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Abstract

This paper re-examines research that studies economic rationality using ex-

perimental data generated by nonhuman animals (e.g. rats, pigeons, monkeys,

etc.). The standard experimental methodology to elicit choices from nonhuman

animals allows a researcher to test three types of economic rationality: standard

deterministic utility maximization, average choice rationality, and random utility

maximization. Most of the research has evaluated whether animals satisfy aver-

age choice rationality. We describe the difference between these models and check

each type of rationality on capuchin monkey data from Chen et al. (2006). We

reject standard deterministic utility maximization, but cannot reject either average

choice rationality or random utility maximization. This paper is the first to provide

a statistical test for average choice rationality.
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1 Introduction

Experiments on decision making by nonhuman animals are thought to provide evidence

on whether violations of economic rationality by humans have evolutionary foundations.

Many experiments on nonhuman decision making follow the early research paradigm of

Kagel et al. (1975), Battalio et al. (1981), Kagel et al. (1981), Battalio et al. (1985), and

Kagel et al. (1995), which examine choice consistency of rats and pigeons using revealed

preference techniques on average choices (Afriat, 1967; Varian, 1982).1 However, pre-

vious work does not distinguish between three types of economic rationality: standard

deterministic utility maximization, average choice rationality, and random utility maxi-

mization. While this may seem like a subtle point, if researchers are trying to understand

evolutionary foundations of human decision-making, then it is critical that the same type

of economic rationality is being studied on both human and nonhuman animals.

We describe the choice elicitation method for nonhuman animals at a high level to

better understand the different ways this data can be used to evaluate the different types

of economic rationality. The choices elicited from experiments on nonhuman animals

often involve many choices from a few different environments. From here, a researcher

could treat the choices from an environment as distinct choices following Afriat (1967)

and Varian (1982), or treat the many choices as a distribution. The literature following

Kagel et al. (1975) has often implicitly treated the data as a distribution of choices and

looked at rationality criteria on average choices. Thus, this effectively evaluates average

choice rationality (Allen et al., 2021). However, when one has a distribution of choices

it is also sensible to model choices generated by random utility maximization following

McFadden and Richter (1990). Thus, there are essentially two choices for a researcher to

make:

1. whether to process the raw data to a distribution of choices and;

2. which model of economic rationality to examine.

To the best of our knowledge, these modeling choices have not been compared in the

literature. This is important because this research seeks to find an evolutionary founda-

tion for human decision making, but so far the literature on human decision making and

nonhuman animal decision making have been using different data. In particular, research

evaluating rationality of humans has subjects make a single choice in each budget and

check whether the data is consistent with standard deterministic utility maximization.2

1There are other papers that study rationality of animals, e.g., Shafir (1994), Chen et al. (2006),
Latty and Beekman (2010), Lea and Ryan (2015), Krasheninnikova et al. (2018), and Natenzon (2019)
study rationality of choice distributions from bees, capuchin monkeys, amoeboids, frogs, and parrots.

2For example, Andreoni and Miller (2002), Choi et al. (2007), Choi et al. (2014), among many others
ask humans for a single choice from each budget and check whether data satisfies standard deterministic
utility maximization.
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Since there is only a single choice in these environments, there is no difference between

examining a distribution of choices or a single choice.

While the above conceptual distinctions are important for interpretation, this paper

hopes to be a guide for researchers examining nonhuman rationality. First, we describe

the standard method to elicit choices from nonhuman animals. After this, we define

the dataset collected in these experiments and describe how to check whether the data

is consistent with standard deterministic utility maximization (Afriat, 1967; Diewert,

1973; Varian, 1982), average choice rationality (Allen et al., 2021), and random utility

maximization (McFadden and Richter, 1990; McFadden, 2005; Hoderlein and Stoye, 2015;

Kitamura and Stoye, 2018). While average choice rationality has been examined in the

literature, until this paper there was no statistical test. Finally, we provide an illustrative

example checking whether the data on choices of capuchin monkeys from Chen et al.

(2006) can be described by any of the models of economic rationality. We reject standard

deterministic utility maximization, but cannot reject either the mean choice model or

random utility. Thus, the choices from Chen et al. (2006) can be viewed as an evolutionary

foundation for preferences over distributions of choices. We discuss the implications of

this in Section 6.

