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Abstract: The potential impacts of Sea Level Rise (SLR) due to climate 
change have been widely studied in the literature. However, the 
uncertainty and robustness of these estimates has seldom been 
explored. Here we assess the model input uncertainty regarding the 
wide effects of SLR on marine navigation from a global economic 
perspective. We systematically assess the robustness of Computable 
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General Equilibrium (CGE) estimates to model’s inputs uncertainty. 
Monte Carlo (MC) and Gaussian Quadrature (GQ) methods are used for 
conducting a Systematic Sensitivity Analysis (SSA). This design allows 
to both explore the sensitivity of the CGE model and to compare the MC 
and GQ methods. Results show that, regardless whether triangular or 
piecewise linear Probability distributions are used, the welfare losses are 
higher in the MC SSA than in the original deterministic simulation. This 
indicates that the CGE economic literature has potentially 
underestimated the total economic effects of SLR, thus stressing the 
necessity of SSA when simulating the general equilibrium effects of 
SLR. The uncertainty decomposition shows that land losses have a 
smaller effect compared to capital and seaport productivity losses. 
Capital losses seem to affect the developed regions GDP more than the 
productivity losses do. Moreover, we show the uncertainty 
decomposition of the MC results and discuss the convergence of the MC 
results for a decomposed version of the CGE model. This paper aims to 
provide standardised guidelines for stochastic simulation in the context 
of CGE modelling that could be useful for researchers in similar settings. 
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1 Introduction

Sea-level rise (SLR) is one of the most studied impacts of climate change within the environmental
economics literature. Researchers have used, among other methods, Computable General Equilibrium
(CGE) models to assess the wider economic implications of SLR for a number of different climate
change scenarios [Bosello et al. (2012a), Bosello et al. (2012b), Bosello et al. (2007), Darwin and Tol
(2001), Deke et al. (2001)]. An extension to the aforementioned models includes the assessment of
the broader economic impacts of SLR-induced coastal land and capital losses and their effect on sea
transportation networks [Chatzivasileiadis et al. (2016)].

Climate change-induced transportation disruptions, through productivity losses in sea transport,
can have a substantial effect on the global economy. Productivity losses affect the transportation costs
which in turn may increase the market prices of transport-intensive products. Based on the IPCC
RCP8.5 scenario, Chatzivasileiadis et al. (2016) show that climate change-induced transportation
disruptions including coastal land and capital losses, could causes global welfare losses of circa USD
61 billion in 2050.

Most of the preceding studies have used CGE models to look at the economic implications of SLR
using input data from a variety of sources to estimate the exogenous shock to the economy caused by
SLR. Land loss is the most used link between SLR and changes in economic activity. In models such
as the Dynamic Interactive Vulnerability Assessment (DIVA) model [Hinkel (2005), Hinkel et al.
(2013), Hinkel et al. (2014), Vafeidis et al. (2008)], land loss is estimated as a function of SLR. Based
on the IPCC RCP8.5 scenario, the expected mean SLR in cm by the year 2100 is 74 cm with a range
of [52 , 98] relative to the mean over 1986-2005 (IPCC, 2013). This range of almost half a meter
reflects the level of uncertainty regarding the estimates of SLR. Consequently, land loss estimates
and economic assessments connected to those SLR values will suffer from a much higher level of
uncertainty that gets compounded in the different modelling stages.

A well-documented approach to address input uncertainty within a CGE model consists in per-
forming a Systematic Sensitivity Analysis (SSA). In order to perform a SSA we make a set of explicit
assumptions on the probability distribution of the exogenous inputs for which uncertainty is high
[Arndt (1996), Arndt and Pearson (1996), DeVuyst and Preckel (1997), Horridge et al. (2011)]. The
end goal of this process is to estimate the statistical moments of the model outputs that are driven by
the underlying uncertainties of the exogenous model inputs, such as stochastic shocks or parameters
[Villoria and Preckel (2017)].

This paper is the first to address the model input uncertainty regarding the wide effects of SLR
on marine navigation from a global economic perspective. The analysis is based on a model that
assesses the macroeconomic implications, both direct and indirect (general equilibrium), of climate
change induced transportation disruptions by taking into account the direct loss of land and capi-
tal [Chatzivasileiadis et al. (2016)]. Our goal is to systematically assess the robustness of the CGE
model results under the existing uncertainty of the model’s inputs by means of a Monte Carlo (MC)
and a Gaussian Quadrature (GQ) SSA design. We look at the differences in results produced by dis-
tinct choices of probabilistic distributions for the MC analysis and we also include an uncertainty
decomposition of the results.

Section 2 reviews the literature on CGE assessments of the SLR wide economic impacts, and the
different methods of SSA applied within CGE context. Section 3 discusses the methods and data we
used for our assessment. Section 4 presents the results of the SSA and Section 5 concludes.

2 Literature review

2.1 Loss of productive resources

The literature simulating the effects of SLR on the economy using a GCE model is rather limited.
Starting from Darwin and Tol (2001), SLR is linked to the economy-wide effects through a decrease
in the endowment of land and capital in the economy. Based on the FUND model the authors es-
timate the exogenous shocks for land and capital based on the Global Vulnerability Assessment by
Hoozemans et al. (1993) and other sources. The authors conclude that the uncertainty surrounding
land and capital endowments threatened by sea level rise is substantial. Bosello et al. (2007) estimate
the costs of 0.25 meters of global SLR based on a CGE model where SLR is also modelled as a
reduction of the endowment land available. Their data sources are the same as in Darwin and Tol
(2001) but the analysis is based on the GTAP model. Similarly, Bosello et al. (2012a) based on input
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data from the DIVA model estimate the wide-economic effects of SLR focusing on land losses for
Europe only using the same link between SLR and economy-wide effects as all the articles above.
The aforementioned literature has focused on the full economic effects of SLR through land loss and
coastal protection, ignoring changes to the transportation sector.

Chatzivasileiadis et al. (2016) look at the impact of SLR on transport infrastructure based on the
GTAP model using the DIVA output as input. SLR is linked to economy-wide effects as a reduction
of the available regional endowments of land and capital. SLR is then linked to regional productivity
changes in the water transport sector based on the amount of land lost and on the flood costs each
region will face in 2050.

To our knowledge, none of the existing papers has extended the analysis of the full economic
effects of SLR to reflect the combined effects of input uncertainty in a systematic way. The novelty of
this paper is that it addresses the model input uncertainty through a systematic sensitivity analysis in
the link between SLR and economy wide effects by extending the analysis of Chatzivasileiadis et al.
(2016).

2.2 Applications of SSA in the CGE literature

The results of CGE models depend heavily on the calibration of the model and the exogenous shocks
applied to the system. Harrison and nod (1992) stress the need for SSA that can capture, to some
extent, the uncertainties surrounding CGE models. Different methods of stochastic modelling have
been explored to address the underlining uncertainties of CGE models, namely the GQ approach
and MC methods. Both methodologies have addressed the sensitivity of CGE models with respect to
parameters (endogenous variables) and model inputs (exogenous shocks).

Stochastic modelling is computationally intensive, thus the literature has focused mostly on the
GQ approach for SSA which requires only a few data points to approximate the central moments
of stochastic variables. Practical examples of this method can be found in Arndt (1996), Arndt and
Pearson (1996), Preckel et al. (2011), Artavia et al. (2015).

In general, the literature has mostly avoided the use of MC methods for sensitivity analysis in
CGE models. Looking back, we can find Harrison and nod (1992) that focus on two elasticities for
15,000 separate solutions to derive the central moments of the results. The same methodology was
applied by Harrison et al. (1997) based on 1,000 realisations of the model elasticities in order to obtain
the central moments of the outputs. Much later, Villoria and Preckel (2017) directly compare the GQ
approach to MC for systematic sensitivity analysis within a CGE model. The authors conclude that
the use of MC methods for implementing stochastic simulations has some advantages over GQ due
to the advances in software and hardware available and the flexibility of the MC methods.

We contribute to the existing literature by applying a Monet Carlo SSA on a pre-existing static
CGE model [Chatzivasileiadis et al. (2016)], where the input uncertainty regarding the SLR, as de-
rived from the DIVA model, is substantial. Our purpose is threefold: to explore the sensitivity of the
CGE model; to compare the MC and the GQ SSA methods; and more importantly, to set foundations
for more standardised analysis for the future research by discussing the appropriate distributions that
could be used in similar settings. We additionally discuss, for the first time, the uncertainty decompo-
sition of the MC results and discuss the effects of decomposing the MC analysis into parts based on
the shocks used in the CGE model. Last but not least, we developed a Stata program code that can be
used to conduct the analysis discussed below using the DIVA dataset as input.

3 Methods and data

3.1 The base CGE model

Following Chatzivasileiadis et al. (2016), we explore the input sensitivity of the latest version of
the GTAP multi-sector / multi-country model that assesses the impact of sea level rise on transport
infrastructure. The authors link SLR to economy-wide effects through a reduction of the available land
and capital endowments, using the benchmark equilibrium dataset of GTAP 8. The effect of SLR on
water transportation infrastructure is modelled as a reduction of the sea-port productivity relative to
land and capital loss in two separate scenarios named DIVA_L and DIVA_C. Both scenarios include
a combination of the same exogenous shocks for land and capital losses and their differentiation is in
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the source of the productivity shocks. In DIVA_L productivity reduction is dependent on land losses
and in DIVA_C on sea-flood damage costs.

Data on the input variables described above are derived from the Dynamic Interactive Vulnerabil-
ity Assessment model (DIVA). The DIVA model is an integrated impact-adaptation model of coastal
systems that analyses the biophysical and socio-economic effects of SLR and socio-economic devel-
opment on a regional and global scale. The DIVA model incorporates coastal erosion, coastal flood-
ing, wetland changes and salinity intrusion. Additionally, adaptation to SLR is taken into account in
terms of raising dikes and nourishing shores and beaches [Hinkel (2005), Hinkel et al. (2013), Hinkel
et al. (2014), Vafeidis et al. (2008)].

