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Abstract

This paper experimentally investigates excessive risk taking in contest schemes
by implementing a stopping task based on Seel and Strack (2013). In this stylized
setting, managers with contest payoffs have an incentive to delay halting projects
with a negative expectation, with the induced inefficiency being highest for a mod-
erately negative drift. The experiment systematically varies the negative drift
(between-subjects) and the payoff incentives (within-subject). We find evidence
for excessive risk taking in all our treatment conditions, with the non-monotonicity
at least as problematic as predicted. Contrary to the theoretical predictions, this
aggregate pattern of behaviour is seen even without contest incentives. Further
analysis suggests that many subjects display behaviour consistent with some intrin-
sic motivation for taking risk. This intrinsic motive and the strategic motive for
excessive risk taking reinforce the non-monotonicity. The experiment uncovers a
behavioural nuance where contest incentives crowd out an intrinsic inclination to
gamble.
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1 Introduction

Relative performance schemes, such as contests and tournaments, are commonly used

and important incentive schemes in many economic and social contexts. Such schemes

can incentivise costly effort and select better-performing agents (Lazear and Rosen, 1981),

while being simple to implement and credible even in cases where exact performance is not

verifiable. Examples abound, including competition for bonuses or promotion, research

and development races, status contests and fund-manager competition.

However, in many situations of interest, effort is not necessarily the predominant

choice variable for the contestants, with risk often being a crucial factor. For instance,

top managers decide which risky project to pursue and fund managers choose how to

manage their portfolio (see, for example, Falkenstein, 1996; Chevalier and Ellison, 1999;

Huang et al., 2011). They are often subject to contest incentives through bonus payments

based on relative performance or job promotion opportunities (Kempf and Ruenzi, 2008).

Moreover, funds compete for future cash inflow that is strongly correlated with past

relative performance (Chevalier and Ellison, 1997), also leading to contest-type incentives.

In such settings contest incentives are liable to induce excessive risk taking as first

explored in a theoretical model by Hvide (2002). The subsequent theoretical literature

has identified two robust predictions about behaviour in a general class of contests in

which agents can influence the risk: (i) excessive risk-taking is pervasive (for example,

Fang and Noe, 2016; Strack, 2016; Fang et al., 2020) and (ii) the potential losses for the

principal are non-monotonic in the drift (for example, Seel and Strack, 2013).

This paper investigates experimentally these two predictions by implementing a novel

stopping task based on Seel and Strack (2013): each subject privately observes a stochastic

process over time—a random walk with drift, which could, for example, be thought of

as representing the value of a fund manager’s risky assets. Each subject starts with the

same initial value and is forced to stop if the value becomes zero (i.e. bankruptcy). The

strategy of a subject is to specify when to stop the process and, under contest incentives,

the subject who stops at the highest value wins a fixed prize (for example, a bonus for

the fund manager). In all treatment conditions the drift parameter is negative, meaning

that the efficient choice is stopping immediately, while excessive risk-taking is delaying in

the hope of a sequence of positive realisations.

In comparison to the social optimum, we find evidence for excessive risk-taking in all
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our treatment conditions as predicted by the theory. Furthermore, the non-monotonicity

is at least as problematic as predicted, with a moderately negative drift condition re-

sulting in stopped values that are significantly smaller than those from both a minimally

negative condition and an extremely negative condition. Contrary to the benchmark the-

oretical predictions, we also find this aggregate pattern of behaviour even when we remove

the contest incentives and instead determine the winning probability according to a linear

function of the stopped value. Further analysis suggests, along with a great deal of hetero-

geneity, that many subjects display behaviour consistent with some intrinsic motivation

for taking-risk in the stopping task. However, the intrinsic motive and the contest mo-

tive for excessive risk-taking appear to reinforce the non-monotonicity in subtly different

ways: Under the extreme negative condition, contest incentives appear to crowd out the

intrinsic motive for excessive risk-taking, while under the moderate negative condition

contest payoffs increase the propensity to take risks.

While the model of Seel and Strack (2013) is deliberately simple and highly stylized,

the recent literature has shown that many qualitative predictions, such as the excessive

risk-taking, extend to more general settings.1 Moreover, contestants can only influence

the probability of winning a prize. As such, this setting is particularly suited for an

experimental implementation since predicted behaviour is independent of the risk attitude,

a potentially confounding variable in many other experiments.

To implement the setting of Seel and Strack (2013) in the laboratory, we discretize the

state space and approximate the Brownian motion by a random walk. The random walk

changes its value 4 times per second. In line with the literature, we argue that due to the

high frequency of observations, the behaviour of subjects should not differ systematically

from the continuous-time setting. We run three different treatments, where we systemati-

cally vary the drift parameter. Our baseline treatment implements the moderate negative

drift parameter for which the theory predicts highest expected losses in equilibrium. The

other two treatments implement an extreme negative and a minimal negative value of the

drift. For each of these treatments, we run an additional within-subject individual choice

treatment which switches off the contest incentive. In this treatment, the probability of

1For instance, more general stochastic processes (Feng and Hobson, 2015), asymmetric bankruptcy
constraints (Seel, 2015), incomplete information about the endowment (Feng and Hobson, 2016a; Fang
and Noe, 2018), flow costs of research (Seel and Strack, 2016), multiple prizes with an arbitrary structure
(Fang and Noe, 2016; Strack, 2016), partial observability and a Black-Scholes model rather than a simple
stopping problem (Strack, 2016).
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the winning prize is linear in the stopped value.

Based on the theory predictions, we test three main hypotheses. First, in the contest,

subjects should not stop immediately (Hypothesis 1). Second, expected losses are maximal

for the moderately negative drift and about equal for the other two values (Hypothesis 2).

Third, subjects should stop immediately in the within-subject individual choice treatment

(Hypothesis 3). For the first two hypotheses, we also test the point predictions derived

from the theory.

The main results of the experiment are: in line with the theory prediction, subjects do

not always stop immediately in the contest. Moreover, the expected value of the process in

the contest is quasi-convex in the drift, even more pronounced than the theory predicts.

Thus, the experiment provides evidence in favour of Hypothesis 1 and Hypothesis 2.

However, contrary to Hypothesis 3, there is also substantial evidence of gambling in the

individual choice treatment, suggesting intrinsic motives for gambling as well as strategic

ones.

Further analysis of behaviour over periods reveals that, for the extreme negative drift,

contestants gamble more (in terms of extensive margin) under individual rather than

contest incentives, which deviates in a systematic way from the theory predictions. With

a moderate negative drift—which is the treatment condition that most exposes subjects to

the inefficient incentives to gamble for strategic motives—we do not observe this crowding

out of intrinsic motives effect. Instead, there is evidence subjects are more inclined to

gamble for strategic reasons. We also document quite some heterogeneity in subjects’

behaviour, both in terms of their general inclination towards gambling, as well their

response to the change in incentive structure. Finally, we show how a model of decreasing

joy of gambling combined with myopic reasoning can accommodate the experimental

results for both the lottery and the individual choice treatment.

Our paper also provides a methological contribution. To understand it, note that a

stopping strategy (e.g. “stop after 10 seconds” or “stop whenever the process reaches value

5 or 17”) induces a probability distribution over the stopped value of the process. This

distribution contains all relevant strategic information as there is no dynamic interaction

between the players. Thus, one could either directly allow subjects to choose a feasible

distribution (for which there exists a stopping time inducing it) from an infinite set of

distributions or equivalently implement it as a stopping decision as in the paper. The
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former method would be difficult to implement in our setting. First, an implementation

as a choice from pre-selected list of feasible distributions would require a huge pre-selected

list of distributions and still limit the actual choice. A different implementation would be

to allow subjects to choose a distribution by dragging probability mass back and forth

between different values. In this case, the set of distributions which they are allowed to

choose from is not intuitive at all for the subject, as these distributions do not even have

the same mean. Instead, our method provides a natural way of implementing distributions

with a different mean. Moreover, subject might perceive the stopping task as easier than

creating their own probability distribution. As such, our method might inspire future

experimental research on choices of probability distributions within and beyond contest

games—for example, on redistributive politics (Myerson, 1993), public good provision

under different electoral incentives (Lizzeri and Persico, 2001), and general lotto games

(Hart, 2008).

Related Literature

The seminal theoretical paper on relative performance schemes is Lazear and Rosen

(1981), who argue that the optimal contest induces the first-best effort level under risk

neutrality and might outperform other simple payment schemes such as a piece rate if

agents are risk averse. Hvide (2002) challenges these findings by allowing contestants to

determine the variance of their performance measure at no cost; in equilibrium, agents

choose zero effort, but an infinite level of variance. Nieken and Sliwka (2010) implemented

a simplified binary version (high or low risk) of the model by Hvide (2002) in the labora-

tory. Their focus lies on head-starts by one opponent. In line with the theory predictions,

they find that laggards tend to take higher risks. These models and their implementa-

tion are static, although most applications in which agents choose risk in contests are

inherently dynamic. The model of Seel and Strack (2013) addresses these concerns by

analyzing a contest in continuous time in which agents get dynamic feedback and can

adapt their risk choices over time.

Discretisations of continuous-time frameworks have been used to study behaviour in

the lab in wide variety of strategic settings, including network formation (Berninghaus

et al., 2006), hawk-dove games (Oprea et al., 2011; Berninghaus et al., 2012), the pris-

oner’s dilemma game (Friedman and Oprea, 2012; Bigoni et al., 2015), minimum-effort
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game (Deck and Nikiforakis, 2012), rock-paper-scissors (Cason et al., 2014) and Hotelling

competition (Kephart and Friedman, 2015). Probably the closest setting to ours is the

preemption game experiment of Anderson et al. (2010), where subjects also observe a ran-

dom walk with short time. However, all subjects in a group see the same random walk.

Additionally, there is a positive probability that it stops in each period, which results in

no payoff if no subject stopped the process before. Otherwise, the first to stop the process

receives the current (common) valuation minus a private cost.

Random walk models have also been used in individual choice experiments exam-

ining topics including the timing of investment decisions (Oprea et al., 2009), earning

withdrawals (Oprea, 2014), costly price adjustment (Magnani et al., 2016), and optimal

stopping with regret (Strack and Viefers, 2019).

Most of the experimental contest literature focuses on effort as the crucial variable

of interest. Notable exceptions include Dijk et al. (2014) and Kirchler et al. (2018) that

investigate the role of rank incentives and social comparison on risk-taking behaviour

in a repeated portfolio-choice settings. The repeated setting generates interim laggards

and leaders, and Dijk et al. (2014) find that, with a student subject population, laggards

invest in positively skewed assets and leaders in negatively skewed assets. Kirchler et al.

(2018) find that financial professionals increase risk-taking with both tournament and

rank incentives, while students only increase risk taking with tournament incentives.

Contrary to our study, risk taking increases the expected return in these settings,

and the multi-period decision-making produces interim feedback on relative performance.

Eriksen and Kvaløy (2017) consider a setting in which the optimal strategy is always

to take no risk, and find that excessive risk-taking is nonetheless increasing in the com-

petitiveness of a tournament. In our setting, risk-taking is an integral part of predicted

behaviour with contest incentives but does not increase expected returns. Our focus is on

how extrinsically-motivated risk-taking interacts with economic conditions; although, in-

trinsic motivations for risk-taking do play an important role in understanding our results.

2 Theoretical Background

In this section, we provide a brief review of the theoretical results from Seel and Strack

(2013) that are relevant for our experimental implementation. In their setup, each of two
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agents i = 1, 2 controls a project whose value is determined by a stochastic process X i =

(X i
t)t∈R+ . The stochastic processes are governed by the law of motion X i

t = x0+µt+σ2Bi
t,

where x0 > 0 is the common starting value of each process at time t = 0, µ < 0 is the

common drift parameter, σ2 > 0 is the common variance parameter and B1
t and B2

t

are independent Brownian motions. Note that since µ < 0, each process decreases in

expectation.

At every point in time, each agent privately observes the value of her own project.

A strategy of the agent specifies a plan when and at which values she irreversibly stops

her process. This decision can depend on the previous realisation of the agent’s process,

but since the agent obtains no information about her rival, it does not depend on the

realisation or stopping decision of the rival. If the value of the project becomes zero

(bankruptcy), the agent is forced to stop. The game ends when both agents have stopped

their processes. The agent whose stopped value is higher wins a prize. In case of a tie,

each agent wins the prize with probability 50%. Each agent maximizes her expected

payoff, that is the probability of winning the contest times the prize.

While each player’s decision problem is dynamic, the game itself is static since no new

information arrives about the rival arrives over time. Thus, Seel and Strack (2013) focus

on the Nash equilibria of the game. To state their main characterisation result, denote the

probability distribution over the stopped process which is induced by a stopping strategy

of player i by F i, i.e., F i(x) is the probability that player i stops her process below or at

the value x. The following result sums up Propositions 1-3 in Seel and Strack (2013).

