527.6968) (2.1026e-27) (0.054023)

1.5 1.0% 8.957 8.9042 8.7987 -1172.9642 9.3903 -0.0053218
(6.6621e-25) (6.8934e-25) (7.4579e-25) (16141.3101) (6.8281e-27) (0.06128)

0.5 3.0% 15.9737 15.8755 15.6791 -0.18268 17.7286 -0.078184
(3.849e-41) (4.0854e-41) (4.6035e-41) (18.6944) (8.5954e-47) (0.036076)

1.0 3.0% 17.1236 17.0217 16.818 1488.2843 17.7648 -0.04104
(1.7807e-46) (1.8744e-46) (2.0844e-46) (37134.2168) (6.9672e-52) (0.04387)

1.5 3.0% 18.5796 18.4715 18.2554 166.6744 19.2991 -0.036273
(1.2876e-48) (1.3827e-48) (1.6153e-48) (1995.5483) (5.1082e-55) (0.027032)

Table 1: Huisman-type estimates of the tail-index, for different rates of risk aversion and pure time preference
(rows), and for different estimators of the tail-index (columns). All results use dice. Equity weights are
inapplicable in a one-region model.

Figure 1: Estimates of the tail-index for dice, for a pure rate of time preference of 1% per year, and a rate
of risk aversion of 1.
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ML BLUE LS MM QQ GP

0.5 0.1% 0.49929 0.49465 0.48536 0.75055 0.73263 1.2793
(0.00043394) (0.00043034) (0.00042331) (0.00046648) (0.00045236) (2.4503e-05)

1.0 0.1% 0.54059 0.53531 0.52476 0.79267 0.81602 1.3192
(9.737e-05) (9.6414e-05) (9.4486e-05) (3.3557) (0.00026509) (0.40182)

1.5 0.1% 0.66252 0.65631 0.64388 1.0628 0.9545 1.0139
(3.2906e-05) (3.2304e-05) (3.1063e-05) (0.00014926) (9.5983e-05) (0.0011122)

0.5 1.0% 0.4902 0.48516 0.47509 0.78699 0.72682 1.6117
(4.5477e-05) (4.4635e-05) (4.298e-05) (0.00031624) (0.00029613) (0.00035186)

1.0 1.0% 0.62409 0.61793 0.60561 0.90613 0.78175 1.7721
(1.6716e-05) (1.7677e-05) (1.988e-05) (6.4247e-05) (8.1921e-05) (0.00057725)

1.5 1.0% 1.3976 1.3873 1.3668 1.3408 1.1974 1.3021
(6.068e-07) (6.7601e-07) (8.4227e-07) (4.3422e-06) (5.7908e-07) (0.0097273)

0.5 3.0% 2.0845 2.0716 2.046 1.2473 1.0355 1.4032
(7.1847e-07) (9.5222e-07) (1.8772e-06) (3.8228e-06) (4.2536e-06) (0.025589)

1.0 3.0% 3.4624 3.4442 3.4079 1.4224 1.4062 1.1857
(2.9351e-07) (4.2401e-07) (9.3968e-07) (5.5725e-07) (5.0027e-07) (0.16091)

1.5 3.0% 6.6016 6.5649 6.4913 3.7086 5.8254 0.2220
(5.1705e-19) (5.7713e-19) (7.2668e-19) (1.0345e-16) (1.2135e-19) (2.1105)

Table 2: Huisman-type estimates of the tail-index, for different rates of risk aversion and pure time preference
(rows), and for different estimators of the tail-index (columns). All results use equity-weights. All results
use fund.

Table 2 shows the results for the same model for a range of rates of risk aversion and
pure rates of time preference. The tail thins as the future is discounted harder. This is as
expected: The greatest uncertainties lie in the further future, not just because less is known
about the more distant future, but also because climate change is more pronounced later.

3.1.3. PAGE

Figure 3 shows results for page. The rate of risk aversion is 1, the pure rate of time
preference 1%. Equity weights are used. All six estimators are shown.

