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Abstract 

In the era of sustainability, firms grapple with the decision of how much to invest in green 

innovation and how it influences their economic trajectory. This study employs the Crepon, 

Duguet, and Mairesse (CDM) framework to examine the conversion of R&D funds into patents 

and their impact on productivity, effectively addressing endogeneity by utilizing predicted 

dependent variables at each stage to exclude unobservable factors. Extending the classical CDM 

model, this study contrasts green and non-green innovations' economic effects. The results show 

non-green patents predominantly drive productivity gains, while green patents have a limited 

impact in non-heavy polluting firms. However, in high-pollution and manufacturing sectors, both 

innovation types equally enhance productivity. Using unconditional quantile regression, I found 

green innovation's productivity impact follows an inverse U-shape, unlike the U-shaped pattern 

of non-green innovation. Significantly, in the 50th to 80th productivity percentiles of 

manufacturing and high-pollution firms, green innovation not only contributes to environmental 

sustainability but also outperforms non-green innovation economically. 
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1. INTRODUCTION 

Technological innovation is pivotal in elevating environmental performance, enhancing 

resource efficiency, minimizing production pollution, and fostering sustainable products. While 

firms are integral to the propagation and integration of green innovation (GI), and assume 

environmental responsibility (Marin, 2014), the economic ramifications of GI on firm 

productivity significantly influence a company's inclination towards environmental research and 

development (R&D) investments. This paper seeks to ascertain if environmental R&D can offer 

companies tangible benefits that harmonize environmental conservation with economic 

competitiveness. 

To unravel this, the study adopts the venerable CDM model, offering a meticulous 

examination of R&D endeavors through a structured three-step equation framework, scrutinizing 

the dynamics between R&D investments, R&D outcomes, and overall productivity.My inquiry 

stands unique as it pioneers the exploration of GI's crowding-out effects through an extended 

CDM paradigm that discovers economic opportunity costs of green and non-green innovations, 

leveraging firm-level data from China. Significantly, I delve into the intricate, non-linear 

interplay between innovation and productivity via unconditional quantile regression (UQR) 

estimations.  

The CDM model, originally developed by Crépon, Duguet, and Mairessec in 1998, plays a 

pivotal role in elucidating the intricate nexus between firm-level productivity, innovation, and 

R&D engagement. Its robustness lies in its adeptness at mitigating challenges like endogeneity 

issues, self-selection and omitted variable bias, simultaneous equation discrepancies, and reverse 

causality through a gamut of predictions based on independent covaraites in three equations of 

the framework. 
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The first R&D equation of the model leverages a Heckman selection model to rectify 

potential self-selection biases arising from the R&D investments information disclosure, 

allowing for the prediction of R&D intensity from a firm’s R&D investment and a set of 

extrogenous variables. The second patent equation involves the utilization of count data models, 

specifically designed to handle the discrete nature of patent outputs, to estimate patent intensity 

from the sanitized prediction of lagged R&D intensity, thus overcoming issues of simultaneity 

and omitted variable bias. The final productivity equation deftly combines the predicted patent 

intensity with firm productivity, providing a refined estimation of the influence of innovation 

outputs on productivity levels, while meticulously controlling for the endogeneity that often 

plagues concurrent assessments of innovation and productivity. 

This three-tiered econometric approach is uniquely suited for the current study due to its 

capability to provide a nuanced understanding of the innovation-productivity paradigm, 

particularly within the context of Chinese listed firms, where the traditional methodologies fall 

short in capturing the complex dynamics at play. By integrating the extended CDM framework 

that disentangle the influences of green and non-green innovations, this study stands on solid 

methodological ground, paving the way for robust and reliable inferences about the economic 

opportunity costs of green innovation. 

This study also extend the classic CDM model to explore the complex dynamics affecting 

firm-level R&D input and outcomes, emphasizing the profound influence of environmental 

regulations, market conditions, and ownership structures. It pioneers the use of provincial 

pollution charges and industrial pollution treatment investment as nuanced proxies to dissect the 

impact of environmental policies on R&D intensity. The findings suggest a negative correlation, 
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indicative of a crowding-out effect where environmental protection costs could deter broader 

innovation resources. 

In addressing the critical evaluation of R&D outcomes, this study scrutinizes the 

limitations of the patent equation in conventional CDM model, which estimates firm-level patent 

intensity as a function of R&D intensity and observable controls. A notable deficiency of this 

approach is its oversight of unobserved, time-invariant factors influential in the patenting 

process. To rectify this, the current analysis presents two novel methodological enhancements 

aimed at refining the prediction accuracy of patent intensity. 

First, the study innovatively calibrates the predicted patent counts by incorporating a firm's 

average patenting activity observed from 2010 to 2018, thus encapsulating the impact of firm’s 

consistent, unobserved patenting preference. This refinement of patent equation prediction 

preserves the exogeneity of the productivity equation by ensuring the time-invariant factors, 

captured within a firm's average patent history, remain uncorrelated with the temporal variability 

of the error term in the productivity estimation. 

Second, to rectify the zero-value issue in patent intensity calculations, the method 

introduces a nominal constant (0.001) to all predicted patent counts, ensuring valid logarithmic 

transformations for zero values. Normally, patent intensity is calculated by dividing patent 

counts by employee numbers. However, for artificially adjusted zero values, this division is 

omitted to avoid introducing non-existent variance, thereby maintaining the integrity of the 

patent intensity measurement across the spectrum of innovative activity. 

These methodological adjustments, pivotal for the accurate computation of patent intensity, 

are central to the extended CDM framework and subsequent estimations, including the 
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Unconditional Quantile Regression (UQR), Regression-based Inference Function (RIF) 

treatment effects and Conditional Quantile Regression (CQR) models.  

In advancing the understanding of the relationship between GI and productivity, this study 

diverges from Marin's (2014) linear perspective, offering a nuanced examination through UQR. 

It unveils a U-shaped relationship between non-green innovation intensity and productivity, 

contrasting with an inverse U-shaped relationship for GI across firms’ productivity levels. 

This analysis introduces a novel perspective on the impact of GI on firm productivity, 

challenging Marin's earlier findings that suggested a negative impact of GI on polluting firms' 

productivity. The results of this study are more nuanced, revealing that non-polluting firms face a 

crowding-out effect from GI due to its high opportunity costs relative to non-green innovations. 

In contrast, polluting firms demonstrate similar marginal effects from both GI and other 

innovations on productivity. 

The study also incorporates a RIF treatment effects approach, introducing a binary 

indicator for the presence of green patents as a treatment variable. Model estimations, with and 

without Inverse Probability Weighting (IPW), suggest that high-polluting firms only witness GI's 

productivity benefits at or above the median of the productivity distribution, implying a threshold 

of operational efficiency is necessary for realizing the gains from GI. In stark contrast, firms not 

facing pollution concerns require major non-green innovations to maintain productivity growth. 

Notably, for these firms, GI inversely correlates with productivity at the highest echelons (top 

20%), signaling a reversal from benefit to burden. 

This study's findings not only challenge the established narrative but also signal strategic 

implications for firms with varied pollution profiles, suggesting that a one-size-fits-all approach 

to innovation may not be universally beneficial. 
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2. LITERATURE REVIEW  

The intersection of GI with a firm's core competencies is nuanced. While traditional 

product or process innovations are directly tied to a firm's competitive edge, GI is often viewed 

as an ancillary commitment that could impinge on profitability, given that GI is not typically a 

primary factor in consumer choice, particularly in developing nations where consumers may be 

less inclined to absorb the additional costs tied to environmental stewardship.  

Conversely, unchecked pollution generates negative externalities that distort market prices. 

This underscores the importance of consistent and comprehensive environmental policies to 

correct market failures by attributing economic value to environmental goods and services 

(Fankhauser et al., 2013). Without mandated environmental policies, firms that do not invest in 

environmental protection may benefit from free-riding on the efforts of others. This places 

companies that do invest in environmental protection and GI at a competitive disadvantage. The 

Porter hypothesis suggests that well-structured environmental policies could incentivize GI, 

thereby fostering both firm efficiency and environmental preservation, potentially leading to a 

win-win scenario (Porter and Linde, 1995).  

The literature on GI has historically centered on its drivers, economic impacts, 

environmental benefits, and policy incentives (Barbieri et al., 2017). Recently, some studies have 

begun to examine the possible trade-offs between GI and other forms of innovation, invoking the 

theory of opportunity costs (Popp and Newell, 2009; Marin, 2014). At the corporate level, the 

private opportunity costs of GI are the forgone investments in alternative innovation pursuits 

(Popp and Newell, 2009). The resource-based view posits that firms are constrained by limited 

funding, time, and human resources, which implies that diverting resources to GI could detract 

from the development of product and process innovations, with small and entrepreneurial firms 
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in developing economies being especially susceptible to such constraints (Edeh and Acedo, 

2021). 

Scholars have approached the notion of crowding-out effects from varied perspectives, 

focusing on both the quantitative (input/output) and economic returns of GI (Popp and Newell, 

2009; Marin, 2014; Marin and Lotti, 2017). Popp and Newell (2009) propose that a rise in 

environmental patents at the expense of other types of innovation may signal a crowding-out 

effect. They scrutinize this phenomenon from three angles: inter-sectoral dynamics, intra-sectoral 

allocation, and the comparative social value of different R&D investments. Marin (2014), on the 

other hand, measures crowding-out in terms of economic returns, suggesting that investments in 

GI that yields fewer patents or smaller productivity gains than other innovations indicates an 

inefficiency and a potential crowding-out effect. 

The empirical evidence on GI’s crowding-out effects on other forms of innovation is 

mixed, with studies showing varied outcomes based on the subjects and contexts investigated. 

Popp and Newell (2009) find crowding-out effects of energy innovations on other innovations 

within industries but no evidence of cross-industry crowding-out effects. Marin (2014) reports a 

slight negative impact of GI on overall manufacturing productivity and points out that green 

patents are less beneficial than other patents. Moreover, the study highlights a lower efficiency in 

converting R&D investments into GI as compared to non-green innovations. Contrasting these 

findings, echoing the positive impacts of environmental policies, Zhu et al. (2019) find that 

China's emission trading pilots enhance low-carbon innovation by 5-10% in firms, without 

crowding out other technological innovation. 

When it comes to environmental regulation, firms may experience crowding-out effects if 

the costs of complying with such regulations—through investments in pollution control, for 
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instance—divert resources away from R&D. Yuan and Zhang (2017) observed that 

environmental regulations could have a short-term negative impact on industrial R&D 

investment intensity but may promote R&D in the longer term. 

Previous applications of the CDM model have primarily examined the interplay between 

innovation and productivity in contexts such as Italian manufacturing sectors (Marin, 2014; 

Marin and Lotti, 2017) and SMEs in Sub-Saharan Africa (Edeh and Acedo, 2021), with further 

industry-focused studies in China (Yuan and Zhang, 2017; Yuan and Xiang, 2018). However, 

these studies have not delved into firm-level analysis within China, leaving a significant gap in 

understanding the specific impacts of environmental innovation at this granular level. This study 

addresses this gap by adapting the CDM model to scrutinize the nuanced effects of GI on firm 

productivity in China, thereby contributing a novel perspective to the existing body of research.  

This paper is structured to first estimate the relationship between innovation activities and 

productivity using the CDM model, then explore the crowding-out effects of GI using an 

extended CDM model, and finally, apply an unconditional quantile regression (UQR) to assess 

the non-linear impacts of patents on firm productivity. Robustness tests that include Regression-

based Inference Function (RIF) and conditional quantile regression (CQR) will further scrutinize 

the relationship between GI and productivity. 

 

3. METHODOLOGY AND DATA 

The CDM model, established by Crépon et al. (1998), offers a structural framework to 

dissect firms' innovation processes, examining how R&D investments yield patents and, 

ultimately, enhance productivity (Hall and Mairesse, 2009). This three-stage model employs 

instrumental variable techniques by using predicted value of R&D input and outcomes, to 
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circumvent endogeneity, simultaneity and reverse causality, thus clarifying the causal links 

between R&D, innovation outputs, and productivity. Marin et al. (2014) expanded this model, 

distinguishing between environmental and other forms of innovation to infer crowding-out 

effects. Applying the classic and extended CDM models, this study analyzes the full sample of 

China’s listed firms and six sub-samples, differentiating high-pollution from non-pollution firms 

and contrasting high-tech with low-tech, and manufacturing with non-manufacturing sectors. 

 

3.1 R&D equation 

In addressing R&D investment decision biases, this study employs a modified Heckman 

model. In the CDM framework, the Heckman model originally addresses self-selection bias in 

R&D investment decisions. This study modifies the model to focus on the self-selection bias in 

the disclosure of R&D expenditure among Chinese listed firms, all of which engage in R&D 

activities1. Approximately 32.9% of firm-year observations between 2010 and 2018 lack R&D 

expenditure data disclosure, likely influenced by firms’ reputation concerns or investor 

confidence. The modified approach uses a probit model for the Inverse Mill's Ratio (IMR) in its 

first step, estimating the probability of R&D expenditure disclosure based on various controls 

and exclusion criteria. The IMR then corrects for bias in the second step’s R&D intensity 

assessment. This approach, previously adopted in studies like Edeh and Acedo (2021) and Wang 

et al. (2021), effectively handles the non-disclosure biases in R&D expenditure. Details of the 

equations for the IMR calculation and bias correction are provided. 

 

 
1 Being large entities, all Chinese listed firms included in this study engage in R&D activities. The absence of R&D expenditure 

data in certain cases is attributed to non-disclosure rather than a lack of R&D activity, as evidenced by their fully-disclosed and 

positive patent data. 
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𝑅𝐷 = 𝛽𝑋 +  𝜂𝐷 + 𝜇     (1) 

𝐷∗ =  𝛼0
′  𝑍 + 𝛼1

′ 𝑋 + 𝜀      (2) 

𝑅𝐷 = 𝛽′𝑋 +  𝜂𝐷 + 𝜌𝐼𝑀𝑅 + 𝜖     (3) 

Equation (1) represents the R&D investment (𝑅𝐷) model that includes the control variables 

𝑋 and R&D disclosure dummy variable 𝐷, without utilizing the Heckman model. If unobservable 

self-selection factors that affecting 𝑅𝐷 and 𝐷  simultaneously exist (reflected by the correlated 

error term 𝜇 in (1) and 𝜀  in (2)), the estimation of 𝜂 may be biased. The Heckman model is 

employed to control for this bias by constructing IMR through equation (2) and substituting it 

into equation (3). If the coefficient 𝜌 on the IMR is statistically significant, it indicates the 

presence of a self-selection problem, validating the correction for bias using the Heckman model.  

To ensure equation (3)'s validity and address potential multicollinearity between control 

variable 𝑋 and the IMR, equation (2) includes exclusion restriction variables (𝑍). These 

variables, uncorrelated with RD, solely impact D, helping address the potential multicollinearity 

problem between 𝑋 and the IMR in equation (3), as the estimation of the IMR also relies on 𝑋 in 

equation (2). Finally, to confirm no severe multicollinearity in equation (3) due to IMR, I use the 

Variance Inflation Factors (VIF) indicator, seeking VIF values less than 10 in the test results. 

In R&D equation of CDM model, the selection of multiple exclusion restrictions, crucial 

for model sensitivity analysis (Lennox et al., 2012), includes environmental performance 

disclosure (EPD) as a dummy variable, logged total assets, and IPO age. EPD, a novel exclusion 

restriction in this study, shares similarities in R&D information disclosure tendencies but doesn't 

directly affect R&D intensity. Following Marin (2014), IPO age and total assets are also used, 

under the premise that while they may correlate with R&D disclosure, they don't directly impact 
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R&D intensity. R&D intensity (𝑅𝐷𝐼𝑁𝑇) is then predicted as logged R&D expenditure per 

thousand employees, using the Heckman model's estimation. 

 

𝑅𝐷𝐼𝑁𝑇𝑖,𝑡 = 𝛼0𝑙𝑛𝑃𝑃𝐶𝑖,𝑡−1 + 𝛼1𝐿𝐸𝑉𝑖,𝑡 + 𝛼2𝑙𝑛𝐸𝑀𝑃𝑖,𝑡 + 𝛼3𝑙𝑛𝐶𝐴𝑃𝐼𝑁𝑇𝑖,𝑡 + 𝛼4𝑙𝑛𝑃𝐶𝐼𝑁𝑇𝑖,𝑡 +

𝛼5𝐶𝑅4𝑖,𝑡 + 𝛼6𝑆𝑂𝐸𝑖 + 𝜂𝐷𝑖,𝑡 + 𝜌𝐼𝑀𝑅𝑖,𝑡 + 𝜔𝑡 + 𝛿𝑡 + 𝜀𝑖,𝑡        (4) 

 

The environmental policy indicators use the logarithm of lagged provincial pollutant 

charge (𝑙𝑛𝑃𝑃𝐶𝑖,𝑡−1), a fee levied on businesses for pollutant emissions, including sewage, waste 

gas, and hazardous waste2 (Guo et al, 2019). A higher 𝑃𝑃𝐶 indicates greater environmental costs 

for firms, thereby serving as a valid indicator for measuring the crowding-out effects of 

environmental policy on a firm's R&D investments. 

To enhance robustness, the analysis incorporates a two-year lagged PPC (𝑙𝑛𝑃𝑃𝐶𝑖,𝑡−2) as an 

alternative proxy, inspired by Yuan and Zhang (2017) who found that a one-year lag in 

environmental regulations reduced R&D spending, while a two-year lag enhanced it. 

Additionally, the one-year lagged provincial investments in industrial pollution treatment 

(𝑙𝑛𝐼𝑃𝑇𝑖,𝑡−1) is used, which capture the total expenses incurred by industrial firms for pollution 

treatment at the provincial level. These expenses are funded by pollution charges, government 

subsidies, and enterprise self-financing. This measure not only reflects the financial burden of 

environmental protection on firms but also indicates the intensity of local environmental policy 

implementation. 

