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Abstract

Critical cost-efficiency index (or CCEI), proposed in Afriat (1973) and Varian

(1990), is one of the most commonly used measures of departures from rationality.

We show that this index is equivalent to a particular notion of the just-noticeable

difference, that is, a measure of dissimilarity between alternatives that is sufficient

for the agent to tell them apart. Therefore, we show that CCEI evaluates the con-

sumer’s cognitive inability to discriminate among options.

Keywords: utility maximisation, generalised axiom of revealed preference, critical

cost-efficiency index, interval order, just-noticeable difference
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1 Introduction

It is most common in the economic literature to assume that choices of a consumer are

determined via maximisation of a utility function — to the extent of it being synony-

mous to rationality. The influential papers by Afriat (1967), Diewert (1973), and Varian

(1982) investigate the testable restrictions of this hypothesis with the stipulation that the

researcher can monitor only a finite number of expenditure data; i.e., where an observa-

tion consists of a consumption bundle chosen by the individual at the prevailing prices.

The generalised axiom of revealed preference (GARP, for short), proposed in these works,

exhausts all the observable implications of utility maximisation.

∗I am grateful to Miguel Ballester, Ian Crawford, and John Quah for encouragement.
†Department of Economics, University of Sussex, Jubilee Building, Falmer, Brighton BN1 9SL, United

Kingdom. Email: P.K.Dziewulski@sussex.ac.uk.
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A problematic feature of GARP lies in its deterministic nature. A dataset either

satisfies this restriction and, thus, is rationalisable, or it does not. In practice, it is de-

sirable to evaluate how severe a violation is once it occurs. Afriat (1973) addresses this

issue by introducing the critical cost-efficiency index (CCEI, for short). This measure of

departures from rationality determines the minimal reduction of the consumer budget,

uniform across all observations, that is sufficient for the data to be supportable with a

utility maximisation. It evaluates the level of tolerance for wasted expenditure that is

required for the choices to be rationalisable. Varian (1990) generalises this measure by

allowing for adjustments of the budget to vary across observations.

Despite its ad hoc nature and criticism, CCEI remains the most commonly used

measure of GARP violations.1 We believe this is for two reasons: One, it has an appealing

economic interpretation in terms of the share of wealth wasted by the consumer relatively

to a fully rational one.2 Two, it is convenient for empirical applications, since it can be

evaluated using computationally efficient methods.3

In this paper we argue that, in addition, CCEI admits an intuitive behavioural inter-

pretation in terms of the level of sensory discrimination. Specifically, we show that the

index is equivalent to the just-noticeable difference — a measure of dissimilarity between

alternatives that is sufficient for the agent to tell them apart.

The evidence from psychophysiology suggest that people can not discern between two

physical stimuli unless their intensities are significantly (noticeably) different.4 This idea

was incorporated to choice theory by Armstrong (1950) and Luce (1956), who claimed

that due to imperfect powers of discrimination of the human mind, consumers are unable

to distinguish between goods/bundles that are similar. They postulated that any form

of imperfect discrimination would require for indifferences to be non-transitive.5 Hence,

such a phenomenon is inconsistent with utility maximisation.

Following Fishburn (1970), we address the above issue by characterising preference of

an individual with an interval order.6 We postpone the formal definition of this notion

1See Sippel (1997), Harbaugh et al. (2001), Andreoni and Miller (2002), Choi et al. (2007), Fisman

et al. (2007), Ahn et al. (2014), Choi et al. (2014), and Halevy et al. (2018) for empirical studies employing

CCEI as a measure of revealed preference violations. For critical analysis of the index see Echenique

et al. (2011), Apesteguia and Ballester (2015), Dean and Martin (2016), or Dziewulski (2017).
2Halevy et al. (2018) show that it is closely related to the money metric.
3See Smeulders et al. (2014) for details.
4See Laming (1997) or Algom (2001) for a comprehensive summary of this literature.
5Although it may be impossible to distinguish option x from y and y from z, alternatives x and z

may be sufficiently different for the agent to strictly discriminate between them.
6Alternatively, Luce (1956), Scott and Suppes (1958), and Beja and Gilboa (1992) address the problem

of noticeable differences by characterising preferences with semiorders.
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until Section 2; however, an interval order can be thought of as a strict binary relation

P for which there is a utility u and a positive threshold function δ that satisfy: xPy if

and only if u(x) > u(y) + δ(x). Therefore, option x is strictly preferable to y if it yields

a significantly higher utility, where the threshold is determined by the number δ(x). If

neither xPy nor yPx, then x is hedonically indistinguishable from y, denoted by xIy.

Notice that the latter constitutes a non-transitive indifference relation.

To capture the consumer’s inability to differentiate among alternatives, we introduce

a notion of a noticeable difference — defined as a number λ > 1 such that λ′ ≥ λ implies(
λ′y

)
Py, for all non-zero bundles y.7 Therefore, it is the relative change in the size of a

bundle that is sufficient for the agent to perceive the difference.8 This concept is strongly

inspired by the well-known Weber-Fechner law in psychophysics according to which people

are unable to discriminate between two intensities of a physical stimulus unless the ratio

of their magnitudes exceeds a particular value.9 Ours is a natural extension of this idea

to consumer choice over multi-dimensional domains.

We state our first main result in Section 3. In Theorem 1 we show that Afriat’s critical

cost-efficiency index is equal to the inverse of the (uniform) just-noticeable difference; i.e.,

the least noticeable difference λ > 1 for which there is an interval order P satisfying the

aforementioned condition and rationalising the observed choices. Therefore, apart from

being a measure of budgetary adjustments, CCEI can be interpreted in terms of the

level of imperfect sensory discrimination. In Section 4 we extend the equivalence result

to Varian’s generalisation of this measure. Theorem 2 argues that the index coincides

with the variable just-noticeable difference; a measure of cognitive ability to discriminate

among alternatives that may fluctuate from one instance to another.

The proof of the two equivalence results is postponed until Section 5. We conclude

the paper in Section 6 with a discussion on the revealed preference relations induced by

the models of consumer choice presented in this paper.

Our results pertain to a broad class of choice problems introduced in Forges and

Minelli (2009). In particular, none of the results depend on linearity of budget sets, as in

Afriat (1973) or Varian (1990). We begin Section 2 by formalising our framework.

7This notion is analogous to the one introduced in Dziewulski (2017). However, unlike in that paper,

we represent consumer preference with an interval order, rather than a semiorder.
8For example, for λ = 1.01 the option (λy) with 1% more of each commodity would be noticeably

different and hedonically preferable to y. Note that, this imposes a weak form of monotonicity on P .
9Although Stevens’ power law seems to better explain sensory discrimination than Weber-Fechner’s

law, the latter is considered to be the best first approximation. See, e.g., Algom (2001).
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2 Preliminaries

In this section we introduce the main assumptions our analysis and revise the basic

properties of interval orders that are crucial to our results.

