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Abstract

To address the dual environmental challenges of pollution and climate change, China has
established multiple environmental markets, including pollution emissions trading, carbon
emissions trading, energy-use rights trading, and green electricity trading. Previous em-
pirical studies suffer from known biases arising from time-varying treatment and multiple
treatments. To address these limitations, this study adopts a dynamic control group design
and combines Difference-in-Difference (DiD) and Artificial Counterfactual (ArCo) empirical
strategies. Using panel data on A-share listed companies from 2000 to 2024, this study
investigates the marginal effects and interactive impacts of multiple environmental markets
implemented in staggered and overlapping phases. Existing pollution emissions trading mit-
igates the negative effects of carbon emission trading. Carbon trading suppresses (improves)
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1. Introduction

The emissions of greenhouse gases and air pollutants are two of the most critical environ-
mental challenges facing the world today, exerting severe impacts on public health, society,
economy, and labor (Tol, 1994, Chay and Greenstone, 2005, Tol, 2018, Herrnstadt et al.,
2021, Chen et al., 2022a). In response, many countries have introduced multiple environ-
mental policies that continue to evolve. This complicates policy evaluation. We address this
problem for China, studying four permit trading schemes that were rolled out over time in
some but not all provinces.

A substantial body of literature has pointed to potential interactions between environmental
policies, noting that such interactions may be synergistic, neutral, or conflicting (Rogge and
Reichardt, 2016, Wilts and O’Brien, 2019, van den Bergh et al., 2021). Especially for the
carbon emission trading system, numerous studies show the interaction between EU-ETS
and Kyoto Protocol flexibility mechanisms (Hintermann and Gronwald, 2019), electricity-
market structures (Bersani et al., 2022), renewable-energy certificates (Wu et al., 2024,
Morthorst, 2001), and other renewable-energy incentives (Proença and Fortes, 2020, del
Ŕıo González, 2007, Fischer and Preonas, 2010). In China, recent research has examined
the interaction between carbon emission trading and energy-use rights trading (Li and Zhu,
2019, Sun et al., 2024), pollution emission trading(Sun et al., 2023, Zhu and Yu, 2023), and
green electricity trading (Wei et al., 2023, Wang et al., 2021, Zhang et al., 2023). If such
interactions are not properly accounted for in policy evaluations, the estimated effects may
be biased or misinterpreted.

Nonetheless, most empirical studies rely heavily on the Difference-in-Differences (DiD) ap-
proach to estimate average treatment effects of individual policies (Chen et al., 2022b, Luan
et al., 2025, Wang et al., 2024, Tang et al., 2023). This approach faces two key limitations.
First, staggered policy implementation biases two-way fixed effect (TWFE) DiD estimators
(Callaway and Sant’Anna, 2021, Goodman-Bacon, 2021, Borusyak et al., 2024). Second,
even when policies are independent, non-linear dependencies between covariates can re-
sult in contamination bias if there are multiple treatments, undermining causal inference
(Goldsmith-Pinkham et al., 2024). Therefore, current methods often fall short in accurately
isolating the effect of one policy when others are simultaneously in place.

To address the identification challenges posed by time-varying treatment (Callaway and
Sant’Anna, 2021) and multiple treatments (Goldsmith-Pinkham et al., 2024), we apply
phase-specific and region-specific DiD estimations by excluding the contaminated control
groups. We further introduce a more general method—Artificial Counterfactual (ArCo,
Carvalho et al. (2018))—to supplement and validate the DiD results. The DiD relies on the
parallel trends assumption, whereas ArCo uses the treated units’ pre-treatment trajectory to
predict their counterfactual outcomes, allowing for inference even under non-parallel trends.
We thus avoid the biases due to time-varying treatment and multiple treatments, as well
as the biases from interactions between the treatments. The joint application of DiD and
ArCo enhances robustness of causal analysis in complex policy environments.

2



China ranked 156th among 180 countries in the 2022 Environmental Performance Index
(EPI) (Yale Center for Environmental Law and Policy, 2024). China accounts for approxi-
mately 1/3 of global carbon dioxide emissions (International Energy Agency, 2022) and hosts
the world’s largest carbon trading market by coverage. More importantly, China is now en-
tering a critical period of transition from fragmented policymaking to integrated governance.
The 2022 national policy on building a unified market explicitly calls for the consolidation
of environmental markets, and the 2023 National Conference on Ecological and Environ-
mental Protection emphasizes the importance of policy coordination and multi-pollutant
governance. Against this backdrop, this study aims to systematically analyze the effects
of environmental markets in China, identify the synergies and frictions within the ongoing
institutional integration, and provide valuable policy implications for other high-emission
economies.

There is an ongoing debate regarding the effects of environmental markets on companies’
financial performance. The key controversy is whether these market mechanisms unduly
increase companies’ financial burdens(Lanoie et al., 1998) or, if well designed, spur innovation
to deliver the dual benefits of environmental protection and economic performance (Porter,
1996).

Prior empirical studies suggest that energy-use rights (Wang et al., 2024, 2025) and green
electricity trading (Tang et al., 2023) enhance companies’ financial performance, but there
are mixed results for pollution emission trading (Chen et al., 2022b, Liu et al., 2022) and
carbon emission trading (Luan et al., 2025, Li et al., 2025). Replicating these studies’
empirical strategies, we find similar results. However, once contaminated control groups are
excluded, significant effects only appear for companies in non-pilot regions. For companies
previously subject to pollution or carbon trading, additional policies show no significant
effect on companies’ financial performance. This highlights the limited marginal benefit of
overlapping policies and underscores the need for integrated environmental market design.

Carbon emissions trading reduces companies’ financial performance, whereas existing pol-
lution emissions trading mitigates this negative effect. Specifically, the estimated effect
changes from –0.618% to a statistically insignificant negative value under the DiD approach,
and from –1.044% to a statistically insignificant positive value under the ArCo approach.
Moreover, the simultaneous implementation of energy-use rights trading further offsets the
adverse impact of carbon markets on firm performance. The estimated effect increases from
–0.618% to 1.172% under DiD, and from –1.044% to 1.750% under ArCo, suggesting that
overlapping environmental markets may offer opportunities for cross-market arbitrage.

This paper contributes to the literature in three ways: (1) unlike prior studies that focus
on one or two environmental markets, this paper systematically examines four major envi-
ronmental markets—pollution trading, carbon trading, energy-use rights trading, and green
electricity trading—enabling a unified analysis of their interactions and combined effects on
companies’ abatement costs; (2) this paper develops a dynamic identification strategy using
phase-specific and region-specific DiD estimations to address known biases from time-varying
treatment and multiple treatments and unknown biases due to their interaction, thereby en-
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abling estimation of marginal policy effects and more accurate estimation of policy effects;
(3) this paper integrates DiD and ArCo methodologies to enhance the robustness of causal
inference. While DiD relies on the parallel trends assumption, ArCo constructs counterfac-
tual from within-group trajectories and avoids contamination bias, complementing the DiD
framework under complex policy environments.

The paper proceeds as follows. Section 2 presents the data in the context of energy and
environmental regulation in China. Section 3 introduces the empirical strategy including
DiD and ArCo. Section 4 presents the empirical results, including the the main results of
DiD and ArCo, the comparison between the two methods and reason analysis. Section 5
replicate the results of the existing literature and compare the results based on different
empirical strategy. Section 6 concludes.

2. Context and data

2.1. The environmental markets in China

There are four main environmental markets in China: air pollution emission trading, carbon
emission trading, energy-use rights trading, and green electricity trading. These markets
have been implemented through phased pilot programs at different times and across dif-
ferent, sometimes overlapping, provinces. Figure 1 illustrates the timeline and geographic
distribution of these four environmental market pilots.

Figure 1: The implementation timeline of the four environmental markets.
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As illustrated in Figure 1, pollution emission trading was implemented across eleven pilot
regions between 2007 and 2024. Carbon emission trading was first launched in 2013 in
five pilot regions, with Tianjin geographically overlapping with an existing pollution emis-
sion trading pilot. Between 2014 and 2015, two additional carbon trading pilots—Hubei
and Chongqing—were introduced, both fully overlapping with regions already covered by
pollution emission trading.

From 2016 to 2020, energy-use rights trading was piloted in four regions, and carbon trading
expanded to two additional provinces. Sichuan and Fujian served as simultaneous pilots for
both carbon and energy-use rights trading, while Zhejiang and Henan overlapped entirely
with existing pollution emission trading pilots.