 

 
2 Under China's 2003 "Measures for the Administration of Pollutant Discharge fees," industrial and commercial entities emitting 

pollutants are charged a fee, which doubles if emissions exceed national standards. Consequently, a uniform pollution levy rate 

applies nationwide, meaning a higher provincial pollutant charge indicates greater total emissions within that province. 
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3.2 Patent equation 

After deriving unbiased R&D intensity predictions (𝑅𝐷𝐼𝑁𝑇̂
𝑖,𝑡) from the Heckman model, 

this variable was used as a proxy for R&D input in the patent equation, focusing on patent 

applications as the dependent variable. I primarily used the negative binomial (NB2) model, with 

the Poisson model as a baseline, due to the uneven distribution of patent count data. The NB2 

model was chosen over the Poisson model, which often fails to account for real-world data 

overdispersion, as it allows conditional variance to be a quadratic function of the mean (Marin, 

2014).  

𝑃𝐴𝑇𝑖,𝑡 (
𝐸𝐶𝑂𝑖,𝑡

𝑁𝐸𝐶𝑂𝑖,𝑡
) = 𝜆0𝑅𝐷𝐼𝑁𝑇̂

𝑖,𝑡 + 𝜆1𝑙𝑛𝐹𝑆𝑇𝐾𝑖,𝑡 + 𝜆2𝑙𝑛𝑃𝑇𝐿𝑖,𝑡 + 𝜆3𝑙𝑛𝐸𝑀𝑃𝑖,𝑡 + 𝛿𝑡 + 𝜀𝑖,𝑡           

(5) 

Both NB2 and poisson models use individual fixed effects, removing time-invariant 

characteristics of each firm. Year dummies (δ) are included as time fixed effects, along with 

Firm size (𝐸𝑀𝑃), firm patent stock (𝐹𝑆𝑇𝐾) and provincial technological level (𝑃𝑇𝐿) as controls. 

Total patent applications (𝑃𝐴𝑇) are predicted in the classical CDM model, with green (𝐸𝐶𝑂) and 

non-green (𝑁𝐸𝐶𝑂) patents analyzed separately in the extended CDM model.  

To refine patent count predictions, logarithmic patent predictions undergo exponential 

transformation into count form, adjusted using each firm's average patent applications from 2010 

to 2018. This step accounts for time-invariant unobservable factors related to firm’s patent 

preference, enhancing prediction accuracy without adding time-varying variables to the 

subsequent productivity equation. A small value (0.001) is added to all predictions for valid 

logarithmic transformation for cases of zero counts. The predicted patent counts, divided by the 

number of employees, yield the predicted patent intensity for the productivity equation. For 
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entities with zero predicted patents, log(0.001) is used without dividing by employees, avoiding 

variance issues in zero patent intensity. 

 

3.3 Productivity equation 

The final step of the CDM model assesses the effect of predicted patent intensity on 

productivity. This involves using the logarithm of value added per employee for labor 

productivity, logged physical assets per employee for capital intensity, and predicted patent 

applications per employee for patent intensity. Additionally, logged employee numbers test for 

constant returns to scale. In the extended CDM model (Equation 7), total patent intensity is 

replaced by green and non-green patent intensities that are obtained from separate estimations of 

the patent equation.  

log (
𝑉𝐴

𝐿
)

𝑖,𝑡+1
= 𝛽0 + 𝛽1𝑃𝐴𝑇𝐼𝑁𝑇𝑖,𝑡 + 𝛽2log(𝐿)𝑖,𝑡 + 𝛽3 log (

𝐾

𝐿
)

𝑖,𝑡
+ 𝛿𝑡 + 𝜀𝑖,𝑡          (6) 

log (
𝑉𝐴

𝐿
)

𝑖,𝑡+1
= 𝛽0 + 𝛽1𝑁𝐸𝐶𝑂𝐼𝑁𝑇𝑖,𝑡 + 𝛽2𝐸𝐶𝑂𝐼𝑁𝑇𝑖,𝑡 + 𝛽3log(𝐿)𝑖,𝑡 + 𝛽4 log (

𝐾

𝐿
)

𝑖,𝑡
+ 𝛿𝑡 + 𝜀𝑖,𝑡          

(7) 

To sum up, predicted values of R&D intensity and patent intensity address endogeneity, 

simultaneity and omitted variable issues in the three-step structural model. Due to potential bias 

in standard error estimates in sequential models, bootstrapped standard errors are used for both 

the patent and productivity equations, following Marin and Lotti (2017). 

 

3.3.1 Non-linear relationship estimation on producitivity equation  

The study then explores the non-linear relationship between patent intensity and 

productivity, using Unconditional Quantile Regression (UQR). UQR allows for examining the 
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impact of predicted patent intensity at different points of the productivity distribution without 

relying on specific conditional assumtions that are required by Conditional Quantile Regression 

(CQR), preferable when conditional relationships are uncertain and complex.  

∫ 𝐼𝐹 {𝑦, 𝑣(𝐹𝑌)  } 𝑑𝐹𝑌 = 0                      (8) 

∫ 𝑅𝐼𝐹 {𝑦, 𝑣(𝐹𝑌)  } 𝑑𝐹𝑌 = 𝑣(𝐹𝑌)            (9)   

𝑣(𝐹𝑦) ~ 𝑁 {𝑣(𝐹𝑌),
𝜎𝐼𝐹

2

𝑁
}                    (10)                       

𝜎𝐼𝐹
2 = ∫ 𝐼𝐹 {𝑦, 𝑣(𝐹𝑌)  }2 𝑑𝐹𝑌                (11) 

UQR analyzes how changes in explanatory variables, X, affect the unconditional 

distribution of the response variable, Y (Rios-Avila, 2020). It is based on the idea of recentered 

influence functions (RIF) for robust estimation against outliers and understanding the 

distribution structure. Influence functions (IF) utilizes Gateaux directional derivatives to estimate 

partial effects, revealing how small changes in distribution affect mean values. RIF assess the 

impact of individual observations on the mean, with IFs having an expected value of 0 (Equation 

8), making RIFs' expected value equal to the distributional statistic itself (Equation 9). It is 

possible to estimate the asymptotic variance of any statistic by estimating the variance of the IF 

or RIF using sample data (Equation 11). The advantage of using RIF is it can use simple 

averages to recover the underlying distributional statistics and make it easier to interpretation of 

regression without computing counterfactual distributions.  

 

𝑅𝐼𝐹 (𝑌𝑖, 𝑞𝜏, 𝐹𝑌) = 𝑞𝜏 + 𝐼𝐹(𝑌𝑖, 𝑞𝜏, 𝐹𝑦) = 𝑞𝜏 +  
𝜏−𝕀{𝑌𝑖≤𝑞𝜏}

𝑓𝑦(𝑞𝜏)
       (12) 

 



 15 

IF is the influence of an individual observation i on the 𝜏𝑡ℎ quantile (𝑞𝜏) of unconditional 

distribution of 𝑌𝑖  (firms’ productivity in this case), 𝐹𝑌 is the cumulative distribution function of 

𝑌𝑖. 𝕀{𝑌𝑖 ≤ 𝑞𝜏} takes 1 if a firm’s productivity below or equal to 𝜏𝑡ℎ  𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒.  𝑓𝑦(𝑞𝜏) is the 

marginal density of 𝑌𝑖 at quantile 𝜏  that is estimated based on kernal density distribution. To 

sum up, RIF equals to original distributional statistic at quantile 𝑞𝜏  plus the marginal effects of 

𝑌𝑖 made on the quantile 𝜏 of the distribution.  

 

𝛽𝜏̂ = (∑ 𝑋𝑖 ∙  𝑋𝑖
′)−1 ∑ 𝑋𝑖

𝑁
𝑖=1 𝑅𝐼𝐹̂(𝑌𝑖, 𝑞𝜏̂, 𝐹𝑌)𝑁

𝑖=1         (13) 

 

The coefficient matrix is estimated as the Equation 13, in which it computes sample 

quantile of marginal distribution and acquire density estimate by kernel density to obtain RIF. 

The coefficient represents the marginal effect estimates of an infinitesimal location shift in the 

distribution of covariates X on 𝜏𝑡ℎ  𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 of unconditional distribution of firms’ productivity, 

ceteris paribus. The study employs individual-time fixed effects RIF regression to examine the 

heterogeneity in the effects of green and non-green innovations across productivity distribution 

in the Extended CDM model3. 

 

3.3.2 Robustness checks for non-linear relationship estimations 

3.3.2.1 RIF regression with treatment effects  

To check the robustness of non-linear relationship estimates in the productivity equation, a 

dummy variable for green patent ownership is used as a treatment variable in RIF regressions 

 
3 rifhdreg with abs(id year) command allows controlling for high-dimensional fixed effects, which is equivalent to rifhdfe fixed 

effects settings and estimate within-firm effects when controlling individual-time effests. Moreover, it sets to report robust 

standard errors rather than default OLS asympototic standard errors.  
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with generalized influence treatment effect, identifying effects of GI investments. However, 

standard RIF is limited to local approximations, especially for categorical variables. To meet the 

confoundedness assumption, it requires to overcome potential correlations between GI and 

control variables. The model incorporates Firpo and Pinto's (2016) Inverse Probability 

Weighting (IPW) method that combines parametric and non-parametric approaches. IPW 

estimates the overall treatment group gap directly on the dependent variable's distribution, rather 

than conditioning on explanatory variables, crucial for causal inference from observational data 

(Bui and Imai, 2018). 

 

𝐹̂𝑌𝑘|𝑇=𝑘 = ∫ 𝐹𝑌𝑘|𝑥𝜔𝑘(𝑥)𝒹𝐹𝑥|𝑡=𝑘𝑖𝜖𝑘
 𝑓𝑜𝑟 𝑘 = 0,1           (14) 

 

This approach balances unconditional outcome distributions between treated and control 

groups by applying the weighting factor 𝜔𝑘(𝑥) to the observed data, using a probit model for 

average distributional treatment effects and presuming exogeneity. This assumes independence 

between treatment and error term, supported by the use of predicted patent intensity in the 

productivity equation, which removes unobservable variables from prior steps of CDM model. 

Treatment effects of are determined by differences in combined RIFs between firms with 

and without green patents, 𝜈 (𝐹̂𝑌1
) and 𝜈 (𝐹̂𝑌0

), based on reweighted cumulative distribution 

functions, controlling for individual and time fixed effects in RIF regression4. 

 

𝑇 ×  𝑅𝐼𝐹 {𝑦, 𝜈 (𝐹̂𝑌1
)} +  (1 − 𝑇) ×  𝑅𝐼𝐹{𝑦, 𝜈 (𝐹̂𝑌0

)} = 𝛽0 + 𝛽1 𝑇 + 𝜀       (15) 

 
4 To estimate the treatment effects of having green patents on firms' productivity, the command “rifhdreg y x i.T, over(T) rif 

(q(𝜏)) rwprobit(x) abs(id year) ” is used. The treatment T is treated as a categorical variable, allowing for estimation of 

productivity at the τ-th quantile for all observations (individual-year) with and without green patents.  
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3.3.2.2 Conditional quantile regression for panel data  

Conditional Quantile Regression (CQR), while common in quantile analysis, has 

limitations due to its reliance on numerous specific covariates, potentially reducing reliability 

across different quantiles (Bui and Imai, 2018). However, in our research, CQR is effective in 

CDM frameworks, using patent predictions derived from earlier stages based on limited 

covariates, then applied in the productivity equation to mitigate endogeneity issues caused by 

unobservable variables. CQR, enhanced by bootstrap standard errors, serves as a robust check 

against UQR results in both CDM and extended CDM models, ensuring reliable estimations. 

 

3.4 Data description 

Data on listed firms' total and green patent applications focus on inventions and utility 

models, excluding design patents due to their limited productivity impact5. This study computes 

non-green innovations by deducting green patent applications from the total. All patent data is 

calculated using a three-year rolling average to ensure a robust analysis of patent activity trends. 

To maintain consistency, the study excludes data from the financial sector due to their unique 

financial statements and innovation patterns. Also omitted are firms from Tibetan provinces, 

where environmental regulation data (PPC and IPT) is missing6. This step minimizes potential 

biases, considering the minimal number of affected firms. Table A2 provide a comprehensive list 

and detailed description of all variables used in the model.  

 

 
5 The data of total and green patents for all listed firms were meticulously sourced from the China Research Data Services 

Platform (CNRDS), WIND Financial Terminal database, and the China Stock Market and Accounting Research Database 

(CSMAR). 
6 The sample, spanning all industries except the financial sector, comprises 1,747 firms yielding 15,723 observations from 2010 

to 2018 for R&D and patent equation predictions. After excluding firms with missing productivity-related data, the final dataset 

for individual fixed effect analysis consists of 11,727 observations across 1,303 firms over a nine-year period, ensuring a strong 

balanced panel. 
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4. RESULTS AND DISCUSSION  

4.1 R&D equation  

Table 1 R&D equation  

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 
 OLS Heckman OLS Heckman OLS Heckman OLS Heckman OLS Heckman OLS Heckman OLS Heckman 
 Full sample High-pollution Non-pollution High-tech Low-tech Manufacturing Non-manufacturing 

Step 2: R&D investment 

lnPPF(-1) 
-0.0569 -0.0789*** -0.0353 -0.0519* -0.0475 -0.0692*** -0.120** -0.114*** 0.00356 -0.0329 -0.0839 -0.0902*** -0.135* -0.138*** 
(0.046) (0.014) (0.043) (0.026) (0.057) (0.016) (0.040) (0.016) (0.059) (0.026) (0.045) (0.020) (0.052) (0.026) 

LEV 
-1.243*** -0.876*** -1.723*** -1.285*** -1.010*** -0.621*** -1.273*** -0.806*** -1.109*** -0.741*** -1.201*** -0.601*** -1.186*** -0.824*** 

(0.137) (0.076) (0.168) (0.126) (0.192) (0.095) (0.147) (0.092) (0.300) (0.134) (0.123) (0.109) (0.256) (0.150) 

lnEMP 
-0.144*** -0.213*** -0.113* -0.233*** -0.124*** -0.189*** -0.0579 -0.119*** -0.248** -0.352*** -0.0825* -0.160*** -0.298** -0.387*** 

(0.025) (0.014) (0.054) (0.026) (0.031) (0.016) (0.032) (0.016) (0.070) (0.025) (0.036) (0.019) (0.084) (0.027) 

lnCAPINT 
-0.0857* -0.0795*** 0.0336 0.155*** -0.0435 -0.0392* -0.0403 -0.0410* -0.0803 -0.0756*** -0.00281 0.013 -0.192*** -0.170*** 
(0.036) (0.013) (0.073) (0.031) (0.045) (0.017) (0.027) (0.017) (0.055) (0.022) (0.041) (0.023) (0.045) (0.022) 

lnPCINT 
0.368*** 0.379*** 0.414*** 0.327*** 0.313*** 0.337*** 0.367*** 0.374*** 0.411*** 0.403*** 0.465*** 0.441*** 0.238*** 0.243*** 

(0.050) (0.015) (0.047) (0.032) (0.060) (0.019) (0.045) (0.019) (0.065) (0.026) (0.044) (0.025) (0.052) (0.027) 

CR4 
-1.613*** -1.283*** -1.782*** -0.982*** -2.020*** -1.784*** -0.597** -0.497*** 0.0632 -0.209 -0.834*** -0.584*** -1.624*** -1.536*** 

(0.170) (0.085) (0.282) (0.170) (0.317) (0.107) (0.188) (0.099) (0.285) (0.181) (0.167) (0.126) (0.414) (0.150) 

SOE 
-0.301*** -0.176*** -0.418*** -0.253*** -0.215* -0.0761 -0.142 -0.144*** -0.510** -0.282*** -0.182* -0.141*** -0.414** -0.184* 

(0.082) (0.032) (0.098) (0.056) (0.098) (0.039) (0.075) (0.035) (0.140) (0.063) (0.082) (0.041) (0.122) (0.077) 

_cons 
1.531** 1.743*** 0.468 0.841*** 1.785** 1.935*** 1.424** 1.688*** -0.338 0.618* 0.323 0.870*** 3.063*** 3.500*** 
(0.541) (0.132) (0.474) (0.243) (0.624) (0.161) (0.417) (0.149) (0.523) (0.313) (0.400) (0.200) (0.575) (0.261) 

Year FE  Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y  
Region FE  Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y  

Step 1: R&D dummy 

AGE 
 -0.0708***  -0.0764***  -0.0704***  -0.0854***  -0.0605***  -0.0885***  -0.0649*** 
 (0.002)  (0.005)  (0.003)  (0.005)  (0.003)  (0.004)  (0.003) 

EPD 
 0.143***  0.214**  0.126**  -0.0823  0.168***  0.057  0.0779 
 (0.035)  (0.067)  (0.042)  (0.065)  (0.047)  (0.059)  (0.050) 

lnASSET 
 -0.409***  -0.325***  -0.391***  -0.165***  -0.319***  -0.168***  -0.224*** 
 (0.018)  (0.045)  (0.021)  (0.043)  (0.022)  (0.039)  (0.023) 

lnPPF(-1) 
 0.0312*  0.0223  0.0302*  -0.0946***  0.0796***  -0.0281  0.00409 
 (0.012)  (0.026)  (0.014)  (0.025)  (0.016)  (0.023)  (0.017) 

LEV 
 -0.696***  -0.587***  -0.705***  -0.998***  -0.394***  -0.841***  -0.451*** 
 (0.057)  (0.107)  (0.068)  (0.103)  (0.076)  (0.092)  (0.081) 

lnEMP 
 0.551***  0.543***  0.505***  0.390***  0.457***  0.368***  0.355*** 
 (0.016)  (0.042)  (0.018)  (0.038)  (0.020)  (0.036)  (0.020) 

lnCAPINT 
 0.0580***  -0.0758*  0.0361**  0.0059  0.0704***  -0.0265  0.0075 
 (0.011)  (0.031)  (0.013)  (0.025)  (0.014)  (0.025)  (0.013) 

lnPCINT 
 0.134***  0.221***  0.116***  0.0522  0.150***  0.123***  0.0751*** 
 (0.015)  (0.029)  (0.017)  (0.029)  (0.019)  (0.027)  (0.019) 

CR4 
 -1.142***  -1.870***  -0.768***  -0.405**  0.305**  -0.759***  -0.349*** 
 (0.073)  (0.143)  (0.091)  (0.138)  (0.109)  (0.133)  (0.097) 

SOE 
 -0.212***  -0.162**  -0.226***  0.261***  -0.294***  0.171***  -0.311*** 
 (0.027)  (0.057)  (0.032)  (0.054)  (0.036)  (0.046)  (0.039) 

_cons 
 3.095***  2.743***  3.134***  2.985***  0.725***  2.293***  1.629*** 
 (0.136)  (0.294)  (0.159)  (0.287)  (0.187)  (0.263)  (0.180) 

Year FE  Y  Y  Y  Y  Y  Y  Y 
Region FE  Y  Y  Y  Y  Y  Y  Y 

       /mills        

lambda 
 -0.752***  -1.371***  -0.732***  -1.321***  -0.819***  -1.660***  -0.771*** 
 (0.069)  (0.134)  (0.081)  (0.121)  (0.114)  (0.138)  (0.124) 

rho  -0.541  -0.921  -1.000  -0.532  -0.530  -1.000  -0.486 
sigma  1.390  1.488  1.321  1.378  1.544  1.660  1.584 

Wald chi2 
 2454.2  939.2  1511.3  1252  967.8  887.2  1148.7 
 [0.000]  [0.000]  [0.000]  [0.000]  [0.000]  [0.000]  [0.000] 

F-value 
183.3  170.9  99.57  191.7  66.09  165.2  136  

[0.000]  [0.000]  [0.000]  [0.000]  [0.000]  [0.000]  [0.000]  
adj. R-sq 0.221  0.286  0.197  0.233  0.216  0.23  0.302  
N 11376 15639 3830 4826 7546 10813 7577 8322 3799 7317 8195 9187 3181 6452 

Standard errors in parenthesis 
* p<0.05, ** p<0.01, *** p<0.001 
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In evaluating the R&D equation, the Heckman selection model, compared with basic OLS, 

showed no significant multicollinearity (mean VIF = 1.84, see Table B1). The Heckman model's 

significant lambda (IMR variable) across all samples indicates sample selection bias, effectively 

addressed by this model (part 3 in Table 1). The first Heckman step revealed environmental 

performance disclosure (EPD) positively correlated with R&D expenditure disclosure in the full 

and certain sub-samples, while longer stock market presence (AGE) and larger assets (lnASSET) 

correlated negatively across all samples, validating their roles as effective exclusion restrictions 

(part 2 in Table 1).  