Proposition 1 In any Nash equilibrium, both players choose strategies which induce the

distribution

F 1(x) = F 2(x) = F (x) = min

{
1

2

exp(−2µx
σ2 )− 1

exp(−2µx0
σ2 )− 1

, 1

}
. (1)

Thus, there is a unique prediction for the distribution of the stopped value.2 From

the distribution F , Seel and Strack (2013) compute the expected value of each player’s

stopped process and obtain the following main comparative statics result (Proposition 7

in Seel and Strack, 2013).

2There are different, yet payoff-equivalent stopping strategies which lead to the equilibrium distribution
F ; their characterisation is based on a result in probability theory by Skorokhod (1961).
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Proposition 2 The expected value of the stopped processes in equilibrium is first falling

and then rising in the drift (U-Shape) and attains its minimum at a moderately negative

level of the drift.

To get an intuition why contestants gamble in equilibrium, consider a strategy profile

in which both players stop at the starting value and win with probability 1
2
. Consider a

deviation such that one contestant continues until the stopped value decreases by a large

amount or increases by a small amount, where the latter occurs with a higher probability.

In the case it increases (which happens with a probability over 1
2
), she wins the game

since her rival stopped at a lower value. Thus, we have constructed a profitable deviation,

i.e., a profile in which both players stop immediately is not a Nash equilibrium.

The equilibrium distribution is constructed such that no matter which strategy the

rival chooses, her winning probability is at most 1
2
. As the drift increases, the expected

stopping time increases, but due to higher drift, the losses per unit of time decrease. In

equilibrium, expected losses (expected stopping time times expected losses per unit of

time) are largest if the drift is moderately negative.

We close the section with two properties which will be useful for the experimental

implementation and robustness analysis.

Remark 1 (Independence of the Size of the Prize and the Risk Attitude) Note that max-

imizing the expected payoff (prize times winning probability) yields the same result as

maximizing the winning probability. Hence, the theoretical prediction is independent of

the size of the prize. Moreover, maximizing the winning probability does not depend on a

player’s risk attitude. Thus, to obtain the main results, we only require that the expected

utility of a player is increasing in her winning probability.

Remark 2 (Skewed Stopped Value Distribution in Equilibrium) The distribution function

in Eq. (1) has a strictly increasing density on its support. Thus, the mode is at the upper

bound of the support and the mean is below the median (x0). There are several measures

of skewness which all agree that the distribution is left-skewed. As one example, consider

the widely used Pearson’s median skewness defined as 3(mean−median)/σ which is below

0 as the mean is below the median.
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3 Experimental Design

The baseline implementation of the contest game uses the following setup: Two agents

compete for a prize of 150 ECU.3 At every point in time, an agent privately observes the

value of her own project. The game ends after 90 seconds. If the process has not been

stopped until that time, the stopped value is equal to the final value of the process.

The implemented process is a random walk which starts at a value of 15. Every quarter

of a second, the value of the process either moves up by one with probability p or moves

down by one with probability 1− p. This implementation aims to find a balance between

two counteracting potential problems. On the one hand, for a too fine discretization—or

equivalently for a too high starting value—the time limit of 90 seconds at which a player

is forced to stop might impose a binding restriction. On the other hand, a too coarse

discretization might kill the incentives to gamble.4 In the limit as the grid size and time

converge to zero, the random walk converges to the Brownian motion setting analyzed in

Seel and Strack (2013); see Appendix A for the mapping from the discrete-time process

parameters to the continuous-time process parameters. As the related literature (e.g.,

Anderson et al., 2010, Pettit et al., 2014, and Oprea, 2014), we argue that the frequency

of changes in the process is rapid enough that subjects perceive it to be near continuous-

time, and thus their behaviour is not qualitatively different from the continuous time

setting.

The only action available to an agent is to choose when to stop the project. This could

be done by pressing a “stop now” button or by setting upper and/or lower thresholds for

the value of the project. The thresholds would trigger automatic stopping if the value was

greater than or equal to the threshold, in the case of the upper threshold, or less than or

equal to the threshold, in the case of the lower threshold. See Figure 1 for a screenshot of

the computer interface for this stopping task. The agent is forced to stop if the value of

the project hits zero. The agent whose stopped value is the highest is awarded the prize.

In case of a tie, each agent wins with probability 50%.

3Throughout, all payoffs are in experimental currency units, denoted ECU, which are converted at a
rate of 0.01 Euros per ECU.

4In contrast to the benchmark theory, there is an exogenous upper bound on the length of the contest
game. In the appendix, we provide several arguments why the time bound should not constrain predicted
behaviour in our implementation. On the other hand, our parameters are chosen such waiting for at least
one uptick or bancruptcy is always a best response against stopping immediately.
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Figure 1: Screenshot: Active Phase

3.1 Treatment design

The experiment has two primary goals. The first is to test the prediction that contest in-

centives do indeed induce managers to delay shutting down projects that lose money in ex-

pectation. The second is to test the prediction that the expected losses from this gambling

are not monotonic in the fundamentals. The project fundamental is the drift parameter

that governs the expected loss of continuing the project. We consider three between-

subject treatments with different drift values, a minimal-negative, extreme-negative and

moderate-negative baseline as shown in Table 1.

Table 1: Summary of Between-Subject Treatment Conditions

Treatment Abbreviation Pr(up) Expected Stopped Value

Minimal Negative Min -ve 0.49625 14.54
Moderate Negative (baseline) Mod -ve 0.47 13.71
Extreme Negative Ext -ve 0.3375 14.53

Notes: The value of Pr(up) gives the probability of an increase in value of the process (random walk
with X0 = 15, time interval jump size ∆X = 1 and time interval ∆t = 0.25). The underlying Brownian
motion (continuous time) has X0 = 15, σ = 2 and µ ∈ {−0.03,−0.24,−1.3} for Min -ve, Mod -ve, and
Ext -ve, respectively.

For every treatment, a within-subject variation is also included where the winning

probability is determined according to a linear function of the stopped value of their

project. This variation switches off the strategic element of the contest, reducing the en-

vironment to an individual choice setting. It provides a measure of a subject’s inclination

towards gambling, when facing the same stochastic process as in the contest but without
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the strategic incentive, as well as giving a direct contrast between lottery and contest

payoff incentives.

In the lottery variation, the subject controls a project whose value follows exactly

the same random process as in the contest game they experience. As before, their only

decision is when to stop the project. Now, rather than being used to determine the

winner of a tournament with another subject, the stopped value of the project is used to

determine the probability the subject will win a prize worth 150 ECU. The probability of

winning is given by the following linear rule

Probability of winning 150 ECU prize = min

{
X

30
, 1

}
,

where X is the stopped value of a subject’s project. This payoff scheme was chosen since

it best mimics the scheme obtained in the contest: should both subjects choose to stop

their projects immediately then there is a 50-50 chance of winning the prize in both the

contest and the individual choice setting. Furthermore, as in the contest setting, the

maximisation problem in the individual choice setting is independent of the size of the

prize and the risk attitude.

Since the process decreases in expectation and the winning probability is linear in the

stopped value, the theoretical prediction is that subjects stop their process immediately.

The following result formalises this intuition; the proof is relegated to the appendix.

Proposition 3 To maximize the probability of winning the prize, the individual must stop

immediately at the starting value in the individual choice setting.

3.2 Predictions

We have three main hypotheses based on the theory. The calculation of the point predic-

tions for the implemented parameters is explained in the appendix.

Hypothesis 1 (a) In the contest, players do not always stop immediately.

(b) The average time until the process is stopped increases in the drift.

(c) The average time until the process is stopped equals 0.72 seconds for Ext -ve, 10.75

seconds for Mod -ve, and 30.66 seconds for Min -ve.

Hypothesis 2 (a) The average stopped value is non-monotone in the drift, first falling

and then rising (U-Shape).
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(b) The average stopped value equals 14.53 for Ext -ve, 13.71 for Mod -ve, and 14.54 for

Min -ve.

Hypothesis 3 The process is stopped immediately in the individual choice setting.

3.3 Procedures

The experiment was conducted in the BEElab at Maastricht University between December

2014 and April 2015. 240 students were recruited using ORSEE (Greiner, 2004, 2015) and

participated in one of the three treatments. During each session, up to three matching

groups of 8 subjects were run in parallel. Sessions lasted 90 minutes on average. For

each treatment variation, ten matching groups were run, split evenly over two order

combinations (see below). Each matching group comprised of eight participants.

A session consisted of three parts. The first part was an instruction part during which

subjects were given details of the structure of the session and the environment in which

they were to make decisions (see Appendix B for an example of the instructions); subjects

were also given experience with the stochastic process that underlies the contest game,

as well as the interface for stopping the stochastic process. After the first part of the

instructions were read out aloud,5 subjects were shown graphs of the complete path for

ten randomly drawn example realisations—these were block randomised so that every

subject in the same matching group was shown the same set of examples. The examples

were static in the sense that they showed the complete realised path, rather than having

them drawn in real-time. After the ten realised graphs, subjects were asked a series

of comprehension questions to make sure that they understood the basic features of the

stochastic process—such as, the probability that the process may go up, that each jump up

or down is independent of any previous realisations, and the consequences of the process

hitting zero. The graphs and comprehension questions, as well as a basic demographics

questionnaire at the end of the session, were implemented in zTree (Fischbacher, 2007).

Once everyone had correctly answered the comprehension questions, the session switched

to ConG (Pettit et al., 2014), the main software interface in which the dynamic stopping

5Subjects were given the complete set of instructions at the beginning of the session. However, the
software was paused at the end of the first and second parts in order to read out aloud the instructions that
were specific for the upcoming part. Without pausing, the software would have otherwise transitioned
through the different parts (trial-contest-lottery or trial-lottery-contest, depending on the task-order
variation) without any warning for subjects.
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task was implemented (see Appendix C for additional screenshots of the computer inter-

face). To give subjects real-time experience of the process, as well as experience using

the various controls for stopping it, the instructional part of each session concluded with

five trial periods. During the trial periods, the random process was run five times in-

dependently for each subject using the main software interface. The trial periods were

not paid, and subjects were neither matched into pairs nor given any feedback on other

participants’ realisations or stopped values.

In the baseline (Contest-Lottery) order combination, part two consisted of ten periods

of the contest game, played under the same treatment conditions. At the beginning of a

period the computer interface randomly matched participants within a matching group

into pairs. The period begins with an empty graph showing just the axes and the interface

buttons. The graph starts at 15 and remains there for the first 15 seconds, so that subjects

have an opportunity to prepare for the start of the period (the warm-up phase)—at this

point they can set their upper and lower thresholds in preparation for the start of the

random fluctuation, or they can press the “stop now” to stop the process at its start

value. After the warm up time, the graph starts to randomly fluctuate according to an

independent draw of the random walk described above. This fluctuation continues for

90 seconds, during which subjects can stop the process either automatically using the

threshold controls or by pressing the “stop now” button. Subjects continue to see the

realisation of the random walk even after they have fixed their stopped value for that

period. Once the 90 seconds is over, subjects are shown the stopped value of the person

they were matched with and the outcome of the period. This feedback phase lasts 15

seconds before the next period begins.

During part three, subjects played ten periods of the individual choice version of the

contest game, referred to here as the lottery task. The stochastic process and interface

were exactly as in the contest task, only the payment and feedback were adjusted to

reflect the fact that this was an individual (rather than a paired) task with a lottery to

determine the final payment. After part three was completed, participants were paid in

cash according to the amount of ECUs they accumulated during part two and three plus a

small show-up fee of 3 Euro. Paying out every period of play reduces variance of payments

for the subjects.6 For the reverse order combination (Lottery-Contest), the lotteries were

6This payment scheme does not disturb incentives since subjects’ stopping decisions only affect the
probability of winning in every period and no hedging is possible.
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in part two and the contests in part three. Table 2 gives a summary of the sessions.

Table 2: Summary of treatments.

Number of Earnings (Euro)
Treatment Task Order Matching Groups Subjects Min. Max. Avg.

Min -ve Contest-Lottery 5 40 10.50 25.50 17.32
Min -ve Lottery-Contest 5 40 12.00 27.00 17.51
Mod -ve Contest-Lottery 5 40 10.50 22.50 16.65
Mod -ve Lottery-Contest 5 40 10.50 24.00 16.46
Ext -ve Contest-Lottery 5 40 10.50 27.00 17.77
Ext -ve Lottery-Contest 5 40 10.50 25.50 17.66

4 Main Experimental Results

This section provides the main experimental results, in particular the tests of the hy-

potheses stated in Section 3.2. Before these explicit tests, Figure 2 gives an overview

of behaviour in the last five periods of the contest and lottery parts of the experiment.