During 2021–2024, green electricity trading was initiated in Beijing, Guangdong, and Inner
Mongolia. Among them, Beijing and Guangdong overlapped with carbon emission trad-
ing pilots (but not pollution and energy trading), while Inner Mongolia overlapped with
pollution emission trading but not carbon and energy-use rights trading.

2.2. The contamination bias in multiple environmental policies background

The pollution emissions trading launched in 2007, the energy-use rights trading in 2016, and
the green electricity trading in 2021 are analyzed using single-period DiD designs, while the
carbon emissions trading introduced in 2013, 2014, and 2016 is analyzed using staggered
DiD. In staggered adoption settings, TWFE DiD regressions suffer from negative weighting
problems (Callaway and Sant’Anna, 2021, Goodman-Bacon, 2021, Borusyak et al., 2024).
Moreover, Goldsmith-Pinkham et al. (2024) point to another problem: contamination bias
occurs when additive adjustments to covariates fail to capture non-linear relationships be-
tween a given treatment and other treatments or covariates. As a result, linear regression
may incorrectly assign a non-zero fitted probability to a given treatment when another treat-
ment has already been implemented. Prior research has largely emphasized a single policy’s
effects (Chen et al., 2022b, Luan et al., 2025, Wang et al., 2025), although there are other
policies implemented at the same time.

Therefore, we construct a phased, multi-level control design based on the temporal differ-
ences and spatial overlap of multiple environmental pilots. This design prevents the confla-
tion of impacts from different markets and enables the identification of the marginal effects
of each pilot, where appropriate conditional on another pilot.

Consider Tianjin in 2013 as an example, There are two treatments: tradable permits for
air pollution and carbon dioxide. As both originate largely from the combustion of fossil
fuels, these policies interact with one another. We could estimate a two-way fixed-effect
difference-in-differences model but this would suffer from the known biases due to time-
varying treatment (Callaway and Sant’Anna, 2021) and multiple treatments (Goldsmith-
Pinkham et al., 2024) and the unknown bias due to their interaction.
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Group Year Market # Identification

A0 2000-2006 None 31 -

A1 2007-2012 None 20 -

E1 Pollution 11 A1 v E1 (Panel 1): pollution

A2 2013 None 16 -

C2 CO2 4 A2 v C2 (Panel 2): CO2

E2 Pollution 10 -

F2 Poll + CO2 1 E2 v F2 (Panel 3): CO2 conditional on pollution

A3 2014-2015 None 16 -

E3 Pollution 8 -

F3 Poll + CO2 3 E3 v F3 (Panel 4): CO2 conditional on pollution

A4 2016-2020 None 14 -

B4 CO2 + energy 2 B4 v A4 (Panel 5): CO2 + energy

C4 CO2 4 -

E4 Pollution 6 -

F4 Poll + CO2 3 -

G4 Poll + Energy 2 E4 v G4 (Panel 6): Energy conditional on pollution

A5 2021-2024 None 14 -

B5 CO2 + energy 2 -

C5 CO2 2 -

D5 CO2 + Green 2 C5 v D5 (Panel 7): Green conditional on CO2

E5 Pollution 5 -

F5 Poll + CO2 3 -

G5 Poll + Energy 2 -

H5 Poll + Green 1 E5 v H5 (Panel 8): Green conditional on pollution

Market for energy use permits cannot be identified.

Market for green electricity credits cannot be identified.

Table 1: Periods and provincial coverage of eight observed permutations of environmental markets and the
implied identification.
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Therefore, we instead restrict the control group to those provinces that have pollution trade
but no carbon trade (Jiangsu, Hebei, Inner Mongolia, Hubei, Zhejiang, Hunan, Shanxi,
Shaanxi, Chongqing, Henan) and years after the implementation of pollution emission trad-
ing in 2007 (Panel (3) in Table 1). This identifies the impact of the carbon market on top
of the pollution market.

In order to identify the impact of the market in CO2 emission permits proper, we compare
companies in Shenzhen, Shanghai, Beijing, Guangdong (but not in Tianjin) to companies in
the other provinces that have neither carbon nor air pollution markets (Panel (2) in Table 1).

Panel (4) in Table 1 illustrates a different setting. Tianjin was designated as a carbon trading
pilot in 2013, followed by Hubei and Chongqing in 2014. Accordingly, a staggered DiD is
required, and careful attention must be paid to the issue of negative weighting, as discussed
above.

In 2016, Sichuan and Fujian simultaneously became pilots for both carbon emission trading
and energy-use rights trading. As companies in these provinces had not previously been
subject to carbon trading, it is not feasible to compare companies in Sichuan and Fujian
with those in Shenzhen, Shanghai, Beijing, and Guangdong, which had already participated
in carbon markets. Consequently, we cannot estimate the additional effect of energy-use
rights trading relative to existing carbon trading in these two provinces. Instead, companies
in Sichuan and Fujian can only be compared to those in provinces without any environmental
markets (as shown in Panel (5) of Table 1). However, this comparison does not allow us
to distinguish whether the observed effects are driven by carbon trading, energy-use rights
trading, or a combination of both, relative to non-pilot regions.

In contrast to companies in Sichuan and Fujian, companies in Zhejiang and Henan were
additionally subject to energy-use rights trading from 2016. The additional effect of energy-
use rights trading on top of existing pollution trading pilots can be estimated (as shown in
Panel (6) of Table 1).

In Panel (7), Shenzhen, Shanghai, Beijing and Guangdong have all implemented the same
emission trading scheme since 2013, with Beijing and Guangdong additionally implementing
green electricity trading in 2021. So the additional electricity effect on top of carbon emission
trading can be identified. Similarly, in Panel (8), the incremental effect of green electricity
trading relative to existing pollution emission trading can be estimated.

2.3. Data selection and description

2.3.1. Rationale for selecting Return on Assets (ROA)

This study adopts ROA as the primary outcome variable to assess the economic impact
of environmental markets. ROA is a standard measure of profitability—profits relative to
assets. ROA captures environmental compliance costs. ROA is widely used in the existing
literature, ensuring comparability with prior studies.

Alternative financial indicators, such as Return on Equity (ROE), Price-to-Earnings ratio
(P/E), Price-to-Book ratio (P/B), and Tobin’s Q, are less suited (Luan et al., 2025). ROE
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is sensitive to capital structure and can be inflated through leverage, while Tobin’s Q is
driven by investor sentiment and macroeconomic fluctuations, making it unsuitable for eval-
uating short-term regulatory impacts. Similarly, valuation-based ratios like P/E and P/B
are shaped more by market expectations than by companies’ actual cost structures.

In contrast, ROA is less affected by market sentiment and financial leverage, offering a
clearer attribution of regulatory impacts on real economic activity. Under environmental
markets, companies often face rising capital expenditure (e.g., investment in clean technolo-
gies) and profit compression due to carbon pricing or compliance penalties—both of which
are included in ROA. Thus, ROA provides a theoretically sound and empirically consistent
measure of regulatory cost exposure across companies with heterogeneous financing and
market conditions.

2.3.2. Control Variable Selection

To mitigate potential confounding effects and more accurately identify the impact of envi-
ronmental markets on firm performance, this study incorporates a set of control variables
grounded in the empirical literature on corporate finance and industrial organization (Luan
et al., 2025, Huang et al., 2025, Chen et al., 2024, Dechezleprêtre et al., 2023). These
variables capture company-specific characteristics and industry structure that may indepen-
dently influence profitability and regulatory responsiveness.

The Herfindahl-Hirschman Index (HHI) proxies industry concentration, with higher values
indicating reduced competition and greater capacity for dominant companies to pass on
compliance costs. Company Age (AGE), measured as the logarithm of years since estab-
lishment, reflects organizational maturity and adaptive capacity. Employment Size (EMP),
measured as the logarithm of total employees, captures company scale and complexity,
which may affect both adjustment costs and compliance capacity. The Operational Capital
to Current Assets Ratio (OCCAR) reflects companies’ investment strategies and liquidity
management, with higher values indicating greater commitment to long-term assets and po-
tential resilience to compliance costs. The Debt-to-Equity Ratio (DER) captures financial
leverage, influencing companies’ risk exposure and strategic responses to regulation.

Variable definitions and calculation methods are detailed in Table 2.

These controls account for key dimensions of company heterogeneity—market position, ma-
turity, scale, capital allocation, and financial structure—ensuring more credible identification
of regulatory effects.