In the second Heckman step (part 2 in Table 1), environmental regulations (PPF) 

negatively impacted R&D intensity in all samples but low-tech industries7, indicating a 

crowding-out effect. In the full sample, a 1% rise in pollution charges correlates with a 0.08% 

decrease in R&D spending, where a provincial increase of 7.7 million in charges typically 

reduces a firm's R&D investment by 0.4 million RMB. Moreover, non-polluting, high-tech, and 

non-manufacturing firms showed greater sensitivity (higher elasticity) to environmental costs 

compared to their counterparts. 

Other negative influences on R&D investment included financial risk (LEV), employee 

costs (EMP), production costs (PCINT) and market concentration (CR4). State-owned 

enterprises (SOE), despite governmental support, were less efficient in technological innovation. 

Capital intensity (CAPINT) shows a positive relationship with R&D intensity across most 

samples, except in high-pollution and manufacturing firms. Bartoloni (2013) highlights the 

crucial impact of capital structure on R&D investment. In capital-intensive sectors 

 
7 Low-tech firms, with typically smaller R&D budgets, display negligible changes in R&D investment in response to the 

environmental policies.  
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(e.g.manufacturing), firms often resort to financing and increasing debt for expansion, leading to 

a reduced focus on innovation as their total capital, including debt, grows. 

 

4.1.1 Sensitivity analysis with alternative environmental regulation proxies 

In assessing the impact of environmental policies on R&D investments, this study applies 

two alternative proxies: a two-year lagged provincial pollutant charge (PPC) and a one-year 

lagged industrial pollution control investment (IPT). The results consistently indicate a 

significant crowding-out effects of environmental costs on R&D investments in most samples, 

both in the short and long term, contrasting Yuan and Zhang's (2017) findings of a positive long-

term impact.  

Table 2 R&D equation with alternative environmental regulation proxies 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14  
lnPPC(-2) nIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) 

  Full sample High-pollution Non-pollution High-tech Low-tech Manufacuring Non-manufacturing 

Step 2: R&D investment 

lnPPF(-2) 
-0.0771*** 

 
-0.0399 

 
-0.115*** 

 
-0.0717*** 

 
-0.0307 

 
-0.0900*** 

 
-0.138*** 

 

(0.013) 
 

(0.025) 
 

(0.015) 
 

(0.016) 
 

(0.025) 
 

(0.020) 
 

(0.025) 
 

lnIPT(-1) 

 
-0.0716*** 

 
-0.048 

 
-0.0972*** 

 
-0.0667*** 

 
-0.0595 

 
-0.0672** 

 
-0.166***  

(0.016) 
 

(0.029) 
 

(0.018) 
 

(0.019) 
 

(0.031) 
 

(0.023) 
 

(0.032) 

LEV 
-0.875*** -1.126*** -1.287*** -1.294*** -0.802*** -0.832*** -0.619*** -0.629*** -0.739*** -0.744*** -0.598*** -0.620*** -0.828*** -0.821*** 

(0.076) (0.075) (0.126) (0.126) (0.093) (0.090) (0.095) (0.095) (0.134) (0.133) (0.110) (0.107) (0.149) (0.150) 

lnEMP 
-0.214*** -0.194*** -0.233*** -0.231*** -0.120*** -0.119*** -0.190*** -0.189*** -0.352*** -0.351*** -0.160*** -0.159*** -0.389*** -0.386*** 

(0.014) (0.013) (0.026) (0.026) (0.016) (0.015) (0.016) (0.016) (0.025) (0.025) (0.019) (0.019) (0.027) (0.027) 

lnCAPINT 
-0.0796*** -0.0809*** 0.154*** 0.156*** -0.0405* -0.0441** -0.0389* -0.0403* -0.0754*** -0.0740*** 0.0131 0.0117 -0.171*** -0.170*** 

(0.013) (0.013) (0.031) (0.031) (0.017) (0.017) (0.017) (0.017) (0.022) (0.022) (0.023) (0.023) (0.022) (0.022) 

lnPCINT 
0.379*** 0.394*** 0.326*** 0.327*** 0.374*** 0.371*** 0.337*** 0.335*** 0.404*** 0.401*** 0.441*** 0.440*** 0.243*** 0.241*** 

(0.015) (0.016) (0.032) (0.032) (0.020) (0.019) (0.019) (0.019) (0.026) (0.026) (0.025) (0.024) (0.027) (0.027) 

CR4 
-1.281*** -1.312*** -0.988*** -0.990*** -0.494*** -0.505*** -1.781*** -1.788*** -0.211 -0.211 -0.580*** -0.597*** -1.533*** -1.531*** 

(0.085) (0.084) (0.170) (0.169) (0.100) (0.097) (0.107) (0.106) (0.181) (0.180) (0.126) (0.124) (0.150) (0.150) 

SOE 
-0.177*** -0.164*** -0.249*** -0.248*** -0.147*** -0.122*** -0.0776* -0.0685 -0.280*** -0.292*** -0.143*** -0.126** -0.186* -0.179* 

(0.032) (0.032) (0.056) (0.056) (0.035) (0.034) (0.039) (0.039) (0.063) (0.063) (0.041) (0.040) (0.077) (0.077) 

_cons 
1.739*** 1.742*** 0.775** 0.851** 1.698*** 1.698*** 1.955*** 1.986*** 0.610* 0.832* 0.875*** 0.795*** 3.520*** 3.813*** 

(0.131) (0.151) (0.241) (0.272) (0.149) (0.167) (0.160) (0.185) (0.311) (0.344) (0.199) (0.219) (0.260) (0.304) 
Year FE  Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y  
Region FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Wald chi2 
2504.110 2550.630 937.470 939.440 1240.500 1289.610 1513.540 1505.100 966.850 972.040 882.310 904.880 1152.440 1147.070 

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
N 15639 15552 4826 4826 8322 8322 10813 10813 7317 7317 9187 9187 6452 6452 

Standard errors in parenthesis 

* p<0.05, ** p<0.01, *** p<0.001 

 

However, high-polluting firms, compelled by strict environmental regulations, demonstrate 

a necessity to invest in GI, showing less sensitivity to increased environmental costs in both 
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alternative models than non-heavy polluting firms (M3-M6 in Table 2). This disparity is partly 

due to cost transference within supply chains, with high-polluting firms passing additional 

environmental expenses onto other businesses. Moreover, the prevailing trend towards 

environmental responsibility and evolving consumer expectations encourages many low-

polluting companies to voluntarily augment their environmental investments, thus diverting 

resources from R&D activities and exacerbating the indirect impact of environmental policies on 

these firms' innovation investments. 

 

4.2 Patent equation  

After employing the Heckman model to predict R&D intensity, this value was used in both 

the classical and extended CDM models to estimate patent outputs. Table 3 and Table 4 

showcase these results, comparing the Poisson and negative binomial models (NB2), which both 

utilize individual-time double fixed effects and bootstrapped standard errors. 

Table 3 Results of patent equation-CDM 
 

Model 15 Model 16 Model 17 Model 18 Model 19 Model 20 Model 21 Model 22 Model 23 Model 24 Model 25 Model 26 Model 27 Model 28  
Poisson NB2 Poisson NB2 Poisson NB2 Poisson NB2 Poisson NB2 Poisson NB2 Poisson NB2 

  Full-sample High-pollution Non-pollution High-tech Low-tech Manufacturing Non-manufacturing 

〈 0.410** 0.259*** 0.596*** 0.361*** 0.214 0.209** 0.567*** 0.198*** 0.429 0.254* 0.569*** 0.237*** 0.206 0.187** 
RDINT (0.131) (0.058) (0.144) (0.075) (0.154) (0.081) (0.133) (0.053) (0.307) (0.102) (0.113) (0.072) (0.281) (0.066) 

lnFSTK 
0.00195 0.00246 -0.0014 0.00553 0.00274 0.00217 0.00155 0.0013 0.000856 0.00286* 0.00146 0.00331 -0.00063 0.00113 
(0.002) (0.001) (0.006) (0.003) (0.002) (0.001) (0.002) (0.002) (0.002) (0.001) (0.002) (0.003) (0.002) (0.001) 

lnPLT 
0.123 0.0788* 0.319 0.107 0.0286 0.0691 0.178 0.0855 -0.0294 0.0887 0.162 0.153** -0.0181 0.102 

(0.135) (0.038) (0.182) (0.079) (0.150) (0.055) (0.144) (0.063) (0.182) (0.058) (0.156) (0.051) (0.233) (0.063) 

lnEMP 
0.420*** 0.337*** 0.533*** 0.339*** 0.334*** 0.330*** 0.418*** 0.327*** 0.535** 0.351*** 0.447*** 0.339*** 0.462** 0.326*** 
(0.096) (0.033) (0.110) (0.054) (0.095) (0.036) (0.097) (0.032) (0.166) (0.060) (0.087) (0.035) (0.157) (0.050) 

_cons 

 
-0.730* 

 
-0.958* 

 
-0.61 

 
-0.396 

 
-1.086* 

 
-0.934* 

 
-1.240*  

(0.296) 
 

(0.477) 
 

(0.448) 
 

(0.422) 
 

(0.451) 
 

(0.377) 
 

(0.485) 
Individual FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Wald chi2 
948.44 5007.8 694.17 776 911.23 2702.4 690.26 3502.7 442.82 1035.8 1003.53 3362.9 481.05 755.7 
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Log likelihood -88061.8 -41633.2 -23512.4 -13222.5 -63628.1 -28375.6 -55223.6 -26176.6 -31608.7 -15217.6 -59116.4 -28602.3 -27070.4 -12714.8 
N 10818 13890 3771 4531 7047 9359 5643 7763 5175 6127 6507 8613 4311 5277 

Standard errors in parenthesis 

* p<0.05, ** p<0.01, *** p<0.001 

 

Key findings from Table 3 indicate that increased R&D investment (RDINT) significantly 

boosts patent applications across all samples, with high-polluting firms exhibiting a notably 
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higher efficiency in converting R&D into patents than the non-polluting firms. This trend is also 

evident among manufacturing and low-tech firms and their counterparts. However, the influence 

of regional technology levels (PTL) and firm-level patent stock (FSTK) on R&D output is less 

significant and has smaller effects, underscoring the primary role of R&D expenditure and 

human resources (EMP) in driving patent outcomes. 

In the extended CDM model (Table 4), R&D intensity positively impacts both green and 

non-green innovations. High-polluting and manufacturing firms show more efficient conversion 

of R&D to green patents (rates: 0.628 and 0.314) than to non-green (0.401 and 0.245), indicating 

a lower opportunity costs of GI in these sectors. In contrast, in the remaining samples with lower 

pollution issues, GI exhibits a lower R&D conversion efficiency than non-green innovations, 

indicating GI has crowding-out effects on other innovations. 

The findings also highlight the crucial role of firm size and human resources in enhancing 

R&D efficiency and generating both green and non-green patents. Moreover, the regional 

innovation level continues to significantly influence non-green patent generation in 

manufacturing firms, reflecting the importance of regional capabilities in their innovation 

processes (Model 39). 

Table 4 Results of patent equation- Extended CDM 
 

Model 29 Model 30 Model 31 Model 32 Model 33 Model 34 Model 35 Model 36 Model 37 Model 38 Model 39 Model 40 Model 41 Model 42  
NECO ECO NECO ECO NECO ECO NECO ECO NECO ECO NECO ECO NECO ECO  

Full sample High-pollution Non-pollution High-tech Low-tech Manufacuring Non-manufacturing 

〈 0.240*** 0.238** 0.401*** 0.628*** 0.184 0.238 0.191*** 0.165 0.176* 0.116 0.245** 0.314*** 0.162* 0.0994 
RDINT (0.060) (0.074) (0.084) (0.108) (0.114) (0.145) (0.047) (0.087) (0.071) (0.124) (0.079) (0.092) (0.070) (0.103) 

lnFSTK 
0.00201 0.00109 0.00587 0.00185 0.00270* 0.00193 0.00069 0.00088 0.00173 0.00127 0.00309 0.00186 0.00097 -0.00004 
(0.001) (0.001) (0.004) (0.004) (0.001) (0.002) (0.002) (0.002) (0.001) (0.002) (0.003) (0.004) (0.001) (0.002) 

lnPLT 
0.0677 0.0505 0.0923 -0.00589 0.0907 0.0736 0.079 0.0702 0.0565 0.072 0.139** 0.0672 0.0814 0.16 
(0.045) (0.079) (0.075) (0.111) (0.069) (0.103) (0.062) (0.079) (0.072) (0.100) (0.050) (0.082) (0.068) (0.111) 

lnEMP 
0.328*** 0.321*** 0.340*** 0.482*** 0.302*** 0.312*** 0.345*** 0.315*** 0.326*** 0.278*** 0.353*** 0.363*** 0.290*** 0.253*** 
(0.030) (0.040) (0.060) (0.075) (0.047) (0.069) (0.033) (0.054) (0.035) (0.053) (0.040) (0.048) (0.038) (0.057) 

Individual FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Wald chi2 
4208.1 2800.1 1581.3 878.5 1252.4 1104.5 3359.3 1673.3 1472 2380.8 3266.3 1423.8 735.1 829.1 
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Log likelihood -39867.8 -19099.7 -12645.9 -5828 -14361.2 -6849.4 -25298.5 -12174.4 -27192.9 -13240.2 -27701.1 -12784 -11882.4 -6240.1 
N 13801 12627 4522 4226 6038 5292 7763 7335 9279 8401 8613 8053 5188 4574 

Standard errors in parenthesis 

* p<0.05, ** p<0.01, *** p<0.001 



 23 

4.3 Productivity equation  

The study employs the Mundlak test over the Hausman test for the productivity equation 

due to its reliability under issues including heteroskedasticity or serial correlation in error terms 

(Mundlak, 1978). The Mundlak test, incorporating panel-level means in the random effects 

model, significantly rejects the null hypothesis at a 99.9% confidence level (Table B7) 8. This 

suggests a correlation between unobservable factors in the error term and control variables, 

indicating the suitability of a panel fixed effects model. The CDM and extended CDM models 

use individual and time dual fixed effects, with bootstrapping standard errors to address these 

unobservable factors. 

To address the discrepancy between predicted and actual patent counts, and mitigate 

endogeneity arising from omitted variables like patenting preferences, the model modifies the 

predicted patent counts9. This is achieved by scaling them with each firm's actual average patent 

number. This adjustment method effectively neutralizes potential biases from unobserved time-

invariant factors associated with patenting, while not affecting the variability in firms' 

productivity, thereby enhancing the accuracy of the productivity equation estimates10.  

Productivity equation models reveal that predicted patent intensity significantly boosts 

productivity, with a 1% increase in patent intensity leading to a 0.42% increase in productivity in 

the full sample (Model 43 in Table 5). Capital intensity also positively impacts productivity, 

while firm size shows negligible effects. 