The moments estimator is unreliable, jumping between very high and very low estimates.
The Generalized Pareto puts the tail-index around zero, but it too is unreliable judging from
the warning messages from the numerical optimization algorithm. These are signs that the
tail is thin; see Appendix A.

The other estimators are less fragile to deviations from the null hypothesis that the tail
follows a power law. These estimators show that the social cost of carbon has a thin tail:
The tail-index is greater than two, both mean and variance exist. The quantile-quantile
estimator shows a thinner tail than the three analytic estimators. The deeper tail is thinner,
as page uses triangular distributions, capped from below and above, to describe parametric
uncertainties.

Table 3 gives Huisman-type estimates for a range of parameters. Apart from the unreliable
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Figure 2: Estimates of the tail-index for fund, with equity weights, a pure rate of time preference of 1%
per year, and a rate of risk aversion of 1.

moments and Generalized Pareto estimators, estimates of the tail-index are significantly
greater than two, regardless of the pure rate of time preference and the regardless of the
rate of risk aversion.

3.1.4. Equity weights

Figure 4 repeats Figure 2 but without equity weights. Above, we use Pearce equity weights
(Fankhauser et al., 1997, see Anthoff et al. (2009a) and Anthoff and Tol (2010) for alterna-
tives), weighing impacts by the ratio of global to regional income raised to the power of the
rate of risk aversion. The pattern without equity weights is similar to the pattern with, but
the tail-index is somewhat larger, that is, the tail of the social cost of carbon is somewhat
thinner. Equity weights emphasize the impact on the poor, who tend to be more vulnerable.
Equity weights thus amplify the risks of climate change. Numerically, however, the effect
on the tail-index is small.

Table 4, which repeats Table 2, confirms that, quantitatively, equity-weights have a small
effect on the estimated tail-index. However, equity-weights can fatten as well as thin the
tail—compare the bottom rows of Tables 2 and 4. The tail thins for larger discount rates be-
cause, in the short-run more carbon dioxide in the atmosphere stimulates agriculture through
carbon dioxide fertilization, which primarily benefits poorer countries (Anthoff et al., 2009b).
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ML BLUE LS MM QQ GP

0.5 0.1% 3.5171 3.4971 3.4572 11.1351 3.8611 0.095837
(5.7688e-06) (5.6035e-06) (5.3235e-06) (41.8374) (3.6028e-08) (0.057553)

1.0 0.1% 3.578 3.5568 3.5145 18.4657 4.1452 0.0018793
(7.1365e-06) (6.9361e-06) (6.5526e-06) (105.1644) (5.9296e-08) (0.038898)

1.5 0.1% 3.5539 3.5328 3.4906 -1.3102 4.0503 0.025607
(5.255e-06) (5.0219e-06) (4.5636e-06) (264.198) (4.0186e-08) (0.026274)

0.5 1.0% 3.224 3.205 3.1671 10.9081 3.6503 0.065545
(5.7691e-06) (5.6211e-06) (5.3445e-06) (2.9763) (8.3598e-08) (0.034658)

1.0 1.0% 3.4873 3.4657 3.4224 71.4206 4.1751 -0.10081
(3.9395e-06) (3.8006e-06) (3.5275e-06) (1007.0128) (6.5447e-08) (0.055857)

1.5 1.0% 3.3435 3.3243 3.2859 9.1511 3.6876 0.094431
(6.081e-06) (5.8576e-06) (5.4579e-06) (9.5772) (5.2809e-08) (0.041587)

0.5 3.0% 3.4146 3.3954 3.3568 6.3418 3.6801 0.12975
(5.4577e-06) (5.2277e-06) (4.8161e-06) (2.523) (3.2468e-08) (0.038091)

1.0 3.0% 3.4409 3.4215 3.3827 9.4061 3.7268 0.1390
(7.9737e-06) (7.8294e-06) (7.6052e-06) (5.4386) (3.2242e-08) (0.049278)

1.5 3.0% 3.367 3.3455 3.3024 6.592 4.0417 -0.10817
(6.963e-06) (6.618e-06) (5.9228e-06) (208.6886) (1.4336e-07) (0.066987)

Table 3: Huisman-type estimates of the tail-index, for different rates of risk aversion and pure time preference
(rows), and for different estimators of the tail-index (columns). All results use equity-weights. All results
use page.