The remainder of the paper is organized as follows. Section 2 explains the experi-

mental methodology used to elicit choices from nonhuman animals and defines the data

collected. Section 3 describes standard deterministic utility maximization, average choice

rationality, and random utility maximization. Section 4 presents a statistical test of the

average choice rationality. In Section 5 check whether the data from Chen et al. (2006)

satisfies any of the three models of rationality and perform the statistical test developed

in this paper. Section 6 provides our final remarks.

2 Experimental methodology and collected data

Most experiments examining rationality in animals look at choices from two linear budget

sets with two goods. We will simplify the notation within the paper to account for this

case. Thus, a consumption bundle is denoted x ∈ R2
+. For example, consumption good

one could be apple slices while consumption good two could be grapes. These are two

consumption goods from Chen et al. (2006).

The type of linear budgets often used in experiments is given in Figure 1. Here there is

some “price” that defines a trade-off rate between these goods. For example, this trade-off

rate could be defined by tokens that were traded to a human, as in Chen et al. (2006), or

the number of times needed to interact with a button to deliver food as in Kagel et al.

(1975). The relevant trade-off rates between the two goods are summarized by normalized

prices p ∈ R2
++. Thus, the quantity of bundles available to be purchased is defined by the
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budget

B(p) =
{
x ∈ R2

+ | p1x1 + p2x2 ≤ 1
}
.

In Figure 1, the set is represented by the budget line (i.e., the set of bundles (x1, x2) for

which the expenditure p1x1 + p2x2 is equal to 1) and all the points below it. Throughout

the paper, we assume the two budget lines under consideration intersect.3

x1

x2

p1

p2

2
3

1
3

1
2

1
2

Figure 1: Two overlapping budget sets with two consumption goods (x1 and x2). The con-
sumption goods for animals are often food (e.g. apples and grapes, water and flavored water,
etc.). The prices (p1 and p2) define a trade-off rate between two goods. Choices made on each
budget line are in black and the proportion each bundle is chosen is next to it.

Unlike human experiments which describe the task to the subject, nonhuman animals

cannot have the task explained to them. This has led researchers to have nonhuman

animals make choices from a given budget several times. For example, a nonhuman

animal may be asked to trade tokens for apples and grapes several times until the choices

of the animal do not vary too much. While this is an ex-ante sensible thing to do, it

also introduces the conceptual problem of trying to discern whether an individual has a

preference over the distribution of their choices.

We denote the primitive dataset of choices in the two budgets by D =
{

(p1, x1,n)
}N1

n=1
∪{

(p2, x2,m)
}N2

m=1
. Here p1 is the vector of normalized prices from the first budget envi-

ronment. The bundle x1,n is interpreted as the n-th repetition of the task with budgets

defined by normalized prices p1. The choices made from the second budget (under prices

p2) are indexed by x2,m. The primitive dataset also admits a distributional dataset

DD =
{

(p1, µ1), (p2, µ2)
}

where µ1 is the sample distribution of all choices from the first

budget set. For example, given the first budget with the price p1, the bundle x chosen

µ1(x) = 2/3 of the time could result when N1 = 15 and that bundle was chosen ten times.

In general, we let the set of all distributions of choices in R2
+ be given by ∆.

3Unless the budget lines cross, none of the models we discuss in this paper produces any testable
implications.
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3 Models of rationality

This section defines the three relevant models of rationality.

3.1 Standard deterministic utility maximization

Utility maximization supposes that an individual makes choices that maximize some lo-

cally nonsatiated utility function defined by u : R2
+ → R over the linear budget constraint.

A utility function is defined as locally nonsatiated when there is always a better bundle

“nearby.”4 Thus, we assume that the choice of bundles is generated by

max
x∈R2

+

u(x)

s.t. p1x1 + p2x2 ≤ 1.

This model does not involve any distribution of choices and thus we work directly with

the primitive dataset D. For this model, one could only see two distinct bundles such as

x1,1 ̸= x1,2 chosen from the same budget when the utility from the first bundle equals the

utility of the second bundle.

The conditions to test utility maximization are well known from Afriat (1967) and

Varian (1982). We record the results for the two budget case below.