Table 5 Results of productivity equation- CDM  

 
8 Table A8 also shows Mundlak test results for Extended CDM model. The results also indicate random effects model is biased 

and fixed effects model should be used.  
9 The exponential transformed green patent and non-green patent applications compared the realized patent value are presneted in  

Table B5 and Table B6, respectively  
10 In Marin (2014), the absence of adjustments for potential discrepancies between predicted and actual patent counts may have 

contributed to their significantly different findings, particularly regarding the crowding-out effects in high-polluting firms.  
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Model 43 Model 44 Model 45 Model 46 Model 47 Model 48 Model 49 

  
Full-sample High-pollution Non-pollution High-tech Low-tech Manufacturing 

Non-
manufacturing 

〈  0.419*** 0.469*** 0.338*** 0.387*** 0.423*** 0.391*** 0.502*** 
lnPATINT (0.035) (0.058) (0.069) (0.047) (0.052) (0.038) (0.049) 

lnCAPINT 
0.139*** 0.158*** 0.173*** 0.111** 0.140*** 0.183*** 0.147*** 
(0.025) (0.032) (0.034) (0.035) (0.034) (0.038) (0.037) 

lnEMP 
0.0292 0.0228 0.043 0.0125 0.0349 0.0489 0.0408 
(0.023) (0.045) (0.030) (0.042) (0.034) (0.025) (0.029) 

_cons 
5.880*** 5.599*** 5.000*** 5.451*** 6.801*** 5.037*** 6.201*** 
(0.153) (0.241) (0.253) (0.261) (0.264) (0.253) (0.224) 

Individual FE Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y 
adj. R-sq 0.144 0.25 0.128 0.149 0.115 0.173 0.149 

Wald chi2 
695.7 431.6 328.8 468.6 497.4 704.9 409.8 

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -6635.4 -1611 -1582.8 -2542.4 -3210.7 -2686.3 -2409.1 
N 11727 3888 3573 5670 4590 6507 3762 
Standard errors in parenthesis 
* p<0.05, ** p<0.01, *** p<0.001 

Table 6 Results of productivity equation- Extended CDM 
 

Model 50 Model 51 Model 52 Model 53 Model 54 Model 55 Model 56 

 Full-sample High-pollution Non-pollution High-tech Low-tech Manufacturing 
Non-

manufacturing 

〈  0.471*** 0.253** 0.527*** 0.548*** 0.407*** 0.301*** 0.534*** 
lnNECOINT (0.056) (0.087) (0.046) (0.083) (0.058) (0.075) (0.064) 

〈  -0.0739 0.198** -0.144** -0.156* -0.0103 0.0976 -0.114* 
lnECOINT (0.058) (0.076) (0.053) (0.077) (0.052) (0.068) (0.053) 

lnCAPINT 
0.130*** 0.170*** 0.120*** 0.102*** 0.149*** 0.172*** 0.109*** 
(0.019) (0.034) (0.020) (0.025) (0.025) (0.029) (0.025) 

lnEMP 
0.00553 -0.0132 0.00491 0.0309 -0.0232 0.0628** -0.0258 
(0.023) (0.048) (0.028) (0.032) (0.025) (0.024) (0.033) 

_cons 
5.720*** 6.063*** 5.656*** 5.006*** 6.458*** 5.348*** 6.636*** 
(0.224) (0.307) (0.176) (0.252) (0.207) (0.275) (0.208) 

Individual FE Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y 
adj. R-sq 0.131 0.229 0.106 0.163 0.108 0.167 0.115 

Wald chi2 
1614.6 583.5 1066.7 1029.9 546.2 1712.3 410 
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Log Likelihood -7834.9 -1790.8 -5867 -3002 -4579.5 -3172.3 -4227.5 
N 14721 4594 10127 7714 7007 8583 6138 
Standard errors in parenthesis 

* p<0.05, ** p<0.01, *** p<0.001 

 

In the Extended CDM model, results show that non-green innovations primarily drive 

firms' productivity across most samples, where GI have negligible or negative impacts on 

productivity. However, the influence of green and non-green innovations (0.2% and 0.25%) is 



 25 

comparably beneficial to high-polluting firms’ productivity (Model 51 in Table 6). The higher 

efficiency in R&D input-output conversion for GI (refer to Model 31-32 in Table 4), coupled 

with their productivity effects comparable to those of non-green innovations, indicates an 

absence of significant crowding-out effects of GI in these firms. This suggests that high-polluting 

firms can effectively balance the environmental protection costs with gains from green 

innovations. 

 

4.3.1 Non-linear relationship estimations on productivity equation  

4.3.1.1 Unconditional quantile regression  

The study explores non-linear effects of innovations on productivity using unconditional 

quantile regression (UQR) in both CDM and Extended CDM models. In full-sample, the U-

shaped relationship between firms’ patent intensity (PATINT) and productivity level is evident, 

particularly for non-green patents (NECOINT). Green innovations (ECOINT), however, do not 

significantly impact productivity (see Error! Not a valid bookmark self-reference. and  

Table 8). 

Figure 1 Non-linear estimations based on UQR, comparing CDM and Extended CDM models in 

full sample 
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Table 7 Results of UQR on CDM models (Full sample) 

Full sample Model 57 Model 58 Model 59 Model 60 Model 61 Model 62 Model 63 Model 64 Model 65 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈  0.292*** 0.281*** 0.264*** 0.278*** 0.301*** 0.301*** 0.349*** 0.449*** 0.502*** 
lnPATINT (9.072) (11.399) (11.935) (12.990) (14.048) (12.844) (12.577) (13.266) (10.351) 

lnCAPINT 
0.106*** 0.105*** 0.104*** 0.113*** 0.106*** 0.090*** 0.093*** 0.121*** 0.135*** 
(6.141) (8.028) (8.824) (9.746) (9.102) (7.166) (6.313) (5.819) (4.560) 

lnEMP 
-0.003 0.027 0.026 0.013 0.011 -0.014 -0.032 -0.047+ -0.062+ 

(-0.131) (1.417) (1.578) (0.837) (0.650) (-0.783) (-1.550) (-1.853) (-1.716) 

_cons 
4.951*** 5.282*** 5.549*** 5.703*** 5.932*** 6.264*** 6.458*** 6.541*** 6.936*** 
(42.436) (58.269) (67.662) (70.893) (73.963) (71.358) (62.268) (47.360) (35.751) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 
F-Stat 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -23266 -23266 -23266 -23266 -23266 -23266 -23266 -23266 -23266 
N 14,721 14,721 14,721 14,721 14,721 14,721 14,721 14,721 14,721 
Standard errors in parenthesis 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 

 

Table 8 Results of UQR on Extended CDM models (Full sample) 

Full sample Model 66 Model 67 Model 68 Model 69 Model 70 Model 71 Model 72 Model 73 Model 74 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈  0.390*** 0.324*** 0.293*** 0.284*** 0.269*** 0.277*** 0.356*** 0.511*** 0.662*** 
lnNECOINT (6.147) (7.317) (7.668) (7.857) (7.475) (6.967) (7.609) (7.862) (7.633) 

〈  -0.109+ -0.048 -0.032 -0.005 0.039 0.031 -0.006 -0.067 -0.182* 
lnECOINT (-1.823) (-1.142) (-0.886) (-0.144) (1.146) (0.850) (-0.146) (-1.100) (-2.221) 

lnCAPINT 
0.108*** 0.106*** 0.105*** 0.114*** 0.106*** 0.090*** 0.094*** 0.123*** 0.139*** 

(6.262) (8.144) (8.929) (9.824) (9.116) (7.190) (6.366) (5.913) (4.665) 

lnEMP 
0.001 0.03 0.029+ 0.016 0.013 -0.011 -0.028 -0.042 -0.055 

(0.051) (1.588) (1.748) (1.024) (0.812) (-0.611) (-1.393) (-1.637) (-1.532) 

_cons 
4.738*** 5.214*** 5.517*** 5.735*** 6.073*** 6.386*** 6.501*** 6.451*** 6.587*** 
(26.117) (40.501) (49.007) (53.151) (56.299) (53.665) (45.739) (32.079) (23.381) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.613 
F-Stat 43 43 43 43 43 43 43 43 43 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -23261 -23261 -23261 -23261 -23261 -23261 -23261 -23261 -23261 
N 14,721 14,721 14,721 14,721 14,721 14,721 14,721 14,721 14,721 
Standard errors in parenthesis 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 

 

While capital intensity (CAPTINT) exhibits a positive correlation with productivity, 

particularly in the higher productivity quantiles, labor input (EMP) does not demonstrate a 
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substantial impact. This suggests a predominant reliance on non-green innovation and capital 

across all productivity levels, as opposed to GI and human resources, for listed firms in China in 

overall. In the ensuing comparative analysis, it scrutinizes sub-samples to evaluate whether the 

factors influencing productivity, with a specific emphasis on the crowding-out effects of GI, 

manifest differently in varied industrial landscapes. 

Figure 2 Non-linear estimations based on UQR of CDM model, high-pollution v.s. non-pollution 

sample 

 

Figure 3 Non-linear estimations based on UQR of Extended CDM model, high-pollution v.s. 

non-pollution sample 

 

High-polluting firms show a linear increase in economic gains with patent intensity across 

the productivity distribution, whereas non-polluting firms experience innovation returns stagnate 

until higher productivity levels (Figure 2). These results from CDM models suggest high-



 28 

polluting firms find innovation more rewarding. The Extended CDM models show an inverse U-

shaped relationship between green patent intensity and productivity in high-polluting and non-

polluting samples, while non-green patents exhibit a U-shaped pattern (Figure 3). 

Table 9 Results of UQR on Extended CDM models (High-pollution sample) 

High-pollution Model 93 Model 94 Model 95 Model 96 Model 97 Model 98 Model 99 Model 100 Model 101 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈  0.16 0.13 0.172* 0.126+ 0.133* 0.073 0.171+ 0.223+ 0.319** 
lnNECOINT (1.392) (1.638) (2.340) (1.861) (2.080) (0.978) (1.825) (1.856) (2.741) 

〈  0.068 0.113 0.106 0.165** 0.263*** 0.362*** 0.329*** 0.293** 0.217* 
lnECOINT (0.591) (1.453) (1.542) (2.605) (4.106) (5.159) (3.856) (2.597) (1.996) 

lnCAPINT 
0.114*** 0.152*** 0.134*** 0.158*** 0.169*** 0.133*** 0.153*** 0.181*** 0.124** 

(3.661) (5.963) (5.628) (6.784) (7.928) (5.502) (5.272) (4.735) (2.691) 

lnEMP 
0.110* 0.044 0.070* 0.022 0.014 -0.082* -0.053 -0.117* -0.112* 
(2.411) (1.229) (2.021) (0.641) (0.487) (-2.403) (-1.296) (-2.388) (-2.019) 

_cons 
5.091*** 5.317*** 5.567*** 5.787*** 6.035*** 6.797*** 6.746*** 6.861*** 7.413*** 
(14.935) (20.148) (22.776) (25.251) (28.825) (28.605) (22.582) (17.334) (17.009) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 
F-Stat 25.15 25.15 25.15 25.15 25.15 25.15 25.15 25.15 25.15 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -6158 -6158 -6158 -6158 -6158 -6158 -6158 -6158 -6158 
N 4,594 4,594 4,594 4,594 4,594 4,594 4,594 4,594 4,594 
Standard errors in parenthesis 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 

Table 10 Results of UQR on Extended CDM models (Non-pollution sample) 

Non-pollution Model 102 Model 103 Model 104 Model 105 Model 106 Model 107 Model 108 Model 109 Model 110 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈  0.428*** 0.327*** 0.329*** 0.334*** 0.318*** 0.342*** 0.418*** 0.622*** 0.743*** 
lnNECOINT (6.406) (6.554) (7.902) (8.424) (8.028) (7.961) (8.365) (8.895) (6.568) 

〈  -0.105+ -0.015 -0.06 -0.055 -0.04 -0.070+ -0.115* -0.205** -0.296** 
lnECOINT (-1.670) (-0.328) (-1.532) (-1.469) (-1.084) (-1.770) (-2.547) (-3.070) (-2.818) 

lnCAPINT 
0.102*** 0.093*** 0.101*** 0.100*** 0.087*** 0.075*** 0.080*** 0.109*** 0.165*** 

(5.135) (5.880) (7.137) (7.130) (6.234) (5.129) (4.610) (4.433) (4.290) 

lnEMP 
-0.025 0.022 0.019 0.006 0.01 0.005 -0.032 -0.022 -0.046 

(-0.859) (0.970) (0.979) (0.342) (0.505) (0.261) (-1.396) (-0.738) (-0.980) 

_cons 
4.770*** 5.346*** 5.496*** 5.736*** 6.068*** 6.287*** 6.403*** 6.265*** 6.329*** 
(25.130) (36.765) (44.609) (48.437) (50.653) (48.336) (41.197) (28.303) (17.890) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.641 0.641 0.641 0.641 0.641 0.641 0.641 0.641 0.641 
F-Stat 24.64 24.64 24.64 24.64 24.64 24.64 24.64 24.64 24.64 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -17136 -17136 -17136 -17136 -17136 -17136 -17136 -17136 -17136 
N 10,127 10,127 10,127 10,127 10,127 10,127 10,127 10,127 10,127 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Contrary to the non-pollution sample where negative coefficients of GI suggest crowding-

out effects (Table 10), UQR in the high-pollution sample reveals a notably robust impact of GI 

on productivity, surpassing non-green innovations within the 40th to 80th productivity quantiles 

(Table 9). This finding underscores the absence of crowding-out effects and highlights the 

beneficial role of GI in enhancing the performance of median-high productive, high-polluting 

firms. However, at the 90th productivity quantile, GI's productivity returns diminish, showing 

lower benefits compared to non-green innovations, indicating crowding-out effects. 

In addition to innovations, the impact of different resources on productivity varies across 

industrial types and productivity levels. Both CDM and extended CDM models show that capital 

intensity generally boosts productivity more in high-polluting firms (Table C1-Table C2 and 

Table 9-Table 10). In contrast, non-polluting firms rely more on capital at high productivity 

(Figure 3). While employee size do not significantly benefit non-polluting firms, they positively 

impact the productivity of high-polluting firms at lower levels but yield negative returns at 

higher productivity levels. 

Figure 4 Non-linear estimations based on UQR of CDM model, high-tech v.s. low-tech sample 
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Figure 5 Non-linear estimations based on UQR of Extended CDM model, high-tech v.s. low-tech 

sample 

 

Table 11 Results of UQR on Extended CDM models (High-tech sample) 

High-tech Model 129 Model 130 Model 131 Model 132 Model 133 Model 134 Model 135 Model 136 Model 137 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈  0.439*** 0.298*** 0.325*** 0.299*** 0.260*** 0.276*** 0.272*** 0.430*** 0.600*** 
lnNECOINT (3.829) (3.817) (4.876) (4.783) (4.362) (4.373) (3.587) (4.448) (3.393) 

〈  -0.173 -0.037 -0.098 -0.045 0.009 0.022 0.031 -0.03 -0.026 
lnECOINT (-1.528) (-0.481) (-1.497) (-0.735) (0.153) (0.364) (0.419) (-0.319) (-0.153) 

lnCAPINT 
0.099*** 0.092*** 0.109*** 0.110*** 0.119*** 0.100*** 0.071*** 0.070** 0.106* 
(4.236) (5.160) (6.857) (6.871) (7.259) (5.943) (3.777) (2.900) (2.503) 

lnEMP 
0.053+ 0.070** 0.063** 0.048* 0.027 0.015 -0.011 -0.014 -0.041 
(1.707) (2.828) (2.925) (2.343) (1.233) (0.621) (-0.415) (-0.388) (-0.820) 

_cons 
4.270*** 4.962*** 4.993*** 5.265*** 5.532*** 5.795*** 6.211*** 6.104*** 6.001*** 
(12.496) (20.886) (24.076) (26.533) (28.556) (28.286) (25.848) (19.862) (10.818) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.591 0.591 0.591 0.591 0.591 0.591 0.591 0.591 0.591 
F-Stat 29.02 29.02 29.02 29.02 29.02 29.02 29.02 29.02 29.02 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -11270 -11270 -11270 -11270 -11270 -11270 -11270 -11270 -11270 
N 7,714 7,714 7,714 7,714 7,714 7,714 7,714 7,714 7,714 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

The U-shaped relationship between patent intensity and productivity is consistent in both 

high-tech and low-tech samples, with low-tech firms showing greater productivity growth per 

innovation (Figure 4 and Table C3-Table C4). The "Smiling Curve" theory in innovation 

explains this phenomenon, highlighting higher returns at early and late technology development 

stages. 
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Differences in crowding-out effects of GI between high-pollution and non-pollution samples 

aren't mirrored in high-tech vs. low-tech firms (Figure 5). In the extended CDM model, both firm 

types show similar patterns in non-green and green innovation's impact on productivity, and 

neither benefits significantly from GI ( 

Table 11and  

Table 12). This similarity suggests pollution intensity, not technological level, primarily drives 

GI's economic returns, making high-tech and low-tech firms suitable for a placebo test to 

confirm pollution's influence on GI activities. 