Figure 3: Estimates of the tail-index for page, with equity weights, a pure rate of time preference of 1%
per year, and a rate of risk aversion of 1.
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ML BLUE LS MM QQ GP

0.5 0.1% 0.57278 0.56774 0.55765 0.84208 0.80036 1.1252
(0.00022036) (0.00021603) (0.00020736) (0.00047405) (0.00036518) (0.20515)

1.0 0.1% 0.61283 0.6073 0.59624 0.86077 0.75319 1.6733
(1.9223e-05) (1.999e-05) (2.1835e-05) (0.61221) (0.0002429) (0.31735)

1.5 0.1% 0.7972 0.79087 0.77821 0.9481 0.85251 1.3086
(2.0684e-06) (2.1651e-06) (2.456e-06) (1.7998e-05) (9.87e-06) (0.00052268)

0.5 1.0% 0.57662 0.57094 0.55957 0.90451 0.81242 1.5341
(1.0601e-05) (1.0526e-05) (1.0432e-05) (0.13496) (0.00013606) (0.37771)

1.0 1.0% 1.0023 0.99439 0.97851 1.0706 0.89511 1.7289
(6.8892e-06) (7.615e-06) (9.3622e-06) (0.15092) (8.5887e-06) (0.25685)

1.5 1.0% 1.2932 1.2841 1.2659 1.0561 0.83036 1.6055
(5.5448e-06) (6.6525e-06) (1.0402e-05) (1.203e-05) (1.1392e-05) (0.0034558)

0.5 3.0% 2.3585 2.3454 2.3192 1.2638 1.1045 1.3248
(1.63e-06) (2.2362e-06) (4.4443e-06) (2.7727e-06) (2.6828e-06) (0.14286)

1.0 3.0% 3.4906 3.4720 3.4348 1.5319 1.8042 0.90642
(8.0038e-09) (1.2728e-08) (3.311e-08) (8.7395e-08) (3.7908e-08) (0.15809)

1.5 3.0% 5.4727 5.4446 5.3885 1.5938 3.0706 0.56826
(2.6493e-11) (1.101e-10) (2.1414e-09) (8.1131e-10) (5.6956e-10) (0.10693)

Table 4: Huisman-type estimates of the tail-index, for different rates of risk aversion and pure time preference
(rows), and for different estimators of the tail-index (columns). No results use equity-weights. All results
use fund.

Figure 4: Estimates of the tail-index for fund, no equity weights.
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ML BLUE LS MM QQ GP

dice 2.5% 16.0946 16.0015 15.8153 -39.2681 16.9784 -0.04886
(1.2382e-38) (1.3047e-38) (1.466e-38) (301.1745) (3.7014e-45) (0.029198)

fund 2.5% 1.0312 1.0234 1.0079 1.0516 0.88299 1.7445
(9.8428e-06) (1.08e-05) (1.3068e-05) (1.8199e-05) (1.3219e-05) (0.0045129)

page 2.5% 3.4852 3.4653 3.4257 6.3665 3.7482 0.13175
(6.615e-06) (6.2179e-06) (5.4657e-06) (3.1254e-19) (3.4169e-08) (14.3092)

dice 3.0% 17.2696 17.1696 16.9696 1.1723 18.2353 -0.060949
(1.6718e-40) (1.7747e-40) (2.0178e-40) (166.6634) (5.9053e-49) (0.041988)

fund 3.0% 1.2723 1.2637 1.2464 1.0485 0.84893 1.6813
(8.0022e-06) (9.2109e-06) (1.241e-05) (1.221e-05) (9.7887e-06) (0.0061745)

page 3.0% 3.573 3.5527 3.5121 14.3872 3.9304 0.10347
(9.1639e-06) (8.8766e-06) (8.364e-06) (44.4418) (3.4153e-08) (0.03559)

dice 5.0% 23.7391 23.6007 23.324 -4.2772 25.2199 -0.095908
(2.0356e-58) (2.1832e-58) (2.5127e-58) (228.9773) (2.1256e-69) (0.028709)

fund 5.0% 3.1996 3.1826 3.1488 1.4982 1.6899 0.90946
(1.7922e-08) (3.0252e-08) (1.0431e-07) (2.4198e-06) (9.0771e-08) (0.14391)

page 5.0% 3.657 3.6359 3.5938 26.4057 4.0601 0.078293
(5.2566e-06) (5.1115e-06) (4.8477e-06) (188.2211) (1.8641e-08) (0.035743)