2.1 Setup

Suppose a researcher monitors a finite number of observations t ∈ T , each consisting of

a set of alternatives Bt ⊆ Rℓ
+ available to the consumer and a bundle of ℓ goods xt ∈ Bt

selected from the set. The set of observations is given by O =
{

(Bt, xt) : t ∈ T
}

. With

a slight abuse of the notation, we denote cardinality of the set by T .

Throughout this paper we consider choices over generalised budget sets as in Forges

and Minelli (2009). In particular, we assume that set Bt is compact and downward

comprehensive, for all t ∈ T .10 Moreover, there is some y ∈ Bt such that y ≫ 0.11 Let

the upper bound of the set Bt be denoted by

∂Bt :=
{
y ∈ Bt : if z ≫ y then z ̸∈ Bt

}
and suppose that, for any y ∈ ∂Bt and scalar θ ∈ [0, 1), we have θy ∈ Bt \ ∂Bt. That

is, for any non-zero y ∈ Rℓ
+, ray

{
θy : θ ≥ 0

}
intersects the boundary ∂Bt exactly once.

Finally, we assume that in each observation at least one commodity is chosen in a strictly

positive amount, i.e., xt ̸= 0. This is not without loss of generality, but it simplifies our

analysis and is insignificant from the empirical point of view.

It is straightforward to verify that our framework includes linear budget sets, as in

the original work of Afriat (1967), Diewert (1973), and Varian (1982). In such a case, a

set of alternatives is given by Bt :=
{
y ∈ Rℓ

+ : pt · y ≤ pt · xt

}
, for some pt ∈ Rℓ

++, while

the upper boundary ∂Bt of the set is the corresponding budget line.

2.2 Interval orders

Here we provide a formal definition and some basic properties or interval orders. For a

comprehensive treatment of this topic, see Aleskerov et al. (2007).12

Following Wiener (1914) and Fishburn (1970), an interval order over a set X is a

binary relation P that is (i) irreflexive, i.e., not xPx, for all x ∈ X, and (ii) satisfies the

10We endow Rℓ
+ with the natural product order ≥, i.e., we have x ≥ y if xi ≥ yi, for all i = 1, 2, . . . , ℓ.

A set B ⊆ Rℓ
+ is downward comprehensive whenever y ∈ B and y ≥ z implies z ∈ B, for all z ∈ Rℓ

+.
11We denote x ≫ y whenever xi > yi, for all i = 1, 2, . . . , ℓ.
12I am grateful to Ali Khan for pointing me to this publication.
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interval order condition, i.e., if xPy and x′Py′ then either xPy′ or x′Py, for all x, y, x′,

and y′ in X. It is easy to verify that any interval order is asymmetric and transitive.

In the remainder of this paper, we associate P with the strict preference. If neither

xPy nor yPx then alternative x is indistinguishable from y, which we denote by xIy.

Observe that the latter is reflexive and symmetric, but not transitive.

An important characteristic of interval orders pertains to their utility representation.

Following Fishburn (1970), for any interval order P defined over a countable set X there

is a utility u : X → R and a positive threshold function δ : X → R+ such that

xPy if and only if u(x) > u(y) + δ(x). (1)

Thus, option x is strictly preferred to y if and only if the utility of the former is sufficiently

higher than that of the latter, where the threshold is determined by δ(x). Clearly, this

implies that not yPx is equivalent to u(x) + δ(y) ≥ u(y). Under some regularity con-

ditions, this representation can be extended to interval orders over more general spaces.

See Bridges (1985, 1986) and Chateauneuf (1987) for details.

Given that the representation of an interval order involves a utility function u, any

such relation is inherently related to a weak order, i.e., a complete, reflexive, and transitive

binary relation.13 Consider a relation ⪰, with its strict part ≻ defined as

x ≻ y if not zPx and zPy, for some z ∈ X.

In particular, since P is irreflexive, xPy implies x ≻ y. Moreover, if neither x ≻ y nor

y ≻ x, then x ∼ y. In the remainder of this paper we say that such a relation ⪰ is induced

by the interval order P . Consider the following proposition.

Proposition 1. Relation ⪰ induced by an interval order P is complete, transitive, and

reflexive. In particular, its strict part ≻ is transitive and irreflexive.

A proof of this result can be found in Aleskerov et al. (2007, p. 60). Nevertheless, as

the argument is rather short, we state it below to keep this paper self-contained.

Proof of Proposition 1. Clearly, the relation ⪰ is complete. To prove the remainder of the

result, it suffices to show that ≻ is asymmetric and negatively transitive. We prove the

former by contradiction. Suppose that x ≻ y and y ≻ x. Thus, there is some z, z′ ∈ X

such that not zPx and zPy, as well as not z′Py and z′Px. However, by the interval

order condition, zPy and z′Px imply either zPx or z′Py, which yields a contradiction.

13Weak orders are usually identified with rational preferences. We avoid the latter term purposely.
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To show that ≻ is negatively transitive, assume that not x ≻ y and not y ≻ z. This is

true only if z′Py implies z′Px, and z′Pz implies z′Py, for all z′ ∈ X. Thus, if z′Pz then

z′Px, and so not x ≻ z, which completes the proof.

One can easily verify that if the interval order P admits a representation as in (1),

for some utility u and threshold δ, then x ≻ y implies u(x) > u(y). Thus, the weak order

induced by P is consistent with the ranking generated by the utility function u. Because

of this, we interpret the relation ⪰ as the“true”preference, i.e., as if perfect discrimination

were possible. In other words, if the consumer could hedonically distinguish between any

two alternatives in X, or equivalently, if the threshold function δ were constantly equal

to zero, the agent’s preference would be characterised by ⪰.

3 Afriat’s efficiency and noticeable differences

Before we proceed with the first main theorem of this paper, we define a generalised

notion of the critical cost-efficiency index by Afriat (1973), that is appropriate to our

framework. Then, we introduce the concept of the uniform just-noticeable difference.

3.1 Afriat’s efficiency index

A set of observations O =
{

(Bt, xt) : t ∈ T
}

is rationalisable with efficiency parameter

e ∈ [0, 1] if there is a locally non-satiated utility function u : Rℓ
+ → R that satisfies:

if y ∈ eBt then u(xt) ≥ u(y), (2)

for all t ∈ T , where eBt :=
{
ey : y ∈ Bt

}
. This condition requires that the observed

choice xt is preferable to any other bundle in the adjusted set eBt. In particular, whenever

e = 1 this restriction coincides with utility maximisation.

Afriat’s (critical cost-)efficiency index, denoted by e∗A, is the supremum over all effi-

ciency parameters e ∈ [0, 1] for which the dataset O is rationalisable as in (2).

Whenever we consider linear budget sets Bt :=
{
y ∈ Rℓ

+ : pt · y ≤ mt

}
, for some

strictly positive prices pt ∈ Rℓ
++ and wealth mt > 0, for all t ∈ T , Afriat’s efficiency index

determines the minimal fraction (1 − e∗A) of wealth wasted by the consumer relatively to

a fully rational one. Indeed, in such a case, we have eBt =
{
y ∈ Rℓ

+ : pt · y ≤ emt

}
, for

any efficiency parameter e. See Figure 1 for a graphical interpretation.
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Figure 1: Dataset O =
{
(B1, x1), (B2, x2)

}
can not be rationalised with maximisation of a

locally non-satiated utility u. Since x1 is selected from B1 with x2 in the interior of the set, this

would imply u(x1) > u(x2). Analogously, we would have u(x2) > u(x1), yielding a contradiction.