2.3.3. Data source and descriptive statistics

Existing research on environmental markets typically adopts one of two strategies. The first
operates at the regional level, treating prefecture-level cities or provinces that implemented
pilot programs as the treatment group (Zhou et al., 2022). The second focuses on company-
level analysis, using all A-share listed companies as the sample and classifying those located
in pilot regions as the treatment group (Liu et al., 2022, Wang et al., 2024). Some studies
further refine this approach by focusing on specific industries and selecting companies within
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Table 2: Key Variables and descriptions

Variable Description

ROA Return on Assets, defined as Net Profit divided by
the Average Total Assets Balance. If asset balance is
missing or zero, the value is coded as NULL. Average
total assets = (Ending + Beginning total assets) /
2. Net Profit is taken from the consolidated income
statement (including the parent company and all con-
solidated subsidiaries, net of minority interest), and
Total Assets are from the consolidated balance sheet
(including all consolidated subsidiaries).

HHI Herfindahl-Hirschman Index, capturing market con-
centration at the industry level.

AGE Firm age measured as the natural logarithm of years
since establishment.

EMP Total number of employees, in logarithmic form.

OCCAR Operational Capital to Current Assets Ratio, captur-
ing liquidity and capital allocation efficiency.

DER Debt-to-Equity Ratio, indicating capital structure
and financial leverage.
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pilot regions and within the target industry as the treatment group (Chen et al., 2022b, Tang
et al., 2023).

However, due to limited disclosure regarding company-level participation in pollution emis-
sion trading and energy-use rights trading, no existing studies have been able to identify the
actual participants in these markets. In the case of carbon emission trading, some scholars
have used the subset of A-share listed companies included in official lists of key emission-
control companies as proxies for participation (Luan et al., 2025). Yet this method presents
significant limitations. As Huang et al. (2025) observe, “the pilot firm list consists of more
than 2000 entities, among which only 78 are A-share listed companies.” Moreover, inclusion
in these lists does not guarantee actual participation in trading activities, nor does it rule
out the possibility that other companies were affected by the trading scheme. These issues
result in a substantially reduced sample size and introduce potential selection bias.

To address these challenges and ensure data availability, empirical consistency, and identi-
fication credibility, this study adopts a widely used empirical strategy. We first use the full
sample of A-share listed companies, treating those located in pilot regions as the treatment
group. As a robustness check, we further use the subsample of regulated industries based
on the local governments’ official documents and repeat the analysis with that subsample
to validate the results in an industry-specific context.

The data is sourced from the China Stock Market and Accounting Research Database (CS-
MAR). The companies marked with ST or ST* are excluded. The dependent and indepen-
dent variables are truncated at the 1% and 99% quantiles. Our data set includes all listed
A-share companies in China and spans from 2000 to 2024. The descriptive statistics are
shown in Table 3.

Table 3: Summary statistics of key variables.

Variable Description N Mean Median SD Min Max

ROA Return on assets 61,993 3.69 3.72 6.88 -26.2 22.2

HHI Hirschman-Herfindahl index 60,049 0.18 0.12 0.18 0.019 1

lnAGE Age 57,655 1.96 2.08 0.92 0 3.37

lnEMP Number of employees 61,871 7.57 7.51 1.30 4.19 11.2

OCCAR Operational capital to current assets 60,876 0.26 0.39 0.61 -2.9 0.94

DER Debt to equity 61,994 1.27 0.73 1.87 0.023 13.1

Table 4 presents the mean values and standard deviations of ROA of each panel.

Table 4 reports the summary statistics of ROA across different treatment and control panels.
Companies in pollution emission trading regions exhibit higher ROA than those in non-pilot
regions, while companies in carbon emission trading regions show slightly lower ROA. The
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Table 4: Summary statistics of ROA by the eight panels.

Treatment Control

Panels Obs Mean SD Obs Mean SD Difference

(1) Pollution, relative to all 20,982 4.158 6.644 41,011 3.443 6.979 0.715

(2) Carbon, relative to no policy 14,351 3.397 6.977 24,008 3.551 7.025 -0.154

(3) Carbon, additional to pollution 646 2.890 6.226 19,839 4.182 6.651 -1.292

(4) Carbon, additional to pollution 2,353 3.260 6.828 18,132 4.256 6.609 -0.996

(5) Carbon and energy, relative to no policy 2,476 4.096 7.549 35,883 3.452 6.967 0.644

(6) Energy, additional to pollution 5,474 4.657 6.821 11,929 4.128 6.514 0.529

(7) Electricity, additional to carbon 4,919 2.192 7.308 8,717 3.958 6.795 -1.766

(8) Electricity, additional to pollution 105 5.172 7.763 9,701 3.908 6.626 1.264

addition of energy-use rights trading is associated with higher ROA, suggesting potential
complementarities with existing markets. In contrast, the effect of adding green electricity
trading on ROA appears heterogeneous

These preliminary observations may be influenced by confounding factors such as enterprise
industry classification, operational scale, and other covariates. Subsequent analyses will
systematically control for these variables to rigorously investigate the dynamic policy effects
and cumulative interactions of pilot implementations on corporate ROA.

3. Empirical strategy

3.1. Model specification

The three approaches in policy evaluation—Synthetic Control (SC), Difference-in-Differences
(DiD), and Artificial Counterfactual (ArCo)—differ in their assumptions, counterfactual
construction, and ability to capture dynamic policy effects (Carvalho et al., 2018).

While SC is theoretically appealing, it is not suitable for the present study. SC con-
structs a synthetic control group as a weighted average of untreated units, using non-
negative weights that sum to one (∆̂SC = 1

T−T0+1

∑T
t=T0

(y1t − ŷ1t), ŷ1t =
∑n

i=2 wi yit, w
∗ =

argminw≥0,
∑

w=1

∥∥z̄1 − w⊤z̄0
∥∥
V
). However, it relies on pre-intervention averages and dis-

cards time-series dynamics, which limits its ability to capture staggered and cumulative
policy effects. Moreover, SC is only applicable to balanced panel data, whereas our sample
includes companies that entered or exited the market mid-period due to Initial Public Of-
ferings (IPOs), delistings, or bankruptcies. As a result, the panel is unbalanced, making SC
unsuitable for this analysis.

DiD compares average outcomes between treated and control groups before and after policy
implementation (∆̂DID =

[
(Ȳ treat

post − Ȳ treat
pre )− (Ȳ control

post − Ȳ control
pre )

]
), assuming parallel trends
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in the absence of treatment. While DiD provides intuitive and widely accepted estimates
of average treatment effects, its reliability hinges on having sufficiently long post-treatment
windows and no interference from overlapping policies. Given the complex and phased intro-
duction of emissions trading schemes—including pollution emission trading (2007), carbon
emission trading (2013–2014), energy-use rights trading (2016), and green electricity trading
(2021)—DiD’s assumptions may be difficult to satisfy, particularly in later policy phases.

By contrast, ArCo offers a more general and flexible framework. It does not rely on the paral-
lel trends assumption and allows for nonparametric functional forms. It can construct coun-
terfactuals even when treated and control units exhibit divergent pre-treatment trends, by
employing nonparametric weighting (∆̂T = 1

T−T0+1

∑T
t=T0

δ̂t, δ̂t = yt−M(Z0t, θ̂T1),M(Z0t, θ̂) =(
x′
1tθ̂1, . . . , x

′
qtθ̂q

)′
). Moreover, ArCo preserves the full temporal structure of the data, cap-

turing dynamic responses over time and enabling formal statistical inference. This is partic-
ularly valuable in evaluating environmental markets with shorter post-intervention windows
or policy overlaps (e.g., green electricity trading).

Therefore, we focus on DiD and ArCo, which are better aligned with the structure of China’s
environmental markets rollout. Both methods are applied within a recursive framework,
allowing for dynamic assessment across sequentially implemented policies.

In this study, DiD is used for estimating the average treatment effects. However, to address
potential identification biases commonly associated with DiD—including the known biases
due to time-varying treatment (Callaway and Sant’Anna, 2021) and multiple treatments
(Goldsmith-Pinkham et al., 2024) and the unknown bias due to their interaction— and to
account for the possibility of failing the parallel trends assumption, the ArCo is adopted
as supplementary analytical tool. This dual-method approach allows for cross-validation
of results and mitigates the risk of biased conclusions driven by the limitations of a single
specification.