Table 5: Huisman-type estimates of the tail-index, for different models and different constant consumption
discount rates (rows), and for different estimators of the tail-index columns). All results use equity-weights.

3.1.5. Consumption discount rates

Table 5 shows the estimated tail-indices for a constant consumption discount rates. Although
theoretically inferior to the Ramsey discount rate (Arrow et al., 2013, 2014), constant con-
sumption discount rates are still in use for policy advice by government agencies, particularly
those of the USA (on the Social Cost of Carbon, 2010, 2013).

Table 5 confirms the results above. Higher discount rates imply thinner tails, and dice
is more optimistic about the risks of climate change than page, which in turn is more
optimistic than fund.

3.2. Meta-analysis

Table C.7 shows the mean and standard deviation of all estimates in the meta-analysis
that use a pure rate of time preference of 1. Taking all estimates at face value leads to a
rather high average. These high estimates are discounted by the authors of the studies: The
author-weighted average is a factor 25 lower. Adding quality-weights for the studies doubles
the social cost of carbon again. The standard deviations show that the range of estimates
is rather large.

Figure C.9 shows estimates of the tail-index of the probability density function of the pub-
lished estimates of the social cost of carbon, taking all estimates at face value. All estimators5

5Recall that the Generalized Pareto estimator cannot be used on weighted data, and is therefore omitted.

12



ML BLUE LS Moment QQ
no weights 1.2260 1.2136 1.1887 1.3180 1.1850

(0.3381) (0.3310) (0.3214) (0.0947) (0.0870)
author weights 1.0766 1.0664 1.0460 1.0017 1.0314

(0.4572) (0.4601) (0.4672) (0.1037) (0.0916)
quality weights 1.2241 1.2118 1.1871 1.3047 1.1857

(0.3499) (0.3437) (0.3359) (0.0933) (0.0867)

Table 6: Huisman-type estimates of the tail-index, for different weightings of the data, and for different
estimators of the tail-index.

for all samples agree that the tail-index is significantly smaller than 2. That is, the tail is
thick—the variance does not exist. However, the central estimate of the tail-index is typ-
ically larger than 1, although never significantly so. We cannot reject the hypothesis that
the tail is fat—we cannot be sure that the mean exists.

Figure C.10 repeats the analysis, now placing lower weight on results that the authors of
the estimates themselves de-emphasized. Compared to Figure C.9, we see a downward shift
in the estimates of the tail-index. For the moment and quantile-quantile estimators, it
is a toss-up whether the tail is fat. For the maximum likelihood, least squares and best
linear unbiased estimators, for the 350-500 largest observations, the null hypothesis that the
tail-index is 1 or larger is rejected: The tail is fat.

However, as shown in Figure C.10, if we also weigh the estimates by the quality of the study,
the tail-index shifts upwards again. The more extreme estimates of the social cost of carbon
appear in lower quality papers. With these weights, the tail is thick, but we can neither
reject the hypothesis that it is fat nor that it is not fat.

Table 6 provides some clarity. It shows the Huisman et al. (2001) estimators that are
independent of tail sample size. The tail-index is larger than one, but not significantly so.
Published estimates of the social cost of carbon cannot reject Weitzman’s Dismal Theorem.