Once we scale the two budget sets by a sufficiently large e ∈ [0, 1] to the point where x2 is

excluded from eB1, it is possible to rationalise the perturbed dataset as in (2).

3.2 Uniform just-noticeable difference

In this subsection we specify a model of consumer choice in which the agent is unable to

perfectly discriminate among alternatives and her insensitivity to differences remains con-

stant across observations. Formally, consider a consumer whose preference is represented

by an interval order P . In each decision problem t ∈ T , her choice is determined by max-

imisation of the relation P over the set of available options Bt. We capture the agent’s

sensitivity to differences among alternatives with a noticeable difference. Specifically, we

say that the relation P admits a noticeable difference λ > 1 whenever

λ′ ≥ λ implies (λ′y)Py,

for all non-zero y ∈ Rℓ
+. That is, the number λ determines by how much one should

inflate a consumption bundle y in order to guarantee that the agent perceives the change.

Roughly speaking, it is the relative change in sizes of two bundles that is sufficient for the

agent to discern between them. This is inspired by the Weber-Fechner law in psychophys-

iology according to which people are unable to discriminate between two intensities of a
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physical stimulus unless their ratio exceeds a particular constant.

Set O =
{

(Bt, xt) : t ∈ T
}

is rationalisable with a uniform noticeable difference λ > 1,

if there is an interval order P that admits the noticeable difference λ and satisfies:

if y ∈ Bt then not yPxt, (3)

for all t ∈ T . The latter condition requires that, for each observation t ∈ T , none of

the available options is noticeably preferable to the selected bundle xt. Therefore, this

model assumes that the consumer choice is determined by maximisation of an interval

order that admits the particular noticeable difference.14

Whenever we assume that P is representable by a utility u and threshold δ as in

condition (1), the relation admits the noticeable difference λ if and only if

λ′ ≥ λ implies u(λ′y) > u(y) + δ(λ′y),

for all non-zero y ∈ Rℓ
+. Moreover, condition (3) is equivalent to

y ∈ Bt implies u(xt) + δ(y) ≥ u(y),

for all t ∈ T . Therefore, the utility of bundle (λ′y) must be sufficiently greater than that

of y, where the threshold is determined by δ(λ′y). Similarly, for any observation t ∈ T ,

the utility of any available option y ∈ Bt may not be significantly greater than the utility

of the selected bundle xt, i.e., value u(y) can not exceed u(xt) + δ(y).

The uniform just-noticeable difference, denoted by λ∗
U , is the infimum over all uniform

noticeable differences λ > 1 for which the dataset is rationalisable.

3.3 The first equivalence result

Our first result regards the equivalence between Afriat’s efficiency index and the uniform

just-noticeable difference. Consider the following theorem.

Theorem 1. For any set of observations O, Afriat’s efficiency index is equal to the

inverse of the uniform just-noticeable difference, i.e., we have e∗A = 1/λ∗
U .

The above theorem is self-explanatory. It states that the minimal shift of the ob-

servable budget sets that is necessary to rationalise a set of observations with a locally

non-satiated utility function is equivalent to the inverse of the least noticeable difference

under which the choices can be rationalised as in (3).

14Our definition of rationalisation does not require for the order P to be representable as in (1).
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We postpone the proof of this result until Section 5, however, our argument is based

on the following observation. Whenever a dataset O =
{

(Bt, xt) : t ∈ T
}

is rationalisable

for some efficiency parameter e, it has to satisfy a particular generalisation of GARP.

Specifically, for any cycle C :=
{

(a, b), (b, c), . . . , (y, z), (z, a)
}

in T×T such that xs ∈ eBt,

for all (t, s) ∈ C, it must be that xs ∈ ∂(eBt), for all (t, s) ∈ C. That is, for any cycle C
in which the choice from observation s is available in the deflated budget set at time t,

for all pairs (t, s) ∈ C, each bundle along the sequence must belong to the upper bound

of the corresponding adjusted set of alternatives.15 Recall Figure 1.

In our argument, we show that whenever a set of observations satisfies the above

property for some e ∈ [0, 1], it can be rationalised with any uniform noticeable difference

λ > 1/e.16 This implies that Afriat’s efficiency index is bounded from below by the inverse

of the uniform just-noticeable difference. Conversely, whenever the set of observations is

rationalisable with a noticeable difference λ > 1, it satisfies the condition stated above

for all e ≥ 1/λ. This excludes the possibility that e∗A > 1/λ∗
U .

4 Varian’s efficiency and noticeable differences

Here we extend Theorem 1 to the index proposed in Varian (1990). Specifically, we show

that the measure coincides with a notion of the variable just-noticeable difference.

4.1 Varian’s efficiency index

Afriat’s efficiency index is constructed by deflating each budget set Bt by a uniform

efficiency parameter e. In contrast, Varian (1990) considers a measure where each budget

set Bt is being shifted by a different parameter et. A dataset O =
{

(Bt, xt) : t ∈ T
}

is

rationalisable with an efficiency vector (et)t∈T , where et ∈ [0, 1], for all t ∈ T , if there is

a locally non-satiated utility u : Rℓ
+ → R satisfying

if y ∈ etBt then u(xt) ≥ u(y), (4)

for all t ∈ T , where etBt :=
{
ety : y ∈ Bt

}
. Analogously to Afriat’s measure, this

condition requires that, for all observations t ∈ T , the choice xt is preferable to any other

15Clearly, for e = 1 the condition coincides with GARP.
16In particular, we show that any such set of observations is rationalisable by an interval order P that

admits a representation as in (1). Moreover, the corresponding utility u and threshold function δ are

continuous, with no loss of generality. Finally, under some additional conditions imposed on the budget

sets, the utility u is quasiconcave. See Section 5 for details.
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Figure 2: Recall the dataset from Figure 1. To rationalise the choices as in (4), it suffices to

deflate the set B1 by a sufficiently small e1 ∈ [0, 1], to the point where x2 is excluded from e1B1.

At the same time, there is no need to perturb the set B2, Thus, e2 can be equal to 1.

bundle in the perturbed set etBt. In particular, whenever (et)t∈T is the unit vector, it

coincides with utility maximisation. See Figure 2.

Let F : RT
+ → R be a well-defined, continuous, and increasing aggregator function

that maps an efficiency vector (et)t∈T to a real number. Varian’s (critical cost-)efficiency

index, denoted by e∗F , is the supremum of F
(
(et)t∈T

)
with respect to all vectors (et)t∈T

for which the dataset O is rationalisable as in (4).17 Thus, this measure evaluates the

minimal budget adjustments (with respect to the aggregator F ) that are required for the

data to be supported with utility maximisation. Equivalently, it determines the least

money waste that is necessary for the set of observations to be rationalisable.