3.2. Methodology

3.2.1. Difference-in-Difference (DiD)

The standard TWFE DiD model is specified as follows:

ROAit = α + βTreati × Postt + γXit + µi + λt + εit

Where ROAit denotes the return on assets of company i at time t; Treati is a dummy
variable indicating whether company i belongs to the treatment group; Postt is a post-
treatment time dummy; Xit represents a set of control variables; µi and λt are company and
year fixed effects, respectively; εit is the error term. The coefficient β captures the average
treatment effect.

However, the validity of DiD relies heavily on the parallel trends assumption and requires
sufficiently long post-treatment periods to accurately estimate dynamic effects. Given the
complexity of overlapping policy treatments and short implementation windows of newer
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markets (e.g., green electricity trading from 2021 onwards), DiD yields biased estimates in
such contexts.

Consider Tianjin in 2013 (cf. Figure 1). There are two treatments: tradable permits for air
pollution and carbon dioxide. As both originate largely from the combustion of fossil fuels,
we cannot assume that these policies do not interact with one another. We could estimate

ROAit = α + βATreatAi × PostAt + βBTreatBi × PostBt + γXit + µi + λt + εit

but this would suffer from the known biases due to time-varying treatment (Callaway and
Sant’Anna, 2021) and multiple treatments (Goldsmith-Pinkham et al., 2024) and the un-
known bias due to their interaction. Therefore, we instead restrict the sample to those
provinces and years for which PostAt = 1. The parameters βB is then the causal impact of
adding CO2 to air pollution permits (Panel (3) in Table 1).

In order to identify the impact of the market in CO2 permits, we compare companies in
Beijing, Guangdong, Shanghai, and Shenzhen (but not in Tianjin) to companies in the 16
provinces that have neither carbon nor air pollution markets (Panel (2) in Table 1).

Moreover, as noted earlier, Panel (4) involves staggered treatment adoption. Applying a
standard TWFE DiD model in this context would lead to biased estimates due to negative
weighting issues. Therefore, we adopt the methodology of Callaway and Sant’Anna (2021)
to correct for these biases and enhance the robustness of our results. Their approach con-
structs comparison groups based on units that have not yet been treated in period t, thereby
mitigating concerns over potential biases inherent in TWFE estimates.

3.2.2. Artificial Counterfactual (ArCo)

To address these limitations, we employ a variant of the ArCo as a supplementary method-
ology (Carvalho et al., 2018). ArCo constructs counterfactual outcomes using a predictor
model estimated on treated companies, with untreated companies as explanatory variables.
Unlike DiD, ArCo does not assume parallel trends and retains full time-series dynamics.

In the ArCo framework, the first stage requires estimating a flexible predictor model for
the counterfactual outcome using a set of untreated peers’ covariates. Unlike the high-
dimensional version that adopts regularization techniques such as LASSO, we employ a
linear regression model for estimation. This approach remains effective under moderate-
dimensional settings where the number of predictors is smaller than the number of pre-
treatment observations. The ArCo model is specified as follows:

ˆROA
(0)

1t = α + βX1t + λ · ¯ROA−1,t + γ · X̄−1,t + εit (1)

where ROA1t denotes ROA for the treated unit in period t before the treated time T0;
X1t represents the company-level covariates of the treated unit; ¯ROA−1,t and X̄−1,t denote
the contemporaneous yearly averages of ROA and covariates among the untreated control
group; εit is the idiosyncratic error term.
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Note that ArCo was conceived for large T and small N. We therefore replaced the obser-
vations of the individual companies in the control group with the average over the control
group (Bai, 2009). This is a special case of the approach proposed by Xu (2017), who sees
this as a generalization of Difference-in-Differences rather than Synthetic Control.

The parameters α, β, λ, and γ are estimated on pre-treatment data t < T0. Once the
coefficients are estimated, we predict the treated unit’s counterfactual outcome in the post-
treatment periods t ≥ T0. The treatment effect at each time point is computed as:

δt = ROA1t − ˆROA
(0)

1t (2)

And the average treatment effect over the post-treatment period is given by:

∆̂T =
1

T − T0 + 1

T∑
t=T0

δt (3)

That is, ArCo tests whether treatment reduced the predictive skill of the model, as measured
by an increased gap between the performance of treated and untreated companies. This is
similar in spirit to Synthetic Control.

Compared to DiD, ArCo allows for non-parallel pre-trends and greater flexibility in coun-
terfactual construction, while retaining a transparent model structure and interpretable
parameters.

4. The influence of environmental markets on companies’ return on assets

4.1. Results of DiD

4.1.1. Main results

Table 5 reports the DiD estimates for ROA of the eight different panels. Since Tianjin
implemented carbon emission trading in 2013, and Hubei and Chongqing followed in 2014, a
staggered DiD approach is required in Panel (4). Given that the standard TWFE staggered
DiD suffers from negative weighting, two DiD models are employed for Panel (4): the
conventional TWFE DiD estimates reported in Table 5, and the estimates corrected following
Callaway and Sant’Anna (2021) (Stata’s csdid), presented in Table 6.

A comparison between Panels (2), (3), and (4) reveals that, relative to companies in non-
pilot regions, the 2013 carbon emission trading pilots significantly reduce companies’ ROA
by 0.865%. However, this negative effect becomes statistically insignificant when compared
to companies in regions already subject to pollution emission trading, as indicated by the
insignificant coefficients of -0.385% in Panel (3) and -0.121% in Panel (4) (estimated by
csdid). Assuming that the effect of carbon emission trading is homogeneous across pilot
regions, this finding suggests that prior implementation of pollution emission trading miti-
gates the adverse impact of carbon trading on companies’ ROA. Consequently, the marginal
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Table 5: DiD estimates for the eight panels.

(1) (2) (3) (4) (5) (6) (7) (8)

Pollution, Carbon, Add. carbon, Add. carbon, Carbon & energy, Add. energy, Add. electricity, Add. electricity,

relative to all no policy pollution pollution no policy pollution carbon pollution

ROA ROA ROA ROA ROA ROA ROA ROA

Treat×Post 0.504* -0.618** -0.385 0.018 1.172*** -0.051 -0.352 1.097

(0.276) (0.248) (0.607) (0.423) (0.377) (0.312) (0.291) (1.083)

HHI -0.141 0.356 -0.032 -0.018 0.408 -0.488 1.683 -1.737

(0.462) (0.574) (0.782) (0.781) (0.574) (0.859) (1.042) (1.171)

lnAGE -1.464*** -1.427*** -1.633*** -1.630*** -1.427*** -1.717*** -1.976*** -1.679***

(0.093) (0.119) (0.161) (0.161) (0.119) (0.172) (0.200) (0.237)

lnEMP 0.354*** 0.336*** 0.556*** 0.556*** 0.333*** 0.778*** 1.200*** 0.750***

(0.080) (0.097) (0.175) (0.175) (0.097) (0.181) (0.212) (0.232)

OCCAR 3.587*** 3.585*** 3.780*** 3.779*** 3.576*** 3.759*** 4.611*** 3.402***

(0.157) (0.196) (0.314) (0.314) (0.197) (0.343) (0.388) (0.422)

DER -0.534*** -0.520*** -0.505*** -0.506*** -0.518*** -0.547*** -0.502*** -0.504***

(0.041) (0.051) (0.073) (0.073) (0.052) (0.088) (0.103) (0.100)

Constant 3.226*** 3.558*** 2.226* 2.204* 3.260*** 0.794 -3.522** 1.011

(0.638) (0.779) (1.329) (1.331) (0.776) (1.382) (1.629) (1.792)

N 54219 33665 17912 17912 33665 15154 11935 8498

R2 0.450 0.445 0.493 0.493 0.445 0.504 0.542 0.497

Note: Standard errors clustered at the company level are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Table 6: CSDiD estimates (ATT) for carbon on top of pollution trading.

Simple Weighted Before and after treatment By group By calendar period

Simple -0.121

(-0.563)

Avg before -0.723**

(-0.299)

Avg after -0.147

(0.579)

Group -0.092

(0.558)

Calendar -0.207

(0.571)

Note: Standard errors are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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effect of carbon emission trading relative to existing pollution emission trading—that is, the
adding carbon effect—is statistically insignificant.