4. Discussion and Conclusion

Weitzman’s Dismal Theorem states that the expectation of the social cost of carbon does
not exist. Expected utility maximization can therefore not be used to inform greenhouse
gas emission reduction policy. We do not dispute the Dismal Theorem, but it is based on
a set of stringent assumptions. Instead, we test whether, if those assumptions are relaxed,
the Dismal Theorem still holds. According to the Generalized Central Limit Theorem, the
tail of a distribution converges to that of a Pareto distribution, characterised by its tail-
index. If the tail-index is smaller than n, the nth moment does not exist. We estimate
the tail-index, using a variety of estimators, for Monte Carlo results from three integrated
assessment models and for previously published estimates of the social cost of carbon. For
the meta-analysis, we cannot reject the hypothesis that the tail-index is smaller than one.
For the page model, the tail-index is greater than two, for the dice much greater than
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Figure 5: Estimates of the tail-index of the published estimates of the social cost of carbon, using author
and quality weights.
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two. For fund, however, the tail-index is smaller than one for a low discount rate, and
greater than two for a high discount rate. The difference between dice and fund is that
the former (latter) has multiplicative (additive) damages, so that utility approaches minus
infinity when the damages approach infinity (income) (see Weitzman, 2009b, 2010, for further
elaboration).6 If there is a chance that fund correctly represents the risks of climate change,
we cannot reject the Dismal Theorem. A meta-analysis of published estimates of the social
cost of carbon confirms that we cannot exclude a fat tail.

We conclude that the evidence for Weitzman-like dismal theorem results in integrated as-
sessment models is mixed. Some models do not show any signs of fat tails in social cost
of carbon estimates, while others do produce fat tailed estimates for some discounting and
equity weighting schemes, but not for others. Similarly, we find some evidence for fat tails
in a meta-analysis of published social cost of carbon estimates, but those findings are not
robust to different quality criteria for our meta analysis. It is clear from the two lines of
evidence we investigated that Weitzman’s dismal theorem is not just a theoretical curiosity,
but might well be found in less stylized and more complex modelling exercises as well.

Our results indicate strongly that more work needs to be done to fully understand when,
how and why fat tails emerge in integrated assessment models. Having established a test
for dismality, a systematic sensitivity analysis should reveal what exact assumptions drive
the tail-index below one. We here find that the rates of time preference, risk aversion and
inequity aversion matter, but also that some models do have a fat tail and others do not.
The analytical literature shows that the Dismal Theorem is particular to CRRA utility
Millner (2013), to no climate policy (Millner, 2013), and to partial equilibrium (Horowitz
and Lange, 2014). That is the case for Weitzman’s assumptions. Is it true, too, for integrated
assessment models? Existing literature gives conflicting answers for a global social planner
(Botzen and van den Bergh, 2012, Hwang et al., 2013, Bistline, 2015, Kelly and Tan, 2015,
Hwang et al., 2016, Berger et al., 2017, Hwang et al., 2017, 2019, Ikefuji et al., 2020), but
there is agreement that catastrophic risk increases cooperation between sovereign nations
(Barrett and Dannenberg, 2012, Dellink et al., 2013). Perhaps most importantly, the Dismal
Theorem says we cannot use expected cost-benefit analysis to inform climate policy. Unable
to reject the Dismal Theorem, alternative criteria to set the desirable intensity of greenhouse
gas emission reduction need to be found. This discussion has started (Anthoff and Tol, 2014,
Grechuk and Zabarankin, 2014, Aurland-Bredesen, 2020), but not concluded. The same is
true for the wider policy implications of the Dismal Theorem (Nordhaus, 2011, Pindyck,
2011, Weitzman, 2011, Nordhaus, 2012, Tol, 2012, Convery and Wagner, 2015, Martin and
Pindyck, 2015).

For now, great care must be taken when results from integrated assessment models are used
in the policy space. Minimally tests like the ones we present in this paper should routinely
be run on model results before they are used to guide policy. If these tests indicate that a
given moment of a distribution does not exist, policy makers should refrain from using model

6page has additive damages, but triangular distributions for its parameters.
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outputs that reflect such a moment. The results in this paper suggest that this problem is
more prevalent for low discounting rates, and that for example the discount rates chosen for
recent official US government social cost of carbon estimates do not lead to the kind of fat
tail that we identified as problematic in this paper.
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Appendix A. Tail-index estimators

Let X1, X2, ..., Xn denote a series of observations and X(1), X(2), X(n) its order statistics. The
Pareto distribution is defined as

F (X) = 1−
(
β

X

)α
(A.1)

for X ≥ β > 0, with density

f(X) =
αβα

Xα+1
(A.2)

where α is the tail-index and γ = α−1 its inverse.