Table 12 Results of UQR on Extended CDM models (Low-tech sample) 

Low-tech Model 138 Model 139 Model 140 Model 141 Model 142 Model 143 Model 144 Model 145 Model 146 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈 

 

0.397*** 0.402*** 0.328*** 0.264*** 0.274*** 0.298*** 0.396*** 0.471*** 0.604*** 
lnNECOINT (5.041) (7.062) (6.443) (5.677) (5.854) (6.074) (6.908) (6.689) (5.483) 

〈 

 

-0.049 -0.075 -0.022 0.024 0.052 0.032 -0.026 -0.066 -0.074 
lnECOINT (-0.710) (-1.462) (-0.480) (0.566) (1.233) (0.742) (-0.513) (-1.067) (-0.782) 

lnCAPINT 
0.106*** 0.126*** 0.126*** 0.118*** 0.103*** 0.100*** 0.130*** 0.126*** 0.183*** 
(3.993) (5.997) (6.531) (6.512) (5.800) (5.266) (5.695) (4.627) (4.696) 

lnEMP 
-0.051 -0.005 -0.007 -0.011 -0.022 -0.056* -0.054+ -0.044 -0.058 

(-1.237) (-0.181) (-0.260) (-0.453) (-0.939) (-2.329) (-1.895) (-1.367) (-1.198) 

_cons 
5.298*** 5.496*** 5.900*** 6.296*** 6.725*** 6.980*** 6.993*** 7.330*** 7.576*** 
(23.496) (32.203) (38.542) (44.773) (47.522) (45.418) (38.056) (33.323) (23.285) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.644 0.644 0.644 0.644 0.644 0.644 0.644 0.644 0.644 
F-Stat 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -11609 -11609 -11609 -11609 -11609 -11609 -11609 -11609 -11609 
N 7,007 7,007 7,007 7,007 7,007 7,007 7,007 7,007 7,007 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

Overall, non-manufacturing firms exhibit higher innovation-driven economic returns 

across all productivity quantiles compared to manufacturing firms (Error! Not a valid 

bookmark self-reference.). Notably, in manufacturing firms, the relationship between patent 

intensity and productivity is positively and linearly related, indicating a constant growth in 

productivity with a 1% increase in innovations at any level of productivity among these firms.  
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While non-manufacturing firms are negatively impacted by GI, for manufacturing firms, 

GI impacts productivity similarly to non-green innovations, showing no significant crowding-out 

effects of GI ( 

Figure 7). This is likely due to manufacturing firms' scale-induced productivity gains from 

GI in response to pollution-related resource allocation inefficiencies. Green patent intensity have 

positive and linearly increasing economic returns along the productivity distribution, differing 

from the U-shaped pattern of non-green innovation. Additionally, labor substantially enhances 

productivity in labor-intensive manufacturing firms ( 

Table 13), while human resources yield minimal or even burdensome effects in other 

sectors. 

 

Figure 6 Non-linear estimations based on UQR of CDM model, manufacturing v.s. non-

manufacturing sample 

 

Figure 7 Non-linear estimations based on UQR of Extended CDM model, manufacturing v.s. 

non-manufacturing sample 
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Table 13 Results of UQR on Extended CDM models (Manufacturing sample) 

Manufacturing Model 165 Model 166 Model 167 Model 168 Model 169 Model 170 Model 171 Model 172 Model 173 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈 

 

0.171+ 0.147* 0.118* 0.127* 0.117* 0.133* 0.110+ 0.214** 0.364* 
lnNECOINT (1.757) (2.195) (2.122) (2.385) (2.283) (2.494) (1.799) (2.696) (2.520) 

〈  0.08 0.093 0.092+ 0.108* 0.150** 0.189*** 0.226*** 0.224** 0.249+ 
lnECOINT (0.871) (1.444) (1.722) (2.110) (3.048) (3.676) (3.885) (2.961) (1.835) 

lnCAPINT 
0.136*** 0.116*** 0.123*** 0.128*** 0.153*** 0.155*** 0.121*** 0.132*** 0.167*** 

(4.993) (6.013) (7.417) (7.785) (9.243) (8.901) (6.244) (5.711) (4.366) 

lnEMP 
0.124*** 0.110*** 0.104*** 0.074*** 0.063** 0.057** 0.023 0.01 -0.057 

(3.511) (4.379) (4.916) (3.705) (3.078) (2.700) (0.939) (0.357) (-1.163) 

_cons 
4.738*** 5.219*** 5.450*** 5.617*** 5.713*** 5.890*** 6.396*** 6.391*** 6.390*** 
(14.565) (23.480) (29.096) (30.752) (31.909) (31.554) (30.124) (24.075) (13.342) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.595 0.595 0.595 0.595 0.595 0.595 0.595 0.595 0.595 
F-Stat 36.71 36.71 36.71 36.71 36.71 36.71 36.71 36.71 36.71 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -12192 -12192 -12192 -12192 -12192 -12192 -12192 -12192 -12192 
N 8,583 8,583 8,583 8,583 8,583 8,583 8,583 8,583 8,583 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

Table 14 Results of UQR on Extended CDM models (Non-manufacturing sample) 

Non-
manufacturing 

Model 174 Model 175 Model 176 Model 177 Model 178 Model 179 Model 180 Model 181 Model 182 

UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈  0.534*** 0.602*** 0.531*** 0.398*** 0.396*** 0.420*** 0.419*** 0.485*** 0.715*** 
lnNECOINT (6.420) (9.309) (9.170) (7.639) (7.527) (7.250) (6.524) (6.548) (5.835) 

〈  -0.139+ -0.200*** -0.139** -0.063 -0.089+ -0.098+ -0.078 -0.121+ -0.169 
lnECOINT (-1.780) (-3.312) (-2.633) (-1.327) (-1.903) (-1.944) (-1.298) (-1.764) (-1.536) 

lnCAPINT 
0.083*** 0.109*** 0.125*** 0.090*** 0.090*** 0.079*** 0.102*** 0.102*** 0.119** 
(3.478) (4.972) (5.862) (4.788) (4.926) (3.940) (4.415) (3.875) (2.942) 

lnEMP 
-0.086* -0.026 -0.023 -0.016 -0.036 -0.054+ -0.047+ -0.048 -0.035 
(-2.295) (-0.821) (-0.763) (-0.610) (-1.392) (-1.939) (-1.680) (-1.579) (-0.723) 
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_cons 
5.369*** 5.507*** 5.865*** 6.455*** 6.669*** 7.000*** 7.222*** 7.536*** 7.991*** 
(26.030) (31.796) (37.001) (45.726) (47.381) (44.111) (38.995) (35.648) (24.098) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.617 0.617 0.617 0.617 0.617 0.617 0.617 0.617 0.617 
F-Stat 21.46 21.46 21.46 21.46 21.46 21.46 21.46 21.46 21.46 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -10541 -10541 -10541 -10541 -10541 -10541 -10541 -10541 -10541 
N 6,138 6,138 6,138 6,138 6,138 6,138 6,138 6,138 6,138 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

 

Figure 8 Opportunity costs of green innovation across productivity distribution  

 

In summary, aligning with Porter's Hypothesis, the study reveals that firms with heavier 

pollution issues, particularly at mid to high productivity levels, substantially benefit from GI. As 

evidenced by the U-shaped relationship between non-green innovations and productivity in UQR 

analyses, high-polluting and manufacturing firms experience negative opportunity costs in GI 

investments within the 50th to 80th productivity quantiles (Figure 8). In contrast, other firms 

with lower pollution issues face much higher opportunity costs with GI, making non-green 

innovations more economically advantageous. 
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The study's insights are crucial for corporate strategy, highlighting that the relative benefits 

of GI vary with a firm’s pollution level and productivity level. For high-polluting firms operating 

at moderate productivity levels, GI is a cost-effective strategy, offering higher returns than other 

innovations. However, at very low or high productivity levels, or in firms with minimal pollution 

concerns, the opportunity costs of GI outweigh its benefits, making non-green innovation a more 

lucrative option. These conclusions provide key strategic direction for firms in allocating 

resources for innovation. 

4.3.2 Robustness checks on non-linear relationship estimations  

4.3.2.1 RIF treatment effects  

Figure 9 Non-linear estimations based on RIF treatment effects (Full sample) 

 

Table 15 Results of RIF treatment effects with IPW (Full sample) 

Full sample Model 192 Model 193 Model 194 Model 195 Model 196 Model 197 Model 198 Model 199 Model 200 
RIF-Weighted Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
1.431*** 1.176*** 0.970*** 0.786*** 0.635*** 0.472*** 0.249*** -0.042 -0.553*** 
(70.435) (58.908) (48.619) (39.494) (31.342) (21.539) (9.420) (-1.287) (-14.787) 

〈  0.145*** 0.145*** 0.159*** 0.167*** 0.164*** 0.187*** 0.240*** 0.303*** 0.314*** 
lnNECOINT (8.760) (8.720) (9.548) (10.336) (10.492) (10.614) (10.616) (9.722) (6.918) 

lnCAPINT 
0.019+ 0.023* 0.036** 0.040*** 0.051*** 0.040*** 0.037** 0.042* 0.044+ 
(1.708) (2.165) (3.165) (3.519) (4.497) (3.360) (2.582) (2.253) (1.829) 

lnEMP 
-0.048*** -0.031* -0.033* -0.030* -0.026+ -0.038** -0.030+ -0.059** -0.081** 
(-3.352) (-2.414) (-2.551) (-2.210) (-1.912) (-2.641) (-1.720) (-2.651) (-2.655) 

_cons 
6.553*** 6.919*** 7.208*** 7.480*** 7.662*** 7.944*** 8.520*** 9.012*** 9.519*** 
(64.813) (65.454) (66.994) (69.332) (71.075) (67.308) (57.025) (44.510) (31.511) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
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adj. R-sq 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.674 
F-Stat 73.35 73.35 73.35 73.35 73.35 73.35 73.35 73.35 73.35 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood 27402 27402 27402 27402 27402 27402 27402 27402 27402 
N 14,721 14,721 14,721 14,721 14,721 14,721 14,721 14,721 14,721 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

The RIF treatment effects models11, both standard and IPW-adjusted, demonstrate that 

China’s listed firms investing in GI consistently exhibit higher productivity up to the 80th 

productivity quantile compared to those without GI (Figure 9, Table 15 and Table D1). While 

UQR analysis previously reveals some negative, albeit insignificant, marginal effects of GI, RIF 

treatment effects affirm the positive average economic impact of GI particularly at lower levels 

of productivity. 

Figure 10 Non-linear estimations based on RIF treatment effects (High-pollution sample) 

 

Table 16 Results of RIF treatment effects with IPW (High-pollution sample) 

High-pollution Model 210 Model 211 Model 212 Model 213 Model 214 Model 215 Model 216 Model 217 Model 218 
RIF-Weighted Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
-0.125* -0.266*** -0.470*** -0.181*** 0.120*** 0.467*** 0.327*** 0.266*** 0.315*** 
(-2.299) (-5.911) (-9.517) (-5.190) (4.181) (14.578) (7.873) (5.168) (5.491) 

〈 

 

0.285*** 0.311*** 0.443*** 0.283*** 0.260*** 0.193*** 0.186*** 0.274*** 0.372** 
lnNECOINT (4.262) (5.736) (8.516) (7.604) (8.036) (5.591) (3.936) (4.400) (3.225) 
lnCAPINT 0.106** 0.118*** 0.152*** 0.053* 0.078*** 0.091*** 0.060* 0.066* -0.077 

 
11 A rolling three-year average number of green patent counts is used as a measure of whether a firm has invested in green 

innovation. If it is greater than zero, it means that the firm has had a positive average investment in green innovation over past 

three years. This approach helps mitigate potential endogeneity issues when estimating the average effects between the two 

groups, as it accounts for unobservable factors that may influence productivity differently from the level of green patent counts or 

the amount of R&D investment in a single year. 
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(3.082) (3.728) (3.859) (1.966) (3.400) (3.830) (2.341) (2.015) (-1.042) 

lnEMP 
0.075 0.044 0.045 -0.081** -0.071** -0.154*** -0.118*** -0.134** -0.315*** 

(1.476) (1.111) (1.106) (-2.648) (-2.757) (-4.509) (-3.614) (-3.234) (-3.527) 

_cons 
5.717*** 6.122*** 6.410*** 7.133*** 6.977*** 6.838*** 7.165*** 7.576*** 9.072*** 
(24.387) (28.377) (24.231) (38.550) (45.062) (41.631) (40.106) (33.806) (19.199) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 0.668 
F-Stat 20.63 20.63 20.63 20.63 20.63 20.63 20.63 20.63 20.63 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -5059 -5059 -5059 -5059 -5059 -5059 -5059 -5059 -5059 
N 4,594 4,594 4,594 4,594 4,594 4,594 4,594 4,594 4,594 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

The RIF treatment effects models, both standard and IPW-adjusted, demonstrate that 

China’s listed firms investing in GI consistently exhibit higher productivity up to the 80th 

productivity quantile compared to those without GI (Figure 9, Table 15 and Table D1). While 

UQR analysis previously reveals some negative, albeit insignificant, marginal effects of GI, RIF 

treatment effects affirm the positive average economic impact of GI particularly at lower levels 

of productivity. 

Figure 10 indicates that in high-polluting firms, GI's impact on productivity shifts with 

productivity levels. Firms with lower productivity initially face negative effects, hindered by 

limited capabilities in efficient technology implementation. As productivity increases, these 

firms become more adept at leveraging new technology, both green and non-green innovations, 

for productivity gains (Table 16). This highlights the critical role of a firm's current productivity 

level in the success of GI investments.  

Additionally, Table 16 reveal that the positive impact of GI moderates when reaching the 

60th productivity quantile, with non-green innovation continuing to drive productivity at higher 

levels. This suggests that while GI contributes positively when high-polluting firms achieve 

median-level production efficiency, its impact wanes at the highest productivity levels, where 



 38 

core product innovations predominate and the gains from resource-efficient GI become more 

limited. 

Figure 11 Non-linear estimations based on RIF treatment effects (Non-pollution sample) 

 
 

For non-polluting firms, GI yields positive economic returns for firms at lower productivity 

levels, peaking at the 20th productivity quantile (The RIF treatment effects models, both 

standard and IPW-adjusted, demonstrate that China’s listed firms investing in GI consistently 

exhibit higher productivity up to the 80th productivity quantile compared to those without GI 

(Figure 9, Table 15 and Table D1). While UQR analysis previously reveals some negative, albeit 

insignificant, marginal effects of GI, RIF treatment effects affirm the positive average economic 

impact of GI particularly at lower levels of productivity. 

Figure 10 indicates that in high-polluting firms, GI's impact on productivity shifts with 

productivity levels. Firms with lower productivity initially face negative effects, hindered by 

limited capabilities in efficient technology implementation. As productivity increases, these 

firms become more adept at leveraging new technology, both green and non-green innovations, 

for productivity gains (Table 16). This highlights the critical role of a firm's current productivity 

level in the success of GI investments.  
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Additionally, Table 16 reveal that the positive impact of GI moderates when reaching the 

60th productivity quantile, with non-green innovation continuing to drive productivity at higher 

levels. This suggests that while GI contributes positively when high-polluting firms achieve 

median-level production efficiency, its impact wanes at the highest productivity levels, where 

core product innovations predominate and the gains from resource-efficient GI become more 

limited. 

Figure 11). Yet, these benefits diminish and eventually turn negative beyond the 80th 

productivity quantile. This trend arises as these firms primarily employ GI to optimize resource 

utilization rather than to tackle pollution challenges. Consequently, they experience rapid 

productivity gains from GI at lower levels, but these improvements are not sustained over time 

due to limited room for further efficiency gains. Additionally, other samples, including non-

manufacturing firms, exhibit similar indications to the full sample and non-polluting samples, 

generally show higher productivity impacts from GI at lower productivity levels12. 

In stark contrast, for manufacturing firms, the findings are similar to those of high-

polluting firms, with GI realizes significant positive influencing on productivity at higher 

quantiles (Table D8, Table D9 and Figure D 1). Firms with pollution issues necessitate a greater 

level of productivity to effectively harness GI for productivity gains. Their reliance on GI stems 

from the imperative to address environmental concerns, which translates into more enduring 

productivity enhancements at higher levels, as they integrate green practices into their production 

and product offerings. 

Table 17 Results of RIF treatment effects with IPW (Non-pollution sample) 

Non-pollution Model 228 Model 229 Model 230 Model 231 Model 232 Model 233 Model 234 Model 235 Model 236 
RIF-Weighted Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

 
12 The results of RIF treatment effects models of other samples are detailed in the appendix (Figure D 1-Figure D4 and Table 

D4-Table D11). 
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ECO 
0.200* 1.111*** 0.909*** 0.727*** 0.544*** 0.371*** 0.185*** -0.140** -0.612*** 
(2.221) (42.774) (33.409) (26.205) (19.514) (12.699) (5.564) (-3.262) (-11.855) 

〈 

 

0.423** 0.147*** 0.177*** 0.197*** 0.183*** 0.201*** 0.252*** 0.274*** 0.314*** 
lnNECOINT (2.950) (7.282) (8.190) (9.143) (8.896) (8.895) (8.926) (7.267) (5.673) 

lnCAPINT 
0.318 0.01 0.023 0.025 0.037* 0.02 0.007 0.019 0.04 

(1.486) (0.720) (1.527) (1.604) (2.372) (1.262) (0.357) (0.807) (1.295) 

lnEMP 
-0.429+ -0.050** -0.040* -0.037* -0.027 -0.031+ -0.034 -0.058* -0.103** 
(-1.697) (-3.144) (-2.396) (-2.144) (-1.603) (-1.724) (-1.626) (-2.136) (-2.869) 

_cons 
5.227*** 6.848*** 7.252*** 7.592*** 7.783*** 8.138*** 8.646*** 9.011*** 9.509*** 
(3.548) (63.521) (61.770) (63.910) (66.899) (64.494) (55.361) (42.874) (30.967) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.697 0.697 0.697 0.697 0.697 0.697 0.697 0.697 0.697 
F-Stat 53.05 53.05 53.05 53.05 53.05 53.05 53.05 53.05 53.05 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood 1007 1007 1007 1007 1007 1007 1007 1007 1007 
N 10,127 10,127 10,127 10,127 10,127 10,127 10,127 10,127 10,127 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

4.3.2.2 Conditional quantile regression  

The paper utilizes conditional quantile regressions with bootstrapping ( 

Table D12 

 

 

 

 

 

 

 

Table D13) to validate results from the panel fixed effects and UQR methods. The CDM 

and extended CDM findings generally concur with those of the panel fixed effects model. 

Notably, the impact of GI on productivity is found to be nearly identical to the contribution of 

other innovations to productivity growth in the high-polluting industries, suggesting no 

significant crowding-out effect. However, negative coefficients of green patent intensity in the 
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full, non-pollution, high-tech, low-tech, and non-manufacturing samples indicate crowding-out 

effects of GI in firms without environmental issues. 