Similarly, a comparison between Panels (2) and (5) shows that the 2013 carbon emission
trading pilots suppressed companies’ ROA relative to non-pilot regions. However, the simul-
taneous implementation of carbon emission trading and energy-use rights trading in Hubei
and Sichuan in 2016 appears to have significantly enhanced companies’ ROA by 1.172%
compared to those in non-pilot regions. Nevertheless, it remains unclear whether this im-
provement stems from the carbon emission trading, the energy-use rights trading, or the
interaction between the two. Assuming the effect of carbon emission trading is consistent
across all provinces, it can be inferred that energy-use rights trading have offset or mitigated
the negative impact of carbon emission trading on companies’ ROA.

Furthermore, Panels (1), (2) and (5) show that the observed policy effects—whether positive
or negative—are identified only relative to companies in non-pilot regions. Combining this
observation with the results from Panels (3), (4), (6), (7), and (8), it becomes evident that for
regions where either carbon emission trading or pollution emission trading had already been
implemented, further introduction of energy-use rights trading or green electricity trading
does not significantly produce any additional impact on companies’ ROA. In other words,
regardless of whether carbon emission trading (since 2013) or pollution emission trading
(since 2007) had positive or negative effects on companies, newly introduced environmental
markets do not further amplify or mitigate these effects.

Unlike Panels (1), (2) and (5), there are no clean subsamples to estimate the effects of energy-
use rights trading or green electricity trading relative to non-pilot regions. As a result, we are
unable to identify their interaction effects with carbon emission trading or pollution emission
trading. The analysis can only capture the additional energy or additional electricity effects
conditional on the existing carbon or pollution trading schemes.

4.1.2. Event study

To ensure the validity of the DiD estimation, it is crucial that the treatment and control
groups exhibit parallel trends in the outcome variable prior to the introduction of the carbon
market. Violation of this assumption may lead to biased estimates and misinterpretation of
the policy effect. We implement an event study by interacting year-specific dummy variables
with the treatment group indicator, as follows:

ROAit = α +
4∑

j ̸=−1, j≥−4

θjDi,t−j + δXit + µi + λt + εit (4)

where ROAit denotes the return on assets of company i in year t, which serves as the
dependent variable; Di,t−j is a set of dummy variables indicating the time distance j from
the treatment year for company i. The period j = −1 is omitted and serves as the baseline
year; θj captures the effect of being j years away from the policy implementation, relative
to the policy year; Xit is a vector of control variables; µi and λt represent company fixed
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effects and year fixed effects, respectively; εit is the error term. The coefficients θj and their
95% confidence intervals are visualized in Figure 2.

Figure 2: Event Study: Dynamic effects.

Figure 2 reveals that Panels (4) and (7) exhibit a clear upward trend even before the policy
implementation, implying that the corresponding DiD estimates may be biased. To address
this concern, we present the ArCo results as a supplementary and comparative analysis.

4.2. Results of ArCo

Table 7 presents parameters for pre-treatment fit of ArCo using the untreated companies
as explanatory variables. Figure 3 presents the treatment effects estimated by ArCo of the
eight panels.

Figure 3: ArCo estimates for the eight panels.

As shown in Figure 3, the ArCo model in Panel (1) does not perform well in fitting and
predicting the effects of pollution emission trading. The short pre-treatment period limits
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Table 7: ArCo estimates for the eight panels.

(1) (2) (3) (4) (5) (6) (7) (8)

Pollution, Carbon, Add. carbon, Add. carbon, Carbon & energy, Add. energy, Add. electricity, Add. electricity,

relative to all no policy pollution pollution no policy pollution carbon pollution

ROA ROA ROA ROA ROA ROA ROA ROA

HHI -1.710*** -0.747* 2.809** 1.044 -0.888 -1.757*** -0.255 2.881*

(0.515) (0.409) (1.376) (0.753) (0.851) (0.533) (0.362) (1.686)

lnAGE -1.339*** -0.584*** 0.591 -0.306 -0.135 -0.527*** -0.832*** -1.670***

(0.196) (0.112) (0.548) (0.244) (0.213) (0.135) (0.081) (0.531)

lnEMP 0.851*** 0.481*** 0.657** 0.564*** 0.459*** 0.889*** 0.812*** 1.062***

(0.111) (0.058) (0.262) (0.122) (0.140) (0.094) (0.049) (0.212)

OCCAR 2.945*** 2.016*** 5.972*** 3.026*** 2.154*** 3.554*** 2.522*** 1.248***

(0.221) (0.130) (0.706) (0.255) (0.236) (0.233) (0.124) (0.398)

DER -1.079*** -0.869*** -0.356* -0.701*** -0.840*** -0.872*** -0.894*** -0.590**

(0.098) (0.064) (0.203) (0.100) (0.083) (0.089) (0.051) (0.295)

ROAcontrol -0.674 0.787*** 1.164** -0.480 1.194*** 0.849*** 1.027*** 1.449***

(4.185) (0.204) (0.478) (0.573) (0.293) (0.190) (0.146) (0.532)

HHIcontrol 8.757 -20.641* -5.629 24.340** 10.716 18.672* 9.257** -32.742

(120.708) (11.264) (33.008) (11.700) (15.799) (10.105) (4.030) (25.774)

AGEcontrol 13.749 2.485* -11.512** -0.015 -0.109 1.371 1.767** -2.884

(33.445) (1.268) (4.704) (3.136) (2.110) (1.084) (0.756) (2.728)

EMPcontrol 60.225 -12.973*** 1.662 -0.739 1.762 0.779 0.110 -3.808

(207.845) (3.431) (10.561) (2.893) (3.971) (3.723) (1.330) (10.741)

OCCARcontrol 32.584 1.492 1.798 15.719** -4.493 -3.660 -0.358 2.214

(72.526) (2.109) (8.335) (7.604) (4.186) (3.962) (1.369) (8.899)

DERcontrol 0.924 1.033 18.183* 12.192** -0.100 0.328 2.849* 6.592

(22.265) (2.462) (9.550) (4.768) (3.450) (2.094) (1.643) (6.164)

Constant -468.344 95.796*** -24.038 -18.248 -17.742 -16.027 -14.075 25.547

(1517.878) (26.395) (83.580) (16.304) (29.644) (27.511) (9.895) (87.572)

N 2229 4593 300 1318 1596 2541 8348 400

R2 0.236 0.159 0.278 0.213 0.190 0.248 0.165 0.161

Note: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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ArCo’s ability to fit the model accurately and make reliable predictions, as evidenced by the
wide confidence intervals.

Panels (2) and (5) indicate that, relative to non-pilot regions, carbon emission trading tends
to suppress companies’ ROA, whereas the simultaneous implementation of carbon emission
trading and energy-use rights trading appears to enhance companies’ ROA. A comparison
between Panel (2) and Panels (3) and (4) further shows that pollution emission trading
mitigates the negative impact of carbon emission trading on companies’ ROA.

In addition, Panels (3), (4), (6), (7), and (8) consistently show that the introduction of
energy-use rights trading or green electricity trading on top of existing carbon or pollution
emission trading does not produce any further adding or marginal effects. These findings
are consistent with the conclusions drawn from the DiD estimates.

The mechanisms underlying these findings are twofold. Compared to a single market mecha-
nism, multiple overlapping environmental markets provide companies with opportunities for
cross-market arbitrage. Additionally, companies with prior experience in emission trading
may be better positioned to leverage such experience to optimize industrial restructuring
and enhance resource allocation efficiency when participating in newly established markets.

4.3. Interpretation

Table 8 presents the average treatment effects estimated by DiD and ArCo of the eight
panels.
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Table 8: Comparison of DiD and ArCo estimates.

Panels Control group DiD ArCo

(1) Pollution all
0.504∗ -28.422

(0.276) (98.395)

(2) Carbon no policy
-0.618∗∗ -1.944∗∗∗

(0.248) (0.596)

(3) Additional carbon pollution
-0.385 2.590

(0.607) (3.098)

(4) Additional carbon pollution
-0.121 0.223

(0.563) (1.660)

(5) Carbon and energy no policy
1.172∗∗∗ 1.750∗∗

(0.377) (0.888)

(6) Additional energy pollution
-0.051 0.844

(0.312) (0.720)

(7) Additional electricity carbon
-0.352 0.216

(0.291) (0.479)

(8) Additional electricity pollution
1.097 0.193

(1.083) (2.642)

Note: Standard errors are reported in parentheses. Panel (4)
reports estimates based on CSDiD. * p < 0.1, ** p < 0.05, ***
p < 0.01.