The top graphs show the observed distribution of the stopped time for the three drift

parameters. As can be seen, there is a clear ranking across treatments, with the whole

distribution of stopped times getting shorter as the drift parameter becomes more nega-

tive. It is also clear that some form of gambling—that is stopping after time zero—takes

place in all parts of the experiment.

The lower graphs give the observed distribution for the stopped value, using the same

data range and breakdown. Again, there is a clear separation across treatments, with

the distribution of stopped values becoming less dispersed as the drift parameter becomes

more negative. For the contest, this pattern qualitatively resembles that predicted, al-

though there are some quantitative differences to distribution function strictly predicted

by the benchmark theory: the observed upper bound of the support is larger, particularly

for the Min -ve and Mod -ve treatments, and there appear to be larger mass points at

bankruptcy (stopped value equal zero) and at the start value (stopped value equal 15).7

Table 3 gives average values in the last five contest periods for the three outcome

variables that will be used to explicitly test the main hypotheses: an indicator for the

stopped time being strictly greater than zero (that is, did the subject gamble at all in a

7See Figure A.1(a) in the supplementary materials for the induced cumulative distribution functions
in equilibrium for the three drift parameters used in the experiment.
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Table 3: Summary of the Outcomes in the Contest

Percent Stopped Stopped Time (sec) Stopped Value (ECU)
Treatment Time > 0 Average (95% C.I.) Predicted Average (95% C.I.) Predicted

Min -ve 95.5 *** 23.74 (18.12, 29.36) 30.66 14.69 (13.60, 15.79) 14.54
Mod -ve 82.0 *** 8.78 (6.78, 10.79) 10.75 12.86 (12.35, 13.37) 13.71
Ext -ve 26.2 *** 0.25 (0.16, 0.34) 0.72 14.70 (14.55, 14.85) 14.53

Notes: Data from the last five contest periods. ∗∗∗ denotes significantly different from zero with p-value
< 0.001. Tests and confidence intervals use standard errors clustered at the matching group level.

given period), the stopped time and the stopped value.8 The averages for percent gambling

show that a significant proportion of subjects gamble for all drift parameters, in line with

Hypothesis 1A. The statistical significance for this is established using a random-effects

probit regression on the probability of gambling with a complete set of treatment dummies

as independent variables. To allow for the potential correlation between observations

caused by the matching scheme in the contest part of the experiment, the standard errors

are clustered at the matching-group level.9

The stopped time column shows that the time spent gambling reduces as the drift

parameter gets more negative, with the average stopped time in the Min -ve treatment

significantly longer than in the Mod -ve treatment (p−value < 0.001), which in turn is

significantly longer than in the Ext -ve treatment (p−value < 0.001)—see Table 9 for

further details and robustness checks. These results are again in line with Hypothesis

1A. For the point predictions from Hypothesis 1A, subjects spend significantly less time

gambling in both the Min -ve and Ext -ve treatments than theoretically predicted, while

the average stopped time for the Mod -ve treatment is just within the 95% confidence

interval—see Table D.4 for explicit tests of the point predictions.

Result 1 Subjects do not always stop the process immediately in the contest. The average

8The main text focuses on the last five periods of the contest and lottery tasks. See Tables D.1 and
D.2 for a comparison of these outcomes for the first five periods and over all periods. Similar conclusions
are drawn when considering a “pure” between-subjects test that uses periods 11-15 from just the contest-
lottery sessions for the contest outcomes, and periods 11-15 from just the lottery-contest sessions for the
lottery outcomes – see Table D.3 details.

9This gives ten clusters per treatment, five for each of the two task orders. Throughout the results,
statistical significance will generally be established using an analogous approach—that is, by construct-
ing an appropriate regression and using clustered-robust standard errors, corrected to allow arbitrary
correlation within a matching-group, as well as a subject-specific random effect. This is not the only
approach to addressing the issue of potential session-effects in experimental data. A common alternative
is to take matching-group averages—see Fréchette (2011) for a discussion of session-effects. Robustness
checks using non-parametric tests on matching-group averages are reported in Tables 8 and 9 in the
appendix. They lead to the same conclusions.
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time before stopping in the contest reduces as the drift becomes more negative.

The final column of Table 3 gives the average stopped value across treatments in

the last five contest periods. As predicted in Hypothesis 2A, the stopped value is non-

monotonic in the drift parameter with average in the Mod -ve treatment being significantly

smaller than in both the Min -ve and Ext -ve treatments, which have statistically similar

averages—see Table 9 for further details and robustness checks. Indeed the U-shape

prediction is more pronounced than predicted as average in the Mod -ve treatment is

significantly smaller than the point prediction, while the other treatments are in line with

their point prediction—see Table D.4 for explicit tests of the point predictions.

Result 2 The average stopped value is non-monotonic in the drift parameter. In partic-

ular, the stopped value in the contest is lowest for the moderately negative drift parameter.

The observed non-monotonicity is more pronounced than predicted.

Table 4: Summary of the Outcomes in the Lottery

Percent Stopped Stopped Time (sec) Stopped Value (ECU)
Treatment Time > 0 Average (95% C.I.) Predicted Average (95% C.I.) Predicted

Min -ve 94.8 *** 22.62 (20.03, 25.22) 0.00 14.24 (13.51, 14.97) 15.00
Mod -ve 79.2 *** 8.49 (6.94, 10.03) 0.00 12.73 (12.11, 13.34) 15.00
Ext -ve 36.2 *** 0.61 (0.19, 1.03) 0.00 14.36 (14.17, 14.54) 15.00

Notes: Data from the last five lottery periods. ∗∗∗ denotes significantly different from zero with p-value
< 0.001. Tests and confidence intervals use standard errors clustered at the matching group level.

Table 4 repeats the analysis of Table 3 for the last five lottery periods. While the

evidence from the contest is mostly in line with the associated hypotheses, this is no

longer the case in the lottery treatments. There is a significant amount of gambling

in all treatments, contrary to Hypothesis 3 (see also Table 8). Gambling responds to

the treatment condition, with the average stopped time reducing as the drift parameter

gets more negative. Furthermore, the non-monotonicity in average stopped values is

also observed in the lottery task (see also Table 9 for these last two points). All point

predictions for the lottery are rejected (see also Table D.4).

Result 3 Subjects do not always stop the process immediately in the lottery. The average

time before stopping in the lottery reduces as the drift becomes more negative. Further-

more, the stopped value in the lottery is also non-monotonic in the drift parameter.
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The within-subject variation can also be used to examine differences in subjects’ be-

haviour under the contest incentives compared to the lottery incentives. Table 5 reports

this analysis, using data from the last five periods of the contest and lottery parts.10 The

difference columns report the average subject-level difference in their contest average mi-

nus their lottery average for each of three main outcome variables. The p-value columns

report the results of a regression-based test of whether this difference is significantly dif-

ferent from zero on average. The analysis reveals notable differences in the within-subject

contrast across the different drift parameters that will be explored in further detail in the

subsequent section. First, there are no significant differences between subjects’ average

behaviour in the contest and average behaviour in the lottery for Min-ve treatment. At

the other end of the spectrum, there are significantly higher stopped values in the contest

rather than the lottery for the Ext-ve treatment, with subjects seemingly gambling less

often and for less time (in particular for the lottery-contest task order). The pattern is

different again for Mod-ve treatment, with significantly more gambling in the contest than

the lottery under the contest-lottery task order, although less time spent gambling in the

contest in the lottery-contest task order.

5 Further Analysis

To understand better the potential drivers of the treatment comparisons presented above,

this section analyses subjects’ behaviour in further detail. The focus in the main text is on

the extensive margin of gambling (percentage with stopping time greater than zero), with

the details of the analogous analysis on the overall gambling time and the stopped value

distribution given in the online appendix. Gambling under contest incentives, but not

under lottery incentives, is the most basic prediction of the benchmark, purely rational

model of behaviour in this environment. While there are also predictions for overall

gambling time and the stopped value distribution, they are necessarily noisier given that

10See Figures D.1, D.2 and D.3 of the online appendix for scatter plots of the subject averages across
the different parts of the experiment. This analysis can also be done using the panel structure of the data
set, rather than averaging at the subject level, and controlling for the period trends. This approach is
taken in Section 5 and the analogous within-session comparisons are reported in Table D.6 of the online
appendix. This table also reports the between-session contrast that compares behaviour in the contest
by those that played the contest first with behaviour in the lottery by those that played the lottery first.
In both cases, the analysis leads to the same qualitative results: noisy behaviour in the Min-ve treatment
and less gambling in the contest than the lottery in the Ext-ve, while this pattern is not seen in the
Mod-ve.
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Table 5: Within-Subject Differences in Outcomes

Percent Stopped Stopped Time Stopped Value
Time > 0 (sec) (ECU)

Treatment/Task Order Difference p-value Difference p-value Difference p-value

Min -ve

Contest-Lottery 0.0 1.000 3.73 0.272 0.42 0.732
Lottery-Contest 1.5 0.636 −1.50 0.510 0.49 0.726

All 0.7 0.654 1.12 0.600 0.45 0.614

Mod -ve

Contest-Lottery 12.5 0.001 2.40 0.114 −0.49 0.324
Lottery-Contest −7.0 0.167 −1.81 0.040 0.75 0.351

All 2.7 0.518 0.30 0.781 0.13 0.794

Ext -ve

Contest-Lottery 5.5 0.399 −0.50 0.212 0.28 0.073
Lottery-Contest −25.5 0.001 −0.22 0.012 0.41 0.098

All −10.0 0.139 −0.36 0.076 0.34 0.016

Notes: Data from the last five periods of the contest phase and the last five periods of the lottery phase.
The difference columns report the average subject-level differences between the contest average and the
lottery average. The p-value columns report the result of a two-sided test against the null hypothesis that
on average subject-level differences between the contest average and the lottery average is equal to zero.
The test is based on a linear regression on treatment indicator variables with standard errors clustered
at the matching group level.

they are more dependent on the realisation of the random process. Furthermore, some

important predictions for the stopped value distribution involve higher-order moments

of the distribution than the mean (in particular, the skewness), something that we will

return to in the discussion after presenting the evidence for gambling for both intrinsic

and strategic motives.

5.1 Development of Behaviour over Periods

Figure 3(a) shows the observed pattern of gambling by subjects (that is, a stopped time

strictly larger than zero) across periods, separated both by drift parameter (different pan-

els) and by task order (different lines in a panel). To quantify these observations, Table 6

reports the results of a random-effects probit regression for each drift parameter using

the payoff structure indicator (contest versus a baseline of lottery) and order indicator

(lottery-contest versus a baseline of contest-lottery) and the interaction term, along with

a period trend variable. Figure 3(b) shows the predicted behaviour from this regression
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model.11

The analysis illustrates notable differences in the pattern of behaviour across the

three drift parameter conditions, in particular with regard to how gambling develops over

periods and responds to the payoff structure and task order. In the Min -ve treatment, very

little changes over periods, and there is little difference in the propensity to gamble—which

is on the whole very high—either between the contest or the lottery payoff conditions, or

between the different order combinations. At the other end of the spectrum, there is a

strong trend for less gambling with experience in the Ext -ve treatment. Here, for a given

level of experience in terms of periods, subjects are less likely to gamble under the contest

payoff structure than under the lottery payoff structure, especially for the contest-lottery

order where there is a significant increase in the propensity to gamble following the switch

to lottery payoffs. This effect is consistent with competition under contest payoffs driving

out intrinsic motives for gambling.

The pattern of behaviour is different again in the Mod -ve treatment, which is the

setting where subjects are confronted with the strongest incentives to gamble for strategic

reasons under contest payoffs. Here, as in the Min -ve treatment, there is no strong trend

to reduce gambling over periods. Furthermore, there is no suggestion that gambling

increases under the lottery payoffs as seen in the Ext -ve condition. Instead there is a

reduction in gambling following the switch of regime in the contest-lottery order; under

the lottery-contest order, gambling propensity remains roughly the same before and after

the switch.12

11Analogous linear random-effects regressions are used for (overall) stopped time and stopped value,
which are reported in Table D.5 of the supplementary materials; Figures D.4 and D.5 show the average
and predicted behaviour across periods. In addition to a drift-parameter specific trend, the regressions
allow for four types of test, or contrast, regarding the incentive scheme for each drift-parameter value.
Two of these are “within-subject” in that they concern behaviour across parts of the same session, while
two of these are “between-subject” in that they concern behaviour in the same part across sessions. The
first within-subject contrast is the average effect of contest incentives in the standard contest-lottery
order, and is given by the contest coefficient. The second within-subject contrast is the average effect of
contest incentives in the reverse lottery-contest order, and is given by the sum of the contest and contest
× pay order coefficients. The first between-subject contrast is the average effect of contest incentives in
part 2 compared to lottery incentives in part 2, and is given by the difference between the contest and
pay order coefficients. The other between-subject contrast is the analogous effect of contest incentives
in part 3, and is given by the sum of the pay order, contest and contest × pay order coefficients. Given
subjects in part 2 had not experienced another incentive scheme, the first of theses gives the “purer”
between-subjects comparison. For reference, Table D.6 in the supplementary materials gives the complete
set of point predictions and tests for the trend and these four incentive scheme contrasts for all three
outcome variables.