The outputs of DIVA for the year 2050 used in this study were constructed using the RCP 8.5
(J14) radiative forcing and the SSP2 socio-economic scenarios. For the analyses below , we use
the two outputs of the DIVA model described above: land losses due to submergence and, expected
sea-flood damage costs due to SLR. The projected global mean SLR for 2050 and the uncertainty
distribution (5th, 17th, 50th, 83rd, 95th and 99th percentiles) are derived from Jevrejeva et al. (2014).
Those values are then used in the DIVA model to estimate the land losses due to submergence and
expected sea-flood damage costs due to SLR for each percentile separately (e.g Spencer et al. (2016)).

3.2 Systematic Sensitivity analysis design

Similar to Arndt (1996), we define the general form of a computable general equilibrium model as:

G(x,β ) = 0 (1)

where x represents a vector of results or endogenous variables (such as prices, welfare etc.) and β

a vector of exogenous variables. The solutions of the system of Equation 1 can be defined as x?(β ).
Then, given the non-zero probability density function (pdf) p over a multiple dimension domain Ω

for the exogenous random variables part of β we can define x?(β ) ≡ K(β ) as a vector of results for
each given parameter β . The calculation of the mean in the univariate case takes the form of:

x̄ = E[K(β )] =
∫ b

a
K(β )p(β )dβ (2)

and the calculation of the variance can be done by:

Var(x) = E
[(

K(β )− x̄
)2]

=
∫ b

a

(
K(β )−E[K(β )]

)2

p(β )dβ (3)

In order to evaluate equations 2 and 3, two distinct approaches have been used, methods based on
quadrature formulas (i.e. GQ) and MC sampling. Each approach has its advantages and limitations1.
These methods are commonly used due to the difficulty or impossibility of analytically evaluating
equations 2 and 3.

Going back to equation 2, based on a Riemann sum we can approximate the integrand by:∫ b

a
K(β )p(β )dβ ≈

N

∑
n=1

wnK(βn) (4)

and in the multivariate version the central kth moment is approximated up to order d by:∫
Ω

[ J

∏
j=1

K(β j)
r j

]
p(β )dβ ≈

N

∑
n=1

wn

J

∏
j=1

K(β j)
r j (5)

where ∑
J
j=1 r j ≤ d and N is the number or realizations and wn is the weight associated with each

realization.
Up to this point both SSA methods (GQ and MC) follow the same methodology. The differenti-

ation comes in the number or realizations required and the way wn is defined. In the MC sampling
method, we generate N pseudo-random numbers based on the p(β ) distribution and evaluate equa-
tions (2) or (5), N times, where wn =

( 1
N

)
for each realization n. If N is sufficiently large then x̄ as

defined by equations 4 and 5 is an unbiased estimator of K(β ).

1 For more information see Fishman (2013)
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The idea behind the GQ is to keep the number of the integrand evaluations N small by choosing
the most appropriate points within the interval [a,b] and associated weights wn (see equation (5)). The
choice of points and probabilities is done in such a way that the crude moments of the approximating
distribution equal the moments of the true distribution from zero to some specified order [Villoria
and Preckel (2017)]. Once points and probabilities have been chosen, the moments can be calculated
through equations (4) and( 5) as above.

The GEMPACK software [Harrison et al. (2014)] provides an easy implementation of SSA based
on GQ. The SSA is constrained for up to degree 3 quadratures for symmetric distributions. The equally
weighted points estimated by the GEMPACK software are between 2S and 4S2, based on the Struod
and Liu quadrature respectively [Stroud (1960), Liu (1997)]. The build-in version of the SSA in the
GEMPACK allows for use of the Uniform and Triangular distribution.

As mentioned in Section 2.2, the CGE literature has focused mostly on the GQ approach for SSA.
An important issue with the GQ proposed by Struod and Liu is that they restrict the variation around
the mean of each random variable to no more than

√
2σ in Struod quadrature and σ in Liu quadrature.

Villoria and Preckel (2017) mention on the matter that:

[...] by taking the GQ approach, considerable information has been lost regarding the shape
of the distribution, its higher order moments, and its range. This may be especially important
in instances where the shocks can be expected to have asymmetric impacts. These applications
likely include productivity shocks associated with climate change[...]

Preckel et al. (2011) attempt to solve this issue by proposing a change in the sampling method
of Struod and Liu by implementing a broader sample technique. Similarly, Artavia et al. (2015),
propose the use of MC methods to tackle this problem of low accuracy where the shocks’ distribution
is constrained by the Struod and Liu requirements.

Given the aforementioned information, the advantages of the MC method for SSA for the model
developed by Chatzivasileiadis et al. (2016) becomes clear. On the one hand, the biggest advantage
of GQ which is its ability to economise the SSA to only a few model runs does not necessarily hold
in practice. In our case, the required number of simulations is 4096, based on the parameters used in
the SSA within the GEMPACK software. On the other hand, the analysis of Chatzivasileiadis et al.
(2016) is based on sea-port productivity shocks associated with climate change and thus the prob-
lem of asymmetric impacts within the GQ method, as described above, becomes prominent. Another
advantage of the MC method lies on the estimation of the error. In the MC method, the error is es-
timated from the generated data, whereas in the QG more global measures of error estimation are
required such as the Chebyshev’s inequality for the confidence bounds. The Chebyshev’s inequality,
will produce confidence bounds that are extremely conservative compared to the Central Limit Theo-
rem which provides narrower confidence intervals if the available number of data points is sufficiently
large [Fishman (2013)].

3.3 Monte Carlo sampling method

Before performing SSA with the MC method, we need to select the input variables of interest and
make assumptions about the distributions they follow.

In the original model of Chatzivasileiadis et al. (2016), the exogenous parameters that are shocked
to simulate the impacts caused by SLR to the global economy and in particular to the water-transportation
sector (see Sec. 3), are: 1. Land loss due to submergence, 2. Sea-flood damage costs and 3. Sea-port
productivity losses. It is important to note that if data for a goodness of fit test is not available, the
selection of a probability distribution is rather subjective and arbitrary. However, the selection ideally
has to reflect our perception regarding the characteristics of the process we are trying to represent
(and its uncertainty). One important point to take into account can be how fast the tail of the dis-
tribution that is proposed decreases (e.g., a uniform distribution may considerably overestimate the
probability of very large land losses; a triangular distribution may still be over estimating the proba-
bility of large losses but less than the uniform; a normal distribution has faster decaying tails, but it
would be inadequate because it is symmetric and it supports the interval (−∞,∞)). The selection of
the distribution should also reflect that the values the process can take may be limited by some phys-
ical constraints. For example, a probability distribution for land loss may be limited beyond a certain
value from which it is impossible to have larger losses (right tail truncation). For sea-flood damage

2 Where S is the number of individual shocks included in the simulation
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costs, apart from the problem of how fast the tails should decrease, the selected distribution should
reflect that this variable cannot take negative values (left tail truncation). In this case, the exponential
or the Gamma distribution could be appropriate. For sea-port productivity losses a triangular distri-
bution could be used, although a distribution with faster decaying tails could be more desirable, such
as the Beta distribution.

Figure 1 presents for MC and GQ percentiles and maximum values of percentage changes in sea
port productivity for the DIVA_C and DIVA_L scenarios. As indicated in Section 3, only the 5th,
17th, 50th, 83rd, 95th and 99th percentiles of the DIVA data are available. Given the limited infor-
mation about the DIVA data distribution, a triangular distribution (td) was chosen to represent all
parameters. This is a common choice to represent parameters and variables when little information
about their distribution is available 3. Above that, this selection was made to preserve comparability
with the GQ method, as implemented in the GEMPACK software. Otherwise, the parameters used
in the two methods would probably not have similar mean and variance. This is due to the fact that
the Struod and Liu quadrature was developed for symmetric distributions, whereas asymmetries are
present in our data (see Figure 1). An additional set of analyses is conducted using the piecewise
linear probability distribution (lpd) [Kaczynski et al. (2012)]. The lpd is a non-parametric probability
distribution created using a piecewise linear representation of the cumulative distribution function4.
Based on the DIVA data we have six points of the cumulative density function (cdf), thus six different
slopes are used to generate the lpd data. This method does not impose a distribution shape as the td
does and follows the data more closely. An advantage of the lpd over the td is that it uses all available
information provided by the DIVA data and not just three points.

For the triangular distribution we assume that the 50th percentile for each region is the most
plausible value and we restrict the distribution to the interval [99th,5th]. This ensures the values for
capital to be positive. We then generate 10,000 realizations for each of the three variables of interest,
for every region in the model. This process was repeated twice once for the DIVA_C and once for
the DIVA_L scenario. For the pld, we generate 15,000 realizations for each of the three shocks of
interest, for every region in the model as above. A higher number of realizations is used in the lpd
to avoid convergence problems that could be created by this sampling method. Table 1 shows the
first two moments of the 10,000 td and 15,000 lpd realizations for each of the three variables for
every region in combination with Figure 1, 2 that shows the productivity shock distributions for every
region\scenario.

Additional attention is required in the estimation of the sea-port productivity shocks for the min-
imum and the maximum of the triangular distribution. Following Chatzivasileiadis et al. (2016), we
get the land and capital shocks separately from the data for the 5th and the 99th percentile from the
DIVA model. Then we estimate the ratio between each limit5 and the 50th percentile. So, we generate
the the minimum and the maximum for the sea-port productivity shocks by multiplying each ratio to
the Chatzivasileiadis et al. (2016) sea-port productivity shocks6. In cases where the new productivity
shocks for the 99th percentile are higher than 50% we cut the value to 50%7.