As previously discussed, the ArCo model in Panel (1) performs poorly in fitting and pre-
dicting the effects of pollution emission trading due to the short pre-treatment period. This
limitation undermines the credibility of ArCo’s estimates in this case. Apart from this, the
results of DiD and ArCo are generally consistent in terms of statistical significance. How-
ever, discrepancies arise between the two methods regarding the direction of the estimated
coefficients in terms of the additional effects. To explain this divergence, Table 9 compares
the underlying causal inference frameworks of the two approaches.
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Table 9: Comparison of inference components between DiD and ArCo.

DiD ArCo

Residuals Regression residuals:
ε̂it = Yit −X ′

itβ̂
Error variance: σ̂2 = 1

n−k

∑
ε̂2it

Residuals from untreatment
regression: ε̂it = Yit −X ′

itθ̂
Error variance:
σ̂2 = 1

nc−k

∑
i∈C ε̂2it

Standard error SE(β̂j) =

√
[V̂ar(β̂)]jj , where

V̂ar(β̂)] = σ̂2[(X ′X)−1]jj
(without cluster)
Measures uncertainty of
coefficient β

SEt =

√
X ′

tV̂ar(θ̂)Xt, where

V̂ar(θ̂) = σ̂2(X ′X)−1

Measures prediction uncertainty

of the counterfactual Ŷ
(0)
1t

Confidence interval β̂ ± z1−α/2 · SE(β̂)
An average treatment effect CI

Ŷ
(0)
1t ± z1−α/2 · SEt

A time-varying CI at the
predicted counterfactual

Target of inference H0 : β = 0 H0 : δt = Y1t − Ŷ
(0)
1t = 0

(1) Explanation of divergent estimates direction of additional effects

The divergence in coefficient signs observed in the additional effect models (e.g., Panel (3),
(4), (6) and (7)) arises from the fundamental differences in the identification assumptions of
the DiD and ArCo methods. Specifically, the DiD estimator relies on the parallel trends as-
sumption to ensure causal identification, which requires that the treated and control groups
exhibit similar outcome trajectories during the pre-treatment period. Formally, this assump-
tion can be expressed as:

E[ROA
(0)
1t −ROA

(0)
0t ] = constant, ∀t < T0 (5)

Under this assumption, the DiD estimator computes the average treatment effect as the
difference in post-treatment means between the treated and control groups:

β̂ =
1

T1

T∑
t=T0

(
ROA1t − ¯ROA0t

)
(6)

However, in the context of China’s environmental market reforms, companies involved in
later-stage policies, such as energy-use rights and green electricity trading, often exhibit
stronger pre-treatment growth due to prior investments in green transformation. DiD fails
to account for this inherent upward trend, resulting in bias as it attributes post-treatment
differences—partially driven by this natural momentum—to the policy itself.
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In contrast, ArCo does not rely on the parallel trends assumption but constructs counter-
factual trajectories through pre-treatment covariate-outcome modeling (cf. Table 9):

ˆROA
(0)

1t = X ′
1tθ̂ (7)

The treatment effect at each period is then estimated as:

δ̂t = ROA1t − ˆROA
(0)

1t (8)

By explicitly modeling the relationship between covariates and outcomes, ArCo is more
robust to heterogeneous pre-treatment trends. This explains why ArCo often yields opposite
signs compared to DiD in settings where treated companies exhibit strong pre-treatment
growth trajectories. DiD is biased in such cases, but ArCo is not.

(2) Explanation of divergent statistical significance in Panel (1)

The difference in statistical significance observed in Panel (1) between DiD and ArCo pri-
marily stems from the short pre-treatment period. ArCo requires a sufficiently long and
stable pre-treatment window to reliably fit the counterfactual model. In Panel (1), where
pollution trading is examined, the pre-treatment period is relatively short, leading to unre-

liable estimation of θ̂ and, consequently, low confidence in the construction of ˆROA
(0)

1t .

By contrast, DiD computes post-treatment differences in means and pools residuals to esti-
mate standard errors globally:

ŜE(β̂) =
√
σ̂2 · (X ′X)−1

jj , σ̂2 =
1

n− k

∑
i,t

ε̂2it (9)

Although this approach risks underestimating uncertainty in staggered treatment settings, it
is less sensitive to short pre-treatment periods and therefore yields more stable, albeit poten-
tially biased, estimates. This explains why DiD in Panel (1) reports statistically significant
results, while ArCo does not.

4.4. Robustness tests of DiD and ArCo estimates

4.4.1. The influence of industrial factors

In the baseline analysis, a multi-layered counterfactual design is constructed by leveraging
the staggered timing and spatial overlap of various environmental market pilots, in order to
mitigate bias and threats to identification caused by policy overlaps or temporal misalign-
ment. The robustness check introduces an additional industry-level restriction by retaining
only those sectors simultaneously subject to carbon emission trading, carbon emission trad-
ing, energy-use rights trading, and green electricity trading. This restriction ensures that
the treatment and control groups share a common policy exposure history prior to the im-
plementation of the specific pilot under study—that is, both have previously been regulated
under similar environmental markets—thereby enhancing group comparability. By exclud-
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ing industries that had never been affected by a particular policy, this approach reduces
structural heterogeneity and improves the explanatory validity of the estimated effects.

Accordingly, we systematically compile the industry coverage of environmental market pilots
based on official documents issued by local governments (Appendix A.1, A.2 and A.3),
and map them to the industry categories used in the stock exchange classification system
(Appendix A.4), based on which the regression sample is further refined. We find that all
types of environmental markets across different regions commonly cover industry codes C, D,
and G. Accordingly, we retain only these three industries in the final sample and re-estimate
the regressions across the eight panels. The results based on DiD and ArCo are presented
in Figure 4 and Figure 5, respectively.

Figure 4: DiD estimates for ROA in relevant industries.

Note: 95% confidence intervals are shown in the figure; Panel (4) reports estimates based
on CSDiD.
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Figure 5: ArCo estimates for ROA in relevant industries.

Figure 4 and Figure 5 indicate that the DiD and ArCo estimates remain consistent in both
sign and statistical significance. These findings confirm the robustness of the main regression
results.

4.4.2. The influence of tax

Policy effects may be mediated through fiscal mechanisms. For instance, companies par-
ticipating in environmental markets often benefit from preferential tax treatments, such as
exemptions, rebates, deductions, or direct fiscal subsidies. Consequently, the observed in-
crease in post-tax ROA may partly reflect tax incentives rather than genuine improvements
in operational performance. To address this concern, we recalculate the ROA before tax (see
Table 10) to replace the original ROA. We then re-estimate the models for the nine sub-
samples using the revised metric, and the DiD and ArCo results are presented in Figure 6
and Figure 7, respectively.
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Table 10: ROA before and after tax.

Abatement cost Description

ROA Net profit/Average total assets

ROA before tax (Total profit + Financial expenses)/Average total assets

Note: If the denominator is unavailable or equals zero, the result is recorded as NULL. Average Total Assets = (Ending
Balance of Total Assets + Beginning Balance of Total Assets) / 2

Figure 6: DiD estimates for ROA before tax.

Note: 95% confidence intervals are shown in the figure; Panel (4) reports estimates based
on CSDiD.
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Figure 7: ArCo estimates for ROA before tax.

Figure 6 and Figure 7 indicate that the regression outcomes based on pre-tax ROA ex-
hibit a similar level of statistical significance as those based on post-tax ROA, regardless of
whether ArCo or DiD is employed. This consistency reinforces the robustness of the baseline
estimates.

5. Discussion

5.1. The overall influence of environmental markets on companies’ return on assets

While the primary contribution of this study lies in identifying the marginal effects of en-
vironmental markets, it is also necessary to revisit the overall impact of such markets on
companies’ abatement costs. This helps to align the present research with existing literature
and provides a broader interpretation of the policy’s economic consequences.
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Most studies on environmental markets adopt the TWFE DiD framework and focus pri-
marily on the overall treatment effects of environmental markets. While these findings
provide valuable insights into long-term policy outcomes, the TWFE DiD approach suffers
from known biases arising from time-varying treatments (Callaway and Sant’Anna, 2021),
multiple treatments (Goldsmith-Pinkham et al., 2024), and potential interactions between
pre-existing or concurrently implemented policies. These issues are particularly problematic
in the Chinese context, where environmental markets have been implemented in multiple
phases with staggered regional participation and overlapping policies.

To ensure comparability with prior research, we replicate the empirical strategies commonly
employed in the literature, applying both DiD and ArCo methods. The TWFE DiD esti-
mates are presented in Figure 8.

Figure 8: DiD estimates for ROA with static control group.