 

5. CONCLUSION  

The article begins by estimating the classical CDM model to examine the economic effects 

of R&D activities in listed companies. It then introduces an extended CDM model to test for a 

crowding-out effect of green innovation (GI) on other innovations, by assessing the separate 

impacts of GI and non-green innovations on firm productivity. Additionally, unconditional 

quantile regression (UQR) is employed to investigate potential non-linear relationships between 

innovations and productivity across the productivity distribution, and to examine how crowding-

out effects may vary among different types of firms at different levels of productivity. Finally, 

the robustness checks conduct conditional quantile regression (CQR) estimations, as well as 

recentered influence function (RIF) estimations that compare the treatment effects on 

productivity when a firm invests in GI compared to no GI investments. 

The results of the first step of the CDM model, which estimates R&D intensity, indicate 

that environmental regulations impose additional cost burdens and reduce funds available for 

firms' R&D investments. The analysis corrects for firm selection bias in R&D expenditure 

disclosure using the Hackman model. In the second step, the bias-corrected R&D intensity is 

used to predict firms' patents in the CDM model and green/non-green patents in the extended 

CDM models. The findings suggest that the efficiency of R&D input-output conversion is low 

for GI in firms without pollution issues but high in firms with pollution issues, particularly high-

polluting firms and manufacturing firms. This implies that crowding-out effects of GI in terms of 
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R&D resource usage efficiency primarily occur in non-heavy polluting firms, while high-

polluting firms are more effective in utilizing R&D resources to generate GI compared to other 

types of innovations.  

The CDM model results, based on the predicted patent intensity from the previous patent 

equation, show that higher patent intensity significantly improves firms' productivity. 

Furthermore, the estimation using UQR reveals a non-linear (U-shaped) marginal effect of patent 

intensity on productivity throughout the productivity distribution.  

Moreover, the estimations from the extended CDM models indicate that there are 

crowding-out effects of GI on other innovations in firms without pollution issues. GI has 

negative or insignificant marginal impacts on productivity, while other patents yield significantly 

higher productivity returns. However, the positive economic returns of green patents are 

comparable to other patents for high-polluting firms and manufacturing firms, suggesting that GI 

can offset environmental costs and potentially improve resource allocation efficiency as much as 

other types of innovations for firms with pollution issues. Therefore, firms with pollution issues 

do not exhibit significant crowding-out effects of green innovation.  

The UQR estimations show that the opportunity costs of GI in high-polluting firms with 

mid-to-high levels of productivity are below zero, indicating that GI yields higher economic 

returns compared to non-green innovations. Additionally, the relationship between non-green 

innovation and productivity follows a U-shaped non-linear pattern, while the relationships 

between GI and productivity demonstrate inverse U-shaped patterns in most samples, except for 

manufacturing firms, where a linearly increasing relationship indicates continuous support of GI 

for economic performnce improvements at any productivity level. 
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Lastly, the estimations of recentered influence function (RIF) treatment effects indicate 

that, on average, having GI brings positive productivity growth below the 80th quantile of the 

productivity distribution. However, it becomes pure costs for firms without pollution issues at 

the top-level of productivity. High-polluting firms with productivity levels above the median are 

more likely to benefit from the reduction of pollution costs or efficiency improvements induced 

by GI, as there may be a capability threshold for transforming technology into productivity. 

Despite the valuable insights provided by this research, there are some limitations to be 

considered. Firstly, the analysis is based on data from listed companies, which may not fully 

represent the entire population of firms. The findings may not be generalized to non-listed or 

smaller firms that might have different characteristics and resource constraints. Secondly, the 

study focuses on the impact of GI on firm productivity, neglecting other important factors that 

could influence productivity, such as market competition and managerial practices. Future 

research should consider exploring the mechanisms through which GI impacts productivity, such 

as the role of organizational capabilities, knowledge transfer, and technological spillovers, could 

deepen our understanding of the underlying processes driving the relationship. Moreover, future 

studies could investigate the long-term effects of GI on firm performance and sustainability, and 

explore the underlying mechanisms driving the relationship.  
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Appendix  

 Table A1 Description of variables  

Variable Obs Mean Std. Dev. Min Max 

RD 15,714 0.72 0.45 0 1 
RDINT 11,378 2.77 1.50 -7.20 13.23 
PAT 15,714 70.87 333.11 0 11171 
ECO 15,714 8.92 50.89 0 1484 
NECO 15,714 61.95 293.54 0 10045 
lnVA 15,703 6.93 0.97 -1.08 11.78 
lnPPC 15,714 6.29 1.00 3.35 7.83 
lnIPT 15,714 7.59 0.92 3.57 9.56 
lnFSTK 14,971 -4.98 44.88 -2302.59 269.12 
lnPLT 15,714 8.04 1.06 5.12 9.75 
EPD 15,714 0.17 0.37 0 1 
AGE 15,714 11.80 6.36 0 28 
lnASSET 15,677 8.40 1.40 -0.74 14.70 
LEV 15,713 0.48 0.43 0 29.70 
lnEMP 15,700 0.81 1.39 -5.81 6.32 
lnCAPINT 15,686 5.66 1.22 -2.78 12.33 
lnPCINT 15,685 6.53 1.10 -4.66 11.77 
CR4 15,714 0.37 0.17 0.11 1 
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SOE 15,714 0.46 0.50 0 1 

 

Table A2 Variable explanations 

Type Symbol Variable Definition Source 

Dependent 
variable 

RD R&D dummy Dummy variable that whether a firm disclose its 
R&D expenditure information 

Wind 
Database 

RDINT R&D expenditure 
intensity 

The natural logarithm of the amount of R&D 
expenditure per employee of listed firms (in 
millions RMB per thousand employees). 

Wind 
Database 

PAT Patent 
applications 

Rolling average of firms' patent applications in 
three years. 

Wind/CNRDS 

lnPATINT Patent intensity The logarithm of patent applications per 
employee of listed firms 

Wind/CNRDS 

ECO Eco-patent 
applications 

Rolling average of firms' eco-patent applications 
in three years. 

CNRDS 

lnECOINT Eco-patent 
intensity 

The logarithm of eco-patent applications per 
employee of listed firms 

CNRDS 

NECO Other patent 
applications 

Rolling average of firms' patent applications 
other than eco-patent applications in three years 
(All patent application minus eco-patent 
applications). 

Self-calculated 

lnNECOINT Other patent 
intensity 

The logarithm of other patent applications per 
employee of listed firms 

Self-calculated 

lnVA Value added The natural logarithm of total sales revenue per 
employee of listed firms. 

CSMAR 

Key 
variables 

lnPPC Provincial 
pollution charge 

The natural logarithm of total amount of 
pollutant emission charges (in millions RMB). 

China 
Environmental 
Yearbook 

lnIPT Industrial 
pollution 
treatment 
investment 

The natural logarithm of total amount of 
industrial pollution treatment investment in 
each provinces (in millions RMB). 

China 
Statistical 
Yearbook 

lnFSTK Firm technological 
knowledge stock 

The natural logarithm of firms' patent 
applications in the past 2 years 

Wind/CNRDS 

lnPTL Provincial 
technological 
innovation 
capability level 

The natural logarithm of total number of patent 
applications of each province divided by the 
provincial population in the past year. 

State Statistics 
Bureau 

Control 
variable 

lnEMP Firm size The natural logarithm of total number of 
employees. 

Wind 
Database 

lnCAPINT Capital intensity The natural logarithm of Physical capital per 
employee (in thousands). 

CSMAR 

lnPCINT Production costs 
intensity 

The natural logarithm of production costs per 
employee (in millions RMB). 

CSMAR 

LEV Leverage Total debt divided by year-end total assets. CSMAR 

SOE State-owned 
enterprises 

A dummy variable that is equal to 1 if the firm i is 
a state-owned enterprise and 0 otherwise. 

Wind 
Database 
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CR4 Industrial market 
concentration 

The market occupation ratio of the largest four 
firms in the industry 

Self-calculated 

Exclusion 
restrictions 

EPD Environmental 
performance 
disclosure 

If any environmental information was disclosed 
under Hexun 4 disclose categories, ERD is 1. If 
none of environmental information was 
disclosed, ERD is 0. 

Hexun 
Database 

AGE IPO age Years that a firm has been registered at IPO Wind 
Database 

lnASSET Total assets The natural logarithm of firm total assets. CSMAR 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table B1 Variance Inflation Factors (VIF) tests  

Variable VIF 1/VIF 

IMR 2.31 0.43 

lnPPF(-1) 1.09 0.92 

LEV 1.75 0.57 

lnEMP 1.66 0.60 

lnCAPINT 1.26 0.80 

lnPCINT 1.41 0.71 

CR4 1.21 0.82 

SOE 1.53 0.65 

year 
  

2011 1.87 0.54 

2012 2.18 0.46 

2013 2.22 0.45 

2014 2.16 0.46 

2015 2.04 0.49 

2016 2.26 0.44 

2017 2.29 0.44 
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2018 2.49 0.40 

central 1.82 0.55 

northeast 1.26 0.79 

east 2.10 0.48 

Mean VIF 1.84  
 

 

 

 

 

 

 

 

 

Table B2 Full Heckman estimation of R&D equation with alternative environmental regualtion 

proxies  

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14  
lnPPC(-2) nIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) lnPPC(-2) lnIPT(-1) 

  Full sample High-pollution Non-pollution High-tech Low-tech Manufacuring Non-manufacturing 

Step 2: R&D investment 
lnPPF(-2) -0.0771*** 

 
-0.0399 

 
-0.115*** 

 
-0.0717*** 

 
-0.0307 

 
-0.0900*** 

 
-0.138*** 

 
 

(0.013) 
 

(0.025) 
 

(0.015) 
 

(0.016) 
 

(0.025) 
 

(0.020) 
 

(0.025) 
 

lnIPT(-1) 
 

-0.0716*** 
 

-0.048 
 

-0.0972*** 
 

-0.0667*** 
 

-0.0595 
 

-0.0672** 
 

-0.166***   
(0.016) 

 
(0.029) 

 
(0.018) 

 
(0.019) 

 
(0.031) 

 
(0.023) 

 
(0.032) 

LEV -0.875*** -1.126*** -1.287*** -1.294*** -0.802*** -0.832*** -0.619*** -0.629*** -0.739*** -0.744*** -0.598*** -0.620*** -0.828*** -0.821***  
(0.076) (0.075) (0.126) (0.126) (0.093) (0.090) (0.095) (0.095) (0.134) (0.133) (0.110) (0.107) (0.149) (0.150) 

lnEMP -0.214*** -0.194*** -0.233*** -0.231*** -0.120*** -0.119*** -0.190*** -0.189*** -0.352*** -0.351*** -0.160*** -0.159*** -0.389*** -0.386***  
(0.014) (0.013) (0.026) (0.026) (0.016) (0.015) (0.016) (0.016) (0.025) (0.025) (0.019) (0.019) (0.027) (0.027) 

lnCAPINT -0.0796*** -0.0809*** 0.154*** 0.156*** -0.0405* -0.0441** -0.0389* -0.0403* -0.0754*** -0.0740*** 0.0131 0.0117 -0.171*** -0.170***  
(0.013) (0.013) (0.031) (0.031) (0.017) (0.017) (0.017) (0.017) (0.022) (0.022) (0.023) (0.023) (0.022) (0.022) 

lnPCINT 0.379*** 0.394*** 0.326*** 0.327*** 0.374*** 0.371*** 0.337*** 0.335*** 0.404*** 0.401*** 0.441*** 0.440*** 0.243*** 0.241***  
(0.015) (0.016) (0.032) (0.032) (0.020) (0.019) (0.019) (0.019) (0.026) (0.026) (0.025) (0.024) (0.027) (0.027) 

CR4 -1.281*** -1.312*** -0.988*** -0.990*** -0.494*** -0.505*** -1.781*** -1.788*** -0.211 -0.211 -0.580*** -0.597*** -1.533*** -1.531***  
(0.085) (0.084) (0.170) (0.169) (0.100) (0.097) (0.107) (0.106) (0.181) (0.180) (0.126) (0.124) (0.150) (0.150) 

SOE -0.177*** -0.164*** -0.249*** -0.248*** -0.147*** -0.122*** -0.0776* -0.0685 -0.280*** -0.292*** -0.143*** -0.126** -0.186* -0.179*  
(0.032) (0.032) (0.056) (0.056) (0.035) (0.034) (0.039) (0.039) (0.063) (0.063) (0.041) (0.040) (0.077) (0.077) 

_cons 1.739*** 1.742*** 0.775** 0.851** 1.698*** 1.698*** 1.955*** 1.986*** 0.610* 0.832* 0.875*** 0.795*** 3.520*** 3.813***  
(0.131) (0.151) (0.241) (0.272) (0.149) (0.167) (0.160) (0.185) (0.311) (0.344) (0.199) (0.219) (0.260) (0.304) 

Year FE  Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y  
Region FE  Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y   Y  

Step 1: R&D dummy 
AGE -0.0708*** -0.0751*** -0.0764*** -0.0763*** -0.0855*** -0.0859*** -0.0703*** -0.0705*** -0.0606*** -0.0610*** -0.0885*** -0.0890*** -0.0649*** -0.0649***  

(0.002) (0.002) (0.005) (0.005) (0.005) (0.005) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.003) (0.003) 
EPD 0.143*** 0.156*** 0.213** 0.209** -0.0804 -0.0792 0.126** 0.123** 0.167*** 0.161*** 0.0578 0.0512 0.0781 0.0776  

(0.035) (0.035) (0.067) (0.067) (0.065) (0.065) (0.042) (0.042) (0.047) (0.047) (0.059) (0.059) (0.050) (0.050) 
lnASSET -0.409*** -0.426*** -0.325*** -0.332*** -0.165*** -0.160*** -0.391*** -0.391*** -0.319*** -0.320*** -0.168*** -0.170*** -0.224*** -0.224*** 
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(0.018) (0.018) (0.046) (0.045) (0.043) (0.043) (0.021) (0.021) (0.022) (0.022) (0.039) (0.039) (0.023) (0.023) 

lnPPF(-2) 0.0325** 
 

0.0209 
 

-0.0941*** 
 

0.0323* 
 

0.0787*** 
 

-0.0271 
 

0.00596 
 

 
(0.012) 

 
(0.026) 

 
(0.025) 

 
(0.014) 

 
(0.016) 

 
(0.023) 

 
(0.016) 

 

lnIPT(-1) 
 

0.0224 
 

-0.00202 
 

-0.133*** 
 

0.0326 
 

0.0729*** 
 

-0.0763** 
 

0.00701   
(0.015) 

 
(0.030) 

 
(0.030) 

 
(0.017) 

 
(0.019) 

 
(0.027) 

 
(0.020) 

LEV -0.696*** 
 

-0.587*** -0.586*** -0.998*** -0.991*** -0.705*** -0.703*** -0.391*** -0.390*** -0.841*** -0.843*** -0.452*** -0.452***  
(0.057) 

 
(0.107) (0.107) (0.103) (0.103) (0.068) (0.068) (0.076) (0.076) (0.092) (0.092) (0.081) (0.081) 

lnEMP 0.551*** 0.544*** 0.544*** 0.549*** 0.390*** 0.384*** 0.505*** 0.506*** 0.457*** 0.457*** 0.368*** 0.371*** 0.355*** 0.355***  
(0.016) (0.016) (0.042) (0.042) (0.038) (0.038) (0.018) (0.018) (0.020) (0.020) (0.036) (0.036) (0.020) (0.020) 

lnCAPINT 0.0578*** 0.0684*** -0.0755* -0.0733* 0.00542 0.00296 0.0358** 0.0367** 0.0702*** 0.0713*** -0.0267 -0.0261 0.00738 0.00747  
(0.011) (0.011) (0.031) (0.030) (0.025) (0.025) (0.013) (0.013) (0.014) (0.014) (0.025) (0.025) (0.013) (0.013) 

lnPCINT 0.133*** 0.107*** 0.221*** 0.223*** 0.0529 0.0488 0.116*** 0.117*** 0.150*** 0.150*** 0.123*** 0.123*** 0.0750*** 0.0750***  
(0.015) (0.014) (0.029) (0.029) (0.029) (0.029) (0.017) (0.017) (0.019) (0.019) (0.027) (0.027) (0.019) (0.019) 

CR4 -1.142*** -1.133*** -1.870*** -1.863*** -0.404** -0.404** -0.767*** -0.768*** 0.307** 0.300** -0.759*** -0.751*** -0.349*** -0.350***  
(0.073) (0.073) (0.143) (0.143) (0.138) (0.138) (0.091) (0.091) (0.109) (0.109) (0.133) (0.133) (0.097) (0.097) 

SOE -0.212*** -0.225*** -0.162** -0.168** 0.260*** 0.272*** -0.225*** -0.228*** -0.293*** -0.300*** 0.171*** 0.172*** -0.311*** -0.311***  
(0.028) (0.027) (0.057) (0.057) (0.054) (0.054) (0.032) (0.032) (0.036) (0.036) (0.046) (0.046) (0.039) (0.039) 

_cons 3.084*** 2.959*** 2.751*** 2.918*** 2.983*** 3.333*** 3.119*** 3.089*** 0.724*** 0.713*** 2.286*** 2.662*** 1.617*** 1.605***  
(0.135) (0.159) (0.294) (0.324) (0.288) (0.320) (0.159) (0.180) (0.186) (0.209) (0.264) (0.292) (0.179) (0.204) 

Year FE 
 

 Y  
 

 Y  
 

 Y  
 

 Y  
 

 Y  
 

 Y  
 

 Y  
Region FE    Y     Y     Y     Y     Y     Y     Y  

/mills 
lambda -0.755*** -0.699*** -1.370*** -1.361*** -1.329*** -1.290*** -0.737*** -0.724*** -0.824*** -0.805*** -1.665*** -1.633*** -0.768*** -0.768***  

(0.069) (0.066) (0.134) (0.133) (0.122) (0.118) (0.081) (0.081) (0.114) (0.113) (0.138) (0.135) (0.124) (0.124) 
rho -0.543 -0.506 -0.921 -0.916 -1.000 -1.000 -0.535 -0.526 -0.533 -0.522 -1.000 -1.000 -0.485 -0.485 
sigma 1.391 1.380 1.488 1.485 1.329 1.290 1.378 1.376 1.546 1.540 1.665 1.633 1.583 1.584 
Wald chi2 2504.110 2550.630 937.470 939.440 1240.500 1289.610 1513.540 1505.100 966.850 972.040 882.310 904.880 1152.440 1147.070  