In the generation process of the pseudo-random realizations for both MC SSA we made a set
of additional assumptions regarding the distribution of the input parameters. Taking a closer look at
Figure 1, we see that there are differences between the GQ and the MC maximum values. For the
DIVA_C the difference is only in North East Europe, whereas in the DIVA_L the differences are
apparent in all regions. Africa is a special case in the DIVA_L scenario, for the upper limit used in
the GQ, where the upper limit is negative. The assumption of Chatzivasileiadis et al. (2016) is that
the productivity changes due to SLR are proportional to the land loss or the sea-flood costs each re-
gion faces by 2050. Based on the DIVA model, and considering the left tail of the distribution (5th

percentile), North East Europe sees gains in land due to negative SLR. That would mean, according
to Chatzivasileiadis et al. (2016), that the sea-port productivity would increase due to the lower water
levels. Jonkeren et al. (2007) show that, for inland water transport, lower water levels increase the
freight prices as a result of lower productivity. Moreover, looking at the GQ upper limit in Figure 1,
for the DIVA_L model, we see that due to the fact that the Struod and Liu quadratures where de-
veloped for symmetrical distributions, given the distance between the 50th and the 99th percentile the
maximum is consistently positive, thus assuming productivity gains from sea level changes. For those

3 Other examples in the literature indicating that the triangular distribution is appropriate in similar cases are: Hoffman and Hammonds (1994), Johnson (1997), Korteling et al. (2013), Caralis et al.
(2014)

4 Based on the MathWorks Matlab 2016b
5 The 5th and the 99th percentiles.
6 The Chatzivasileiadis et al. (2016) sea-port productivity shocks where calculated using the 50th percentile form the same dataset.
7 We assume that 50% of sea-port productivity losses is the maximum level of extreme losses ports can endure before urgent protection measures, in all regions, take place.
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reasons, we have decided to restrict the distribution in the MC SSA to zero on the one side. This way,
we can include cases where no changes to sea-port productivity have occurred even though there are
land and capital losses.

3.4 Supplementary code

This paper is coupled with a code for Stata that, based on the DIVA data for our 13 regions, recreates
the analysis discussed above. Starting from the initial dataset (downloaded through the code auto-
matically), the user can choose the type of SSA to be conducted. The idea is based on the fact that
the GEMPACK software, usually used for simulations based on the GTAP model, does not have a
built-in function for conducting MC SSA yet. Due to the nature of the data, to this point, the code
allows for sampling based on the td and the pld. When the number of simulations (chosen by the user)
is completed, the program collects the data (inputs and outputs) into a csv file that is then fed to Stata
for further analysis. A first version of the code can be found on GitHub8.

4 Results

For simplicity, we focus on just two results of the CGE model, namely the Hicksian Equivalent
Variation (HEV) and the percentage change of regional GDP (qGDP, see appendix A.1). The HEV
can be thought of as the dollar amount that the consumer would be indifferent about accepting in lieu
of the shock caused by, in our case SLR; it is negative if the consumer would be worse off after the
shock due to SLR [Mas-Colell et al. (1995)]. The other variable discussed, qGDP is the percentage
change of regional GDP between the two equilibria i.e pre and post SLR. Tables 2, 3 and 4, show
the results for both the DIVA_C and DIVA_L scenarios using both MC and GQ SSA, respectively.
The tables also include the first two central moments for HEV and qGDP. Additionally, the upper and
lower 95% confidence interval for each region have been included9. In order to make the comparison
easier we have calculated the ratio of the MC means to the GQ means for each region (Table 5). To
better explain the differences between DIVA_C and DIVA_L produced by the MC and QG method
we also present the histograms of productivity shocks by region in Figures 2 and 3.

We start the analysis of the results from the DIVA_C scenario where the inputs for all three
SSA methods are the same (see Figure 1) with the exception for North-East Europe. Even though
the three points of the cdf used in the sampling process of the shocks are the same for each region
the distribution of shocks used by the MC-td and the QG SSA methods seem to be different (see
Figure 3). As indicated by Villoria and Preckel (2017), a significant amount of information is ignored
by the GQ method regarding the shape of the distribution, its higher order moments, and its range.
This information is very important in our case given that we are interested in productivity shocks
associated with SLR, which potentially can have asymmetric impacts. The ratio of the two means
presented in Table 5 shows that the two methods produce different results for all regions, even though
they have similar input. The ratio of the mean is higher than 1.010 indicating that the MC-td gives
consistently higher estimates for both HEV and qGDP. China is the exception, where HEV results
are identical. This underestimation of the QG could be due to poorly chosen discrete shock values
produced by Liu Quadrature for variables that the model results are sensitive to. In North-East Europe
with just a slight difference in the upper bound of the input distribution (0% productivity reduction
in MC compared to 2.49% increase in GQ), we see that the HEV and qGDP results of the MC-td
method is 2.4 and 2.7 times higher respectively (in absolute terms) compared to the GQ estimates.

Tables 2, 3 and 4 show that the results of the MC-lpd are similar to the ones produced by the
GQ method with the exception of the three European regions where the MC-lpd results are higher.
Additionally, there seems to be a significant difference between the two MC methods. This result is
not surprising since the distribution chosen in the sampling process affects the final results signifi-
cantly as discussed above (see 3.3§2). The Box-Plot in Figure 4 can give a clearer representation of
the output distributions for each region under both MC methods11.

The SSA methods show that the DIVA_C results produced by Chatzivasileiadis et al. (2016) are
robust to the variations of SLR. The SSA mean results are similar to the ones reported by Villoria and

8 https://github.com/eco056/SLR-DIVA_MC/archive/master.zip
9 In the GQ method the 95% Chebyshev’s bound has been calculated based on:

(
mean−

√
20 ·SD,mean+

√
20 ·SD

)
.

10 Ratios are rounded at one decimal point.
11 The Box-Plot for for GQ was not produced since the method generates approximations of the mean and standard deviation from numerical integration, but not distributions.
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Preckel (2017), but not identical (see columns SIM and Mean in Tables 2, 3 and 4), except North-East
Europe. It seems that the asymmetric td used in MC method for North-East Europe generates signifi-
cantly larger means for HEV and qGDP (in absolute terms) compared to the GQ method. The sign and
magnitude of the effects are robust to the variations of SLR based on the 95% confidence intervals12,
indicating that there is no evidence of input sensitivity present. Taking a closer look at Tables 2 and 3,
we see that the global HEV losses are consistently higher in all SSA methods indicating possibly that
the existent SLR CGE literature has underestimated the effects SLR on the global economy.

4.1 Convergence speed and decomposition

Figures 5 and 6 show the convergence speed of the mean and confidence intervals as the number
of simulations increases in the MC-td SSA for HEV and qGDP respectively. These plots illustrate
the sample size required by the MC process based on the speed of convergence of the results. Even
though there are regional differences, it seems that 4,000 simulations are sufficient for the mean and
confidence intervals (CI) to settle down. The theoretical point of convergence as shown on the graphs
as reference lines is based on the Raftery and Lewis’ diagnostic13 for Markov Chain MC [Raftery and
Lewis (1992)].

Knowing the point of convergence for each output we expand our analysis by decomposing the
CGE simulation to its components i.e.; 1. Land loss due to submergence, 2. Sea-flood damage costs
and 3. Sea-port productivity losses. This is possible because CGEs are locally linear, i.e., the effect
of a joint shock is the sum of the effects of the single shocks. This implies that we can run three
MCs, one foe each exogenous variable, with K runs rather than one MC with 10,000 runs. We have
used K = 4000 based on the Raftery and Lewis’ diagnostic. The purpose of this experiment is to
identify potential differences between the total and the decomposed CGEs results within the MC SSA.
As above, we sample values for each region/exogenous variable based on the triangular distribution
using the same seed for each region in the sampling process as before. After all simulations for each
component are done, the separate HEVs and qGDPs are summed to produce the total effect of the
three exogenous variables. Since the GTAP model is not linear this type of decomposition possibly
creates an error as illustrated by the difference between the total and the decomposed CGE results.
In the MC analysis though, this error is expected to be averaged out as the number of simulation
increases.

Looking at figures 5 and 6 the results of the total and decomposed CGEs for the MC-td of
the DIVA_C scenario are identical. Exception is JaKoSing14 where the decomposed CGE produces
slightly higher results. Interestingly, the upper and lower bound in North West and South Europe for
qGDP, only, seem to be wider in the decomposed CGEs. This shows that the interaction component
of the CGE model actually has an effect. Additionally the lower bound of the Raftery and Lewis’s di-
agnostic is slightly lower in decomposed CGE experiment. This difference though is not large enough
to indicate that the decomposed MCs require a smaller number of runs in total (here 3 ∗K) than the
initial MC.

4.2 Uncertainty decomposition

The limited up-to-date literature on MC SSA of CGE models does not pay attention to assessing
the impact of parameter uncertainty on the uncertainty surrounding the MC CGE results. Following
Anthoff and Tol (2013), we run a regression of the MC inputs on the CGE outputs and compute
the standardized regression coefficients. The standardized regression coefficient shows how many
standard deviations the dependent variable will change for a one standard deviation change of a given
independent variable, cetteis paribus [Landis (2014)]. Essentially, the regression will indicate the
impact of a model parameter on the results after removing the impact of all other parameters. We use
this method to identify the relative importance of each exogenous variable by linearising the model in
the regression and thus capturing local sensitivities only. For simplicity we present the results of the
uncertainty decomposition for the DIVA_C MC-lpd HEV and qGDP results only.