The Generalized Central Limit Theorem has that the sum of independent, identically and
symmetrically distributed random variables converges to a distribution whose tail is Pareto,
with 0 < α ≤ 2, with α = 2 if the variance is finite.

A useful statistic is

Ml(k) =
1∑k−1

i=0 wi

k−1∑
i=0

wi
(
lnX(n−i) − lnX(n−k)

)l
(A.3)

where wi = 1 (for now). Ml is the lth non-central moment of the slope between the kth-largest
observation and larger ones.

The maximum likelihood estimator of the tail-index (Hill, 1975) is

α̂H(k) = M1(k)−1 (A.4)

Its asymptotic distribution is Normal with standard error

σ̂Hα (k) =
k

(k − 1)
√
k − 2

α̂H(k) (A.5)

Aban and Meerschaert (2004) show that

α̂AM(k) =
k − 1

k
α̂H(k) (A.6)
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is the best linear unbiased estimator of the inverse tail-index,7 and its uniform minimum
variance unbiased estimator. Its asymptotic standard error is

σ̂AMα (k) =
1√
k − 2

α̂H(k) (A.7)

Tripathi et al. (2014) show that

α̂T (k) =
k − 3

k
α̂H(k) (A.8)

is the least squares estimator of the tail-index. Its asymptotic standard error follows.

Dekkers et al. (1989) propose a moment estimator

(
α̂D(k)

)−1
= M1(k) + 1− 1

2

(
1− M1(k)2

M2(k)

)−1
(A.9)

Its asymptotic standard error is α̂D(k)/
√
k.

This estimator is unstable if M1(k)2 ≈ M2(k) or Var
(
lnX(n−i) − lnX(n−k)

)
≈ 0—that is,

if the order statistics decline exponentially, as in the Normal distribution so that α → ∞.

Taking the same ratio for the theoretical moments of the Pareto distribution
µ21
µ2

= α(α−2)
1+α(α−2)

reveals that the Dekkers estimators becomes unstable for thinly tailed distributions.

The above estimators all assume that estimates are of equal quality. In fact, in the meta-
analysis, papers present some estimates as central and other estimates as sensitivity analyses
or replications of previous studies. Some papers are better than others. The estimators
shown above all depend on the Ml statistics, which are readily generalized to weighted
data—and indeed already are in Equation (A.3) for wi 6= 1 and

∑
iwi = k.

One problem with the above estimators is that they work well if the right tail of the dis-
tribution is exactly Pareto, but not so well if the tail is approximately so. Fedotenkov
(2018) reviews many of the suggested solutions. Kratz and Resnick (1996) suggest to run
a regression of the natural logarithm of the k largest observations on the natural logarithm
of their order, for the Pareto distribution describes Zipf’s Law. Schultze and Steinebach
(1996) argued that dependent and independent variables should be switched. Brito and
Freitas (2003) show that the geometric mean of these two estimators performs better. The
asymptotic standard error of these estimators is the estimate times the square root of two
divided by the square root of k. This is readily generalized to weighted least squares.

Besides generic deviations from the Pareto distribution, we also consider a particular de-
viation: The Generalized Pareto Distribution. Its parameters are estimated by numerical
maximum likelihood for the k largest observations, using the gpfit function from Matlab’s

7Hill had already shown that it is unbiased
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Statistics toolbox. This is not readily generalized to weighted observations, so we do not
apply this to the meta-analysis. Note that, like the moments estimator, gpfit becomes
unstable as the tail-index grows large since the shape parameter is its inverse.

The above estimators all depend on k. Although there is some guidance on how to select k
(see Fedotenkov, 2018), we instead show results for a range. We further apply the Huisman
estimator.

Huisman et al. (2001) argue for a two-stage estimation: First estimate the tail-index for
a range of k, and then regress the estimated tail-indices on k. The intercept from that
regression is the Huisman estimator for the tail-index. The regression on k removes its
influence, at least to a first-order approximation.