12While there is no trend for the extensive margin, overall time before stopping does reduce with
experience in the Mod-ve. While experienced subjects in the Mod-ve treatment reduce their inclination
to gamble in the lottery phase, neither their overall gambling time nor their stopped value is significantly
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Figure 3: Behaviour across Periods by Task Order: Percentage with Stopped Time > 0
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Table 6: Probability of Gambling across Periods Regressions.

Min -ve Mod -ve Ext -ve

Contest 0.02 (0.188) 0.08∗∗∗ (0.004) −0.26∗∗∗ (0.001)
Lottery-Contest Order 0.01 (0.623) 0.10∗∗ (0.042) −0.15∗∗ (0.027)

Contest × Lottery-Contest Order −0.04 (0.154) −0.12∗∗∗ (0.009) 0.28∗ (0.088)
Period 0.00 (0.181) −0.00 (0.760) −0.04∗∗∗ (0.000)

Notes: Random-effects probit models. Coefficients report the marginal effect on the dependent variable.
p-value of significance test in parentheses using standard errors clustered at the matching group level. ∗∗∗

1%, ∗∗ 5%, ∗ 10%. The period variable is normalised to start at 1 for the first for-payment period (which
is period 6 of a session, the first period of part 2 after the purely trial periods of part 1) and finishes at
20 (which is period 25 of a session, the last period of part 3).

5.2 Heterogeneity in Behaviour

Overall, there is evidence for heterogeneity in subjects’ approach to the stopping problem.

Most subjects gambled at least once during the ten periods of each part, except in the

Ext-ve condition (where 19% and 14% never gambled in the contest and lottery parts,

respectively).13 Perhaps unsurprisingly given the development of the overall averages seen

in the previous section, many subjects gambled a majority of the time during the last

five periods of the Min-ve and Mod-ve conditions, while many gambled only a minority of

the time in Ext-ve conditions. Nonetheless, there were non-negligible numbers of subjects

doing something different for the latter two treatments—that is, gambling a minority of

the time in the Mod-ve condition (16-17%) or gambling the majority of the time in the

Ext-ve condition (21-34%). For the Min-ve condition, gambling the majority of the time

was pervasive (over 95%).

To investigate heterogeneity in subjects’ response to the within-subject payoff-structure

variation, not just their general inclination towards gambling, we expand the basic random-

effects probit model for gambling, used in the previous subsection, to add random coeffi-

cients for the contest term and its interaction with pay order. The analysis of trend and

incentive-scheme effects is robust to the inclusion of random coefficients—see Table D.10

of the online appendix for details. However, a likelihood ratio test of the random coef-

different across parts. However, subjects that start with lottery incentives gamble in such a way that
their average stopped value in this first part is lower than for the first part of the subjects who start with
contest incentives.

13Figures D.6-D.8 of the online appendix plot the cumulative distribution of the subject-level averages
for all but one of the means of ending the stopping task. See also Table D.8 for the subject-level averages
using the last five periods of a part, and Table D.9 for the subject-level averages using all periods of a
part. The outcome not included in the figures and tables is never stopping, whereby the subject never
stops the process during the active phase, but the value never hits bankruptcy; this happened very rarely
(see Table D.7).

22



ficient terms shows that they are strongly significant (p < 0.001) for all drift-parameter

treatments, compared to the standard model where these coefficients are fixed. This re-

sult provides evidence of a significant degree of heterogeneity in subjects’ response to

the competitive incentives of the contest, and suggests a degree of heterogeneity in their

strategic approach or reasoning.

5.3 Determinants of Gambling in the Contest

To investigate further the heterogeneity in subjects’ general inclination towards gambling

under the contest incentive scheme, we use the observed behaviour from the lottery peri-

ods to construct an individual measure of a subject’s preference for gambling when faced

with the same stochastic process as in the contest periods. This individual measure and

an indicator for whether the subject gambled in the first match of the contest are used to

explicitly model subject gambling types. Model 1 of Table 7 shows the results of a regres-

sion analysis of the probability of gambling in the contest matches using these individual

measures and controls for the task order and the match number. In all treatments these

individual components play a significant role in the probability of gambling in a contest

period. For the Min-ve and Mod-ve, it is the lottery gambling average that plays the

most important role; for the Ext-ve treatment, it is the indicator for gambling in the first

contest match.

Model 2 of Table 7 adds as explanatory variables whether a subject’s opponent from

the previous match had a stopped value equal to 15 or strictly greater than 15. That

is, the second model investigates the role played by the revealed gambling choices of

opponents from the previous period. For all treatments, observing their previous match

to have gambled increases the chance that a subject gambles, while observing them with a

stopped value equal to the start value reduces the chance that a subject gambles. However

it is only in the Mod-ve condition that this feedback has a significant bearing on subjects’

choice to gamble.

Overall, the results of this analysis complement the patterns of behaviour illustrated

in Figure 3: In the Min-ve treatment—where the cost of gambling is not high and the

feedback from the stochastic process noisy (i.e. it is very close to a random walk without

drift)—gambling rates are high, there is less of a role for individual heterogeneity and there

is little evidence of a learning trend either over matches, order variation or in response
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Table 7: Determinants of Gambling Regressions.

Min -ve Mod -ve Ext -ve

Model 1

Lottery-Contest Order −0.00 (0.864) −0.06∗∗ (0.046) −0.16∗∗ (0.023)
Match 0.00 (0.275) −0.00 (0.504) −0.04∗∗∗ (0.000)

Gambles in Match 1 0.07∗ (0.081) 0.03 (0.561) 0.30∗∗∗ (0.000)
Lottery Gambling Avg. 0.09∗∗ (0.034) 0.33∗∗∗ (0.000) 0.11 (0.221)

Model 2

Lottery-Contest Order 0.00 (0.999) −0.06∗∗ (0.039) −0.15∗∗ (0.030)
Match 0.00 (0.269) −0.00 (0.632) −0.03∗∗∗ (0.000)

Gambles in Match 1 0.08∗ (0.067) 0.03 (0.523) 0.30∗∗∗ (0.000)
Lottery Gambling Avg. 0.10∗∗ (0.027) 0.31∗∗∗ (0.000) 0.11 (0.212)

Other’s Last Stopped Value = 15 −0.02 (0.136) −0.04∗∗ (0.019) −0.03 (0.344)
Other’s Last Stopped Value > 15 0.01 (0.535) 0.04∗∗ (0.022) 0.05 (0.512)

Notes: Correlated random-effects probit models. The second model is the same as the first model except
that it includes indicators for the other player’s outcome from the previous period. There is no significant
interaction effect in either model between the Lottery Gambling Average variable and the Lottery-Contest
Order variable; see Table D.11 in the online appendix for details. Coefficients report the marginal effect
on the dependent variable. p-value of significance test in parentheses using standard errors clustered at
the matching group level. ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.

to the other player’s outcome, at least in the extensive margin (that is, the decision to

not stop immediately). For the Ext-ve treatment—where the cost of gambling is high

and the feedback from the stochastic process clear—there is a strong trend over matches

to reduce gambling, and the initial choice to gamble in the first contest match is the

most important individual component. It is in the intermediate Mod-ve treatment—

where subjects are most exposed to the inefficient incentives to gamble introduced by the

contest payment scheme—that subjects respond significantly to their opponent’s outcome

from the previous match. The following results collect the main findings from this section.

Result 4 In the Ext-ve treatment there is a significant trend to reduce gambling with

experience. For the Min -ve and Mod -ve treatments there is no such trend for the extensive

margin. In the Ext-ve treatment, contest payoffs appear to crowd out intrinsic motives to

gamble. The same is not true in the Mod-ve treatment, with evidence that subjects are

less inclined to gamble under lottery incentives.

Result 5 In all treatments, there is evidence for individual heterogeneity in the propensity

to gamble. There is also evidence for heterogeneity in the response to the change in payoff

structure.
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Result 6 In the Mod-ve treatment, subjects respond significantly to the revealed outcome

of their match under contest incentives—being less likely to gamble if their opponent’s

stopped value was equal to the start value, and being more likely to gamble if it is above

the stopped value.

6 Incorporating Intrinsic Motivations for Gambling

This section considers whether adding an intrinsic motivation for gambling, over and

above maximising the expected utility of winning the prize, might help explain the ob-

served behaviour in our experiment. Including an intrinsic motivation for gambling has

an established theoretical literature (Diecidue et al., 2004); it is also a natural analog

to including a joy-of-winning, which has been reported in the experimental literature on

contests, in particular all-pay auctions and Tullock contests (see, for example, the survey

by Dechenaux et al., 2015).14 This extended model is judged on its consistency with

gambling behaviour under both lottery and contest incentives, as well as the observation

that contest incentives crowd out gambling in the Ext-ve treatment, while the opposite is

true in the Min-ve treatment. Explaining this latter observation will require considering

subjects’ reasoning about their match’s strategy under contest payoffs.15

6.1 Joy of Gambling

There is empirical evidence that people might accept or reject gambles because they de-

rive an extra procedural (dis-)utility, which depends on the circumstance and properties

of the gamble (Le Menestrel, 2001). For instance, otherwise risk-averse individuals some-

times gamble on roulette spins, horse races and other sports. Similarly, subjects in our

experiment might enjoy watching the process with some stake on the line and therefore

14Note that simply adding an intrinsic motive for winning would not change any predictions in risk
contest implemented in our experiments—as noted in Remark 1, predicted behaviour is independent
of the utility agents gain from winning the prize, so long as expected utility increases linearly in the
probability of winning.

15We also considered adding regret as another natural candidate for an alternative explanation. It has
also been studied in the theoretical literature for related decision environments (Feng and Hobson, 2016b;
Strack and Viefers, 2019), and is suggested by the software interface given that subjects see the complete
realisation of the stochastic process, even if they “stopped” the process earlier in a period (note that, this
design choice was made to ensure that subjects gain the same amount of experience with the Brownian
motion irrespective of their stopping strategy). However, as discussed in detail in Section A.5 of the
supplementary materials, adding regret is not able to narrow the gap between the theory and observed
behaviour, in particular in the individual choice setting.
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delay their stopping decision. Diecidue et al. (2004) show that this procedural utility of

gambling is inconsistent with the standard framework of expected utility theory. Instead,

the related literature separates two terms, a term for the gamble which is evaluated ac-

cording to expected utility theory and an additional term which measures the intrinsic

cost or benefit of not gambling. We verbally discuss two models below and provide the

corresponding derivations in Appendix A.4. This approach leads to the intrinsic motive

for gambling being incorporated as a function of the amount of time spent exposed to the

random fluctuations before stopping. As a result, it would also incorporate other possi-

ble intrinsic motivations from gambling in the experiment that would be observationally

equivalent, such as a simple activity bias.

The simplest way to include joy of gambling in our model is by an additional constant

gain per unit of time that a subject gambles. Under this specification, the predictions for

the individual choice treatment are: an individual either chooses not to gamble at all or

he gambles until he is bankrupt or the value of the process reaches at least 30. Thus, a

specification with constant joy of gambling is not able to explain observed behaviour.

Instead, suppose that the utility of gambling is decreasing over time. Intuitively, it

might be fun to play the stopping task for a couple of seconds, but it might become tiring

after a while. Such a model allows for richer patterns in the data. In the individual choice

treatment, the expected decrease in probability of winning is constant per unit of time is

constant. Hence, if the extra utility of gambling decreases over time, an individual might

have a positive, but short optimal stopping time. Intuitively, contestants value a thrill

in the beginning, but the effect of a decreasing winning probability becomes dominant

thereafter.

6.2 Reasoning About Opponents

In the Ext-ve treatment, subjects are more inclined to stop immediately under contest

incentives compared to lottery incentives. To accommodate this pattern of behaviour,

we suggest the following pattern of reasoning: subjects observe that most rivals stop

immediately. Thus, by stopping immediately, the probability of winning the contest is

50%. While they are not able to determine the best response to an opponent who stops

immediately—which is to gamble, stopping the first time the process reaches 16 or 0—

they realize that continuing for an additional unit of time at the initial value results in
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a huge decrease in winning probability. In particular, while they only risk a decrease in

winning probability by 1
30

in the individual choice treatment, the same decision reduces

the winning probability by 1
2

in the contest when the rival stops at 15 and the own process

decreases to reach 14. Consequently, they gamble less in the contest than in the lottery,

and competition crowds out the intrinsic joy of gambling.