Figure 7 shows the four regional parameters that have the largest effect (in absolute terms) on
HEV and qGDP by region. Tables A.2 and A.3 in the appendix include all 39 coefficients of the

12 or the Lower and Upper Chebyshev’s bound for 2 SDs.
13 Based on the runmlwin and MLwiN programs for Stata [Leckie and Charlton, Rasbash et al. (2009)]
14 See regional aggregation in appendix Table A.1.
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standardized regression for each region\parameter. As expected in most regions the regional produc-
tivity losses has the highest effect on HEV and qGDP. Additionally land seems to have little to no
effect on the final results since the coefficients are not significant for most regions. Interestingly, the
developed regions’ qGDP is affected more by the capital changes rather than the productivity losses
in comparison to HEV. Figure 7 also shows the way regions are connected. For example the HEV
and qGDP in Africa are not only affected by capital and productivity losses in Africa, but also by
changes in Central Asia and North West Europe. In order to understand these connections better we
show the two heat-map tables15 (6 and 7). It is clear that the HEV is generally more affected by the
productivity changes rather than the capital changes. JaKoSing and the three European regions, seem
to have a negative response (on both HEV and qGDP) to seaport productivity changes from almost
all other regions.

5 Discussion and Conclusion

We estimate the input sensitivity in the simulation of the economy wide effects of productivity losses
in the marine transportation sector due to sea level rise using the GTAP CGE model with 13 regions.
Based on Chatzivasileiadis et al. (2016), we analyse two different scenarios for productivity changes.
By comparing the MC SSA with the Liu GQ it becomes clear that small differences in the parameters
of even the same distribution (here td) can cause significant changes in the outputs of the SSA. We
show that in the case of productivity changes due to SLR -where shocks have asymmetric impacts-
the MC method is the best choice for conducting SSA due to the potential information loss in the
shocks generated by the GQ method. Based on the results of this paper, there is no evidence of in-
put sensitivity in the DIVA_C scenario. Comparing the welfare losses of the two scenarios between
Chatzivasileiadis et al. (2016) and the SSA methods for the year 2050, we see that in the DIVA_C
scenario the welfare losses are higher in both MC SSA’s based on the triangular and piecewise linear
probability distributions. This indicates that the CGE economic literature has potentially underesti-
mated the total economic effects of SLR, thus stressing the necessity of SSA when simulating the
general equilibrium effects of SLR.

We show that since CGEs are locally linear, a decomposition of the MC is possible based on
the CGE parameters. Our results indicate that the decomposed MC converges approximately at the
same speed as the total MC and the two methods produce identical results with the exception of the
confidence bounds for qGDP in Europe. An important addition to the MC SSA of CGE literature
is the uncertainty decomposition analysis. We show that land losses have a smaller effect compared
to capital and seaport productivity losses. Additionally, capital losses seem to affect the developed
regions GDP more than the seaport productivity losses.

There are issues that call for further research. First and foremost, both SSA methods the we
applied assume that the shocks vary independently across regions and sectors. Based on the DIVA
model, land loss due to submergence and sea-flood damage costs are a function of the level of SLR
each region faces which indicates a certain level of correlation between them. Although, the assump-
tion of independence can be sensible due to the fact that land loss due to submergence and sea-flood
damage costs are also dependent on the level of protection to SLR each region has which we assumed
to be uncorrelated among regions. Furthermore, we compare the MC SSA method with the relatively
restrictive Liu QG of the GEMPACK software. Future analysis is needed on the use of broader sam-
pling methods in the GQ as in Preckel et al. (2011) and the use of the MC filtering approach as in
Mary et al. (2013).

6 Tables

7 Figures

15 See appendix Tables A.2 and A.3 for the significance levels.



10 T. Chatzivasileiadis et al.

Table 1 Descriptive statistics of input variables based on the triangular and piecewise linear probability distributions

DIVA_C

td lpd

Land Capital Productivity Land Capital Productivity
Region Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Africa -0.002 0.001 -0.061 0.011 -12.019 2.280 -0.001 0.001 -0.055 0.013 -10.877 2.487
CAsia -0.006 0.003 -0.072 0.017 -14.539 3.401 -0.004 0.003 -0.061 0.017 -12.412 3.514
China 0.000 0.000 -0.057 0.004 -11.161 0.771 0.000 0.000 -0.054 0.004 -10.648 0.744
EastAsia -0.011 0.006 -0.128 0.028 -23.608 5.000 -0.007 0.007 -0.113 0.029 -20.903 5.387
EEFSU -0.004 0.002 -0.036 0.010 -5.534 1.528 -0.003 0.001 -0.030 0.010 -4.629 1.581
JaKoSing -0.018 0.012 -0.011 0.003 -2.027 0.476 -0.005 0.010 -0.009 0.003 -1.719 0.478
LatinAmerica -0.001 0.001 -0.101 0.026 -21.091 5.578 -0.001 0.001 -0.085 0.027 -17.687 5.701
NAmerica -0.003 0.001 -0.047 0.011 -7.972 1.878 -0.002 0.001 -0.040 0.011 -6.848 1.928
NEEurope -0.002 0.001 -0.031 0.014 -4.843 2.248 -0.001 0.001 -0.018 0.012 -2.845 1.920
NWEurope -0.002 0.001 -0.058 0.012 -10.586 2.210 -0.002 0.001 -0.049 0.011 -9.082 2.117
Oceania -0.002 0.001 -0.097 0.022 -20.113 4.458 -0.001 0.001 -0.087 0.024 -17.971 4.956
SEurope -0.008 0.004 -0.028 0.007 -4.233 1.127 -0.005 0.004 -0.023 0.008 -3.510 1.141
WAsia 0.000 0.000 -0.107 0.024 -21.353 4.767 0.000 0.000 -0.097 0.027 -19.288 5.399

DIVA_L

td lpd

Land Capital Productivity Land Capital Productivity
Region Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Africa -0.002 0.001 -0.061 0.011 -24.873 9.392 -0.001 0.001 -0.055 0.013 -21.481 12.055
CAsia -0.006 0.003 -0.072 0.017 -23.513 9.779 -0.004 0.003 -0.061 0.017 -20.805 11.626
China 0.000 0.000 -0.057 0.004 -18.432 11.214 0.000 0.000 -0.054 0.004 -11.105 13.837
EastAsia -0.011 0.006 -0.128 0.028 -19.338 10.758 -0.007 0.007 -0.113 0.029 -13.144 12.376
EEFSU -0.004 0.002 -0.036 0.010 -18.845 6.612 -0.003 0.001 -0.030 0.010 -13.901 6.243
JaKoSing -0.018 0.012 -0.011 0.003 -17.965 11.304 -0.005 0.010 -0.009 0.003 -15.037 16.819
LatinAmerica -0.001 0.001 -0.101 0.026 -14.874 7.154 -0.001 0.001 -0.085 0.027 -9.234 6.625
NAmerica -0.003 0.001 -0.047 0.011 -14.571 5.479 -0.002 0.001 -0.040 0.011 -10.066 4.759
NEEurope -0.002 0.001 -0.031 0.014 -15.859 9.738 -0.001 0.001 -0.018 0.012 -6.932 8.016
NWEurope -0.002 0.001 -0.058 0.012 -9.908 3.757 -0.002 0.001 -0.049 0.011 -7.498 4.050
Oceania -0.002 0.001 -0.097 0.022 -25.968 8.580 -0.001 0.001 -0.087 0.024 -20.638 9.143
SEurope -0.008 0.004 -0.028 0.007 -26.213 8.744 -0.005 0.004 -0.023 0.008 -24.832 13.582
WAsia 0.000 0.000 -0.107 0.024 -8.291 4.124 0.000 0.000 -0.097 0.027 -5.459 4.041

SD is the Standard Deviation, td is triangular distribution and lpd is piecewise linear probability Distribution
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Fig. 1 Percentiles and MC\QG maximum in sea-port percentage productivity changes
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Table 2 MC-td results and first two moments

DIVA_C

HEV qGDP
Region SIM Mean SD LCI UCI SIM Mean SD LCI UCI

Africa -3270 -3647 785 -3662 -3631 -0.070 -0.078 0.016 -0.078 -0.078
CAsia -4107 -5065 1321 -5091 -5039 -0.094 -0.116 0.030 -0.117 -0.116
China -7157 -7527 771 -7542 -7512 -0.072 -0.076 0.008 -0.077 -0.076
EastAsia -4977 -6057 1617 -6089 -6025 -0.090 -0.110 0.026 -0.110 -0.109
EEFSU -1280 -1614 412 -1622 -1606 -0.031 -0.039 0.010 -0.039 -0.039
JaKoSing -565 -669 124 -672 -667 -0.005 -0.006 0.001 -0.006 -0.006
LatinAmerica -6948 -8883 2627 -8934 -8831 -0.083 -0.107 0.030 -0.107 -0.106
NAmerica -6924 -8444 2086 -8485 -8404 -0.015 -0.019 0.004 -0.019 -0.018
NEEurope -147 -356 203 -360 -352 -0.004 -0.011 0.007 -0.011 -0.011
NWEurope -1329 -2299 436 -2308 -2291 -0.010 -0.015 0.003 -0.015 -0.015
Oceania -1699 -1995 492 -2005 -1985 -0.060 -0.070 0.016 -0.071 -0.070
SEurope -416 -557 174 -561 -554 -0.003 -0.005 0.002 -0.005 -0.005
WAsia -8003 -9187 2445 -9235 -9139 -0.096 -0.110 0.027 -0.111 -0.110

DIVA_L

HEV qGDP
Region SIM Mean SD LCI UCI SIM Mean SD LCI UCI

Africa -5721 -8052 4030 -8131 -7973 -0.111 -0.148 0.067 -0.149 -0.147
CAsia -3691 -8569 4489 -8657 -8481 -0.086 -0.180 0.088 -0.181 -0.178
China -3800 -13711 9211 -13891 -13530 -0.049 -0.122 0.068 -0.123 -0.120
EastAsia -2453 -6596 4198 -6678 -6513 -0.066 -0.113 0.049 -0.114 -0.112
EEFSU -1892 -3871 1808 -3906 -3835 -0.044 -0.085 0.038 -0.086 -0.084
JaKoSing -1855 -8830 6957 -8966 -8694 -0.007 -0.019 0.013 -0.020 -0.019
LatinAmerica -4492 -9356 4931 -9452 -9259 -0.064 -0.111 0.049 -0.112 -0.110
NAmerica -7825 -14715 6389 -14840 -14590 -0.015 -0.023 0.007 -0.023 -0.023
NEEurope -363 -1342 958 -1361 -1323 -0.007 -0.022 0.014 -0.022 -0.022
NWEurope -797 500 1481 471 529 -0.009 -0.006 0.005 -0.006 -0.006
Oceania -1370 -3617 1974 -3655 -3578 -0.054 -0.106 0.049 -0.107 -0.105
SEurope -3960 -4977 2039 -5017 -4937 -0.012 -0.010 0.001 -0.010 -0.010
WAsia -3519 -6087 3045 -6147 -6028 -0.065 -0.084 0.026 -0.084 -0.083