Carbon emission trading pilots were introduced in different regions in 2013, 2014, and 2016.
To account for this staggered implementation, we further employ the csdid approach pro-
posed by Callaway and Sant’Anna (2021), consistent with the methodology used in Panel
(4). The results are reported in Table 11.

The ArCo estimates are presented in Figure 9.
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Table 11: CSDiD estimates (ATT) for carbon dioxide emission trading.

Simple Weighted Before and after treatment By group By calendar period

Simple ATT -0.404*

(0.218)

Avg before 0.202

(0.130)

Avg after -0.478**

(0.220)

Group -0.376*

(0.219)

Calender -0.366*

(0.214)

Note: Standard errors are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Figure 9: ArCo estimates for ROA with static control group.

As shown in Figure 8 and Table 11, when using a static control group, the DiD regression re-
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sults suggest that energy-use rights trading significantly improve companies’ ROA, whereas
green electricity trading appears to suppress ROA, and carbon emissions trading is insignif-
icant in TWFE staggered DiD but significant in staggered DiD improved by Callaway and
Sant’Anna (2021). The ArCo estimates in Figure 9 align with the TWFE DiD results for
energy-use rights trading and with the CSDiD estimates for carbon emission trading but
diverge from the TWFE DiD estimates for carbon emission trading.

5.2. Comparisons with existing literature

Building on the replication results from the previous section, this part systematically com-
pares three sets of estimates to assess how different empirical strategies influence the em-
pirical conclusions. Table 12 summarizes the differences in coefficient signs across methods,
including: (1) the original DiD estimates reported in the literature (columns labeled “Con-
clusions”); (2) our replication results using the same control group design, applying both
DiD and ArCo (rows labeled “All”); and (3) our estimates after excluding contaminated
samples (rows (1)–(8)).

Table 12: Comparison with existing literature and replication.

Existing studies This paper

Markets Control Study Methods Conclusions Control DiD ArCo

Pollution emis-
sion trading in
2007

All Chen et al. (2022b) DiD The emissions trading program is negatively
associated with real earnings management.

(1) All 0.504* -28.422

Liu et al. (2022) DiD Our findings support the strong version of
the Porter hypothesis.

Carbon emission
trading in 2013 &
2014

All Luan et al. (2025) DiD Regulated enterprises exhibit significantly
better average economic performance

(2) Non-pilot -0.618** -1.944***

(3) Pollution -0.385 2.590

Li et al. (2025) DiD Carbon emission trading system signifi-
cantly increases the implied cost of equity
capital for firms in the pilot areas.

(4) Pollution -0.121 0.223

All -0.226/-0.404* -1.285**

Energy-use rights
and carbon emis-
sion trading in
2016

All Wang et al. (2024) DiD China’s energy-consuming rights trading
can alleviate firms’ financial resource mis-
match.

(5) Non-pilot 1.172*** 1.750***

Wang et al. (2025) DiD The energy right trading policy is helpful to
improve the carbon performance.

(6) Pollution -0.051 0.844

All 0.709*** 1.635*

Green electricity
trading in 2021

All Tang et al. (2023) DiD Green power trading significantly alleviates
the policy-covered firms’ debt burden.

(7) Carbon -0.352 0.216

(8) Pollution 1.097 0.193

All -1.365*** 0.7091

Note: * p < 0.1, ** p < 0.05, *** p < 0.01

As shown in Table 12, the existing literature presents mixed findings regarding the direc-
tion and magnitude of the impact of carbon emission trading on companies’ abatement
costs. Our replication results align with the conclusions of Li et al. (2025), suggesting that
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carbon emission trading reduces companies’ ROA. However, after sequentially excluding
contaminated samples, we find that the effect of carbon emission trading exhibits notable
heterogeneity. Specifically, compared to companies in regions that had already implemented
pollution emission trading, ROA shows no significant change following the introduction of
carbon emission trading. In contrast, the negative effect becomes more pronounced and sta-
tistically significant when compared to companies in regions with no prior pilot programs.

For energy-use rights trading, the existing literature generally agrees that it promotes com-
panies’ ROA, and our replication results are consistent with these findings. However, after
excluding contaminated samples in a phased manner, we similarly observe heterogeneous ef-
fects. That is, relative to companies in regions already subject to pollution emission trading,
energy-use rights trading does not lead to significant changes in ROA. In contrast, compared
to companies in non-pilot regions, the positive effect becomes stronger and more statistically
significant.

Previous studies commonly suggest that green electricity trading alleviates companies’ abate-
ment costs, a conclusion supported by our replication results using the DiD approach. How-
ever, after employing cleaner samples, both the DiD and ArCo estimates reveal that this
effect becomes statistically insignificant. This suggests that prior findings for the effects of
green electricity trading may be biased, and such bias likely stems from the use of contami-
nated samples in previous studies.

6. Conclusions

This study examines the impact of China’s environmental markets on companies’ return on
assets. To address the identification challenges posed by time-varying treatments, multi-
ple overlapping policies, and their potential interactions with existing regulations, we apply
phase-specific and region-specific DiD estimations by sequentially excluding contaminated
samples. This allows us to capture the dynamic effects and marginal abatement costs as-
sociated with market implementation. Furthermore, we introduce the more flexible ArCo
method to supplement and validate the DiD results. Both DiD and ArCo produce largely
consistent conclusions regarding the significance and direction of policy effects, and these
findings remain robust after accounting for industry and fiscal factors. Accordingly, we draw
the following conclusions:

Carbon emissions trading reduces companies’ ROA, whereas existing pollution emissions
trading mitigates this negative effect. Specifically, when comparing Panel (2) with Panels (3)
and (4), the estimated effect changes from –0.618% to a statistically insignificant negative
value under the DiD approach, and from –1.044% to a statistically insignificant positive
value under the ArCo approach. Moreover, the simultaneous implementation of energy-
use rights trading further offsets the adverse impact of carbon markets on firm performance.
Comparing Panel (2) with Panel (5), the estimated effect shifts from -0.618% to 1.172% under
DiD, and from –1.044% to 1.750% under ArCo, suggesting that overlapping environmental
markets provide opportunities for cross-market arbitrage.
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Additionally, the further addition of energy-use rights or green electricity trading in regions
already covered by carbon or pollution markets generates no significant marginal effects,
as shown in Panel (6), (7), and (8) of Table 1, indicating no additional financial costs or
benefits from overlapping policies.

To ensure comparability with prior research, we replicate commonly used empirical strate-
gies and find that the results are broadly consistent with prior literature, confirming the
validity and comparability of our findings. However, after sequentially excluding contami-
nated samples, we observe clear heterogeneity. The effects of carbon emissions trading and
energy-use rights trading on companies’ ROA are insignificant in regions already covered by
pollution emissions trading (see Panels (3), (4), (6), (7) and (8) of Table 1), but become
more pronounced and statistically significant when compared to regions without prior pilot
programs. Specifically, for carbon emissions trading (Panel (2)), the estimated effect changes
from -0.404% to -0.618% under DiD and from -1.285% to -1.944% under ArCo. For energy-
use rights trading (Panel (5)), the estimated effect shifts from 0.709% to 1.172% under DiD
and from 1.635% to 1.750% under ArCo.

There are several caveats to our research. We study the impact of overlap between various
permit markets, but local, provincial and national authorities use a range of additional pol-
icy instruments to affect (a) emissions and (b) profitability. We use province (and industry)
to proxy “treatment” as we do not know which companies are actually regulated. CSMAR
reports consolidated accounts; we know the location and hence regulation of a firm’s head-
quarters, but we do not know the location of its subsidiaries, let alone intra-firm reallocation
in response to regulation. We observe listed companies, but unlisted ones are regulated too.

These caveats notwithstanding, we find that carbon permits reduced the return on assets,
that energy-use permits increased the return on assets, while pollution permits and green
electricity permits had no discernible effect.
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Appendix

Table A.1: Carbon emission trading pilots and coverage.

Pilots Start
year

Coverage scope (summarized from official documents) Industry
classifica-
tion codes

Shenzhen 2013 Power supply, water supply, gas supply; data centers; public transport;
metro systems; hazardous waste treatment, solid waste, sludge, and wastew-
ater treatment; ports and terminals; flat panel display, information-based
chemicals and other specialty chemicals; manufacturing and other sectors.

C, D, G, I, N

Guangdong 2013 Power generation, cement, steel, petrochemicals, papermaking, civil avia-
tion, ceramics, construction, sanitation, and transportation.