Whenever the aggregator function is given by F
(
(et)t∈T

)
= min

{
et : t ∈ T

}
, then

Varian’s efficiency index is equivalent to the Afriat’s measure of revealed preference vio-

lations. Thus, the latter is a special case of the former.

17In the original definition of Varian (1990), the aggregator function F is given by the mean of squares.

However, other methods of aggregation may be considered. For alternative specifications, see Tsur (1989),

Cox (1997), Alcantud et al. (2010), or Smeulders et al. (2014).
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4.2 Variable just-noticeable difference

The model of consumer choice in Section 3.2 assumes that the agent’s ability to discern

among alternatives is constant across observations. It is not unreasonable to consider an

instance in which the noticeable difference varies in time.18 Formally, suppose that in

each observation t ∈ T the consumer is maximising an interval order Pt that admits a

noticeable difference λt > 1, where Pt and λt may differ for each t.

In order to capture changes in the agent’s sensitivity to differences among alternatives,

rather than variations in the underlying “true” preference, we restrict our attention to

interval orders that are consistent with respect to the induced weak order. Let ⪰t denote

the weak order induced by the interval order Pt, for t ∈ T . A profile (Pt)t∈T is consistent

in the above sense whenever ⪰t = ⪰s, for all t, s ∈ T . This is to say that, even though the

agent may be maximising a different ordering Pt in each observation, the underlying“true”

preference relation, i.e., as if perfect discrimination were possible, remains unchanged.

Roughly speaking, whenever interval orders (Pt)t∈T can be represented as in condition

(1), there is a utility function u such that

xPty if and only if u(x) > u(y) + δt(x),

for some (potentially different) threshold functions δt, for all t ∈ T .

A set of observations O =
{

(Bt, xt) : t ∈ T
}

is rationalisable with variable noticeable

differences (λt)t∈T if there is a profile (Pt)t∈T of consistent interval orders such that, for

each t ∈ T , relation Pt admits the noticeable difference λt and

y ∈ Bt implies not yPtxt, (5)

i.e., the interval order Pt is maximised over Bt in observation t. This notion of ratio-

nalisation captures the idea that, even though the underlying “true” preference of the

consumer remain unchanged throughout the experiment, the level of cognitive ability to

discriminate among options varies from one instance to another.

Let F : RT
+ → R be a well-defined, continuous, and increasing aggregator function.

The variable just-noticeable difference, denoted by λ∗
F , is the infimum of F

(
(λt)t∈T

)
over

all noticeable differences (λt)t∈T that rationalise O as in (5). In other words, conditional

on the criterion F , it measures the least noticeable differences that are sufficient to explain

the observations with the model presented above. We show in the Section 5 that whenever

F
(
(λt)t∈T

)
:= max

{
λt : t ∈ T

}
, the uniform and variable just-noticeable differences

coincide. Thus, the former is a special case of the latter.

18In this paper we are agnostic about the source of such variations.
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4.3 The second equivalence result

In our second theorem we argue that Varian’s efficiency index coincides with the variable

just-noticeable difference. Before we state the result, recall that F : RT
+ → R denotes a

well-defined, continuous, and increasing aggregator function.

Theorem 2. For any set of observations O and aggregator function F , the variable just-

noticeable difference λ∗
F equals the infimum of F

(
(1/et)t∈T

)
with respect to all efficiency

parameters (et)t∈T for which the dataset is rationalisable as in (4). Conversely, Var-

ian’s efficiency index e∗F equals the supremum of F
(
(1/λt)t∈T

)
with respect to all variable

noticeable differences (λt)t∈T that rationalise the set as in (5).

Evaluating Varian’s efficiency index is equivalent to determining the corresponding

variable just-noticeable difference. Thus, this measure can be interpreted in terms of the

consumer’s cognitive ability to differentiate among alternatives.

The proof of the above result is similar to the argument supporting Theorem 1. In fact,

we show that any efficiency parameters (et)t∈T that rationalise the set of observations as in

(4) are essentially equal to the inverses of variable noticeable differences (λt)t∈T supporting

the data as in (5). First of all, a dataset O =
{

(Bt, xt) : t ∈ T
}

is rationalisable for

efficiency indices (et)t∈T only if, for any cycle C =
{

(a, b), (b, c), . . . , (y, z), (z, a)
}

in T ×T

such that xs ∈ etBt, for all (t, s) ∈ C, we have xs ∈ ∂(etBt), for all (t, s) ∈ C. Clearly, it

is a generalisation of the condition discussed at the end of Section 3.

As shown in Section 5, a dataset obeys the above restriction only if it is rationalis-

able with any variables noticeable difference (λt)t∈T such that λt ≥ 1/et, for all t ∈ T ,

and λt > 1/et, for some t ∈ T .19 Given monotonicity and continuity of the aggrega-

tor F , the variable just-noticeable difference is bounded from below by the supremum

of F
(
(1/et)t∈T

)
. Conversely, whenever the set O is rationalisable with some noticeable

differences (λt)t∈T , it can be supported with any efficiency parameters (et)t∈T that satisfy

et ≥ 1/λt, for all t ∈ T . This excludes the possibility that λ∗
F strictly greater than the

supremum of F
(
(1/et)t∈T

)
. We prove the latter part of the result analogously.

In general, Varian’s efficiency index is not equal to the inverse of the variable just-

noticeable difference. However, for particular specifications of the aggregator function F ,

19In particular, we show that the set of observations is rationalisable with a profile of consistent interval

orders (Pt)t∈T that is, in addition, monotone with respect to the noticeable difference. This is to say

that, if λt ≤ λs then Ps ⊆ Pt, for any t, s ∈ T . Therefore, whenever the agent is affected by a lower

noticeable difference, she is able to differentiate among a greater number of alternatives. Moreover,

analogously to the case in Section 3.2, each interval order Pt can be represented with a continuous

utility u (uniform across observations) and some continuous threshold δt, for t ∈ T . Finally, under some

additional conditions on budget sets Bt, the function u is quasiconcave, with no loss of generality.
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the equivalence between the two measures holds in this stronger sense.

Corollary 1. Suppose that the aggregator function F : RT
+ → R is given by the geometric

mean, i.e., F
(
(zt)t∈T

)
:= T

√∏
t∈T zt. For any dataset O, Varian’s efficiency index is

equal to the inverse of the variable just-noticeable difference, i.e., we have e∗F = 1/λ∗
F .

Proof. By Theorem 2, we obtain

e∗F = sup T

√∏
t∈T

1

λt

= sup
1

T
√∏

t∈T λt

=
1

inf T
√∏

t∈T λt

=
1

λ∗
F

,

where the supremum and infimum are taken with respect to all noticeable differences

(λt)t∈T under which the set of observations O is rationalisable as in (5).

5 Proof of the equivalence theorems

We conduct the proof in four steps. First, we characterise datasets that can be ratio-

nalised with efficiency parameters, as in Section 4.1. Then, we discuss the necessary and

sufficient conditions under which observations are rationalisable with variable noticeable

differences, as in Section 4.2. In the third part, we employ these preliminary results to

prove Theorem 2. Since Theorem 1 is implied by the former, we postpone its proof until

the end of this section. Our arguments are constructive and provide a deeper understand-

ing of the relationship between efficiency indices and noticeable differences. Therefore,

we believe that the following auxiliary results are of interest in themselves.