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
N 15639 15552 4826 4826 8322 8322 10813 10813 7317 7317 9187 9187 6452 6452 

Standard errors in parenthesis 

* p<0.05, ** p<0.01, *** p<0.001 

 

 

Table B3 Summary table of predicted R&D intensity  

Sample R/P Obs Mean Std.Dev. Min Max 

Full sample Realistic 11,378 2.77 1.50 -7.20 13.23 

 Predicted 15,639 2.66 0.85 -15.36 5.97 

High-pollution Realistic 3,832 2.54 1.54 -6.02 13.23 

 Predicted 4,826 2.37 1.09 -21.06 4.77 

Non-pollution Realistic 7,546 2.89 1.47 -7.20 12.65 

 Predicted 10,813 2.80 0.77 -12.01 5.61 

High-tech Realistic 7,578 3.15 1.28 -7.20 13.23 
 Predicted 8,322 3.08 0.82 -21.31 4.97 

Low-tech 
Realistic 3,800 2.02 1.63 -5.78 6.57 

Predicted 7,317 1.94 0.90 -11.33 5.72 

Manufacturing 
Realistic 8,196 2.94 1.34 -7.20 13.23 

Predicted 9,187 2.86 0.83 -19.96 5.05 

Non-
manufacturing 

Realistic 3,182 2.34 1.79 -5.94 6.57 

Predicted 6,452 2.21 1.06 -11.94 6.27 
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Table B4 Summary table of exponential transformed predicted patent applications 

Sample R/P Obs Mean Std.Dev. Min Max 

Full sample 
Realistic 15,714 70.87 333.11 0 11171.00 

Predicted 14,904 72.21 323.78 0 8899.83 

High-pollution 
Realistic 4,833 52.45 258.49 0 5843.33 

Predicted 4,648 53.53 265.00 0 6979.19 

Non-pollution 
Realistic 10,881 79.05 361.06 0 11171.00 

Predicted 10,256 80.67 346.25 0 8825.55 

High-tech 
Realistic 8,361 94.10 375.60 0 11171.00 

Predicted 7,805 97.56 361.59 0 8613.34 

Low-tech 
Realistic 7,353 44.46 274.64 0 5843.33 

Predicted 7,099 44.33 273.11 0 7685.63 

Manufacturing 
Realistic 9,207 89.84 360.99 0 11171.00 

Predicted 8,676 92.26 345.96 0 8632.77 

Non-
manufacturing 

Realistic 6,507 44.04 287.00 0 5843.33 

Predicted 5,291 46.36 309.89 0 7723.24 

 

 

 

Table B5 Summary table of exponential transformed predicted green patent applications 

Sample R/P Obs Mean Std.Dev. Min Max 

Full sample 
Realistic 15,714 8.92 50.89 0 1484.00 

Predicted 14,904 9.07 51.71 0 1844.50 

High-pollution 
Realistic 4,833 7.25 51.01 0 1427.00 

Predicted 4,648 7.42 54.47 0 1790.78 

Non-pollution 
Realistic 10,881 9.66 50.82 0 1484.00 

Predicted 10,256 9.81 50.10 0 1727.47 

High-tech 
Realistic 8,361 10.52 49.35 0 1484.00 

Predicted 7,805 10.88 49.48 0 1662.32 

Low-tech 
Realistic 7,353 7.10 52.53 0 1427.00 

Predicted 7,099 7.07 54.90 0 1997.41 

Manufacturing 
Realistic 9,207 9.41 45.37 0 1484.00 

Predicted 8,676 9.63 45.46 0 1643.66 

Non-manufacturing 
Realistic 6,507 8.23 57.79 0 1427.00 

Predicted 6,228 8.28 60.79 0 2021.12 

 

Table B6 Summary table of exponential transformed predicted non-green patent applications 
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Sample R/P Obs Mean Std.Dev. Min Max 

Full sample 
Realistic 15,714 61.95 293.54 0 10045.00 

Predicted 14,904 63.14 284.35 0 7977.02 

High-pollution 
Realistic 4,833 45.20 212.67 0 4416.33 

Predicted 4,648 46.12 216.31 0 5294.40 

Non-pollution 
Realistic 10,881 69.39 322.76 0 10045.00 

Predicted 10,256 70.86 309.35 0 7914.95 

High-tech 
Realistic 8,361 83.58 340.96 0 10045.00 

Predicted 7,805 86.69 328.02 0 7637.60 

Low-tech 
Realistic 7,353 37.36 225.47 0 4718.00 

Predicted 7,099 37.25 222.33 0 5801.64 

Manufacturing 
Realistic 9,207 80.43 328.57 0 10045.00 

Predicted 8,676 82.63 314.92 0 7705.33 

Non-
manufacturing 

Realistic 6,507 35.81 232.76 0 4718.00 

Predicted 6,228 35.99 232.39 0 5838.48 

 

 

 

 

 

 

 

 

Table B7 Mundlak test for CDM and Extended CDM models 

 CDM Extended CDM  

〈  0.154*  

lnPATINT (0.066)  

〈 

 

 0.471*** 

lnNECOINT  (0.050) 

〈 

 

 -0.0729 

lnECOINT  (0.048) 

lnCAPINT 
0.0604*** 0.130*** 

(0.018) (0.020) 

lnEMP 
0.0469 0.00573 

(0.053) (0.024) 

_cons 
5.336*** 5.817*** 

(0.143) (0.147) 

Mean_lnPATINT -0.173**  
 (0.066)  

Mean_NECOINT  
-0.529*** 
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(0.051) 

Mean_lnECOINT  
0.121* 

  
(0.049) 

Mean_lnCAPINT 0.177*** 0.105*** 
 (0.029) (0.031) 

Mean_lnEMP -0.0968 -0.0619* 
 (0.055) (0.030) 

Chi2 44.33 211.51 

Prob>Chi2 (0.000) (0.000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table C1 Results of UQR on CDM models (High-pollution sample) 

High-pollution Model 75 Model 76 Model 77 Model 78 Model 79 Model 80 Model 81 Model 82 Model 83 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈  0.211*** 0.209*** 0.244*** 0.243*** 0.320*** 0.333*** 0.405*** 0.423*** 0.460*** 
lnPATINT (3.850) (4.726) (5.654) (5.773) (9.305) (7.517) (7.389) (6.692) (6.958) 

lnCAPINT 
0.102*** 0.140*** 0.120*** 0.144*** 0.151*** 0.115*** 0.131*** 0.156*** 0.097* 
(3.323) (5.527) (5.105) (6.241) (6.877) (4.697) (4.453) (4.136) (2.115) 

lnEMP 
0.104* 0.036 0.061+ 0.013 0.004 -0.093** -0.066+ -0.133** -0.131* 
(2.325) (1.048) (1.813) (0.412) (0.125) (-2.802) (-1.669) (-2.834) (-2.469) 

_cons 4.983*** 5.118*** 5.395*** 5.481*** 5.531*** 6.078*** 6.119*** 6.331*** 7.063*** 
(21.547) (26.501) (29.423) (30.543) (35.950) (34.120) (27.645) (22.905) (21.549) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 
F-Stat 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -23266 -23266 -23266 -23266 -23266 -23266 -23266 -23266 -23266 
N 4,594 4,594 4,594 4,594 4,594 4,594 4,594 4,594 4,594 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table C2 Results of UQR on CDM models (Non-pollution sample) 

Non-pollution Model 84 Model 85 Model 86 Model 87 Model 88 Model 89 Model 90 Model 91 Model 92 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈  0.334*** 0.313*** 0.277*** 0.285*** 0.283*** 0.280*** 0.319*** 0.441*** 0.490*** 
lnPATINT (8.840) (10.422) (10.573) (11.458) (11.217) (10.524) (10.255) (11.245) (7.465) 

lnCAPINT 
0.098*** 0.091*** 0.098*** 0.097*** 0.085*** 0.072*** 0.075*** 0.103*** 0.157*** 

(4.944) (5.730) (6.924) (6.913) (6.043) (4.910) (4.389) (4.173) (4.096) 

lnEMP 
-0.027 0.02 0.018 0.004 0.008 0.003 -0.034 -0.025 -0.047 

(-0.940) (0.884) (0.903) (0.244) (0.424) (0.166) (-1.457) (-0.833) (-0.999) 

_cons 
4.969*** 5.335*** 5.595*** 5.823*** 6.119*** 6.410*** 6.622*** 6.681*** 6.944*** 
(39.432) (51.826) (60.930) (64.736) (67.546) (66.808) (58.750) (43.313) (29.232) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 
F-Stat 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -23266 -23266 -23266 -23266 -23266 -23266 -23266 -23266 -23266 
N 10,127 10,127 10,127 10,127 10,127 10,127 10,127 10,127 10,127 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
      

 

 

 

 

Table C3 Results of UQR on CDM models (High-tech sample) 

High-tech Model 111 Model 112 Model 113 Model 114 Model 115 Model 116 Model 117 Model 118 Model 119 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈  0.273*** 0.252*** 0.226*** 0.248*** 0.260*** 0.283*** 0.285*** 0.383*** 0.545*** 
lnPATINT (6.433) (7.439) (7.509) (8.532) (8.574) (8.452) (7.627) (7.572) (8.437) 

lnCAPINT 
0.093*** 0.089*** 0.105*** 0.107*** 0.116*** 0.098*** 0.068*** 0.065** 0.099* 
(3.938) (4.919) (6.529) (6.610) (7.073) (5.740) (3.606) (2.664) (2.336) 

lnEMP 
0.048 0.062* 0.057** 0.042* 0.02 0.006 -0.021 -0.026 -0.059 

(1.531) (2.511) (2.612) (2.002) (0.907) (0.252) (-0.745) (-0.693) (-1.152) 

_cons 
4.726*** 5.073*** 5.261*** 5.390*** 5.512*** 5.752*** 6.150*** 6.208*** 6.111*** 
(25.364) (34.363) (40.047) (41.379) (41.068) (38.738) (37.536) (28.516) (19.786) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 
F-Stat 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -23266 -23266 -23266 -23266 -23266 -23266 -23266 -23266 -23266 
N 7,714 7,714 7,714 7,714 7,714 7,714 7,714 7,714 7,714 
Standard errors in parenthesis 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table C4 Results of UQR on CDM models (Low-tech sample) 

Low-tech Model 120 Model 121 Model 122 Model 123 Model 124 Model 125 Model 126 Model 127 Model 128 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈  0.369*** 0.351*** 0.319*** 0.294*** 0.331*** 0.339*** 0.388*** 0.437*** 0.591*** 
lnPATINT (7.200) (9.233) (9.289) (9.205) (11.128) (10.682) (10.254) (9.560) (8.478) 

lnCAPINT 
0.103*** 0.123*** 0.123*** 0.117*** 0.102*** 0.099*** 0.127*** 0.123*** 0.180*** 
(3.891) (5.832) (6.408) (6.432) (5.745) (5.207) (5.594) (4.514) (4.637) 

lnEMP 
-0.049 -0.005 -0.005 -0.007 -0.017 -0.051* -0.051+ -0.041 -0.047 

(-1.188) (-0.163) (-0.188) (-0.293) (-0.694) (-2.103) (-1.795) (-1.267) (-0.981) 

_cons 
5.336*** 5.595*** 5.885*** 6.184*** 6.542*** 6.839*** 6.974*** 7.393*** 7.626*** 
(32.428) (42.104) (48.377) (54.538) (58.863) (58.108) (49.313) (44.312) (32.307) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 0.612 
F-Stat 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67 56.67 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -23266 -23266 -23266 -23266 -23266 -23266 -23266 -23266 -23266 
N 7,007 7,007 7,007 7,007 7,007 7,007 7,007 7,007 7,007 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
      

 

 

 

 

Table C5 Results of UQR on CDM models (Manufacturing sample) 

Manufacturing Model 147 Model 148 Model 149 Model 150 Model 151 Model 152 Model 153 Model 154 Model 155 
UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈 

 
0.247*** 0.232*** 0.202*** 0.226*** 0.256*** 0.305*** 0.314*** 0.414*** 0.585*** 

lnPATINT (5.482) (7.047) (7.152) (8.458) (9.313) (10.874) (9.522) (10.368) (8.929) 

lnCAPINT 
0.131*** 0.111*** 0.119*** 0.124*** 0.149*** 0.150*** 0.116*** 0.125*** 0.156*** 

(4.844) (5.808) (7.220) (7.556) (9.007) (8.625) (6.005) (5.377) (4.087) 

lnEMP 
0.124*** 0.109*** 0.103*** 0.073*** 0.062** 0.055** 0.02 0.006 -0.063 

(3.500) (4.345) (4.892) (3.651) (3.055) (2.609) (0.827) (0.209) (-1.288) 

_cons 
4.517*** 4.970*** 5.202*** 5.327*** 5.304*** 5.381*** 5.791*** 5.801*** 5.738*** 
(21.268) (32.830) (40.335) (42.679) (42.371) (41.058) (38.757) (32.647) (19.470) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.621 0.621 0.621 0.621 0.621 0.621 0.621 0.621 0.621 
F-Stat 28.45 28.45 28.45 28.45 28.45 28.45 28.45 28.45 28.45 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -9193 -9193 -9193 -9193 -9193 -9193 -9193 -9193 -9193 
N 8,583 8,583 8,583 8,583 8,583 8,583 8,583 8,583 8,583 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table C6 Results of UQR on CDM models (Non-manufacturing sample) 

Non-
manufacturing 

Model 156 Model 157 Model 158 Model 159 Model 160 Model 161 Model 162 Model 163 Model 164 

UQR Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

〈  0.354*** 0.395*** 0.303*** 0.300*** 0.304*** 0.328*** 0.324*** 0.366*** 0.619*** 
lnPATINT (5.679) (7.747) (6.957) (8.474) (9.023) (8.530) (7.706) (7.631) (7.583) 

lnCAPINT 
0.098** 0.145*** 0.140*** 0.104*** 0.097*** 0.121*** 0.115*** 0.130*** 0.170*** 
(3.293) (5.286) (5.672) (5.063) (4.863) (5.347) (4.741) (4.981) (3.993) 

lnEMP 
-0.096* -0.014 -0.014 -0.027 -0.043+ -0.059* -0.047 -0.048 -0.067 
(-2.011) (-0.365) (-0.400) (-0.968) (-1.683) (-2.055) (-1.624) (-1.455) (-1.256) 

_cons 
5.566*** 5.727*** 6.085*** 6.600*** 6.909*** 7.062*** 7.398*** 7.698*** 8.192*** 
(29.791) (33.116) (39.488) (51.315) (56.053) (50.693) (49.987) (48.473) (31.778) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.621 0.621 0.621 0.621 0.621 0.621 0.621 0.621 0.621 
F-Stat 28.45 28.45 28.45 28.45 28.45 28.45 28.45 28.45 28.45 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -9193 -9193 -9193 -9193 -9193 -9193 -9193 -9193 -9193 
N 5,214 5,214 5,214 5,214 5,214 5,214 5,214 5,214 5,214 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
      

 

 

 

 

Table D1 Results of RIF treatment effects without weights (Full sample) 

Full sample Model 183 Model 184 Model 185 Model 186 Model 187 Model 188 Model 189 Model 190 Model 191 
RIF-Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
0.050+ 0.080*** 0.062** 0.080*** 0.077*** 0.075*** 0.042+ -0.009 0.052 
(1.767) (3.616) (2.954) (3.890) (3.815) (3.565) (1.806) (-0.307) (1.331) 

〈  0.308*** 0.270*** 0.288*** 0.298*** 0.312*** 0.330*** 0.368*** 0.463*** 0.547*** 
lnNECOINT (9.622) (10.768) (12.428) (13.147) (13.360) (13.464) (12.890) (13.508) (10.274) 

lnCAPINT 
0.093*** 0.099*** 0.105*** 0.115*** 0.111*** 0.089*** 0.089*** 0.135*** 0.138*** 
(5.458) (7.413) (8.240) (9.016) (8.606) (6.395) (5.401) (6.135) (4.066) 

lnEMP 
0.022 0.039* 0.026 0.006 -0.007 -0.022 -0.048* -0.050+ -0.093* 

(0.883) (1.993) (1.458) (0.369) (-0.392) (-1.156) (-2.222) (-1.915) (-2.304) 

_cons 
5.022*** 5.307*** 5.523*** 5.682*** 5.918*** 6.259*** 6.527*** 6.544*** 6.986*** 
(43.329) (58.138) (64.424) (66.224) (67.510) (66.512) (59.026) (45.199) (32.007) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 
F-Stat 41.14 41.14 41.14 41.14 41.14 41.14 41.14 41.14 41.14 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -24481 -24481 -24481 -24481 -24481 -24481 -24481 -24481 -24481 
N 14,721 14,721 14,721 14,721 14,721 14,721 14,721 14,721 14,721 
Standard errors in parenthesis 
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*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

Table D 2 Results of RIF treatment effects without weights (High-pollution sample) 

High-pollution Model 201 Model 202 Model 203 Model 204 Model 205 Model 206 Model 207 Model 208 Model 209 
RIF-Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
0.042 0.001 -0.004 -0.01 0.005 0.046 0.045 0.123** 0.108* 

(0.985) (0.031) (-0.125) (-0.311) (0.152) (1.383) (1.234) (2.925) (2.051) 

〈  0.200*** 0.201*** 0.234*** 0.292*** 0.320*** 0.333*** 0.393*** 0.469*** 0.493*** 
lnNECOINT (3.727) (4.228) (5.367) (6.425) (6.830) (6.828) (7.962) (7.120) (6.244) 

lnCAPINT 
0.136*** 0.148*** 0.150*** 0.164*** 0.155*** 0.123*** 0.158*** 0.161*** 0.137** 
(3.808) (5.488) (6.104) (6.770) (6.470) (5.013) (5.546) (4.548) (2.892) 

lnEMP 
0.090* 0.106** 0.051 0.049 -0.001 -0.046 -0.089* -0.139** -0.148* 
(2.092) (2.803) (1.510) (1.401) (-0.031) (-1.270) (-2.349) (-2.846) (-2.530) 