C, D, G, E

Shanghai 2013 Power generation, power grid, and heat supply industries; auto glass pro-
duction; data centers; steel, petrochemicals, chemicals, non-ferrous metals,
building materials, textiles, papermaking, rubber, chemical fibers and other
industrial enterprises; aviation, ports, shipping, tap water supply enter-
prises; shopping malls, hotels, commercial office buildings.

C, D, G, E, F,
H, I, L

Beijing 2013 Thermal power generation, cement production, heat generation and supply,
other power generation, electricity supply, data centers, integrated circuit
manufacturing; wastewater treatment and reuse, water supply; urban rail
transit, public buses, road freight transport, taxis, postal services; petro-
chemicals, other services, and miscellaneous sectors.

C, D, G, H, I,
O

Tianjin 2013 Steel, chemical, petrochemical, oil and gas extraction, aviation, non-ferrous
metals, pharmaceutical manufacturing, machinery manufacturing, agricul-
tural and sideline food processing, electronics manufacturing, food and bev-
erage, mining, rubber and plastic products.

C, D, G, B

Hubei 2014 Heat generation and supply, cement, textile industry, chemical industry,
non-ferrous and other metal products, food and beverage, pharmaceuticals,
papermaking, glass and other building materials, ceramic manufacturing,
automobile manufacturing, equipment manufacturing, steel, petrochemicals,
water supply, and other industries.

C, D, G

Chongqing 2014 Automobile manufacturing, electronics manufacturing, pharmaceuticals;
other non-ferrous metal smelting and rolling; food, tobacco, alcohol, bever-
age and tea production; glass and glass products manufacturing; papermak-
ing; ceramics; oil and gas; cement grinding process; machinery manufac-
turing; other industrial sectors; chemical industry, steel industry, flat glass,
petrochemicals.

C, D, G

Sichuan 2016 Power generation, petrochemicals, building materials, steel, non-ferrous
metals, and other energy-intensive industries.

C, D, G

Fujian 2016 Power generation, steel, chemical, petrochemicals, non-ferrous metals, civil
aviation, building materials, papermaking, ceramics.

C, D, G
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Table A.2: Energy-use rights trading pilots and coverage.

Pilots Start year Coverage (summarized from official documents) Industry
classifi-
cation
codes

Henan 2016 Key energy-consuming enterprises (industrial enterprises) with an annual
total energy consumption of 5,000 tons of standard coal.

All

Zhejiang 2016 Energy use trading participants include municipal and county-level gov-
ernments and relevant enterprises.

All

Fujian 2016 Energy users include those required to participate in the energy use trad-
ing system and those that participate voluntarily.

All

Sichuan 2016 Key energy-using entities are provisionally defined as enterprises and in-
stitutions within the province with an annual total energy consumption
of 10,000 tons of standard coal equivalent or more (including equivalent
forms).

All

Table A.3: Green electricity trading pilots and coverage.

Pilots Start year Coverage (summarized from official documents) Industry
classification
codes

Beijing 2021 Market participants include power generation enterprises (initially fo-
cused on renewable energy companies such as wind and solar power),
electricity users (those with green electricity consumption and certifica-
tion needs, willing to bear the environmental value of green electricity),
power retailers, and grid companies.

All

Guangdong 2021 Market participants include power generation enterprises (initially fo-
cused on renewable energy companies such as wind and solar power),
electricity users (including those purchasing electricity via the power
market, self-generation enterprises, entities bearing consumption re-
sponsibility weight, including both total and non-hydro responsibility
weights), power retailers, and grid companies.

All

Inner Mongolia 2021 Market participants include power generation enterprises (such as active
coal-fired units in the western Inner Mongolia grid, wind and solar
power projects that meet market access conditions, and those allowed to
participate directly in trading), electricity users (excluding residential
and agricultural users; all commercial and industrial users with voltage
level of 10 kV and above are generally required to participate), power
retailers, and new business entities.

All except A
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Table A.4: Code Classification of Industries and Description.

Code Industry classification Description

A Agriculture, Forestry, Animal Hus-
bandry and Fishery

Farming, forestry, animal husbandry, aquaculture, etc.

B Mining Industry Coal, petroleum, and metal ore extraction and processing.

C Manufacturing Industrial manufacturing such as electrical, mechanical,
food, pharma.

D Electricity, Heat, Gas and Water Sup-
ply

Power generation, gas supply, heating, and water services.

E Construction Housing construction, civil engineering, interior and exte-
rior works.

F Wholesale and Retail Trade Commodity wholesale, retail, automobile sales, etc.

G Transportation, Storage and Postal
Services

Road, rail, water, air transport, logistics, and courier ser-
vices.

H Accommodation and Catering Services Hotels, restaurants, food delivery, etc.

I Information Transmission, Software
and IT Services

Telecommunications, internet services, software develop-
ment, etc.

J Financial Industry Banking, insurance, securities, trust services, etc.

K Real Estate Real estate development and property management ser-
vices.

L Leasing and Business Services Leasing, consulting, human resources outsourcing, etc.

M Scientific Research and Technical Ser-
vices

R&D institutions, inspection/testing, and professional ser-
vices.

N Water Conservancy, Environment and
Public Utilities

Water services, environmental protection, and waste treat-
ment.

O Resident Services, Repairs and Other
Services

Repair services for vehicles, electronics, and household
products.

P Education All types of schools and education-related services.

Q Health and Social Work Hospitals, clinics, elderly care, childcare services, etc.

R Culture, Sports and Entertainment Media, publishing, film, gaming, sports, etc.

S Public Administration, Social Security
and Organizations

Government agencies and social security institutions.
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del Ŕıo González, Pablo. 2007. The interaction between emissions trading and renewable electricity support
schemes. an overview of the literature. Mitigation and adaptation strategies for global change 12: 1363–
1390. 2

Fischer, Carolyn, and Louis Preonas. 2010. Combining policies for renewable energy: Is the whole less than
the sum of its parts? . 2

Goldsmith-Pinkham, Paul, Peter Hull, and Michal Kolesár. 2024. Contamination bias in linear regressions.
American Economic Review 114 (12): 4015–4051. 2, 5, 12, 13, 27

Goodman-Bacon, Andrew. 2021. Difference-in-differences with variation in treatment timing. Journal of
econometrics 225 (2): 254–277. 2, 5

Herrnstadt, Evan, Anthony Heyes, Erich Muehlegger, and Soodeh Saberian. 2021. Air pollution and criminal
activity: Microgeographic evidence from chicago. American Economic Journal: Applied Economics 13 (4):
70–100. 2

Hintermann, Beat, and Marc Gronwald. 2019. Linking with uncertainty: the relationship between eu ets
pollution permits and kyoto offsets. Environmental and Resource Economics 74: 761–784. 2

Huang, Ying, Kai Fang, Gengyuan Liu, and Sujian Guo. 2025. Has the carbon emission trading scheme
induced investment leakage in china? firm-level evidence from china’s stock market. Energy Economics
141: 108091. 8, 10

International Energy Agency. 2022. China energy system carbon neutrality roadmap. Information notice,
International Energy Agency (IEA). Revised version. Summary available on page 3. 3

Lanoie, Paul, Mark Thomas, and Joan Fearnley. 1998. Firms responses to effluent regulations: pulp and
paper in ontario, 1985-1989. Journal of Regulatory Economics 13 (2): 103–120. 3

Li, Donghui, Zhanxiang Zhang, and Xin Gao. 2025. The impact of carbon emission trading system on the
implied cost of equity capital. International Review of Economics & Finance : 104157. 3, 29

Li, Yuan, and Lei Zhu. 2019. Study on the synergistic effects between energy-saving trading and carbon mar-
ket and the strategic choose of energy-intensive industries. Journal of Industrial Technological Economics
38 (7): 136–142. 2

Liu, Donghua, Shenggang Ren, and Wenming Li. 2022. So2 emissions trading and firm exports in china.

35



Energy Economics 109: 105978. 3, 8, 29
Luan, Limin, Pengfei Liu, and Yingdan Mei. 2025. The impact of pilot carbon market on firms’ performance

in china. Energy Economics 142: 108164. 2, 3, 5, 7, 8, 10, 29
Morthorst, Poul Erik. 2001. Interactions of a tradable green certificate market with a tradable permits

market. Energy policy 29 (5): 345–353. 2
Porter, Michael. 1996. America’s green strategy. Business and the environment: a reader 33: 1072. 3
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