Part 1: Rationalisation with efficiency vectors

Suppose that a set of observations O is rationalisable with a locally non-satiated utility

function for some efficiency vector (et)t∈T .

Axiom 1. For any cycle C =
{

(a, b), (b, c), . . . , (y, z), (z, a)
}
in T × T , if xs ∈ etBt, for

all (t, s) ∈ C, then xs ∈ ∂(etBt), for all (t, s) ∈ C.

This restriction requires that, for any cycle C induced by the dataset, in which the

choice from observation s is an element of the perturbed budget from observation t, for

all pairs (t, s) ∈ C, all bundles belong to the upper bounds of their respective sets. Notice

that, whenever (et)t∈T is the unit vector, Axiom 1 is equivalent to the generalised version

of GARP in Forges and Minelli (2009).20

20Moreover, whenever sets Bt are linear, for all t ∈ T , this condition coincides with the original

formulation of GARP as in Afriat (1967), Diewert (1973), and Varian (1982).
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Necessity of Axiom 1 for this form of rationalisation follows immediately from the

definition. Indeed, for any locally non-satiated utility u that rationalises O, it must be

that xs ∈ etBt implies u(xt) ≥ u(xs), for any t, s ∈ T . Moreover, by local non-satiation

of u, the latter inequality must be strict whenever xs is not in the upper bound of etBt.

Therefore, for any cycle C specified as in the axiom, we obtain

u(xa) ≥ u(xb) ≥ u(xc) ≥ . . . ≥ u(xy) ≥ u(xz) ≥ u(xa),

which can be satisfied only if all the inequalities are binding. However, this requires for

xs to be in the upper bound of etBt, for all t ∈ T . In other words, Axiom 1 excludes the

possibility of any strict cycles in the revealed preference relation. Below we argue that it

is also a sufficient condition for the data to be rationalisable as in (4).

Proposition 2. Set of observations O is rationalisable with an efficiency vector (et)t∈T

if and only if it satisfies Axiom 1 for (et)t∈T .

The sufficiency part of the result can be supported with a simple modification of

the argument in Forges and Minelli (2009, Section 1.2). Thus, we omit the proof. It

follows immediately that a dataset is rationalisable as in (2) for some efficiency parameter

e ∈ [0, 1] if and only if it satisfies the axiom for et = e, for all t ∈ T .

Part 2: Rationalisation with noticeable differences

In this subsection we characterise sets of observations that can be rationalised with some

variable noticeable differences (λt)t∈T . We postpone our discussion on uniform noticeable

difference until Part 4. Consider the following condition.

Axiom 2. For an arbitrary cycle C =
{

(a, b), (b, c), . . . , (y, z), (z, a)
}
in T × T , we have

(λtxs) ̸∈ Bt, for some (t, s) ∈ C.

This condition requires that there is no cycle C in the set of observations such that

(λtxs) ∈ Bt, or equivalently, xs ∈ (1/λt)Bt, for all (t, s) ∈ C. Therefore, for any sequence

C with xs ∈ Bt, for all (t, s) ∈ C, at least one bundle xs has to be sufficiently close to the

upper bound of Bt. See Figure 3. In particular, the above condition refers to one element

cycles C =
{

(t, t)
}

. Hence, we have (λtxt) ̸∈ Bt, for all t ∈ T .

Showing that Axiom 2 is necessary for the set of observations to be rationalisable with

variable noticeable differences (λt)t∈T is quite straightforward. Suppose there is a profile

(Pt)t∈T of consistent interval orders that satisfy condition (5). In particular, whenever

14
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Figure 3: Recall the dataset form Figure 1. Although (λ2x1) belongs to B2, bundle (λ1x2) is

not an element of B1. Equivalently, we have x1 ∈ (1/λ2)B2 and x2 ̸∈ (1/λ1)B1. Therefore,

these observations satisfy Axiom 2 for the particular values of λ1, λ2.

(λtxs) ∈ Bt, it must be that not (λtxs)Ptxt and (λtxs)Ptxs, for any t, s ∈ T . Hence, we

have xt ≻t xs, where ⪰t denotes the weak order induced by Pt. Since the interval orders

are consistent, we can denote ⪰t = ⪰, for all t ∈ T .

The above observation implies that, for any cycle C =
{

(a, b), (b, c), . . . , (y, z), (z, a)
}

in T × T such that (λtxs) ∈ Bt, for all (t, s) ∈ C, we obtain

xa ≻ xb ≻ xc ≻ . . . ≻ xy ≻ xz ≻ xa,

which yields xa ≻ xa, by transitivity of ≻. However, this contradicts that the relation is

irreflexive (recall Proposition 1). Therefore, no such cycle is admissible. Below we claim

that the condition is also sufficient for this from of rationalisation.

Proposition 3. Set of observations O is rationalisable with variable noticeable differ-

ences (λt)t∈T if and only if it satisfies Axiom 2 for (λt)t∈T . In addition, with no loss

of generality, the corresponding profile (Pt)t∈T is monotone with respect to the noticeable

difference, i.e., if λt ≤ λs then Ps ⊆ Pt, for all t, s ∈ T .

This proposition consists of two parts. First of all, it states that Axiom 2 is both

necessary and sufficient for a dataset to be rationalisable with variable noticeable dif-

ferences. In addition, whenever the set is rationalisable in the above sense with some

15



consistent profile of interval orders (Pt)t∈T , it can be rationalised with a profile that is

monotone with respect to the noticeable difference. That is, for any two indices t, s ∈ T ,

if the noticeable difference admissible by Pt is lower than that by Ps, i.e., λt ≤ λs, then

the relation Pt is finer than Ps, or simply xPsy implies xPty, for any bundles x, y ∈ Rℓ
+.

Therefore, whenever the agent is affected by a lower noticeable difference, she is able to

discriminate among a greater number of alternatives.

The proof of the sufficiency part of the above proposition is rather extensive. For this

reason we conduct the argument via several lemmas.

Lemma 1. For all t ∈ T , there is a continuous function ht : Rℓ
+ \ {0} → R such that

(i) ht(θy) > ht(y), for all θ > 1 and non-zero y ∈ Rℓ
+;

(ii) ht(λ
′y) ≥ ht(y) + 1, for all λ′ ≥ λt and non-zero y ∈ Rℓ

+;

(iii) kts ≥ ht(xs) > kts − 1, where kts := inf
{
k ∈ Z : xs ∈ λk

tBt

}
, for all s ∈ T .

Proof. Define the gauge function γt : Rℓ
+ → R+ by γt(y) := inf

{
θ > 0 : y ∈ θBt

}
, for

all t ∈ T . Following Lemma 1 in Forges and Minelli (2009), this function is continuous,

homogeneous of degree one, and satisfies γt(y) ≤ 1 if and only if y ∈ Bt. Moreover,

observe that, we have γt(y) = 0 if and only if y = 0.