Proposition 1. A dataset D =
{

(p1, x1,n)
}N1

n=1
∪
{

(p2, x2,m)
}N2

m=1
is consistent with de-

terministic utility maximization with local nonsatiation if and only if there are no obser-

vations ñ ∈ {1, . . . , N1} and m̃ ∈ {1, . . . , N2} from the two budgets such that

p11x
2,m̃
1 + p12x

2,m̃
2 ≤ 1 and p21x

1,ñ
1 + p22x

1,ñ
2 ≤ 1,

with one inequality strict.

To understand why this condition characterizes deterministic utility rationality, note

that if p11x
2,m̃
1 + p12x

2,m̃ ≤ 1, then this bundle could have been purchased at prices p1 so

that it reveals u(x2,m̃) ≤ u(x1,ñ). Similarly, the inequality p21x
1,ñ
1 + p22x

1,ñ ≤ 1 reveals

u(x1,m̃) ≤ u(x2,ñ). If either inequality is strict, then the revelation of utility is strict

(by local nonsatiation). For example, if there are bundles x1,ñ and x2,m̃ with the first

inequality strict in Proposition 1, then the two inequalities reveal that u(x2,m̃) < u(x1,ñ) ≤
u(x2,m̃), which is not possible for any utility function.

4Formally, a utility function is locally nonsatiated when for any x ∈ R2
+ and any ε > 0 there exists

y ∈ R2
+ with ||y − x|| ≤ ε such that u(y) > u(x), where ∥ · ∥ denote the Euclidean norm.
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3.2 Average rationality

Average rationality is essentially deterministic utility rationalization over the average

bundle chosen. This is the type of rationality that has been examined in Kagel et al.

(1975), Battalio et al. (1981), Kagel et al. (1981), Battalio et al. (1985), Kagel et al. (1995),

and Chen et al. (2006). Since the average is a property of the distribution of choices,

we consider a model where an individual can have a preference for randomization. In

particular, we consider when the individual chooses an optimal distribution with certain

properties.

We let ∆ be the set of distributions over consumption bundles, i.e., over R2
+.5 Here

we assume a utility function U : ∆ → R only depends on the average consumption of

the distribution. Thus, we can write U
(
Eν [x]

)
where Eν [x] is the expected (average)

consumption bundle (a vector in R2
+) generated by the distribution of choices ν. We also

assume that U is locally nonsatiated over the expected consumption bundles.

Here, it is assumed that the distribution of choice DD is generated by

max
ν∈∆

U
(
Eν [x]

)
s.t. ν

(
{x ∈ R2

+ | p1x1 + p2x2 ≤ 1
)

= 1.

Our interpretation of this model follows Machina (1985). Here, we view an individual

as having a most-preferred distribution in mind and the individual randomizes according

to that distribution whenever they make a choice. The restrictions of this model are

very similar to deterministic utility maximization, even though the budget constraint

takes a different form and requires the distribution to place positive probability only on

bundles within the budget set. In the following proposition we assume that µ1, µ2 are

true distributions. We discuss sampling errors and statistical testing in Section 4.

Proposition 2. A dataset DD =
{

(p1, µ1), (p2, µ2)
}
is consistent with average rationality

for a local nonsatiated utility U if and only if it is not true that

p11Eµ2 [x1] + p12Eµ2 [x2] ≤ 1 and p21Eµ1 [x1] + p22Eµ1 [x2] ≤ 1

with one inequality strict.

This model is flexible enough so that not all observed choices need to satisfy the

rationality criteria of deterministic utility maximization. However, it still requires that

the individual satisfies the rationality criteria on average. Also, it suggests the subject

may have distributional considerations in mind when making choices. See Allen et al.

(2021) for a theoretical study of these models.

5For formal details on modeling distributions of consumption bundles, see Allen et al. (2021).
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3.3 Random utility

We now define the random utility maximization following Block and Marschak (1960),

McFadden and Richter (1990), McFadden (2005), Hoderlein and Stoye (2015), and Kita-

mura and Stoye (2018). The idea behind random utility models is that an individual’s

choices might be governed by a distribution over different preferences. For example, one

could interpret these preferences as different moods.