While Huisman et al. use the Hill estimator, we here apply the same method to all estima-
tors.

As the variance of the Hill estimator is proportional to k, Huisman et al. (2001) use weighted
least squares with weights

√
k. The Hill estimators for different k are correlated because the

same data are used.8 The covariance matrix is therefore

Cov(β) = (Z ′W ′WZ)−1Z ′W ′AΣA′W ′WZ(Z ′W ′WZ)−1 (A.10)

For AΣA′ = 1, this is the covariance matrix for a weighted least squares regression, where

Z =


1 1
1 2
... ...
1 k
... ...
1 K


and

W =



1 1

1
√

(2)
... ...

1
√
k

... ...

1
√
K


8Anthoff and Tol (2014) did not correct for this.
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Models Meta
dice fund page No Author Quality

70 16 100 983 39 82
(30) (101) (256) (3171) (479) (765)

Table C.7: Mean and standard deviation of the social cost of carbon (in $/tC) for the three integrated
assessment models, for a pure rate of time preference of 1% per year and a rate of risk aversion of 1, and for
the meta-analysis with no weights, author weights and quality weights, for a pure rate of time preference of
1% per year.

The term AΣA′ corrects for correlated observations.

A =


0 ... 0 0 0 −1 1
0 ... 0 0 −1 1/2 1/2
0 ... 0 −1 1/3 1/3 1/3
. . . . . . .
−1 ... 1/K 1/K 1/K 1/K 1/K


The elements of Σ are

Σ(i, j) =

 i/N(1−j/N)
α̂(i)α̂(j)N

(
ln
(
1− i

N

)−1/α̂(i))α̂(i)+1 (
ln
(
1− j

N

)−1/α̂(j))α̂(j)+1

if i > j

0 if i ≤ j

Note that Σ(i, j) is a complex number for α̂(i) < 0. In that case, we set AΣA′ = 1.

The Matlab code is available at GitHub.

Appendix B. New estimates of the social cost of carbon

The previous meta-analysis of the social cost of carbon (Tol, 2018) was extended with esti-
mates reported in Anthoff and Emmerling (2019), Bretschger and Pattakou (2019), Budolf-
son et al. (2017), Daniel et al. (2019), Dayaratna et al. (2020), Ekholm (2018), Faulwasser
et al. (2018), Golub and Brody (2017), Guivarch and Pottier (2018), Hafeez et al. (2017),
Hänsel and Quaas (2018), Kotchen (2018), Moore et al. (2017), Nordhaus (2015), Okullo
(2020), Ricke et al. (2018), Scovronick et al. (2017), Tol (2019), Yang et al. (2018) and Zhen
et al. (2018). The Budolfson and Faulwasser estimates were digitized from graphs.

Glanemann et al. (2020) do not report a carbon tax, Zhen and Tian (2019) report the relative
social cost of carbon, Paul Kelleher and Wagner (2019) relative changes in the social cost
of carbon, van der Ploeg and de Zeeuw (2019) the steady state social cost of carbon, and
Pindyck (2017, 2019) the average social cost of carbon.

Appendix C. Additional results
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Figure C.6: Histogram of estimates of the social cost of carbon (in $/tC) by dice for a rate of risk aversion
of 1 and a pure rate of time preference of 1%. The top panel shows all 100,000 draws, the bottom panel the
1000 largest.
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Figure C.7: Histogram of estimates of the social cost of carbon by fund using equity weights for a rate of
risk aversion of 1 and a pure rate of time preference of 1%. The top panel shows all 100,000 draws, the
bottom panel the 1000 largest.
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Figure C.8: Histogram of estimates of the social cost of carbon by page using equity weights for a rate of
risk aversion of 1 and a pure rate of time preference of 1%. The top panel shows all 100,000 draws, the
bottom panel the 1000 largest.
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Figure C.9: Estimates of the tail-index of the published estimates of the social cost of carbon.
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Figure C.10: Estimates of the tail-index of the published estimates of the social cost of carbon, using author
weights.
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