Take any continuous and strictly increasing function ft : [1, λt] → [0, 1] that satisfies

ft(1) = 0 and ft(λt) = 1. Let gt : R++ → R be an extension of ft to R++ given by

gt(z) :=
∑
k∈Z

[
f
(
z/λk−1

t

)
+ k − 1

]
χAk

(z),

where χAk
is the indicator function and Ak :=

(
λk−1
t , λk

t

]
, for all k ∈ Z. It can be easily

verified that the function is continuous and strictly increasing. We argue that if λ′ ≥ λt

and z > 0 then gt(λ
′z) ≥ gt(z) + 1. Since z ∈ Ak implies (λtz) ∈ Ak+1, we have

gt(λ
′z) − gt(z) ≥ gt(λtz) − gt(z) =

[
ft
(
λtz/λ

k
t

)
+ k

]
−

[
ft
(
z/λk−1

t

)
+ k − 1

]
= 1,

where the first inequality follows from monotonicity of gt. In addition, by construction of

the function gt, we know that z ∈ Ak implies k ≥ gt(z) > k − 1.21

Define ht : Rℓ
+ \ {0} → R by ht(y) := (gt ◦ γt)(y), which is a continuous function. To

show that it satisfies property (i), take any θ > 1 and a non-zero y ∈ Rℓ
+. By homogeneity

of the gauge function γt and strict monotonicity of gt, we obtain

ht(θy) = gt
(
γt(θy)

)
= gt

(
θγt(y)

)
> gt

(
γt(y)

)
= ht(y).

21 This is because z ∈ Ak implies k = g
(
λk

)
≥ gt(z) > g

(
λk−1

)
= k − 1.
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In order to prove (ii), take any λ′ ≥ λt and a non-zero y ∈ Rℓ
+. Since function γt is

homogeneous and gt(λ
′z) ≥ gt(z) + 1, for all z > 0, we conclude that

ht(λ
′y) = gt

(
γt(λ

′y)
)

= gt
(
λ′γt(y)

)
≥ gt

(
γt(y)

)
+ 1 = ht(y) + 1.

Finally, take any t, s ∈ T . By construction of kts, we have λkts
t ≥ γt(xs) > λkts−1

t , or

equivalently γt(xs) ∈ Akts . This implies kts ≥ gt
(
γt(xs)

)
> kts − 1, which proves (iii).

The proof of Lemma 1 does not require for Axiom 2 to be satisfied. In fact, given our

framework, existence of such functions is independent of that restriction. Next, we claim

that the axiom implies existence of a solution to a particular linear system.

Lemma 2. Suppose that a set of observations O obeys Axiom 2 for some (λt)t∈T . For

any functions (ht)t∈T specified in Lemma 1, there are numbers (ϕt)t∈T and strictly positive

numbers (µt)t∈T such that ϕs < ϕt + µt

[
ht(xs) + 1

]
, for all t, s ∈ T .

The system of inequalities specified in the above lemma is very similar to the well-

known Afriat’s inequalities. However, unlike in the classical case, we require that each of

the inequalities is strict. Nevertheless, the result can be proven in a relatively standard

fashion. Below, we modify the approach by Fostel et al. (2004).

Proof of Lemma 2. Denote qts :=
[
ht(xs) + 1

]
, for all t, s ∈ T . First, we claim that

whenever set O obeys Axiom 2 then for any cycle C =
{

(a, b), (b, c), . . . , (y, z), (z, a)
}

in

T × T , we have qts > 0, for some (t, s) ∈ C. Define kts := inf
{
k ∈ Z : xs ∈ λk

tBt

}
, for

any t, s ∈ T . If Axiom 2 holds, we have (λtxs) ̸∈ Bt, or equivalently kts ≥ 0, for some

(t, s) ∈ C. By Lemma 1(iii), this implies qts = ht(xs) + 1 > kts − 1 + 1 ≥ 0.

Next, we argue that there is some t ∈ T satisfying qts > 0, for all s ∈ T . Otherwise,

it would be possible to find indices a, b in T such that qab ≤ 0. Similarly, there would

be some c ∈ T such that qbc ≤ 0, and so on. Eventually, we would construct a cycle

C :=
{

(a, b), (b, c), . . . , (y, z), (z, a)
}

with qts ≤ 0, for all (t, s) ∈ C, violating Axiom 2.

We conduct the remainder of the proof by induction on the size of the set of observa-

tions. Whenever set O =
{

(Bt, xt)
}

is a singleton, it must be that qtt > 0. Clearly, this

guarantees that for any numbers ϕt and µt > 0, we have ϕt < ϕt + µtqtt.

To show the inductive step, suppose that the claim in the lemma holds for any set of

size (T − 1). Take any t ∈ T such that qts > 0, for all s ∈ T . By our earlier claim, such

an index exists. Denote T ′ := T \ {t}. Clearly, the sub-dataset O′ =
{

(Bs, xs) : s ∈ T ′}
satisfies Axiom 2 and has the cardinality of (T − 1). Thus, there exist numbers (ϕs)s∈T ′

and strictly positive numbers (µs)s∈T ′ such that ϕs < ϕr+µrqrs, for all s, r ∈ T ′. Take any
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ϕt satisfying ϕt < ϕs+µsqst, for all s ∈ T ′. Finally, choose µt > 0 such that ϕs < ϕt+µtqts,

for all s ∈ T . Since qts > 0, for all s ∈ T , it is always possible.

In the next step, we show that whenever there is a solution to the above system of

inequalities there exist particular functions u and vt, for t ∈ T . These are instrumental

for constructing interval orders that rationalise the data.

Lemma 3. Suppose that the system of inequalities in Lemma 2 has a solution. There are

continuous functions u : Rℓ
+ \ {0} → R and vt : Rℓ

+ \ {0} → R, for all t ∈ T , such that

(i) u(y) ≥ vt(y), for all non-zero y ∈ Rℓ
+;

(ii) λ′ ≥ λt implies vt(λ
′y) > u(y), for all non-zero y ∈ Rℓ

+;

(iii) y ∈ Bt implies u(xt) ≥ vt(y), for all non-zero y ∈ Rℓ
+;

(iv) vt(y) ≥ vs(y), for all non-zero y ∈ Rℓ
+ and t, s ∈ T such that λt ≤ λs.

Proof. Take any functions (ht)t∈T specified as in Lemma 1 and numbers (ϕt)t∈T , (µt)t∈T

that solve the inequalities in Lemma 2. Define function u : Rℓ
+ \ {0} → R by

u(y) := min
{
ϕs + µs

[
hs(y) + 1

]
: s ∈ T

}
.

Clearly, it is continuous and satisfies u(θy) > u(y), for all θ > 1 and non-zero y ∈ Rℓ
+.22

In addition, following Lemma 2, it must be that ϕt < u(xt), for all t ∈ T .

For any t ∈ T , define the continuous function wt : Rℓ
+ \ {0} → R by

wt(y) := min
{
u(xs) + µshs(y) : s ∈ T such that λs ≤ λt

}
.