To represent random utility models mathematically, let U be the space of strictly

quasiconcave locally nonsatiated utility functions ũ : R2
+ → R. A random utility model

generates choices in the following manner. First, there is a probability measure ρ over

the space of functions U such that the distribution of choices ν ∈ ∆ satisfies

ν(O) = ρ
({

ũ ∈ U : argmaxx∈R2
+|p1x1+p2x2≤1 ũ(x) ∈ O

})
, (1)

for any measurable set O ⊆ R2
+. The argmax set is a singleton since U consists of strictly

quasiconcave functions. In other words, the probability of choosing a bundle in the set O

is equal to the probability of drawing a utility function that is maximized over the budget

at some point in the set O.

The method to test random utility models significantly differs from the deterministic

utility model and average rationality. The paper of Hoderlein and Stoye (2015) shows that

for the random utility model, one only needs to check conditions on the probabilities of

making choices in certain regions. The regions of choice are shown in Figure 2. Here R1|1

is the region on the first budget line that lies above the second budget line in Figure 2.

More generally, we refer to Rr|t as the r-th region of the t-th budget as defined in Figure 2.

Since we assume that preferences are locally nonsatiated, the only relevant regions are on

the budget lines.

x1

x2

R1|1

R2|1

R1|2

R2|2

R3|t

p1

p2

Figure 2: Relevant budget regions to examine random utility models with two budget sets and
two goods
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Hoderlein and Stoye (2015) show that random utility models can be checked by ex-

amining choice probabilities in these regions with a distributional data set DD. A similar

result holds for higher dimensional consumption with multiple budgets as shown in Ki-

tamura and Stoye (2018). The condition essentially requires that there cannot be a large

proportion of violations of deterministic rationality. For an appropriately measurable set

S ⊆ R2
+ and the probability measure ν ∈ ∆, we let ν(S) be the probability a choice is in

the set S. We record the result from Hoderlein and Stoye (2015) below.

Proposition 3. The distributional dataset DD =
{

(p1, µ1), (p2, µ2)
}
is consistent with a

random utility model if and only if µ1(R1|1) ≥ µ2(R1|2) and µ1(R3|1) = µ2(R3|2).

4 Statistical testing of average rationality

The method of inference we present is designed for application to the common datasets in

nonhuman animal experiments mentioned throughout. Thus, we have two goods and two

budget sets.6 This empirical setting has several features that simplify statistical testing

relative to a more general setup. First, prices and income are known exactly, so they do

not need to be estimated. Second, there are several realized choices from each budget,

which allows us to use the central limit theorem to justify a normal approximation of

the means of the sampled distributions. Third, because we have two budgets, there is a

single cycle to consider when checking average rationality. After describing the test, we

apply the methods to the data from Chen et al. (2006) in Section 5.

We assume an analyst observes a collection of N1 realizations from budget one {X1,n}N1
n=1

and N2 realizations of choices from budget two {X2,m}N2
m=1. These are treated as random

variables and we denote them in upper case. Each realization of the random variable is

a vector of quantities, i.e., X1,n ∈ R2
+. These realizations are draws from the appropriate

distribution µt, which we interpret as the true choice. We interpret the population mean

quantities E[X1,n] as the mean of the distribution µ1 and the population mean quantities

E[X2,m] as the mean of the distribution µ2. For example, E[X1,n] =
∫
x dµ1(x).

When T = 2, the null hypothesis of average rationality can be written as

H0 : p1 · E[X2,m] ≤ 1 implies p2 · E[X1,n] ≥ 1 and

p2 · E[X1,n] ≤ 1 implies p1 · E[X2,m] ≥ 1.

6To generate statistical tests for general situations, one can potentially use the results from Hsieh
et al. (2018).
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The alternative is the same as the statement in Proposition 2 and written as

Ha : p1 · E[X2,m] ≤ 1 and

p2 · E[X1,n] ≤ 1 with one inequality strict.

Recall that in the application, prices and income are measured without error, so we use

lower case letters to indicate that they are nonrandom.

We reject the null hypothesis when sample averages are sufficiently far from the null.