SIM represents the result of the initial model run, qGDP is the percentage change of GDP post simulation, LCI and UCI are the Lower and Upper 95% confidence interval
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Table 3 MC-lpd results and first two moments

DIVA_C

HEV qGDP
Region SIM Mean SD LCI UCI SIM Mean SD LCI UCI

Africa -3270 -3231 587 -3240 -3221 -0.070 -0.070 0.011 -0.070 -0.069
CAsia -4107 -4272 1086 -4290 -4255 -0.094 -0.098 0.021 -0.099 -0.098
China -7157 -7026 467 -7033 -7018 -0.072 -0.071 0.004 -0.072 -0.071
EastAsia -4977 -5212 1398 -5235 -5190 -0.090 -0.096 0.019 -0.096 -0.095
EEFSU -1280 -1365 176 -1368 -1362 -0.031 -0.033 0.006 -0.033 -0.033
JaKoSing -565 -586 230 -590 -583 -0.005 -0.005 0.001 -0.005 -0.005
LatinAmerica -6948 -7326 2068 -7359 -7293 -0.083 -0.089 0.020 -0.089 -0.088
NAmerica -6924 -7182 1598 -7208 -7156 -0.015 -0.016 0.004 -0.016 -0.016
NEEurope -147 -166 166 -169 -163 -0.004 -0.005 0.006 -0.005 -0.004
NWEurope -1329 -1897 848 -1910 -1883 -0.010 -0.013 0.005 -0.013 -0.013
Oceania -1699 -1736 331 -1741 -1731 -0.060 -0.062 0.011 -0.062 -0.062
SEurope -416 -445 225 -449 -442 -0.003 -0.004 0.004 -0.004 -0.004
WAsia -8003 -8165 2181 -8200 -8131 -0.096 -0.099 0.022 -0.100 -0.099

DIVA_L

HEV qGDP
Region SIM Mean SD LCI UCI SIM Mean SD LCI UCI

Africa -5721 -6882 4143 -6948 -6816 -0.111 -0.129 0.069 -0.130 -0.128
CAsia -3691 -7398 4718 -7474 -7323 -0.086 -0.155 0.088 -0.156 -0.154
China -3800 -9205 11065 -9382 -9027 -0.049 -0.087 0.078 -0.089 -0.086
EastAsia -2453 -4890 3342 -4944 -4837 -0.066 -0.091 0.034 -0.092 -0.091
EEFSU -1892 -2997 948 -3012 -2982 -0.044 -0.067 0.020 -0.068 -0.067
JaKoSing -1855 -8280 11273 -8460 -8099 -0.007 -0.018 0.019 -0.018 -0.018
LatinAmerica -4492 -6412 2563 -6453 -6371 -0.064 -0.082 0.024 -0.082 -0.081
NAmerica -7825 -10058 4569 -10131 -9985 -0.015 -0.018 0.004 -0.018 -0.018
NEEurope -363 -447 942 -462 -432 -0.007 -0.007 0.014 -0.007 -0.006
NWEurope -797 434 2144 400 469 -0.009 -0.006 0.007 -0.006 -0.006
Oceania -1370 -2873 1215 -2892 -2853 -0.054 -0.087 0.028 -0.088 -0.087
SEurope -3960 -5166 4020 -5230 -5102 -0.012 -0.012 0.010 -0.012 -0.012
WAsia -3519 -4630 1491 -4653 -4606 -0.065 -0.071 0.018 -0.072 -0.071

SIM represents the result of the initial model run, qGDP is the percentage change of GDP post simulation, LCI and UCI are the Lower and Upper 95% confidence interval
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Table 4 GQ results and first two moments

DIVA_C

HEV qGDP
Region SIM Mean SD LCB UCB SIM Mean SD LCB UCB

Africa -3270 -3283 168 -4032 -2533 -0.070 -0.070 0.007 -0.102 -0.039
CAsia -4107 -4141 348 -5697 -2586 -0.094 -0.094 0.014 -0.156 -0.032
China -7157 -7183 486 -9356 -5010 -0.072 -0.072 0.005 -0.092 -0.052
EastAsia -4977 -5044 398 -6822 -3266 -0.090 -0.090 0.019 -0.176 -0.005
EEFSU -1280 -1283 146 -1937 -630 -0.031 -0.031 0.008 -0.065 0.003
JaKoSing -565 -569 435 -2513 1375 -0.005 -0.005 0.002 -0.013 0.003
LatinAmerica -6948 -7042 767 -10470 -3614 -0.083 -0.084 0.018 -0.164 -0.004
NAmerica -6924 -6951 719 -10166 -3737 -0.015 -0.015 0.005 -0.037 0.007
NEEurope -147 -149 113 -655 357 -0.004 -0.004 0.012 -0.056 0.047
NWEurope -1329 -1328 583 -3934 1279 -0.010 -0.010 0.007 -0.040 0.020
Oceania -1699 -1725 261 -2894 -556 -0.060 -0.061 0.012 -0.114 -0.007
SEurope -416 -413 193 -1278 452 -0.003 -0.003 0.005 -0.027 0.021
WAsia -8003 -8058 448 -10062 -6054 -0.096 -0.096 0.018 -0.177 -0.016

DIVA_L

HEV qGDP
Region SIM Mean SD LCB UCB SIM Mean SD LCB UCB

Africa -5721 -6057 840 -9812 -2302 -0.111 -0.118 0.020 -0.205 -0.030
CAsia -3691 -4322 1159 -9505 861 -0.086 -0.097 0.029 -0.225 0.031
China -3800 -5521 3569 -21482 10439 -0.049 -0.061 0.034 -0.216 0.093
EastAsia -2453 -3032 1267 -8699 2635 -0.066 -0.071 0.022 -0.168 0.027
EEFSU -1892 -2029 608 -4747 690 -0.044 -0.047 0.019 -0.130 0.036
JaKoSing -1855 -3060 2166 -12746 6626 -0.007 -0.009 0.005 -0.030 0.012
LatinAmerica -4492 -4725 1149 -9863 414 -0.064 -0.065 0.020 -0.154 0.023
NAmerica -7825 -8575 2859 -21359 4209 -0.015 -0.016 0.006 -0.041 0.009
NEEurope -363 -609 444 -2593 1376 -0.007 -0.009 0.013 -0.067 0.048
NWEurope -797 -851 1491 -7519 5817 -0.009 -0.008 0.007 -0.040 0.024
Oceania -1370 -1592 752 -4954 1770 -0.054 -0.058 0.020 -0.150 0.034
SEurope -3960 -4231 835 -7966 -495 -0.012 -0.012 0.006 -0.041 0.017
WAsia -3519 -3831 998 -8292 630 -0.065 -0.066 0.019 -0.153 0.021

SIM represents the result of the initial model run, qGDP is the percentage change of GDP post simulation, LBC and UBC are the Lower and Upper 95% Chebyshev’s bound based on:(
mean−

√
20 ·SD,mean+

√
20 ·SD

)

Table 5 Ratio between MC-td and the GQ central moments

DIVA_C DIVA_L

Mean SD Mean SD
Region HEV qGDP HEV qGDP HEV qGDP HEV qGDP

Africa 1.1 1.1 4.7 2.2 1.3 1.3 4.8 3.4
CAsia 1.2 1.2 3.8 2.2 2.0 1.9 3.9 3.1
China 1.0 1.1 1.6 1.7 2.5 2.0 2.6 2.0
EastAsia 1.2 1.2 4.1 1.4 2.2 1.6 3.3 2.2
EEFSU 1.3 1.3 2.8 1.3 1.9 1.8 3.0 2.1
JaKoSing 1.2 1.3 0.3 0.7 2.9 2.2 3.2 2.7
LatinAmerica 1.3 1.3 3.4 1.7 2.0 1.7 4.3 2.5
NAmerica 1.2 1.2 2.9 0.9 1.7 1.4 2.2 1.3
NEEurope 2.4 2.7 1.8 0.6 2.2 2.3 2.2 1.1
NWEurope 1.7 1.6 0.7 0.4 -0.6 0.7 1.0 0.7
Oceania 1.2 1.2 1.9 1.4 2.3 1.8 2.6 2.4
SEurope 1.3 1.6 0.9 0.3 1.2 0.9 2.4 0.1
WAsia 1.1 1.1 5.5 1.5 1.6 1.3 3.1 1.4
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Table 6 Uncertainty decomposition heat-map of HEV in MC-lpd for DIVA_C

Africa China WAsia CAsia EastAsia JaKoSing LatinAmer NAmerica NEEurope NWEurope SEurope Oceania EEFSU