Note that, for any t, s ∈ T such that λs ≤ λt, we have ws(y) ≥ wt(y), for y ∈ Rℓ
+ \ {0}.

Moreover, by Lemma 1(ii), for any t ∈ T , number λ′ ≥ λt, and a non-zero y ∈ Rℓ
+,

u(y) := min
{
ϕs + µs

[
hs(y) + 1

]
: s ∈ T

}
≤ min

{
ϕs + µs

[
hs(y) + 1

]
: s ∈ T such that λs ≤ λt

}
< min

{
u(xs) + µshs(λ

′y) : s ∈ T such that λs ≤ λt

}
=: wt(λ

′y),

where the strict inequality is implied by ϕs < u(xs) and hs(y) + 1 ≤ hs(λ
′y), for all s ∈ T

such that λ′ ≥ λt ≥ λs. Finally, following Lemma 1(iii), whenever y ∈ Bt then ht(y) ≤ 0.

In particular, this implies that, for any y ∈ Bt, we have

wt(y) ≤ u(xt) + µtht(y) ≤ u(xt).

22The later follows from ht(θy) > ht(y), for all θ > 1 and non-zero y, and µt > 0, for all t ∈ T .
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For each t ∈ T , let vt : Rℓ
+ \ {0} → R be given by vt(y) := min

{
u(y), wt(y)

}
, which is

continuous and satisfies u(y) ≥ vt(y), for all non-zero y ∈ Rℓ
+. Thus, condition (i) holds.

Next, take any λ′ ≥ λt and a non-zero y ∈ Rℓ
+. By our previous observations,

u(y) < min
{
u(λ′y), wt(λ

′y)
}

= vt(λ
′y),

since λ′ > 1. This proves property (ii). In addition, we have vt(y) ≤ wt(y) ≤ u(xt), for

any non-zero y ∈ Bt, which implies (iii). Finally, notice that if λt ≤ λs then

wt(y) ≥ ws(y) implies vt(y) ≥ vs(y),

for any y ∈ Rℓ
+ \ {0} and t, s ∈ T . Therefore, condition (iv) holds as well.

In order to complete the proof, take any functions u and vt specified in Lemma 3, and

define a continuous function δt : Rℓ
+ \ {0} → R by δt(y) :=

[
u(y) − vt(y)

]
, for all t ∈ T .

By Lemma 3(i), it is positive. Moreover, Lemma 3(ii) implies

u(y) + δt(λ
′y) < vt(λ

′y) + δt(λ
′y) = u(λ′y),

for any λ′ ≥ λt and y ∈ Rℓ
+ \ {0}, while Lemma 3(iii) guarantees that

u(xt) ≥ vt(y) = u(y) − δt(y),

for all non-zero y ∈ Bt. Finally, by property (iv) in Lemma 3, we obtain δt(y) ≤ δs(y),

for all vectors y ∈ Rℓ
+ \ {0} and indices t, s ∈ T that satisfy λt ≤ λs.

For each t ∈ T , construct a binary relation Pt by

xPty if and only if u(x) ≥ u(y) + δt(x),

with yPt0, for all non-zero y ∈ Rℓ
+. Clearly, relation Pt is an interval order satisfying

(λ′y)Pty, for all λ′ ≥ λt and non-zero y ∈ Rℓ
+. Moreover, if y ∈ Bt then not yPtxt.

Next, we show that the profile (Pt)t∈T is consistent with respect to the induced weak

order. Take any t, s ∈ T . We need to show that x ≻t y if and only if x ≻s y. By

construction, we have y ≻t 0, for all non-zero y ∈ Rℓ
+ and t ∈ T . Otherwise, if x ≻t y

then u(x) > u(y). Given that u(λsx) − δs(λsx) > u(x) and u(y) ≥ u(y) − δs(y), by

continuity of u and δs there is some z such that u(x) ≥ u(z)− δs(z) > u(y). By definition

of Ps, this implies not zPsx and zPsy, which is equivalent to x ≻s y.

Finally, to show that the profile is monotone with respect to the noticeable difference,

take any t, s ∈ T such that λt ≤ λs and suppose that xPsy. By definition of Ps,

u(x) > u(y) + δs(x) ≥ u(y) + δt(x),
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since δs(x) ≥ δt(x). Clearly, this implies xPty, which completes our proof.

Apart from proving that Axiom 2 is necessary and sufficient for a set of observations

to be rationalisable with variable noticeable differences, the above argument shows that,

without loss of generality, any rationalisable set can be supported by a profile of interval

orders that is monotone with respect to the noticeable difference. Therefore, this form

of rationalisation captures precisely the ability of the consumer to differentiate between

alternatives. In addition, any such profile can be represented with a continuous utility u

and threshold functions δt as in (1). The above properties come “for free”.

Finally, given the construction of the utility u in the proof of Lemma 3, it is easy to

show that whenever the complement of set Bt is convex, for all t ∈ T , then the function

u is quasiconcave. Therefore, in such a case, the hypothesis regarding convexity of the

“true” preference relation ⪰ is irrefutable with the observable data.

5.1 Part 3: Proof of Theorem 2

The second equivalence result is implied by the following two lemmas. First, we show

that any noticeable differences rationalising the set of observations are equal to inverses

of the corresponding efficiency parameters. Consider the following result.

Lemma 4. If set O is rationalisable with variable noticeable differences (λt)t∈T then it

is rationalisable with any efficiency vector (et)t∈T such that et ≤ 1/λt, for all t ∈ T .

Proof. Let dataset O satisfy Axiom 2 for some noticeable differences (λt)t∈T . For any

cycle C =
{

(a, b), (b, c), . . . , (y, z), (z, a)
}

in T × T , we have (λtxs) ̸∈ Bt, or equivalently

xs ̸∈ (1/λt)Bt, for some (t, s) ∈ C. This suffices for Axiom 1 to be satisfied for any

efficiency parameters (et)t∈T such that et ≤ 1/λt, for all t ∈ T .

The second result is the converse to Lemma 4. We show that efficiency parameters

are essentially equivalent to inverses of noticeable differences.

Lemma 5. Whenever a set of observations O is rationalisable with some efficiency pa-

rameters (et)t∈T , then it is rationalisable with any noticeable differences (λt)t∈T such that

λt ≥ 1/et, for all t ∈ T , and λt > 1/et, for some t ∈ T .

Proof. Take any numbers (λt)t∈T specified above. It suffices to verify that for any cycle

C =
{

(a, b), (b, c), . . . , (y, z), (z, a)
}

in T × T , we have (λtxs) ̸∈ Bt, for some (t, s) ∈ C.

If not, there is a cycle C with (λtxs) ∈ Bt, or equivalently xs ∈ (1/λt)Bt ⊆ etBt, for all

(t, s) ∈ C. Since et > 1/λt, for some t ∈ T , this implies xs ∈ (etBt) \ ∂(etBt), for some

pair (t, s) ∈ C, which contradicts that the dataset satisfies Axiom 1.
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Given the two lemmas, we proceed with the proof of Theorem 2. First, we argue that

the variable just-noticeable difference λ∗
F is equal to the infimum of F

(
(1/et)t∈T

)
with

respect to all efficiency vectors (et)t∈T for which the dataset is rationalisable. Denote the

latter value by v∗F . To show that λ∗
F ≥ v∗F , take any noticeable differences (λt)t∈T that

rationalise the data as in (5). By Lemma 4, there exists an efficiency vector (et)t∈T that

rationalise the data in the appropriate sense and satisfies

F
(
(λt)t∈T

)
= F

(
(1/et)t∈T

)
≥ v∗F .