Formally, let the sample averages be given by

X
1

:=
1

N1

N1∑
n=1

X1,n and X
2

:=
1

N2

N2∑
m=1

X2,m.

First note that if X
t

were nonrandom and equal to the true expectation, then we could

reject the null hypothesis when

p1 ·X2 ≤ 1 and p2 ·X1 ≤ 1,

with at least one inequality strict. If we allow for sampling variability, the empirical

means may be different from the theoretical ones. Thus, we propose a test of the form

ϕ := 1
{
p1 ·X2 ≤ 1 − σ̂2c√1−α and p2 ·X1 ≤ 1 − σ̂1c√1−α

}
,

where 1{·} is the indicator function, ϕ = 1 denotes rejection, and ϕ = 0 denotes failure

to reject. We denote the nominal size of the test by α (e.g. 0.05), and let c√1−α be the
√

1 − α-quantile of the standard normal distribution. In addition,

σ̂1 :=

√√√√ 1

N2
1

N1∑
n=1

(
p2 ·X1,n − p2 ·X1

)2

and σ̂2 :=

√√√√ 1

N2
2

N2∑
m=1

(
p1 ·X2,m − p1 ·X2

)2

,

are sample analogue estimators of the standard deviation of p2·X1
and p1·X2

, respectively.

The key assumption that justifies this test is that for t = 1, 2 there is a large number, Nt,

of independent draws from each distribution µt.

To provide some intuition behind this test, note that each inequality in the argument

of ϕ is motivated by a standard one-sided testing problem. Under the independence

assumption and some mild conditions, we have the large sample approximation

Prob
(
p1 · E[X2,m] ≤ p1 ·X2

+ σ̂2c√1−α

)
≈

√
1 − α.
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Thus, on the event

p1 ·X
2 ≤ 1 − σ̂2c√1−α,

or equivalently

p1 ·X
2

+ σ̂2c√1−α ≤ 1,

we have strong evidence against

p1 · E[X2,m] ≥ 1.

A similar argument holds when testing the other inequality. Thus, when the test function

ϕ is 1, we have strong evidence against both inequalities

p1 · E[X2,m] ≥ 1 and p2 · E[X1,n] ≥ 1,

i.e., strong evidence against H0. The choice of c√1−α comes from the fact that we have

to reject two inequalities. In more detail, this threshold is motivated by

Prob
(
p1 · E[X2,m] ≤ p1 ·X2

+ σ̂2c√1−α and p2 · E[X1,n] ≤ p2 ·X1
+ σ̂1c√1−α

)
= Prob

(
p1 · E[X2,m] ≤ p1 ·X2

+ σ̂2c√1−α

)
Prob

(
p2 · E[X1,n] ≤ p2 ·X1

+ σ̂1c√1−α

)
≈

√
1 − α

√
1 − α = 1 − α,

where the first equality follows from the assumption of independence between choices

across budgets.

We note that the test we propose is not consistent against alternatives in which one

of the inequalities is binding. That is, a configuration such as

p1 · E[X2,m] = 1 and p2 · E[X1,n] < 1

violates the null, but is not rejected with probability approaching 1 as the sample size

increases.7

There are a few other features of this test to point out. First, note that if a determin-

istic test (e.g. using X
t

in place of the expectations) is consistent with average rationality,

then the statistical test fails to reject for any α < 0.75. This is because if α < 0.75 then

7This suggests a potential power issue with the design of Chen et al. (2006), which is constructed

to detect violations of the compensated law of demand by pivoting the budget constraint. It is not a

deficiency of the test we present. Intuitively, the alternative hypothesis is on the boundary of the null

hypothesis, and so it is not possible to statistically distinguish it from nearby points in the null. One

may report the minimal nominal size (described below) as a way to describe evidence against the null

hypothesis.
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c√1−α > c0.5 = 0.

One may not find the failure to reject an interesting way to differentiate between

datasets. We suggest one way to differentiate between datasets in the spirit of the Afriat

efficiency index (Afriat, 1973). Instead, one can compute the least nominal size α∗ under

which the null is rejected. To do this, one can compute the largest c∗√
1−α

under which

the test rejects the data and then find the corresponding α∗. The construction of α∗ is

related to a p-value but is distinct because there are configurations consistent with the

null hypothesis in which rejection probabilities are not asymptotically equal to nominal

size α.