In the moderate negative treatment, however, we observe more gambling in the con-

test. Intuitively, individuals do not observe that their rivals stop at 15 as often. Thus,

they do not have a point belief about their opponent’s stopped value anymore—supported

by the observation that subjects’ gambling decision is significantly affected by the revealed

stopped value of the opponent from the previous contest period. In turn, this makes gam-

bling more attractive at the starting value. Finally, in the minimal negative treatment, the

loss in expected value is so small that individuals gamble quite a bit both in the individual

choice and in the contest treatment. To sum up, a decreasing joy of gambling combined

with myopic reasoning about opponents helps in understanding some gaps between the

predictions and the data.16

6.3 Skewing the Stopped Value Distribution

For the contest, predicted equilibrium behaviour induces a left-skewed distribution. In

contrast, intrinsic motives for gambling that are tied to the amount of time spent actively

gambling would not have this feature (see Remark 2, and Remark 3 in the online appendix

for the decreasing joy of gambling model). Consequently, the skewness of the stopped

value distribution can be used to further distinguish between gambling motives.

This analysis is of particular interest for the Mod-ve treatment. It is this treatment

that most exposes subjects to the inefficient incentives to gamble for strategic rather than

intrinsic motives. For example, the between-sessions contrast for this treatment—which

compares the behaviour of subjects under contest incentives versus those under lottery

16This suggested pattern of reasoning is also consistent with the observed correlations between sub-
jects’ prize wins and their gambling choices across the drift parameter and incentive scheme variations.
In particular, in the Min-ve treatment there is no significant correlation between win proportions and
gambling choices for either the lottery or contest, both in terms of whether they gambled at all or their
overall gamble time. This observation reinforces the idea that the payoff feedback in this treatment is
rather noisy. For the Ext-ve treatment, there is a significant negative correlation in both the lottery and
contest, but the contest setting has the stronger negative correlation. For the Min-ve treatment, this is
different again with only the lottery setting having a (significant) negative correlation. See Table D.12
on the online appendix for details.
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incentives—found that, while the inclination towards gambling and the amount of time

spent gambling was on average very similar in part 2, subjects seemed to gamble in a

different manner so that the stopped value was on average lower under lottery incentives

than under contest incentives. This difference in gambling strategy can be seen in the

skewness statistics (see Table D.13 of the online appendix for details): In the standard

order, the stopped value distribution is negatively skewed under the contest incentives

(marginally significantly different from zero for all periods of part 2, and significantly

different for the last five periods). However, for the reverse order, the skewness of the

stopped value distribution is not significantly different from zero under lottery incentives

(when looking at either all periods or the last five periods of part 2). Furthermore, for

these reverse order sessions, the stopped value distribution is subsequently significantly

negatively skewed under the contest incentives of part 3. This is most cleanly illustrated

by comparing behaviour from period 15 (last period of lottery incentives) with period

16 (first period of contest incentives), where the former is negative but not statistically

different from zero, but the latter is more negative and statistically different from zero.

Finally, the distribution of stopped values (see Figure D.10 of the online appendix)

suggests a further difference in stopping strategy between the lottery and contest decisions

of the Min-ve treatment. In the lottery, there is some evidence that subjects are relatively

more inclined to stop at a round number (such as 5 or 10), something that does not seem

a relevant consideration under contest incentives (p-value using a regression-based test is

0.037 for all periods and 0.012 for the last five periods).

7 Conclusion

This paper presents a theory-based experimental investigation of behaviour in risk-taking

contests using a novel laboratory stopping task. Despite its dynamic nature, the experi-

mental framework presents subjects with a relatively simple and intuitive decision-making

problem that implements a choice among a large set of probability distributions, while

maintaining a tight connection to the underlying theory. Predicted behaviour in our ex-

periment is independent of the risk attitude of the participants, which reduces potential

confounds and allows us to compensate every single period of the experiment without

distorting incentives. From a methodological point of view, the implementation of choices
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over probability distributions as a stopping decision might also pave the way for future

experimental research in other areas such as distortionary taxation or general lotto games.

The two main theoretical predictions for the contest—excessive risk-taking and ex-

pected losses which are non-monotone in the drift—are observed in the experiment. In

line with the theory, we find evidence for excessive risk-taking in all our treatment con-

ditions. Furthermore, the non-monotonicity is at least as problematic as predicted, with

a moderately negative drift condition resulting in stopped values that are significantly

smaller than those from both a minimally negative condition and an extremely negative

condition.

Contrary to the benchmark theoretical predictions, we also find this aggregate pat-

tern of behaviour even when we remove the contest incentives and instead determine the

winning probability as a linear function of the stopped value. Further analysis suggests,

along with a great deal of heterogeneity, that many subjects display behaviour consis-

tent with some intrinsic motivation for taking-risk in the stopping task. However, the

intrinsic motive and the contest motive for excessive risk-taking appear to reinforce the

non-monotonicity in subtly different ways: Under the extreme negative condition, contest

incentives appear to crowd out the intrinsic motive for excessive-risk taking, while un-

der the moderate negative condition contest payoffs increase the propensity to take risks.

Such behaviour is consistent with decreasing joy of gambling in combination with myopic

reasoning about the stopping decision.

Thus, we have observed that there might be excessive risk-taking under the contest

scheme, but the dependence on the compensation scheme is more sensitive to the parame-

ters than predicted. Given the importance of compensation schemes for top managers and

fund managers, behaviour induced by these schemes in risky environments needs to be

well-understood. This paper has uncovered an interesting behavioural nuance—contest

incentives might crowd out an intrinsic inclination to gamble—but it is only a starting

point towards improving behavioural predictions for risky environments by combining

empirical evidence with theoretical models.
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Appendix

Additional Proofs

Proof of Proposition 3: Let us first show that stopping immediately is an optimal

strategy:

Recall that if the process is stopped at a value Xt, the winning probability is

min
{
Xt

30
, 1
}

= 1
30

min {Xt, 30}. Thus, the player chooses a stopping time τ to solve

maxτ
1
30

min {Xτ , 30}.

Note thatX = (Xt)t∈R+ is a supermartingale, i.e., since µ < 0, the process is decreasing

in expectation. Thus, by Doob’s optional sampling theorem (see, e.g., Peskir and Shiryaev,

2006, p.60), for any bounded stopping time τ , E(Xτ ) ≤ X0. Thus, for any bounded

stopping time τ , we obtain E( 1
30

min {Xτ , 30}) ≤ 1
30
E(Xτ ) ≤ 1

30
X0 = 1

2
. Hence, it is an

optimal strategy to stop immediately, since this results in a winning probability of 1
2
. We

do not spell out explicitly that stopping at t = 0 is strictly better than any continuation

strategy τ > 0, but refer the reader to Theorem 1.6 in Bismut and Skalli (1977) who prove

the result by characterizing the optimal stopping region for supermartingales.
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Robustness Checks for Main Hypothesis Tests

Table 8: Probability Stopped Time > 0: Non-Parametric Tests

Percent Stopped Regression based K-S p-value based on:
Treatment Time > 0 p-value All data Subject Matching group

Hypothesis 1a: Probability stopped time > 0 in the contest

Min -ve 95.50 0.000 0.000 0.000 0.000
Mod -ve 82.00 0.000 0.000 0.000 0.000
Ext -ve 26.25 0.000 0.000 0.000 0.000

Hypothesis 3: Probability stopped time > 0 in the lottery

Min -ve 94.75 0.000 0.000 0.000 0.000
Mod -ve 79.25 0.000 0.000 0.000 0.000
Ext -ve 36.25 0.000 0.000 0.000 0.000

Notes: The regression-based p-values are based on a linear random-effects regression (with clustering at
the matching group level) of either the stopped time or stopped value on a set of treatment indicators.
The K-S p-value is based on a Kolmogorov-Smirnov test between the degenerate distribution that puts all
weight on stopping immediately and the observed distribution using either all the data, subject averages or
matching-group averages. Data from the last five periods of the contest and the lottery parts, respectively.

Table 9: Treatment Comparisons in Hypotheses 1–3: Non-Parametric Tests

Regression based Rank sum K-S p-value based on:
Comparison p-value p-value All data Subject Matching group

Hypothesis 1b: Stopped time in the contest

Min -ve vs Mod -ve 0.000 0.000 0.000 0.000 0.000
Min -ve vs Ext -ve 0.000 0.000 0.000 0.000 0.000
Mod -ve vs Ext -ve 0.000 0.000 0.000 0.000 0.000

Hypothesis 2a: Stopped value in the contest

Min -ve vs Mod -ve 0.003 0.008 0.000 0.000 0.052
Min -ve vs Ext -ve 0.989 0.289 0.000 0.000 0.418
Mod -ve vs Ext -ve 0.000 0.000 0.000 0.000 0.000

Hypothesis 3: Stopped time in the lottery

Min -ve vs Mod -ve 0.000 0.000 0.000 0.000 0.000
Min -ve vs Ext -ve 0.000 0.000 0.000 0.000 0.000
Mod -ve vs Ext -ve 0.000 0.000 0.000 0.000 0.000

Hypothesis 3: Stopped value in the lottery

Min -ve vs Mod -ve 0.002 0.010 0.000 0.003 0.052
Min -ve vs Ext -ve 0.759 0.623 0.000 0.000 0.418
Mod -ve vs Ext -ve 0.000 0.002 0.000 0.000 0.002

Notes: The regression-based p-values are based on a linear random-effects regression (with clustering at
the matching group level) of either the stopped time or stopped value on a set of treatment indicators.
The rank-sum p-value is based on the ranks of matching-group averages. The K-S p-value is based on
a Kolmogorov-Smirnov between the observed distributions of either all the data, subject averages or
matching group averages. All tests use data from the last five periods of the contest and the lottery
parts, respectively.
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A Further Details on the Contest Game

We illustrate the two main propositions in Figures A.1(a) and A.1(b) using the param-

eters that we will use for our experimental implementation. Figure A.1(b) shows the

expected stopped value depending on the negative drift µ, while Figure A.1(a) shows the

induced cumulative distribution functions in equilibrium for the three drift parameters

used in the experiment. The figures illustrate the main theoretical predictions: there is

substantial amount of gambling (not stopping the process) in the contest although the

process decreases in expectation.17 Moreover, expected losses are non-monotone in the

fundamentals.

5 10 15 20 25 30
Stopped Value

0.2

0.4

0.6

0.8
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Cumulative Probability

(a) Equilibrium Distribution

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
Μ
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13
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15

Expected Stopped Value

(b) Expected Stopped Value

Figure A.1: The equilibrium distribution and expected stopped value for the parameters (x0 =
15, σ2 = 2)
depending on the drift µ; the implemented parameters are µ = −1.3, µ = −0.24, µ = −0.03.

A.1 Discretisation

The approach in the discretisation in this paper is similar to that of Anderson et al. (2010).

However, there is a minor difference, because we consider an arithmetic Brownian motion

rather than a geometric Brownian motion. By the functional central limit theorem, the

random walk considered in the implementation converges in distribution to a Gaussian

process (here: the Brownian motion with drift µ and variance σ2). The details are given

below:

Denote by ∆x the jump size of the random walk, by ∆t the time between the jumps,

and by p the uptick probability. Assume n = t
∆t

is an integer. Thus, the expected

17For comparison, without gambling, the cdf (not shown in the figure) is degenerate with all mass
concentrated at x0 = 15.
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value of the random walk R at time t is E[R(t)] = n(∆x)(2p − 1) and the variance is

var[R(t)] = n(∆x)2(1− (2p− 1)2).

Let ∆x = σ
√

∆t and p = [1 + µ
σ

√
∆t]/2. Then, for ∆ → 0, E[R(t)] → µt and

var[R(t)]→ σ2t. Thus, in the limit, expected value and variance converge to the param-

eters in the Brownian motion setting.

In our implementation, we have ∆t = 0.25 seconds and σ = 2. Thus, we obtain

∆x = 1 and p = 0.3375 for µ = −1.3, p = 0.47 for µ = −0.24 and p = 0.49625 for

µ = −0.03, which are the values we have used for the different treatments.

A.2 Point Predictions

Note that according to Seel and Strack (2013), p.2043, the expected value of the stopped

processes in equilibrium satisfies

E(Xτ ) =
σ2

2µ
+ (1 +

1

2(exp(−2µx0
σ2 )− 1)

)(x0 −
σ2 log(2− exp(2µx0

σ2 ))

2µ
) .

Plugging in σ = 2, x0 = 15 and the different values of µ, we obtain the values in

Hypothesis 2(b).

If we divide the expected losses (15− E(Xτ )) by the losses per period, we obtain the

average amount of periods until stopping occurs. Since a period takes 0.25 seconds, we

can multiply this result by 4 to obtain the expected stopping time in seconds, i.e., the

point prediction in Hypothesis 1(c).

A.3 Analytical Time Bound

In this section, we provide a calculation of an analytical time bound such that the equi-

librium distribution can be implemented with a strategy that stops up to that time for

the most critical treatment (min-ve). We used this time bound to determine the length

of each period of the experiment.