By taking the infimum over the left hand side, we obtain λ∗
F ≥ v∗F . Suppose that λ∗

F > v∗F .

Given monotonicity and continuity of the aggregator F , along with Lemma 5, there are

vectors (λt)t∈T and (et)t∈T that rationalise the data in the respective sense and satisfy

λ∗
F > F

(
(λt)t∈T

)
≥ F

(
(1/et)t∈T

)
≥ v∗F .

However, this contradicts that λ∗
F is the variable just-noticeable difference. We prove the

second part of the theorem analogously. This concludes our argument.

5.2 Part 4: Proof of Theorem 1

This result follows from Proposition 3 and Theorem 2. First of all, notice that a set of

observations O is rationalisable with a uniform noticeable difference λ > 1 if and only if it

satisfies Axiom 2 for λt = λ, for all t ∈ T . Following the argument in Part 1, the condition

is necessary. To show that it is sufficient, recall that (by Proposition 3) whenever the

axiom is satisfied, there is a profile (Pt)t∈T of consistent interval orders that rationalise

the data. Moreover, the profile is monotone with respect to the noticeable difference,

hence, λt = λs = λ implies Pt = Ps = P , for all t, s ∈ T .

Given the above observation, it is easy to show that the uniform and the variable

just-noticeable differences coincide whenever F
(
(λt)t∈T

)
= max

{
λt : t ∈ T

}
.

To prove Theorem 1, recall that Afriat’s efficiency index is equivalent to the Varian’s

measure whenever F
(
(et)t∈T

)
= min

{
et : t ∈ T

}
. By Theorem 2, we obtain

e∗A = sup
{

min
{

1/λt : t ∈ T
}}

=
1

inf
{

max
{
λt : t ∈ T

}} =
1

λ∗
U

,

where the supremum and infimum are taken with respect to noticeable differences (λt)t∈T

for which the set of observations is rationalisable as in (5).
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6 On revealed preference

An important feature of revealed preference analysis is that it allows to infer consumer

preference form observable choices. In this section we investigate the properties of revealed

relations induced by the models discussed in Sections 4.1 and 4.2.

First, we focus on implications of the model with efficiency parameters that was

introduced in Section 4.1. Take any set of observations O =
{

(Bt, xt) : t ∈ T
}

and some

efficiency parameters e = (et)t∈T . Conditional on the vector e, we define the directly

revealed preference relation ⪰∗∗
e as follows:

x ⪰∗∗
e y whenever x = xt and y ∈ etBt, for some t ∈ T.

The relation is strict and denoted by x ≻∗∗
e y if x = xt and y ∈ etBt \ ∂(etBt), for some

t ∈ T , i.e., whenever bundle y is in the interior of etBt. The revealed preference relation

⪰∗
e is the transitive closure of ⪰∗∗

e . That is, we have x ⪰∗
e y whenever there is a sequence

{zk}Kk=1 such that z1 = x, zK = y, and zk ⪰∗∗
e zk+1, for all k = 1, . . . , (K − 1). The

relation is strict, and denoted by x ≻∗
e y, if zk ≻∗∗

e zk+1, for some k.

Proposition 4. Set O is rationalisable for efficiency parameters e = (et)t∈T if and only

if the strict revealed preference relation ≻∗
e is irreflexive.

It is straightforward to verify that the relation ⪰∗
e is consistent with the ordering

induced by any locally non-satiated utility function u that rationalises the set of observa-

tions for e = (et)t∈T . This is to say that: if x ⪰∗
e y then u(x) ≥ u(y), and x ≻∗

e y implies

u(x) > u(y). Therefore, the relation recovers preferences of the agent. This obviously

implies that set O is rationalisable in this sense only if ≻∗
e is irreflexive.

To show the converse, notice that we have x ≻∗
e x, for some x ∈ Rℓ

+, only if Axiom 1

is violated. Hence, by Proposition 2, it suffices for ≻∗
e to be irreflexive for the set of

observations to be rationalisable with efficiency indices e = (et)t∈T .

Next, we turn to the revealed preference relation induced by the model of consumer

choice with noticeable differences. Conditionally on noticeable differences λ = (λt)t∈T ,

we define the directly revealed strict preference relation ≻∗∗
λ , as follows:

x ≻∗∗
λ y whenever x = xt and (λty) ∈ Bt, for some t ∈ T.

The revealed strict preference relation ≻∗
λ is defined as the transitive closure of ≻∗∗

λ . That

is, for any x and y in Rℓ
+, we have x ≻∗

λ y if there is a sequence {zk}Kk=1 such that z1 = x,

zK = y, and zk ≻∗∗
λ zk+1, for all k = 1, . . . , (K − 1). Notice that, we do not define the

weak counterpart of ≻∗∗
λ or ≻∗

λ.

22



Proposition 5. Set O is rationalisable with noticeable differences λ = (λt)t∈T if and only

if the strict revealed preference relation ≻∗
λ is irreflexive.

We omit the proof. Suppose that set O is rationalisable with a profile (Pt)t∈T of con-

sistent interval orders, where Pt admits the noticeable difference λt, for each t ∈ T . It can

be shown that the revealed preference relation ≻∗
λ is consistent with the strict part of the

weak order ⪰ induced by the profile. That is, if x ≻∗
λ y then x ≻ y. Given our discussion

in Section 4.2, this allows us to recover the “true” preferences of the consumer, i.e., as

if perfect discrimination were possible. Once the interval orders admit a representation

as in (1), i.e, there is a utility u and a threshold function δt such that xPty if and only

if u(x) > u(y) + δt(y), for each t ∈ T , the relation ≻∗
λ is consistent with the ordering

induced by u, i.e., if x ≻∗
λ y then u(x) > u(y). Below we summarise the relationship

among the above notions of revealed preference.

Proposition 6. For any efficiency vector e = (et)t∈T and variable noticeable differences

λ = (λt)t∈T such that et = 1/λt, for all t ∈ T , we have ≻∗
e ⊂ ≻∗

λ = ⪰∗
e.

This observation follows directly from the definition of the revealed relations, hence,

we skip the proof. The proposition states that the revealed preference induced by the two

models are essentially equivalent. The only distinction pertains to revealed indifferences.

In particular, whenever a set of observations is rationalisable with efficiency parameters

e = (et)t∈T but fails to satisfy Axiom 2 for λt = 1/et, for all t ∈ T , it must be that x ⪰∗
e x,

for some bundle x ∈ Rℓ
+, i.e., a bundle is revealed indifferent to itself. For this reason,

efficiency parameters and noticeable differences coincide only in the limit.
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