AfricaC 0.080 0.001 0.001 0.001 0.000 0.007 0.000 0.001 0.001 0.002 0.006 0.001 -0.006
ChinaC 0.001 0.100 0.000 0.000 0.001 0.004 -0.001 0.001 0.000 0.001 0.000 0.001 0.001
WAsiaC -0.001 0.002 0.112 0.003 0.000 0.024 0.000 0.003 0.002 0.006 0.013 -0.001 -0.007
CAsiaC 0.001 0.001 0.002 0.094 0.002 0.002 0.000 0.001 0.000 0.002 0.001 0.001 0.002
EastAsiaC 0.000 0.008 0.000 0.001 0.089 0.020 0.000 0.003 0.001 0.003 0.004 0.001 -0.001
JaKoSingC 0.001 0.003 0.000 0.000 0.001 0.160 0.000 0.001 0.001 0.001 0.002 0.000 0.001
LatinAmerC 0.000 0.003 -0.001 0.001 -0.001 0.016 0.110 0.004 0.003 0.008 0.012 0.000 -0.002
NAmericaC 0.000 0.006 0.001 0.002 0.000 0.039 0.001 0.227 0.006 0.016 0.020 0.003 0.001
NEEuropeC 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.001 0.253 0.003 0.003 0.000 0.004
NWEuropeC 0.004 0.003 0.002 0.001 0.001 0.021 0.001 0.007 0.017 0.422 0.038 0.003 0.006
SEuropeC 0.001 0.001 0.000 0.000 -0.001 0.004 0.000 0.001 0.003 0.007 0.480 0.000 0.005
OceaniaC 0.000 0.002 0.000 0.001 0.001 0.010 0.000 0.001 0.001 0.002 0.002 0.168 -0.001
EEFSUC 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.002 0.001 0.002 0.000 0.397
AfricaW 0.985 0.003 0.010 0.010 0.002 -0.114 0.004 -0.001 -0.011 -0.028 0.052 -0.001 0.021
ChinaW 0.020 0.899 0.008 0.009 0.008 0.044 0.021 0.018 -0.017 -0.033 -0.040 0.042 0.054
WAsiaW 0.045 0.044 0.987 0.047 0.010 -0.080 0.011 -0.017 -0.027 -0.144 0.077 -0.019 0.220
CAsiaW 0.048 0.006 0.028 0.991 0.032 -0.192 0.028 0.006 -0.034 -0.100 -0.065 0.182 0.108
EastAsiaW 0.016 0.024 0.012 0.073 0.990 0.231 -0.002 -0.010 -0.059 -0.148 -0.159 0.083 0.027
JaKoSingW 0.001 0.000 0.003 0.000 0.009 0.857 0.012 0.002 -0.008 -0.023 -0.027 0.047 0.014
LatinAmerW 0.038 -0.001 0.003 -0.009 0.002 -0.291 0.986 0.143 -0.064 -0.184 -0.138 0.010 0.079
NAmericaW 0.065 0.423 0.021 0.003 0.022 -0.111 0.048 0.959 -0.013 -0.132 -0.092 0.034 0.195
NEEuropeW 0.003 0.010 0.002 0.001 0.002 -0.012 0.007 -0.003 0.961 -0.015 -0.012 0.010 -0.002
NWEuropeW 0.097 0.089 0.032 0.008 0.013 -0.125 0.032 -0.018 0.013 0.835 -0.184 0.054 0.392
SEuropeW 0.016 0.003 0.007 -0.001 0.004 -0.052 0.007 0.001 -0.014 -0.042 0.808 0.007 0.128
OceaniaW 0.001 0.010 0.002 0.004 0.011 0.077 -0.001 0.002 -0.010 -0.030 -0.025 0.956 -0.005
EEFSUW 0.000 -0.007 0.000 0.000 -0.001 0.001 0.001 0.001 0.000 0.001 0.016 -0.001 0.749

Standardized regression coefficients by region. C is the regional variable for Capital and W is the regional variable for productivity losses.

Table 7 Uncertainty decomposition heat-map of qGDP in MC-lpd for DIVA_C

Africa China WAsia CAsia EastAsia JaKoSing LatinAmer NAmerica NEEurope NWEurope SEurope Oceania EEFSU
AfricaC 0.500 0.000 0.001 0.001 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.001 -0.006
ChinaC 0.001 0.433 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.001
WAsiaC 0.000 0.001 0.719 0.003 0.000 0.008 0.000 0.000 0.001 0.001 0.001 -0.001 -0.009
CAsiaC 0.000 -0.001 0.001 0.367 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
EastAsiaC 0.000 0.003 0.000 0.000 0.717 0.005 0.000 0.001 0.001 0.001 0.001 0.000 -0.001
JaKoSingC 0.001 0.003 0.000 0.000 0.001 0.948 0.001 0.001 0.001 0.000 0.001 0.001 0.001
LatinAmerC 0.002 0.002 0.000 0.001 -0.001 0.009 0.578 0.000 0.002 0.003 0.003 0.001 -0.001
NAmericaC 0.002 -0.001 0.001 0.001 0.000 0.026 0.002 0.964 0.003 0.004 0.002 0.002 -0.004
NEEuropeC 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.920 0.000 0.000 0.000 0.003
NWEuropeC 0.003 0.006 0.001 0.002 0.001 0.021 0.001 0.002 0.004 0.953 0.005 0.003 0.000
SEuropeC 0.001 0.001 0.000 0.000 0.000 0.003 0.000 0.000 0.001 0.001 0.961 0.000 0.003
OceaniaC 0.000 0.001 0.000 0.001 0.000 0.003 0.000 0.000 0.000 0.001 0.000 0.799 -0.001
EEFSUC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.866
AfricaW 0.862 0.003 0.004 0.010 -0.001 -0.048 0.000 -0.004 -0.018 -0.032 -0.027 0.000 -0.001
ChinaW 0.017 0.733 0.004 0.008 0.005 0.031 0.019 0.012 -0.011 -0.021 -0.022 0.030 0.042
WAsiaW 0.006 0.061 0.681 0.047 0.006 -0.038 0.003 -0.009 -0.057 -0.129 -0.107 -0.018 -0.001
CAsiaW 0.033 -0.021 0.010 0.924 0.013 -0.050 0.022 0.007 -0.030 -0.057 -0.044 0.122 0.056
EastAsiaW 0.006 0.006 0.002 0.065 0.684 0.086 -0.006 -0.004 -0.051 -0.087 -0.098 0.053 0.027
JaKoSingW -0.002 -0.002 0.001 -0.001 0.006 0.259 0.011 0.001 -0.007 -0.013 -0.014 0.034 0.013
LatinAmerW 0.015 0.040 -0.004 -0.002 0.001 -0.135 0.810 0.031 -0.056 -0.106 -0.106 0.011 0.032
NAmericaW 0.014 0.515 -0.007 -0.004 0.008 -0.033 0.033 0.251 -0.057 -0.120 -0.124 0.006 0.108
NEEuropeW 0.001 0.007 0.000 0.000 0.001 -0.007 0.006 -0.001 0.373 -0.013 -0.013 0.006 -0.010
NWEuropeW 0.056 0.106 0.008 0.003 0.006 -0.023 0.024 -0.002 -0.028 0.174 -0.075 0.032 0.196
SEuropeW 0.012 0.006 0.002 -0.001 0.002 -0.013 0.007 0.001 -0.011 -0.020 0.105 0.004 0.086
OceaniaW -0.002 0.003 -0.001 0.004 0.006 0.025 -0.002 0.000 -0.012 -0.020 -0.022 0.576 -0.007
EEFSUW 0.001 0.000 0.000 0.000 -0.001 0.001 0.000 0.000 0.005 -0.005 -0.006 0.000 0.433

Standardized regression coefficients by region. C is the regional variable for Capital and W is the regional variable for productivity losses.
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Fig. 2 Productivity Shocks Histogram based on the triangular distribution sampling
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Fig. 3 Productivity Shocks, GQ Histogram\MC kernel density estimates in DIVA_C for the td and lpd sampling methods
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Fig. 4 Results Box-Plot for the MC-td and the MC-lpd
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Fig. 5 DIVA-C HEV mean convergence for the MC-td of the Total and the Split Simulations. Split simulations are indicated by the extension _S
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Fig. 6 DIVA-C qGDP mean convergence for the MC-td of the Total and the Split Simulations. Split simulations are indicated by the extension _S
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A Appendix

A.1 qGDP

As in Chatzivasileiadis et al. (2016), approaching GDP from the expenditure side, GDP can be expressed by the following
accounting identity:

GDP≡C+ I +E−M (6)

Where C denotes final consumption of goods and services, I is (gross) investment, E is exports of goods and services, and M
is imports of goods and services. In GTAP, exports E is divided into exports of goods and services to all other countries (E)
and exports of transportation services to the "global" transportation sector (T). The "global" transportation sector as designed
in the GTAP model purchases transport services from all regions and in return it supplies transport services to every region.
The accounting identity then becomes:

GDP≡C+ I +E +T −M (7)

Total differentiation of this identity shows how relative changes in GDP can be decomposed into relative changes in its
factors, where percentage changes are denoted by q: "qGDP = (dGDP/GDP)*100" :

qGDP =

(
c∗ C

GDP
+ i∗ I

GDP
+ e∗ E

GDP
+ t ∗ T

GDP
−m∗ M

GDP

)
∗100 (8)

Table A.1 Regional and sector aggregation

Regional Aggregation Sectoral Aggregation
1 OCE Australia, New Zealand 1 AGR All Agriculture
2 EAS East Asia 2 AIR Air Transport
3 WAS West Asia 3 ENY Energy and energy production
4 NAM North America 4 NTIND Non Transportation Intensive industries
5 LAM Latin America 5 SERV Other Services
6 NEW North West Europe 6 TIND Transportation Intensive industries
7 NEE North East Europe 7 OTR Transport Not Elsewhere Classified
8 SEU South Europe 8 SEA Water Transport
9 CAS Central Asia

10 AFR Africa
11 EEF Ex-Soviet countries
12 JAK, JaKoSing Japan, Korea, Singapore
13 CHN China, Hong Kong
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Table A.2 Uncertainty decomposition of HEV in MC-lpd for DIVA_C

Africa China WAsia CAsia EastAsia JaKoSing LatinAmer NAmerica NEEurope NWEurope SEurope Oceania EEFSU
AfricaC 0.080∗∗∗ 0.001∗∗∗ 0.001 0.001 0.000 0.007∗∗∗ -0.000 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.006∗∗∗ 0.001 -0.006∗∗∗