We calculate the time bound T such that the two-player equilibrium distribution

derived in Seel and Strack (2013) can be implemented before time T . For this purpose,

5



recall the distribution in the paper is given by

F (x) = min

{
1

2

exp(−2µx
σ2 )− 1

exp(−2µx0
σ2 )− 1

, 1

}
(2)

for x ≥ 0.

For the condition which we are going to use we need the probability distribution for

a centered process, i.e., a process which starts at zero. We obtain this by shifting the

distribution to the left:

F (x) = min

{
1

2

exp(−2µ(x+x0)
σ2 )− 1

exp(−2µx0
σ2 )− 1

, 1

}
(3)

for x ≥ −x0.

We are now ready to state the condition for a bounded time embedding of a distribution

given in Ankirchner and Strack (2011). They define g(x) = F−1(Φ(x)), where Φ(x) =

1√
2π

∫ x
−∞ exp( z

2

2
)dz is the density function of the normal distribution.

Lemma 1 (Ankirchner and Strack, 2011, Theorem 2) Suppose that g(·) is

Lipschitz-continuous with Lipschitz constant
√
T . Then the distribution F can be embed-

ded in Xt = µt+Bt, with a stopping time that stops almost surely before T .

Hence, we need the inverse of the equilibrium distribution in Eq. (3) on its support

to verify the condition in Ankirchner and Strack (2011):

F−1(x) = −σ
2

2µ
ln(1 + 2x(exp(

−2µx0

σ2
)− 1))− x0 (4)

We take the derivative to get

(F−1)′(x) = −σ
2

2µ

2(exp(−2µx0
σ2 )− 1)

1 + 2x(exp(−2µx0
σ2 )− 1)

(5)

We show Lipschitz continuity of F−1(x) and derive the corresponding Lipschitz con-

stants.

Since µ < 0, (F−1)′(x) is positive and decreasing in x for x ∈ [0, 1]. Thus,

(F−1)′(x) ≤ (F−1)′(0) = −σ
2

µ
(exp(

−2µx0

σ2
)− 1) (6)

6



for all x ∈ [0, 1]. Thus, (F−1)′(x) is Lipschitz continuous with Lipschitz constant−σ2

µ
(exp(−2µx0

σ2 )−

1). The normal distribution is Lipschitz continuous with Lipschitz constant 1√
2π

, where π

is the mathematical constant. Thus, g(x) is Lipschitz continuous with Lipschitz constant

−σ2

µ
(exp(−2µx0

σ2 )− 1) 1√
2π

. From Lemma 1, we obtain that F can be embedded if

T ≥ (−σ
2

µ
(exp(

−2µx0

σ2
)− 1)

1√
2π

)2 . (7)

For the min-ve treatment (µ = −0.03, σ = 2, x0 = 15), the time bound is roughly 90

seconds, the duration of each period of the experiment. Intuitively, a constraint through

the duration is more likely to change behaviour for small values of µ, where there is more

incentive for gambling. Thus, our choice of deadline should not influence behaviour since

it respects the bounded time condition for the most critical treatment.

A.4 Introducing Joy of Gambling

Diecidue et al. (2004) propose a general model which allows to capture joy of gambling,

but is also able to accomodate an intrinsic disutility of a static gamble. They call it

the holistic cost of the gamble. Adapted to our dynamic setting, we can study such a

holistic cost over time with an additional term C(Xτ ) =
∫ τ

0
c(t,Xt)dt. We now propose

two models which impose more assumption on the cost term.

Model 1: Constant Joy of Gambling

In the most simple model, the cost of absence of gambling would be constant over time

and independent of the value of the process, i.e., C(Xτ ) =
∫ τ

0
cdt = cτ . Thus, in the

individual choice treatment, a subject with constant joy of gambling aims to maximize

Xτ

30
+ cτ.

The following lemma states the behavioural predictions for such a subject.

Lemma 2 There is a threshold c̄ such that for all c < c̄, stopping immediately is optimal

and for all c > c̄, the subject should not stop in (0, 30).

Since c is constant, the expected value of continuing for an additional unit of time is

the same for all Xt ∈ (0, 30). The expected value is increasing in c. Let c̄ be such that
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the expected value of continuation is negative for c < c̄ and positive for c > c̄. Then the

process is a supermartingale (submartingale) for c < c̄ (c > c̄) and the proof of Proposition

3 directly extends to the result in Lemma 2.

Thus, for generic parameters of c, the linear model predicts that stopping in the

individual choice treatment only occurs at 0, 15, and at or above 30.

Model 2: Decreasing Joy of Gambling

Now suppose the holistic cost of absence of gambling is decreasing over time, C(Xτ ) =∫ τ
0
c(t)dt, where c(t) is decreasing in t and, for simplicity, it does not depend on Xt. The

expected loss in winning probability is constant over time. Thus, the gain of continuation

decreases, i.e., there is an optimal threshold for the stopping time τ . Moreover, note

that (i) the threshold value increases as the drift increases and (ii) the optimal stopping

decision can be based on whether it is profitable to continue for one additional unit of

time only. Prediction (i) is consistent with the data (see Result 3) and prediction (ii) says

that a myopic decision-making leads to an overall optimal decision.

When c(t) does not depend on Xt and the process is stopped at a given time t, the

stopped distribution is approximately (up to the fact that the process can be absorbed

at zero) a binomial distribution. Summing up over individuals, we obtain the sum of

binomially distributed random variables which is again a binomially distributed random

variable. As the process has a negative expectation, the distributions are right-skewed

and approach a normal distribution as t increases. Thus, for a decreasing joy of gambling,

in the individual choice treatment, we would not expect a left-skewed distribution as is

predicted for the contest.

Remark 3 (Skewness of stopped value distribution) For the individual choice problem

with subjects displaying decreasing joy of gambling, the model predicts that the distributions

of the stopped values are not left-skewed.

A.5 Introducing Regret

A subject might regret to have stopped if he does not win the prize and—in hindsight—

there was a winning strategy. In our implementation, subjects observe the whole sample

path of the process, i.e., a feeling of regret due to a failure to stop at the “right” time

seems quite natural. If such feeling of regret is not anticipated by the subject, behavioural
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predictions do not change compared to the main text. However, if the subject anticipates

his regret, behavioural predictions might change. This type of anticipated regret was first

studied in Loomes and Sugden (1982) and recently extended to dynamic settings.

In particular, the literature considers two natural notions of regret for optimal stopping

problems: regret over stopping below the past peak (i) until the stopping time or (ii)

until the deadline T. Strack and Viefers (2019) characterize optimal behaviour for the

two types of regret in a related individual choice setting and also implement their choice

problem in the laboratory. Their setting differs in three aspects from our individual

choice setting. First, they implement a geometric Brownian motion rather an arithmetic

Brownian motion and thus have no risk of bankruptcy. Second, the payoff is given by the

stopped value rather than influencing the probability of winning a fixed prize. Finally,

they include a breakdown probability; that is, after each unit of time, there is a positive

probability that the decision problem ends with a zero payoff for the subject.

Regret over stopping below the peak before the deadline is shown to be empirically

indistinguishable from the standard theory without regret in Strack and Viefers (2019).

Their arguments extend to our setting. Thus, regret over stopping below the peak until

the deadline offers no help in explaining the gap between the theory and the data for the

individual choice treatment.

Strack and Viefers (2019) report evidence from their experiment in favour of the most

popular theory of regret, regret over stopping below the past peak until the stopping

time. For instance, this theory offers a possible explanation for the disposition effect in

behavioural finance (Shefrin and Statman, 1985)—i.e., traders sell winning assets while

keeping losing assets in their portfolio. In our individual choice setting, an individual who

feels this type of regret should stop immediately: this behaviour is optimal without regret

and makes sure that no regret is felt. Thus, Proposition 3 directly extends. Intuitively,

there is now even more pressure to stop earlier. Clearly, this formalisation of regret is

also not able to narrow the gap between the theory and the data in our individual choice

setting.18

18In our individual choice setting, agents receive information about whether they won or not, but not
about the stopping value which would have been sufficient to win. There would be different ways to adapt
the regret notion to this setting. For all of these adaptations, however, following the argumentation in
the text, an explanation based on regret over stopping below the past maximum can be rejected.
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B Example Instructions

Moderate Negative, Contest-Lottery Order

Welcome

You are about to participate in a session on interactive decision-making. Thank you for

agreeing to take part. The session should last about 90 minutes.

You should have already turned off all mobile phones, smart phones, mp3 players and

all such devices by now. If not, please do so immediately. These devices must remain

switched off throughout the session. Place them in your bag or on the floor besides you.

Do not have them in your pocket or on the table in front of you. The entire session,

including all interaction between you and other participants, will take place through the

computer. You are not allowed to talk or to communicate with other participants in any

other way during the session. You are asked to follow these rules throughout the session.

Should you fail to do so, we will have to exclude you from this (and future) session(s) and

you will not receive any compensation for this session.

We will start with a brief instruction period. Please read these instructions carefully.

They are identical for all participants in this session with whom you will interact. If you

have any questions about these instructions or at any other time during the experiment,

then please raise your hand. One of the experimenters will come to answer your question.

Structure of the session

There are three parts to this session. Instructions for all parts are detailed below. Part 1

consists of 5 periods, during which you will be given the opportunity to familiarise yourself

with the environment and the interface that forms the basis of the tasks to be completed

in parts 2 and 3. Part 2 consists of 10 periods. At the beginning of each period, you will

be matched with another participant for a decision task. Part 3 consists of 10 periods of

a similar task. However, it will be an individual decision task, and the calculation of your

earnings for this part will be different. Consequently, parts 1, 2 and 3 are related, but

independent tasks.
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Compensation for participation in this session

You will be able to earn money for your decisions in parts 2 and 3 of the session. What you

will earn from part 2 will depend on your decisions, the decisions of others and chance.

What you will earn from part 3 will only depend on your decisions and chance. Further

details will be given in due course.

In the instructions, and all decision tasks that follow, payoffs are reported in experi-

mental currency units (ECU). At the end of the experiment, your earnings in ECUs will

be converted to Euros at the rate of 100 ECU: 1 Euro. Your final payment will be 3 Euros

plus the sum of your earnings from parts 2 and 3. Final payment takes place in cash at

the end of the session. Your decisions and earnings in this session will remain anonymous.

Instructions for Part 1

1. Part 1 consists of 5 periods—periods 1 through 5 of the experiment as a whole.

During these periods you will not interact with other participants and your choices

will not affect your earnings for this experiment. Part 1 is meant as practice to give

you an opportunity to familiarise yourself with the environment and the computer

interface.

2. During each period you will see a graph evolve in real-time. This graph will be

referred to as a random process and has the following features:

(a) The process starts at a value of 15.

(b) You have 15 seconds before the value starts to randomly fluctuate.

(c) During this random fluctuation, every quarter of a second there is a 47% chance

that the value increases by 1 and a 53% chance it decreases by 1. Consequently,

if the value does not increase by 1 it decreases by 1, and vice-versa.

(d) This random fluctuation continues until the time limit is reached, which is 90

seconds, or until the value becomes zero. If the value becomes zero the process

remains zero for the remainder of the period.

3. Your task is to select a value by “stopping” the process. The value when you stop

the process is referred to as the stopped value for the period.

4. To do this, you have three controls at your disposal:
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(a) A stop now button: Clicking on this button will stop the process immediately.

(b) An upper bound : If the current value of the process is equal to (or greater

than) this number, the process will stop. By default this value is set to 45.

You can change the value by clicking on the up or down arrows next to the

number or by dragging the upper of the two horizontal blue lines on the graph,

which represents this upper bound.

(c) A lower bound : If the current value of the process is equal to (or less than)

this number, the process will stop. By default this value is set to 0. You can

change the value by clicking on the up or down arrows next to the number

or by dragging the lower of the two horizontal blue lines on the graph, which

represents this lower bound.

5. The stopped value is determined as follows:

• The current value of the process when you click on the “stop now” button.

Note: The stop now button is active during the 15 seconds before the random

fluctuation begins. That is, pressing the button during this time will give you

a stopped value equal to the start value.

• The current value of the process should it be greater than or equal to the cur-

rent value of your upper bound.

Note: The upper bound is not active during the 15 seconds before the random

fluctuation begins. That is, while you can change the value of the upper bound

during this time, it will not stop the process until the random fluctuation has

begun. As soon as this time is over, the control becomes active. In particu-

lar, if the upper bound is equal to or below the start value when the random

fluctuation begins, you will stop the process immediately with a stopped value

equal to the start value.

• The current value of the process should it be less than or equal to the current

value of your lower bound.

Note: The lower bound is not active during the 15 seconds before the random

fluctuation begins. That is, while you can change the value of the lower bound

during this time, it will not stop the process until the random fluctuation has

begun. As soon as this time is over, the control becomes active. In particu-

12



lar, if the lower bound is equal to or above the start value when the random

fluctuation begins, you will stop the process immediately with a stopped value

equal to the start value.