High α∗ gives less evidence against the null. To see why this is the case, note that if

α∗ is high (α∗ > 0.75), then c√1−α∗ is negative. Thus, this requires the data to not only

satisfy the condition stated in Proposition 2 when failing to reject, but that the distance

of the average bundles must also be far away from rejecting. The closer the α∗ is to one,

the lower the evidence is against the null since this suggests that the mean bundles are

far apart.

5 Application to Chen et al. (2006)

We apply the above procedure to the data on choices by capuchin monkeys that was

previously analyzed in Chen et al. (2006). We examine whether the capuchin monkeys are

rational according to deterministic utility maximization, average rationality, and random

utility models. Thus, we check the conditions of the earlier propositions.

The experiment was performed on three different capuchin monkeys. We refer to the

three subjects under their abbreviations: AG, FL, and NN. The consumption bundles

consisted of two goods: slices of apples and gelatin cubes or grapes (depending on the

subject). In the experiment, capuchin monkeys traded tokens for food items under two

different exchange rate regimes. In the first regime, one token could be exchanged for

one slice of apple or one gelatin cube/grape. In the second regime, two slices of apple

could be exchanged for one gelatin cube/grape. Per each subject, the data generated in

the experiment consisted of multiple choices from the two budget sets. For additional

information on the experiment, we refer the reader to Chen et al. (2006).

The details and results of the test are contained in Table 1. We note that two of the

three subjects from Chen et al. (2006) refute utility maximization, while all three subjects

could be described by a random utility model and average rationality. We note that all

monkeys satisfy average rationality so the statistical test proposed earlier does not reject

for any α < 0.75. To try to better discern between the different datasets, we also report

the least nominal size α∗ that results in a rejection. We note that all α∗ computed are

indistinguishable from one. Thus, there is weak evidence against the hypothesis that

11



Subject

AG FL NN

Budget 1

p1 (1/12, 1/12) (1/12, 1/12) (1/12, 1/12)

N1 12 11 6

X̄1 (6.08, 5.92) (5.64, 6.36) (5, 7)

Budget 2

p2 (1/18, 1/9) (1/20, 1/10) (1/20, 1/10)

N2 22 14 10

X̄2 (9, 4.5) (13.86, 3.07) (12.8, 3.6)

Deterministic No No Yes

Random utility Yes Yes Yes

Average choice Yes Yes Yes

α∗ 1.00 1.00 1.00

Table 1: Results of tests

subjects satisfy average rationality.

6 Conclusion

In this paper we compare the observable implications of three models of choice that can

be used when studying economic rationality in nonhuman subjects: deterministic utility

maximization, average choice rationality, and random utility maximization. We show

that, given the primitive data generated in such experiments, it is possible to differenti-

ate between the three models. We apply our results to the dataset in Chen et al. (2006)

studying choices of capuchin monkeys and show that although deterministic utility max-

imisation is rejected for most subjects, the data is unable to distinguish between mean

choice and random utility.

In addition to clarifying these distinct notions of rationality, this paper contributes

to the literature on stochastic choice. In particular, the mean choice model follows the

approach of Machina (1985) studying a preference over distributions. This perspective

has become increasingly influential.8 Thus, from the perspective of the stochastic choice

literature, the evidence from the animal experiments of Kagel et al. (1975), Battalio

8For example, Swait and Marley (2013), Fudenberg et al. (2015), Freer and Martinelli (2016), Cerreia-
Vioglio et al. (2019), and Allen et al. (2021) characterize different models where individuals express
preferences over distributions. Similarly, there is evidence on human subjects in Sopher and Narramore
(2000), Agranov and Ortoleva (2017), Agranov et al. (2020), Agranov and Ortoleva (2020), and Feldman
and Rehbeck (2020) that also suggests individuals may prefer a distribution of choices.
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et al. (1981), Kagel et al. (1981), Battalio et al. (1985), and Kagel et al. (1995) evaluating

average rationality can also be interpreted as evidence for a preference over distributions.

This complements an approach in Natenzon (2019) that studies stochastic choice for

nonhuman subjects without studying an explicit preference over distributions.
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