ChinaC 0.001∗ 0.100∗∗∗ 0.000 0.000 0.001 0.004∗∗∗ -0.001 0.001∗ -0.000 0.001∗ 0.000∗ 0.001∗ 0.001∗∗∗

WAsiaC -0.001∗ 0.002∗∗∗ 0.112∗∗∗ 0.003∗∗∗ 0.000 0.024∗∗∗ -0.000 0.003∗∗∗ 0.002∗∗∗ 0.006∗∗∗ 0.013∗∗∗ -0.001 -0.007∗∗∗

CAsiaC 0.001 0.001∗∗∗ 0.002∗ 0.094∗∗∗ 0.002∗∗ 0.002∗∗∗ -0.000 0.001∗ 0.000 0.002∗∗∗ 0.001∗∗∗ 0.001 0.002∗∗∗

EastAsiaC 0.000 0.008∗∗∗ 0.000 0.001 0.089∗∗∗ 0.020∗∗∗ 0.000 0.003∗∗∗ 0.001∗∗∗ 0.003∗∗∗ 0.004∗∗∗ 0.001 -0.001∗∗∗

JaKoSingC 0.001∗∗ 0.003∗∗∗ -0.000 0.000 0.001 0.160∗∗∗ 0.000 0.001∗∗∗ 0.001∗∗ 0.001∗∗ 0.002∗∗∗ 0.000 0.001∗∗∗

LatinAmerC 0.000 0.003∗∗∗ -0.001 0.001∗ -0.001 0.016∗∗∗ 0.110∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.008∗∗∗ 0.012∗∗∗ 0.000 -0.002∗∗∗

NAmericaC 0.000 0.006∗∗∗ 0.001 0.002∗∗∗ 0.000 0.039∗∗∗ 0.001 0.227∗∗∗ 0.006∗∗∗ 0.016∗∗∗ 0.020∗∗∗ 0.003∗∗∗ 0.001∗∗∗

NEEuropeC 0.000 0.000∗ -0.000 0.000 -0.000 0.002∗∗∗ 0.001 0.001∗∗ 0.253∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.000 0.004∗∗∗

NWEuropeC 0.004∗∗∗ 0.003∗∗∗ 0.002∗∗ 0.001∗∗∗ 0.001 0.021∗∗∗ 0.001 0.007∗∗∗ 0.017∗∗∗ 0.422∗∗∗ 0.038∗∗∗ 0.003∗∗∗ 0.006∗∗∗

SEuropeC 0.001∗∗∗ 0.001∗∗∗ 0.000 0.000 -0.001 0.004∗∗∗ -0.000 0.001∗∗∗ 0.003∗∗∗ 0.007∗∗∗ 0.480∗∗∗ 0.000 0.005∗∗∗

OceaniaC -0.000 0.002∗∗∗ -0.000 0.001∗∗ 0.001 0.010∗∗∗ 0.000 0.001∗∗ 0.001∗ 0.002∗∗∗ 0.002∗∗∗ 0.168∗∗∗ -0.001∗∗∗

EEFSUC 0.000 0.000∗∗ -0.000 0.000 0.000 0.001 0.000 0.001∗ 0.002∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.000 0.397∗∗∗

AfricaL -0.000 0.000 0.000 0.000 0.001 0.001 -0.001 -0.000 0.000 -0.000 0.000 -0.000 0.000
ChinaL 0.001∗ 0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000
WAsiaL 0.000 -0.000 -0.000 -0.001 -0.000 0.000 -0.001 -0.001∗ 0.000 0.000 0.000 0.000 -0.000
CAsiaL 0.000 0.000 -0.001 0.003∗∗∗ -0.000 -0.000 0.001 0.000 -0.000 0.000 -0.000 -0.000 -0.000
EastAsiaL -0.000 0.000∗∗ -0.000 -0.000 0.002∗∗ 0.001∗ -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
JaKoSingL 0.000 -0.000 -0.000 0.000 -0.000 0.008∗∗∗ 0.000 -0.000 -0.000 0.000 -0.000 -0.000 0.000
LatinAmerL -0.000 -0.000 0.000 -0.000 0.001 0.001∗ -0.002∗ -0.001∗ -0.000 0.000 0.000 -0.000 -0.000
NAmericaL 0.000 -0.000 0.001 0.000 -0.001 -0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.001 0.000
NEEuropeL -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000
NWEuropeL -0.000 -0.000 -0.000 -0.000 -0.001 -0.000 0.000 -0.000 0.000 0.000 0.000 -0.001 -0.000
SEuropeL 0.000 -0.000 0.001 -0.000 -0.000 -0.000 0.000 -0.000 0.000 0.000 0.003∗∗∗ -0.000 0.000
OceaniaL 0.000 -0.000 0.001 -0.001 -0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000
EEFSUL -0.000 0.000 -0.000 -0.000 0.001 0.001 -0.001 -0.000 0.000 -0.000 -0.000 -0.000 0.002∗∗∗

AfricaW 0.985∗∗∗ 0.003∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.002∗ -0.114∗∗∗ 0.004∗∗∗ -0.001∗∗∗ -0.011∗∗∗ -0.028∗∗∗ 0.052∗∗∗ -0.001∗ 0.021∗∗∗

ChinaW 0.020∗∗∗ 0.899∗∗∗ 0.008∗∗∗ 0.009∗∗∗ 0.008∗∗∗ 0.044∗∗∗ 0.021∗∗∗ 0.018∗∗∗ -0.017∗∗∗ -0.033∗∗∗ -0.040∗∗∗ 0.042∗∗∗ 0.054∗∗∗

WAsiaW 0.045∗∗∗ 0.044∗∗∗ 0.987∗∗∗ 0.047∗∗∗ 0.010∗∗∗ -0.080∗∗∗ 0.011∗∗∗ -0.017∗∗∗ -0.027∗∗∗ -0.144∗∗∗ 0.077∗∗∗ -0.019∗∗∗ 0.220∗∗∗

CAsiaW 0.048∗∗∗ 0.006∗∗∗ 0.028∗∗∗ 0.991∗∗∗ 0.032∗∗∗ -0.192∗∗∗ 0.028∗∗∗ 0.006∗∗∗ -0.034∗∗∗ -0.100∗∗∗ -0.065∗∗∗ 0.182∗∗∗ 0.108∗∗∗

EastAsiaW 0.016∗∗∗ 0.024∗∗∗ 0.012∗∗∗ 0.073∗∗∗ 0.990∗∗∗ 0.231∗∗∗ -0.002∗∗ -0.010∗∗∗ -0.059∗∗∗ -0.148∗∗∗ -0.159∗∗∗ 0.083∗∗∗ 0.027∗∗∗

JaKoSingW 0.001∗∗ 0.000∗ 0.003∗∗∗ 0.000 0.009∗∗∗ 0.857∗∗∗ 0.012∗∗∗ 0.002∗∗∗ -0.008∗∗∗ -0.023∗∗∗ -0.027∗∗∗ 0.047∗∗∗ 0.014∗∗∗

LatinAmerW 0.038∗∗∗ -0.001∗∗∗ 0.003∗∗∗ -0.009∗∗∗ 0.002∗ -0.291∗∗∗ 0.986∗∗∗ 0.143∗∗∗ -0.064∗∗∗ -0.184∗∗∗ -0.138∗∗∗ 0.010∗∗∗ 0.079∗∗∗

NAmericaW 0.065∗∗∗ 0.423∗∗∗ 0.021∗∗∗ 0.003∗∗∗ 0.022∗∗∗ -0.111∗∗∗ 0.048∗∗∗ 0.959∗∗∗ -0.013∗∗∗ -0.132∗∗∗ -0.092∗∗∗ 0.034∗∗∗ 0.195∗∗∗

NEEuropeW 0.003∗∗∗ 0.010∗∗∗ 0.002∗ 0.001 0.002∗∗ -0.012∗∗∗ 0.007∗∗∗ -0.003∗∗∗ 0.961∗∗∗ -0.015∗∗∗ -0.012∗∗∗ 0.010∗∗∗ -0.002∗∗∗

NWEuropeW 0.097∗∗∗ 0.089∗∗∗ 0.032∗∗∗ 0.008∗∗∗ 0.013∗∗∗ -0.125∗∗∗ 0.032∗∗∗ -0.018∗∗∗ 0.013∗∗∗ 0.835∗∗∗ -0.184∗∗∗ 0.054∗∗∗ 0.392∗∗∗

SEuropeW 0.016∗∗∗ 0.003∗∗∗ 0.007∗∗∗ -0.001 0.004∗∗∗ -0.052∗∗∗ 0.007∗∗∗ 0.001∗ -0.014∗∗∗ -0.042∗∗∗ 0.808∗∗∗ 0.007∗∗∗ 0.128∗∗∗

OceaniaW 0.001∗∗∗ 0.010∗∗∗ 0.002∗∗ 0.004∗∗∗ 0.011∗∗∗ 0.077∗∗∗ -0.001 0.002∗∗∗ -0.010∗∗∗ -0.030∗∗∗ -0.025∗∗∗ 0.956∗∗∗ -0.005∗∗∗

EEFSUW 0.000 -0.007∗∗∗ 0.000 -0.000 -0.001 0.001∗∗∗ 0.001 0.001∗∗∗ -0.000 0.001∗∗ 0.016∗∗∗ -0.001 0.749∗∗∗

R2 0.999 1.000 0.994 0.998 0.991 0.999 0.990 0.999 0.999 0.998 0.999 0.994 0.999

Standardized beta coefficients, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
The extension C to a regional variable stands for for Capital, L for Land losses and W for productivity losses.
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Table A.3 Uncertainty decomposition of qGDP in MC-lpd for DIVA_C