• The current value of the process at the time limit if none of the above applies

before this time.

6. Stopping your process will not stop the evolution of the graph on your computer

screen. It fixes your stopped value for the current period, which will be displayed

on the right-hand side once it has been determined. Once you have stopped your

process, you cannot change your stopped value for the current period, and your

controls (the stop now button, the upper bound and the lower bound) will no longer

be active for the remainder of the period.

7. After the time limit has passed, you will have 15 seconds before the next period

begins.

Example Random Processes and Control Questions

8. Before we begin with part 1, you will be shown some example realisation of the

random process and asked some control questions to ensure you have understood

the basic ideas of the environment.

9. The examples will be displayed on the computer screen. The examples are the same

for all participants that you might interact with.

10. After the examples, you will be asked some control questions. Please read each

question carefully and fill in what you think is the correct answer. If you do not

get the correct answer for a question—the computer interface will prevent you from

proceeding to the next question if this is the case—and cannot work out what the

correct answer should be, please raise your hand and an experimenter will come to

your cubicle to assist you.

Instructions for Part 2

11. Part 2 consists of 10 periods—periods 6 through 15 of the experiment as a whole. At

the beginning of a period, you will be paired with another participant. We refer to
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this participant as your match. This pairing procedure is repeated at the beginning

of every period in part 2. The pairing is anonymous—you will not know the identity

of your match, and vice-versa—and is determined randomly.

12. During a period you will control a random process similar to that described in part

1. The process will have the same features and controls as in part 1.

13. At the same time your match will also control a random process. The random

process has the same features as your random process, as described above. However,

it will be a different realisation. That is, your and your match’s processes will

be independent of each other. You will only ever see your own process and your

decisions have no effect on the random fluctuation of your match’s process, and

vice-versa.

14. Your payoff for this period is determined by comparing your stopped value with

that of your match’s. If your stopped value is strictly larger than your match’s, you

will earn 150 ECU for this period. If your match’s stopped value is strictly larger

than yours, you will earn 0 ECU for this period. If the stopped values are exactly

the same, then the computer will randomly determine who earns 150 ECU and who

earns 0 ECU, with you or your match having an equal chance to be the one that

earns 150 ECU.

15. Once both your and your match’s process has stopped fluctuating, you will be shown

your stopped value, your match’s stopped value, your payoff for the period, and your

match’s payoff for the period.

16. Note that, if the stopped values were exactly the same, you will find out at this

point who was randomly chosen to earn 150 ECU, with the other earning 0 ECU.

17. After a period is finished, you will be paired for a new period. Part 2 consists of 10

such periods.

18. Your payoff for part 2 is the sum of your payoffs from all the periods in part 2. That

is, the sum of your payoffs from periods 6 through 15.
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Instructions for Part 3

1. Part 3 consists of 10 periods—periods 16 through 25 of the experiment as a whole.

Unlike part 2, you will not be paired with another participant during part 3. That

is, what you will earn from part 3 will only depend on your decisions and chance.

2. During a period you will control a random process similar to that described in part

1. The process will have the same features and controls as in part 1.

3. Your payoff for this period is determined by a lottery. The outcome of this lottery

can be either 150 ECU or 0 ECU. The chance of earning 150 ECU is determined

by your stopped value for the period. In particular, the chance you will earn 150

ECU is equal to (stopped value / 30) x 100%, if your stopped value is less than 30;

otherwise it is 100%.

4. Thus, your chance of earning the 150 ECU is increasing in your stopped value. If

you have a stopped value of zero, you will earn 0 ECU for sure. If you have a

stopped value of 15, you have a 50% chance of earning 150 ECU, since (15/30) x

100% = 50%. If you have a stopped value of 30 or more, you will get 150 ECU for

sure.

5. Once your process has stopped fluctuating, you will be shown your stopped value,

your chance of earning 150 ECU from your lottery and your payoff for the period—

that is, the outcome of your lottery for the period.

6. After a period is finished, you will move on to the next period. Part 3 consists of

10 such periods.

7. Your payoff from part 3 is the sum of your payoffs from all periods in part 3. That

is, the sum of your payoffs from periods 16 through 25.

8. After part 3 has finished, the session will move on to a final questionnaire. An

experimenter will come to your cubicle to start the questionnaire. Instructions for

the questionnaire will be displayed on your computer terminal. Please read them

carefully and proceed at your own pace.
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C Additional Screenshots

Figure C.1: Screenshot: Warm-up Phase

Figure C.2: Screenshot: Feedback Phase
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D Further Results

D.1 Additional Tables

Table D.1: Summary of the Outcomes in the Contest: Comparison across Data Subsamples

Percent Stopped Stopped Time (sec) Stopped Value (ECU)
Treatment Time > 0 Average (95% C.I.) Predicted Average (95% C.I.) Predicted

All Ten Periods

Min -ve 94.0 *** 23.77 (19.16, 28.38) 30.66 14.22 (13.67, 14.77) 14.54
Mod -ve 82.9 *** 9.41 (7.49, 11.33) 10.75 12.93 (12.46, 13.40) 13.71
Ext -ve 35.1 *** 0.50 (0.29, 0.70) 0.72 14.40 (14.18, 14.62) 14.53

First Five Periods

Min -ve 92.5 *** 23.80 (19.88, 27.71) 30.66 13.76 (12.98, 14.53) 14.54
Mod -ve 83.8 *** 10.04 (7.56, 12.53) 10.75 13.00 (12.39, 13.61) 13.71
Ext -ve 44.0 *** 0.75 (0.38, 1.12) 0.72 14.10 (13.71, 14.49) 14.53

Last Five Periods

Min -ve 95.5 *** 23.74 (18.12, 29.36) 30.66 14.69 (13.60, 15.79) 14.54
Mod -ve 82.0 *** 8.78 (6.78, 10.79) 10.75 12.86 (12.35, 13.37) 13.71
Ext -ve 26.2 *** 0.25 (0.16, 0.34) 0.72 14.70 (14.55, 14.85) 14.53

Notes: ∗∗∗ denotes significantly different from zero with p-value < 0.001. Tests and confidence intervals
use standard errors clustered at the matching group level..

Table D.2: Summary of the Outcomes in the Lottery: Comparison across Data Subsamples

Percent Stopped Stopped Time (sec) Stopped Value (ECU)
Treatment Time > 0 Average (95% C.I.) Predicted Average (95% C.I.) Predicted

All Ten Periods

Min -ve 94.1 *** 21.90 (19.07, 24.72) 0.00 14.31 (13.98, 14.64) 15.00
Mod -ve 79.5 *** 8.97 (6.99, 10.94) 0.00 12.36 (11.86, 12.85) 15.00
Ext -ve 44.2 *** 0.64 (0.42, 0.85) 0.00 14.23 (14.01, 14.44) 15.00

First Five Period

Min -ve 93.5 *** 21.17 (17.36, 24.98) 0.00 14.38 (13.73, 15.02) 15.00
Mod -ve 79.8 *** 9.44 (6.97, 11.92) 0.00 11.99 (11.18, 12.80) 15.00
Ext -ve 52.2 *** 0.66 (0.43, 0.90) 0.00 14.10 (13.79, 14.40) 15.00

Last Five Periods

Min -ve 94.8 *** 22.62 (20.03, 25.22) 0.00 14.24 (13.51, 14.97) 15.00
Mod -ve 79.2 *** 8.49 (6.94, 10.03) 0.00 12.73 (12.11, 13.34) 15.00
Ext -ve 36.2 *** 0.61 (0.19, 1.03) 0.00 14.36 (14.17, 14.54) 15.00

Notes: ∗∗∗ denotes significantly different from zero with p-value < 0.001. Tests and confidence intervals
use standard errors clustered at the matching group level.
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Table D.3: Summary of the Outcomes in the Last Five Periods: Between Subjects comparison

Percent Stopped Stopped Time (sec) Stopped Value (ECU)
Treatment Time > 0 Average (95% C.I.) Predicted Average (95% C.I.) Predicted

Contest Outcomes from Contest-Lottery Sessions

Min -ve 96.0 *** 28.03 (18.73, 37.33) 30.66 14.87 (13.22, 16.52) 14.54
Mod -ve 84.5 *** 9.26 (6.04, 12.48) 10.75 12.56 (12.12, 13.01) 13.71
Ext -ve 35.5 *** 0.29 (0.21, 0.36) 0.72 14.70 (14.58, 14.83) 14.53

Lottery Outcomes from Lottery-Contest Sessions

Min -ve 93.5 *** 20.95 (17.71, 24.19) 0.00 14.03 (12.81, 15.25) 15.00
Mod -ve 86.5 *** 10.12 (8.10, 12.13) 0.00 12.40 (11.61, 13.18) 15.00
Ext -ve 42.5 *** 0.43 (0.34, 0.53) 0.00 14.28 (14.05, 14.52) 15.00

Notes: ∗∗∗ denotes significantly different from zero with p-value < 0.001. Tests and confidence intervals
use standard errors clustered at the matching group level.

Table D.4: p-Values from Point-Prediction Tests for Hypotheses 1–3

Contest Lottery
H 1c H 2b H 3 H 3

Treatment Stopped Time Stopped Value Stopped Time Stopped Value

Min -ve 0.016 0.785 0.000 0.041
Mod -ve 0.055 0.001 0.000 0.000
Ext -ve 0.000 0.027 0.004 0.000

Notes: p-values are based on a Wald test of the estimated coefficients of a linear random-effects regression
(with clustering at the matching group level) of either the stopped time or stopped value on a full set of
treatment indicators. All tests use data from the last five periods of the contest and the lottery parts,
respectively.
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Table D.5: Random-Effects Regressions of Behaviour across Periods: Probability of Gambling,
Stopped Time and Stopped Value.

Min -ve Mod -ve Ext -ve

Gambles

Contest 0.02 (0.188) 0.08∗∗∗ (0.004) −0.26∗∗∗ (0.001)
Lottery-Contest Order 0.01 (0.623) 0.10∗∗ (0.042) −0.15∗∗ (0.027)

Contest × Lottery-Contest Order −0.04 (0.154) −0.12∗∗∗ (0.009) 0.28∗ (0.088)
Period 0.00 (0.181) −0.00 (0.760) −0.04∗∗∗ (0.000)

Stopped Time

Contest 6.59∗∗ (0.015) 0.41 (0.778) −0.95∗∗ (0.025)
Lottery-Contest Order 0.52 (0.861) 1.36 (0.219) −0.95∗∗ (0.025)

Contest × Lottery-Contest Order −9.45∗∗∗ (0.009) −0.08 (0.972) 1.79∗ (0.066)
Period 0.14 (0.376) −0.22∗∗ (0.041) −0.10∗∗ (0.017)

Stopped Value

Contest 0.58 (0.468) 0.32 (0.559) 0.66∗∗∗ (0.000)
Lottery-Contest Order 0.09 (0.881) −0.79 (0.139) 0.43∗ (0.060)

Contest × Lottery-Contest Order −1.33 (0.300) 0.49 (0.689) −0.98∗∗∗ (0.002)
Period 0.05 (0.285) 0.04 (0.448) 0.09∗∗∗ (0.000)

Notes: The regression model is a random-effects probit model for the gambles dependent variable, and a
linear random effects model for stopped time and stopped value dependent variables. Coefficients report
the marginal effect on the dependent variable. p-value of significance test in parentheses using standard
errors clustered at the matching group level. ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table D.6: Complete Set of Contrast Tests from Regressions on Behaviour across Periods

Within-Session Tests Between-Session Tests
(Phase 2 v Phase 3) (Standard v Reverse Order)

Overall Standard Order Reverse Order Phase 2 Phase 3
Dependent Period Trend Cont v Lott Cont v Lott Cont v Lott Cont v Lott

Variable β p β p β p β p β p

Min -ve

Gambles 0.06 0.104 0.65 0.123 −0.61 0.163 0.41 0.209 −0.37 0.342
Stopped Time 0.14 0.376 6.59 0.015 −2.85 0.065 6.07 0.142 −2.33 0.445
Stopped Value 0.05 0.285 0.58 0.468 −0.75 0.186 0.49 0.387 −0.66 0.009

Mod -ve

Gambles −0.01 0.753 0.65 0.001 −0.35 0.130 −0.21 0.512 0.51 0.196
Stopped Time −0.17 0.097 1.18 0.306 −0.28 0.813 −0.95 0.626 1.84 0.281
Stopped Value 0.04 0.448 0.32 0.559 0.82 0.282 1.11 0.000 0.03 0.959

Ext -ve

Gambles −0.11 0.000 −0.77 0.000 0.06 0.851 −0.33 0.000 −0.37 0.246
Stopped Time −0.07 0.001 −0.62 0.000 0.34 0.114 −0.00 0.994 −0.28 0.228
Stopped Value 0.09 0.000 0.66 0.000 −0.31 0.133 0.23 0.308 0.12 0.342

Notes: The regression model is a random-effects probit model for the gambles dependent variable, and a
linear random effects model for stopped time and stopped value dependent variables. β columns report
the point prediction of the associated linear combination of coefficients from the (latent) linear regression.
For the period trend and the standard-order contest-lottery contrast, this is just the coefficient associated
with the period and contest variables, respectively. For the reverse-order contest-lottery contrast, this
is contest plus contest x pay order. For the phase 2 contest-lottery contrast, this is contest minus pay
order. For the phase 3 contest-lottery contrast, this is pay order plus contest plus contest x pay order.
Standard errors are clustered at the matching group level. The p columns report the result of a two-sided
test against the null hypothesis that the linear combination is equal to zero.

Table D.7: Aggregate-Level Stopping Choices across All Periods

Stopped Stopped with Stopped with Stopped with Never
Treatment Time > 0 Button Threshold Bankruptcy Stopped

Contest

Min-ve 0.94 0.34 0.50 0.10 0.00
Mod-ve 0.83 0.29 0.49 0.05 0.00
Ext-ve 0.35 0.11 0.24 0.01 0.00

Lottery

Min-ve 0.94 0.25 0.57 0.11 0.01
Mod-ve 0.80 0.24 0.51 0.05 0.00
Ext-ve 0.44 0.11 0.32 0.00 0.00

Notes: Numbers report the proportion of observations from each part. Data from periods 1-10 for each
part.
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Table D.8: Subject-Level Averages: Characterising Stopping Choices during the Last Five Pe-
riods

Contest Lottery
Treatment Never Minority Majority Always Never Minority Majority Always

(0/5) (0-2/5) (3-5/5) (5/5) (0/5) (0-2/5) (3-5/5) (5/5)

How often did subject not stop immediately (i.e. gamble time > 0)

Min-ve 0.00 0.04 0.96 0.88 0.01 0.04 0.96 0.85
Mod-ve 0.09 0.17 0.83 0.70 0.06 0.16 0.84 0.57
Ext-ve 0.45 0.79 0.21 0.05 0.42 0.66 0.34 0.17

How often did subject stop using the stop button (during the active phase)

Min-ve 0.34 0.65 0.35 0.01 0.40 0.74 0.26 0.03
Mod-ve 0.42 0.74 0.26 0.01 0.46 0.85 0.15 0.01
Ext-ve 0.78 0.95 0.05 0.00 0.76 0.89 0.11 0.04

How often did subject stop using threshold interface (during the active phase)

Min-ve 0.09 0.46 0.54 0.17 0.12 0.41 0.59 0.15
Mod-ve 0.19 0.53 0.47 0.20 0.16 0.46 0.54 0.16
Ext-ve 0.60 0.84 0.16 0.03 0.56 0.79 0.21 0.09

How often did subject hit bankruptcy

Min-ve 0.70 0.99 0.01 0.00 0.57 0.95 0.05 0.00
Mod-ve 0.81 1.00 0.00 0.00 0.84 0.99 0.01 0.00
Ext-ve 0.99 1.00 0.00 0.00 0.97 1.00 0.00 0.00

Notes: Data from the last five periods for each part. The table reports the proportion of subjects whose
stopping choices were either never according (zero out of five), according to in a minority of periods (no
more than two out of five), according to in a majority of periods (at least three out of five), and always
according to (five out of five) the stopping characteristic written in italic. For a given row and part,
the never column is smaller than the minority column, the always column is smaller than the majority
column, and the minority and majority columns sum to one.
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Table D.9: Subject-Level Averages: Characterising Stopping Choices across All Periods

Contest Lottery
Treatment Never Minority Majority Always Never Minority Majority Always

How often did subject not stop immediately (i.e. gamble time > 0)

Min-ve 0.00 0.03 0.96 0.78 0.01 0.03 0.97 0.76
Mod-ve 0.03 0.12 0.84 0.54 0.03 0.14 0.80 0.51
Ext-ve 0.19 0.66 0.31 0.03 0.14 0.54 0.38 0.11

How often did subject hit bankruptcy

Min-ve 0.46 1.00 0.00 0.00 0.44 0.99 0.00 0.00
Mod-ve 0.66 1.00 0.00 0.00 0.72 1.00 0.00 0.00
Ext-ve 0.94 1.00 0.00 0.00 0.95 1.00 0.00 0.00

How often did subject stop using the stop button (strictly) during the active phase

Min-ve 0.25 0.59 0.31 0.00 0.36 0.74 0.16 0.00
Mod-ve 0.33 0.69 0.21 0.01 0.25 0.80 0.10 0.01
Ext-ve 0.57 0.93 0.05 0.00 0.68 0.91 0.09 0.01

How often did subject stop using threshold interface (strictly) during the active phase

Min-ve 0.04 0.46 0.45 0.06 0.05 0.36 0.61 0.12
Mod-ve 0.10 0.50 0.42 0.07 0.05 0.44 0.49 0.05
Ext-ve 0.33 0.78 0.15 0.00 0.25 0.69 0.26 0.03

Notes: Data from the all ten periods for each part. The table reports the proportion of subjects whose
stopping choices were either never according (zero out of ten), according to in a minority of periods (no
more than four out of ten), according to in a majority of periods (at least six out of 10), and always
according to (10 out of 10) the stopping characteristic written in italic. The proportions of subjects are
reported separately for the contest and lottery parts. For a given row and part, the never column is
smaller than the minority column and the always column is smaller than the majority column. However,
the minority and majority columns may not sum to one due to the possibility that a subject’s choice was
according to the stopping characteristic in exactly five out ten periods.

Table D.10: Heterogeneity in Response to change in Payoff Structure: Probability of Gambling
across Periods

Min -ve Mod -ve Ext -ve

Random-Effects model

Contest 0.02 (0.188) 0.08∗∗∗ (0.004) −0.26∗∗∗ (0.001)
Lottery-Contest Order 0.01 (0.623) 0.10∗∗ (0.042) −0.15∗∗ (0.027)

Contest × Lottery-Contest Order −0.04 (0.154) −0.12∗∗∗ (0.009) 0.28∗ (0.088)
Period 0.00 (0.181) −0.00 (0.760) −0.04∗∗∗ (0.000)

Random-Coefficients model

Contest 0.02 (0.214) 0.08∗∗∗ (0.005) −0.28∗∗∗ (0.001)
Pay Order 0.00 (0.664) 0.08∗ (0.078) −0.16∗∗ (0.022)

Contest × Pay Order −0.02 (0.325) −0.08∗∗ (0.027) 0.28 (0.125)
Period 0.00 (0.339) −0.00 (0.749) −0.04∗∗∗ (0.000)

Notes: Random-effects probit models. The second regression is the same as the first one except that it
includes a random coefficient for the contest variable and its interaction term with pay order. Coefficients
report the marginal effect on the dependent variable. p-value of significance test in parentheses using
standard errors clustered at the matching group level. ∗∗∗ 1%, ∗∗ 5%, ∗ 10%. The likelihood Ratio test
for significance of the random-coefficients model, compared to the random-effects model, gives p < 0.01
for all three drift parameters.
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Table D.11: Determinants of Gambling Regressions – Controlling for any Task-Order Effect for
the Lottery Gambling Average Variable.

Min -ve Mod -ve Ext -ve

Model 1

Lottery-Contest Order −0.03 (0.508) 0.02 (0.768) −0.28∗∗ (0.012)
Match 0.00 (0.278) −0.00 (0.509) −0.04∗∗∗ (0.000)

Gambles in Match 1 0.07 (0.104) 0.04 (0.455) 0.28∗∗∗ (0.001)
Lottery Gambling Avg. 0.08∗∗ (0.035) 0.40∗∗∗ (0.000) 0.02 (0.731)

Lottery Gambling Avg. × Lott-Cont Order 0.03 (0.459) −0.11 (0.178) 0.24 (0.123)

Model 2

Lottery-Contest Order −0.03 (0.562) 0.03 (0.667) −0.27∗∗ (0.010)
Match 0.00 (0.269) −0.00 (0.639) −0.03∗∗∗ (0.000)

Gambles in Match 1 0.07∗ (0.087) 0.04 (0.419) 0.29∗∗∗ (0.001)
Lottery Gambling Avg. 0.08∗∗ (0.027) 0.39∗∗∗ (0.000) 0.02 (0.788)

Lottery Gambling Avg. × Lott-Cont Order 0.03 (0.478) −0.12 (0.164) 0.25 (0.102)
Other’s Last Stopped Value = 15 −0.02 (0.151) −0.04∗∗ (0.022) −0.04 (0.299)
Other’s Last Stopped Value > 15 0.01 (0.533) 0.05∗∗ (0.027) 0.05 (0.507)

Notes: Correlated random-effects probit models. The second model is the same as the first model except
that it includes indicators for the other player’s outcome from the previous period. Coefficients report
the marginal effect on the dependent variable. p-value of significance test in parentheses using standard
errors clustered at the matching group level. ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.

Table D.12: Correlation between Winning and Gambling Choices across All Periods.

Min -ve Mod -ve Ext -ve

Gambles (Stopped Time > 0)

Contest 0.03 (0.643) 0.07 (0.350) 0.10∗∗∗ (0.003)
Lottery × Gambles 0.04 (0.636) −0.09∗∗ (0.021) −0.07∗ (0.084)
Contest × Gambles 0.04 (0.387) −0.08 (0.107) −0.22∗∗∗ (0.001)

Constant 0.43∗∗∗ (0.001) 0.49∗∗∗ (0.000) 0.49∗∗∗ (0.000)

Stopped Time

Contest 0.02 (0.624) 0.06∗ (0.065) 0.08∗∗ (0.031)
Lottery × Stopped Time 0.00 (0.878) −0.00∗∗ (0.045) −0.01∗ (0.062)
Contest × Stopped Time 0.00 (0.283) −0.00 (0.187) −0.05∗∗∗ (0.006)

Constant 0.46∗∗∗ (0.000) 0.44∗∗∗ (0.000) 0.47∗∗∗ (0.000)

Notes: Simple linear regression of whether a subject won the prize on either whether they gambled
(stopped time >0) or on their stopped time. The regression model includes interaction terms with whether
the period was played under lottery or contest incentives. p-value of significance test in parentheses using
standard errors clustered at the matching group level. ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table D.13: Stopped Value Variance and Skewness in the Mod-ve Treatment

Contest Lottery
Task Order Variance Skewness p-Skewness Variance Skewness p-Skewness

Mod-ve: All 10 Periods of Part

Contest-Lottery 41.02 −0.204 0.092 29.89 −0.675 0.000
Lottery-Contest 36.51 −0.517 0.000 40.47 0.010 0.933

All 38.71 −0.349 0.000 35.48 −0.298 0.001

Mod-ve: Last Five Periods of Part

Contest-Lottery 39.48 −0.351 0.041 29.77 −0.772 0.000
Lottery-Contest 37.37 −0.431 0.013 39.31 −0.179 0.287

All 38.42 −0.392 0.002 34.56 −0.439 0.000

Mod-ve: Period 15 versus Period 16

Contest-Lottery 36.69 −0.208 0.544 33.73 −0.882 0.019
Lottery-Contest 33.48 −0.920 0.015 46.34 −0.134 0.695

All 35.35 −0.543 0.042 39.67 −0.394 0.132

Notes: p-Skewness reports the p-value of a test for deviations from normality based on skewness (i.e.
testing for deviation from zero skewness). For the lottery-contest order, subjects do not receive any
feedback on the choices of other participants until after they have made their stopping decision for period
16.
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D.2 Additional Figures
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(a) Contest-Lottery Task Order
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(b) Lottery-Contest Task Order

Figure D.1: Subject-Level Averages across Contest and Lottery Tasks: Percentage of Times
with Stopped Time > 0 in the Last 5 Matches
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(b) Lottery-Contest Task Order

Figure D.2: Subject-Level Averages across Contest and Lottery Tasks: Stopped Time in the
Last 5 Matches
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(b) Lottery-Contest Task Order

Figure D.3: Subject-Level Averages across Contest and Lottery Tasks: Stopped Value in the
Last 5 Matches
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Figure D.4: Behaviour across Periods by Task Order: Stopped Time
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Figure D.5: Behaviour across Periods by Task Order: Stopped Value
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Figure D.6: Proportion of Periods Subject Gambled (Stopped Value > 0) during the Last Five
Periods.
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Figure D.7: Proportion of Periods Subject Gambled and Stopped using the Button Interface
during the Last Five Periods.
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Figure D.8: Proportion of Periods Subject Gambled and Stopped using Threshold Interface
during the Last Five Periods.
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Figure D.9: Proportion of Periods Subject Gambled and went Bankrupt during the Last Five
Periods.
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Figure D.10: Stopped Value Distribution in the Mod-ve Treatment
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