Africa China WAsia CAsia EastAsia JaKoSing LatinAmer NAmerica NEEurope NWEurope SEurope Oceania EEFSU
AfricaC 0.500∗∗∗ 0.000∗ 0.001 0.001 0.000 0.003∗∗∗ -0.000 -0.000∗∗∗ 0.000∗ 0.000∗∗ -0.000∗ 0.001 -0.006∗∗∗

ChinaC 0.001∗∗ 0.433∗∗∗ 0.000 0.000 0.001 0.002∗∗∗ -0.000 0.000∗∗∗ 0.000 0.000 0.000 0.001∗ 0.001∗∗∗

WAsiaC 0.000 0.001∗∗∗ 0.719∗∗∗ 0.003∗∗∗ 0.000 0.008∗∗∗ 0.000 -0.000∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ -0.001∗ -0.009∗∗∗

CAsiaC 0.000 -0.001∗∗∗ 0.001 0.367∗∗∗ 0.001∗ 0.000 -0.000 0.000∗∗∗ 0.000 0.000 0.000 0.000 0.001∗∗∗

EastAsiaC 0.000 0.003∗∗∗ 0.000 -0.000 0.717∗∗∗ 0.005∗∗∗ 0.000 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ -0.000 -0.001∗∗∗

JaKoSingC 0.001∗∗∗ 0.003∗∗∗ 0.000 0.000 0.001∗ 0.948∗∗∗ 0.001 0.001∗∗∗ 0.001∗∗∗ 0.000∗∗∗ 0.001∗∗∗ 0.001 0.001∗∗∗

LatinAmerC 0.002∗∗∗ 0.002∗∗∗ -0.000 0.001∗ -0.001 0.009∗∗∗ 0.578∗∗∗ 0.000∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.001∗ -0.001∗∗∗

NAmericaC 0.002∗∗∗ -0.001∗∗∗ 0.001 0.001∗∗ 0.000 0.026∗∗∗ 0.002∗∗ 0.964∗∗∗ 0.003∗∗∗ 0.004∗∗∗ 0.002∗∗∗ 0.002∗∗∗ -0.004∗∗∗

NEEuropeC 0.000 0.000 -0.000 0.000 -0.000 0.002∗∗∗ 0.001 0.000∗∗ 0.920∗∗∗ 0.000∗∗ 0.000∗∗ 0.000 0.003∗∗∗

NWEuropeC 0.003∗∗∗ 0.006∗∗∗ 0.001∗∗ 0.002∗∗∗ 0.001∗ 0.021∗∗∗ 0.001∗ 0.002∗∗∗ 0.004∗∗∗ 0.953∗∗∗ 0.005∗∗∗ 0.003∗∗∗ 0.000∗∗∗

SEuropeC 0.001∗∗ 0.001∗∗∗ 0.000 0.000 -0.000 0.003∗∗∗ -0.000 0.000∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.961∗∗∗ 0.000 0.003∗∗∗

OceaniaC -0.000 0.001∗∗∗ -0.000 0.001∗∗ 0.000 0.003∗∗∗ 0.000 0.000 0.000∗∗ 0.001∗∗∗ 0.000∗ 0.799∗∗∗ -0.001∗∗∗

EEFSUC 0.000 0.000∗∗ -0.000 0.000 0.000 0.000∗ 0.000 0.000 0.000∗ 0.000 0.000 -0.000 0.866∗∗∗

AfricaL 0.001∗ 0.000 0.000 0.000 0.001 0.000 -0.001 -0.000 0.000 -0.000 0.000 -0.000 0.000
ChinaL 0.001∗ 0.001∗∗∗ 0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000
WAsiaL 0.000 -0.000 -0.000 -0.001 -0.000 0.000 -0.000 -0.000∗ 0.000 0.000 0.000 0.000 -0.000
CAsiaL 0.000 0.000∗ -0.001 0.007∗∗∗ -0.000 0.000∗∗ 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EastAsiaL 0.000 0.001∗∗∗ -0.000 0.000 0.011∗∗∗ 0.000∗∗∗ -0.000 0.000 0.000 0.000 0.000 0.000 0.000
JaKoSingL 0.000 0.000∗ -0.000 0.000 -0.000 0.021∗∗∗ 0.000 0.000 -0.000 0.000 0.000 0.000 0.000
LatinAmerL 0.000 -0.000 0.000 -0.000 0.000 0.000∗ -0.001 -0.000 0.000 0.000 0.000 -0.000 -0.000
NAmericaL 0.000 0.000 0.001 0.000 -0.000 0.000 -0.000 0.001∗∗∗ -0.000 -0.000 0.000 -0.000 -0.000
NEEuropeL -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000 0.001∗∗∗ -0.000 0.000 -0.000 -0.000
NWEuropeL -0.000 -0.000 -0.000 -0.000 -0.001 -0.000 0.000 -0.000 0.000 0.000∗∗ 0.000 -0.001 -0.000
SEuropeL 0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.000 0.000 0.003∗∗∗ -0.000 0.000
OceaniaL 0.000 -0.000 0.000 -0.001 -0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000
EEFSUL -0.000 0.000 -0.000 -0.000 0.001 0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 0.003∗∗∗

AfricaW 0.862∗∗∗ 0.003∗∗∗ 0.004∗∗∗ 0.010∗∗∗ -0.001 -0.048∗∗∗ 0.000 -0.004∗∗∗ -0.018∗∗∗ -0.032∗∗∗ -0.027∗∗∗ -0.000 -0.001∗∗∗

ChinaW 0.017∗∗∗ 0.733∗∗∗ 0.004∗∗∗ 0.008∗∗∗ 0.005∗∗∗ 0.031∗∗∗ 0.019∗∗∗ 0.012∗∗∗ -0.011∗∗∗ -0.021∗∗∗ -0.022∗∗∗ 0.030∗∗∗ 0.042∗∗∗

WAsiaW 0.006∗∗∗ 0.061∗∗∗ 0.681∗∗∗ 0.047∗∗∗ 0.006∗∗∗ -0.038∗∗∗ 0.003∗∗∗ -0.009∗∗∗ -0.057∗∗∗ -0.129∗∗∗ -0.107∗∗∗ -0.018∗∗∗ -0.001∗∗∗

CAsiaW 0.033∗∗∗ -0.021∗∗∗ 0.010∗∗∗ 0.924∗∗∗ 0.013∗∗∗ -0.050∗∗∗ 0.022∗∗∗ 0.007∗∗∗ -0.030∗∗∗ -0.057∗∗∗ -0.044∗∗∗ 0.122∗∗∗ 0.056∗∗∗

EastAsiaW 0.006∗∗∗ 0.006∗∗∗ 0.002∗∗∗ 0.065∗∗∗ 0.684∗∗∗ 0.086∗∗∗ -0.006∗∗∗ -0.004∗∗∗ -0.051∗∗∗ -0.087∗∗∗ -0.098∗∗∗ 0.053∗∗∗ 0.027∗∗∗

JaKoSingW -0.002∗∗∗ -0.002∗∗∗ 0.001∗ -0.001 0.006∗∗∗ 0.259∗∗∗ 0.011∗∗∗ 0.001∗∗∗ -0.007∗∗∗ -0.013∗∗∗ -0.014∗∗∗ 0.034∗∗∗ 0.013∗∗∗

LatinAmerW 0.015∗∗∗ 0.040∗∗∗ -0.004∗∗∗ -0.002∗∗∗ 0.001∗∗ -0.135∗∗∗ 0.810∗∗∗ 0.031∗∗∗ -0.056∗∗∗ -0.106∗∗∗ -0.106∗∗∗ 0.011∗∗∗ 0.032∗∗∗

NAmericaW 0.014∗∗∗ 0.515∗∗∗ -0.007∗∗∗ -0.004∗∗∗ 0.008∗∗∗ -0.033∗∗∗ 0.033∗∗∗ 0.251∗∗∗ -0.057∗∗∗ -0.120∗∗∗ -0.124∗∗∗ 0.006∗∗∗ 0.108∗∗∗

NEEuropeW 0.001∗ 0.007∗∗∗ 0.000 -0.000 0.001∗ -0.007∗∗∗ 0.006∗∗∗ -0.001∗∗∗ 0.373∗∗∗ -0.013∗∗∗ -0.013∗∗∗ 0.006∗∗∗ -0.010∗∗∗

NWEuropeW 0.056∗∗∗ 0.106∗∗∗ 0.008∗∗∗ 0.003∗∗∗ 0.006∗∗∗ -0.023∗∗∗ 0.024∗∗∗ -0.002∗∗∗ -0.028∗∗∗ 0.174∗∗∗ -0.075∗∗∗ 0.032∗∗∗ 0.196∗∗∗

SEuropeW 0.012∗∗∗ 0.006∗∗∗ 0.002∗∗∗ -0.001 0.002∗∗∗ -0.013∗∗∗ 0.007∗∗∗ 0.001∗∗∗ -0.011∗∗∗ -0.020∗∗∗ 0.105∗∗∗ 0.004∗∗∗ 0.086∗∗∗

OceaniaW -0.002∗∗∗ 0.003∗∗∗ -0.001 0.004∗∗∗ 0.006∗∗∗ 0.025∗∗∗ -0.002∗ -0.000 -0.012∗∗∗ -0.020∗∗∗ -0.022∗∗∗ 0.576∗∗∗ -0.007∗∗∗

EEFSUW 0.001∗∗∗ 0.000 0.000 0.000 -0.001 0.001∗∗∗ 0.000 0.000∗∗∗ 0.005∗∗∗ -0.005∗∗∗ -0.006∗∗∗ -0.000 0.433∗∗∗

R2 0.999 1.000 0.997 0.998 0.996 1.000 0.993 1.000 1.000 1.000 1.000 0.998 1.000

Standardized beta coefficients, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
The extension C to a regional variable stands for for Capital, L for Land losses and W for productivity losses.