_cons 
4.832*** 5.043*** 5.266*** 5.324*** 5.581*** 5.988*** 6.006*** 6.240*** 6.775*** 
(17.951) (24.164) (27.398) (27.785) (28.701) (30.165) (29.138) (23.743) (19.974) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.546 0.546 0.546 0.546 0.546 0.546 0.546 0.546 0.546 
F-Stat 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -6274 -6274 -6274 -6274 -6274 -6274 -6274 -6274 -6274 
N 4,594 4,594 4,594 4,594 4,594 4,594 4,594 4,594 4,594 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

 

 

Table D 3 Results of RIF treatment effects without weights (Non-pollution sample) 

Non-pollution Model 219 Model 220 Model 221 Model 222 Model 223 Model 224 Model 225 Model 226 Model 227 
RIF-Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
0.04 0.128*** 0.110*** 0.086** 0.109*** 0.077** 0.060+ -0.073* 0.018 

(1.110) (4.359) (3.966) (3.170) (4.144) (2.777) (1.945) (-1.996) (0.325) 

〈 

 

0.333*** 0.299*** 0.309*** 0.307*** 0.298*** 0.329*** 0.356*** 0.431*** 0.567*** 
lnNECOINT (8.794) (10.007) (11.032) (11.222) (10.814) (11.406) (10.909) (11.090) (8.324) 

lnCAPINT 
0.082*** 0.077*** 0.096*** 0.103*** 0.084*** 0.078*** 0.071*** 0.101*** 0.155*** 

(4.196) (4.780) (5.983) (6.283) (5.164) (4.535) (3.512) (3.724) (3.730) 

lnEMP 
-0.027 0.016 -0.003 -0.016 -0.014 -0.002 -0.046+ -0.038 0.009 

(-0.910) (0.685) (-0.153) (-0.743) (-0.665) (-0.093) (-1.822) (-1.278) (0.186) 

_cons 
5.099*** 5.407*** 5.573*** 5.789*** 6.121*** 6.364*** 6.676*** 6.855*** 6.941*** 
(40.801) (52.690) (55.475) (56.109) (59.656) (58.719) (51.782) (40.984) (27.460) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 
F-Stat 23.43 23.43 23.43 23.43 23.43 23.43 23.43 23.43 23.43 
Prob > F [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Log likelihood -17716 -17716 -17716 -17716 -17716 -17716 -17716 -17716 -17716 
N 10,127 10,127 10,127 10,127 10,127 10,127 10,127 10,127 10,127 
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Standard errors in parenthesis 
        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

Figure D 1 Non-linear estimations based on RIF treatment effects (High-tech sample) 

 

 

 

 

 

 

 

 

 

Table D4 Results of RIF treatment effects without weight (High-tech sample) 

High-tech Model 237 Model 238 Model 239 Model 240 Model 241 Model 242 Model 243 Model 244 Model 245 
RIF-Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
0.054 0.096*** 0.051+ 0.059* 0.063* 0.064* 0.124*** 0.069* 0.082+ 

(1.504) (3.444) (1.953) (2.236) (2.359) (2.365) (4.463) (2.007) (1.724) 

〈 

 

0.268*** 0.249*** 0.251*** 0.259*** 0.283*** 0.305*** 0.329*** 0.414*** 0.620*** 
lnNECOINT (6.668) (7.619) (8.329) (8.935) (9.335) (9.445) (9.147) (8.678) (9.336) 

lnCAPINT 
0.105*** 0.092*** 0.090*** 0.113*** 0.104*** 0.107*** 0.067*** 0.070** 0.090* 
(4.436) (5.102) (5.386) (6.781) (6.310) (6.109) (3.587) (2.810) (2.141) 

lnEMP 
0.069* 0.081*** 0.051* 0.033 0.021 0.008 -0.019 -0.024 -0.023 
(2.283) (3.307) (2.279) (1.568) (0.925) (0.339) (-0.679) (-0.653) (-0.456) 

_cons 
4.661*** 5.008*** 5.288*** 5.321*** 5.513*** 5.642*** 5.994*** 6.103*** 5.992*** 
(25.465) (34.877) (40.315) (40.963) (41.613) (38.886) (37.720) (29.269) (19.519) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.584 0.584 0.584 0.584 0.584 0.584 0.584 0.584 0.584 
F-Stat 30.29 30.29 30.29 30.29 30.29 30.29 30.29 30.29 30.29 
Prob > F (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Log likelihood -11234 -11234 -11234 -11234 -11234 -11234 -11234 -11234 -11234 
N 7,714 7,714 7,714 7,714 7,714 7,714 7,714 7,714 7,714 
Standard errors in parenthesis 
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*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 

 

Table D5 Results of RIF treatment effects with IPW (High-tech sample) 

High-tech Model 246 Model 247 Model 248 Model 249 Model 250 Model 251 Model 252 Model 253 Model 254 
RIF-Weighted Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
1.390*** 1.163*** 0.969*** 0.819*** 0.674*** 0.551*** 0.463*** 0.221*** -0.110* 
(62.176) (50.069) (40.055) (34.371) (28.325) (22.692) (18.246) (6.321) (-2.502) 

〈 

 

0.073*** 0.088*** 0.112*** 0.110*** 0.117*** 0.134*** 0.171*** 0.269*** 0.367*** 
lnNECOINT (3.708) (3.325) (4.027) (4.508) (5.163) (6.063) (6.839) (6.994) (5.713) 

lnCAPINT 
-0.008 -0.01 0.014 0.032* 0.039** 0.046** 0.032+ 0.015 0.026 

(-0.538) (-0.686) (0.940) (2.072) (2.706) (3.162) (1.959) (0.634) (0.650) 

lnEMP 
-0.048** -0.038* -0.050** -0.045** -0.032* -0.015 -0.009 0.013 0.008 
(-3.118) (-2.356) (-3.027) (-2.794) (-2.010) (-0.870) (-0.435) (0.440) (0.158) 

_cons 
6.189*** 6.561*** 6.782*** 6.958*** 7.219*** 7.514*** 7.829*** 8.594*** 9.269*** 
(62.118) (46.921) (45.103) (51.038) (55.060) (55.852) (51.241) (37.152) (22.611) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.529 0.529 0.529 0.529 0.529 0.529 0.529 0.529 0.529 
F-Stat 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 
Prob > F (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Log likelihood 17726 17726 17726 17726 17726 17726 17726 17726 17726 
N 7,714 7,714 7,714 7,714 7,714 7,714 7,714 7,714 7,714 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

 

Figure D2 Non-linear estimations based on RIF treatment effects (low-tech sample) 

 

Table D6 Results of RIF treatment effects without weights (Low-tech sample) 

Low-tech Model 255 Model 256 Model 257 Model 258 Model 259 Model 260 Model 261 Model 262 Model 263 
RIF-Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
0.092* 0.064+ 0.072* 0.063* 0.028 0 -0.018 -0.003 0.011 
(2.023) (1.820) (2.243) (2.087) (0.936) (-0.004) (-0.504) (-0.068) (0.188) 
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〈 

 

0.349*** 0.289*** 0.307*** 0.291*** 0.315*** 0.321*** 0.387*** 0.425*** 0.529*** 
lnNECOINT (7.254) (7.584) (8.724) (8.826) (9.614) (9.332) (9.753) (8.609) (6.885) 

lnCAPINT 
0.079** 0.119*** 0.122*** 0.127*** 0.116*** 0.112*** 0.129*** 0.127*** 0.186*** 
(3.124) (5.760) (6.092) (6.539) (5.886) (5.491) (5.457) (4.164) (4.454) 

lnEMP 
-0.036 -0.011 -0.008 -0.034 -0.058* -0.064* -0.060* -0.073* -0.097+ 

(-0.921) (-0.352) (-0.265) (-1.269) (-2.236) (-2.462) (-2.029) (-2.078) (-1.847) 

_cons 
5.534*** 5.643*** 5.922*** 6.181*** 6.551*** 6.837*** 7.073*** 7.504*** 7.780*** 
(34.418) (43.485) (46.822) (50.667) (53.384) (54.136) (48.194) (40.316) (31.040) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.623 0.623 0.623 0.623 0.623 0.623 0.623 0.623 0.623 
F-Stat 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1 
Prob > F (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Log likelihood -12101 -12101 -12101 -12101 -12101 -12101 -12101 -12101 -12101 
N 7,007 7,007 7,007 7,007 7,007 7,007 7,007 7,007 7,007 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

 

 

 

 

 

Table D7 Results of RIF treatment effects with IPW (Low-tech sample) 

Low-tech Model 264 Model 265 Model 266 Model 267 Model 268 Model 269 Model 270 Model 271 Model 272 
RIF-Weighted Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
0.065* 0.026 -0.156*** 0.365** -1.764*** 0.522*** 0.421*** 0.291*** 0.343*** 
(1.988) (0.631) (-3.541) (3.090) (-15.817) (12.481) (7.990) (4.377) (4.011) 

〈  0.291*** 0.460*** 0.317*** 0.502*** 0.883*** 0.206*** -0.01 0.101 0.158 
lnNECOINT (9.958) (7.418) (4.511) (6.364) (8.984) (3.365) (-0.116) (0.852) (0.946) 

lnCAPINT 
0.049** 0.099** 0.129** -0.178 0.305*** 0 -0.227** -0.121 -0.103 
(2.612) (3.109) (2.941) (-1.241) (4.592) (0.010) (-2.981) (-1.407) (-0.844) 

lnEMP 
-0.016 0.133* -0.093 -0.089 0.068 -0.053 -0.153* -0.022 -0.081 

(-0.644) (2.321) (-1.068) (-0.971) (0.753) (-0.970) (-2.551) (-0.185) (-0.533) 

_cons 
7.128*** 7.860*** 7.167*** 9.597*** 12.095*** 8.862*** 9.110*** 9.444*** 10.122*** 
(42.055) (26.964) (18.611) (13.862) (20.363) (35.725) (26.201) (16.695) (13.581) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586 
F-Stat 6.959 6.959 6.959 6.959 6.959 6.959 6.959 6.959 6.959 
Prob > F (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Log likelihood -8927 -8927 -8927 -8927 -8927 -8927 -8927 -8927 -8927 
N 7,007 7,007 7,007 7,007 7,007 7,007 7,007 7,007 7,007 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Figure D3 Non-linear estimations based on RIF treatment effects (Manufacturing sample) 

 

 

 

 

 

 

Table D8 Results of RIF treatment effects without weights (Manufacturing sample) 

Manufacturing Model 273 Model 274 Model 275 Model 276 Model 277 Model 278 Model 279 Model 280 Model 281 
RIF-Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
0.029 0.049+ 0.034 0.035 0.040+ 0.057* 0.102*** 0.079** 0.088* 

(0.882) (1.891) (1.441) (1.507) (1.791) (2.528) (4.238) (2.690) (2.148) 

〈  0.231*** 0.220*** 0.230*** 0.220*** 0.262*** 0.286*** 0.331*** 0.388*** 0.625*** 
lnNECOINT (5.381) (6.522) (7.755) (7.769) (9.074) (10.022) (10.351) (9.162) (9.758) 

lnCAPINT 
0.138*** 0.120*** 0.112*** 0.129*** 0.141*** 0.139*** 0.122*** 0.141*** 0.155*** 
(4.735) (5.735) (6.302) (7.429) (8.397) (8.019) (6.420) (5.783) (4.121) 

lnEMP 
0.128*** 0.128*** 0.089*** 0.064** 0.057** 0.047* 0.01 -0.018 -0.049 
(3.772) (4.885) (3.979) (2.985) (2.658) (2.163) (0.438) (-0.582) (-1.020) 

_cons 
4.526*** 4.920*** 5.196*** 5.313*** 5.342*** 5.477*** 5.693*** 5.773*** 5.670*** 
(20.095) (30.295) (37.849) (40.119) (41.073) (41.069) (38.764) (30.585) (19.640) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.594 0.594 0.594 0.594 0.594 0.594 0.594 0.594 0.594 
F-Stat 39.23 39.23 39.23 39.23 39.23 39.23 39.23 39.23 39.23 
Prob > F (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Log likelihood -12060 -12060 -12060 -12060 -12060 -12060 -12060 -12060 -12060 
N 8,583 8,583 8,583 8,583 8,583 8,583 8,583 8,583 8,583 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table D9 Results of RIF treatment effects with IPW (Manufacturing sample) 

Manufacturing Model 282 Model 283 Model 284 Model 285 Model 286 Model 287 Model 288 Model 289 Model 290 
RIF-Weighted Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
0.045 0.033 -0.031 -0.03 -0.053* 0.021 0.300*** 0.182*** 0.035 

(1.473) (1.251) (-1.218) (-1.166) (-2.090) (0.853) (13.165) (6.003) (0.898) 

〈  0.151*** 0.156** 0.180*** 0.176*** 0.216*** 0.172** 0.158*** 0.260*** 0.500*** 
lnNECOINT (3.400) (3.165) (3.425) (3.429) (3.873) (3.270) (4.139) (5.575) (6.439) 

lnCAPINT 
0.102*** 0.092*** 0.107*** 0.154*** 0.148*** 0.099*** 0.087*** 0.087*** 0.156*** 
(4.030) (4.170) (4.879) (6.603) (6.130) (4.302) (4.909) (4.049) (4.571) 

lnEMP 
0.049 0.065* 0.017 0.002 0 -0.052 -0.060* -0.045 -0.014 

(1.435) (1.970) (0.515) (0.051) (0.012) (-1.546) (-2.356) (-1.387) (-0.260) 

_cons 
5.057*** 5.352*** 5.514*** 5.467*** 5.650*** 6.191*** 6.369*** 6.472*** 5.961*** 
(29.934) (34.539) (35.522) (34.106) (34.015) (39.107) (52.166) (42.155) (24.334) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 
F-Stat 21.73 21.73 21.73 21.73 21.73 21.73 21.73 21.73 21.73 
Prob > F (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Log likelihood -9917 -9917 -9917 -9917 -9917 -9917 -9917 -9917 -9917 
N 8,583 8,583 8,583 8,583 8,583 8,583 8,583 8,583 8,583 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

 

Figure D4 Non-linear estimations based on RIF treatment effects (Non-manufacturing sample) 

 

 

Table D10 Results of RIF treatment effects without weights (Non-manufacturing sample) 

Non-manufacturing Model 291 Model 292 Model 293 Model 294 Model 295 Model 296 Model 297 Model 298 Model 299 
RIF-Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 0.087 0.100* 0.144*** 0.083* 0.021 -0.023 -0.041 -0.01 -0.031 
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(1.614) (2.375) (3.708) (2.306) (0.588) (-0.624) (-0.982) (-0.196) (-0.492) 

〈 

 

0.435*** 0.404*** 0.414*** 0.343*** 0.327*** 0.348*** 0.374*** 0.406*** 0.504*** 
lnNECOINT (8.941) (9.914) (10.798) (9.250) (9.074) (9.067) (9.537) (8.597) (7.211) 

lnCAPINT 
0.063** 0.105*** 0.109*** 0.092*** 0.081*** 0.077*** 0.101*** 0.094*** 0.105** 
(2.742) (5.017) (5.026) (4.440) (4.051) (3.599) (4.179) (3.421) (2.603) 

lnEMP 
-0.068+ -0.033 -0.043 -0.055+ -0.060* -0.062* -0.052+ -0.067* -0.081+ 
(-1.819) (-1.068) (-1.443) (-1.891) (-2.182) (-2.177) (-1.783) (-1.984) (-1.763) 

_cons 
5.725*** 5.840*** 6.148*** 6.541*** 6.893*** 7.223*** 7.417*** 7.854*** 8.426*** 
(39.948) (45.309) (46.337) (52.403) (57.328) (56.870) (51.352) (47.334) (35.168) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.598 0.598 0.598 0.598 0.598 0.598 0.598 0.598 0.598 
F-Stat 19.42 19.42 19.42 19.42 19.42 19.42 19.42 19.42 19.42 
Prob > F (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Log likelihood -10495 -10495 -10495 -10495 -10495 -10495 -10495 -10495 -10495 
N 6,138 6,138 6,138 6,138 6,138 6,138 6,138 6,138 6,138 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
       

 

 

 

 

 

Table D11 Results of RIF treatment effects with IPW (Non-manufacturing sample) 

Non-manufacturing Model 300 Model 301 Model 302 Model 303 Model 304 Model 305 Model 306 Model 307 Model 308 
RIF-Weighted Treat Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

ECO 
0.331*** 0.095 -0.284*** 0.402*** 0.221*** 0.072+ -0.149** -0.043 -0.191 
(4.787) (1.453) (-4.636) (9.906) (5.660) (1.827) (-3.259) (-0.697) (-1.524) 

〈  0.544*** 0.404*** 0.565*** 0.287*** 0.262*** 0.286*** 0.276*** 0.354*** 0.2 
lnNECOINT (7.536) (5.874) (10.084) (10.578) (9.307) (9.440) (8.121) (5.125) (1.201) 

lnCAPINT 
0.049 0.132* 0.081* 0.059** 0.039* 0.028 0.045* 0.01 -0.183 

(1.081) (2.149) (2.383) (2.918) (1.981) (1.384) (1.964) (0.195) (-1.212) 

lnEMP 
0.112 -0.161+ -0.043 -0.088*** -0.057* -0.069** -0.087** -0.043 0.05 

(1.430) (-1.792) (-0.832) (-3.448) (-2.236) (-2.631) (-3.107) (-0.814) (0.328) 

_cons 
7.960*** 6.833*** 9.293*** 7.975*** 8.325*** 8.734*** 8.931*** 9.410*** 10.588*** 
(19.610) (14.372) (33.234) (54.918) (55.467) (54.991) (50.350) (31.826) (12.906) 

Individual FE Y Y Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y Y Y 
adj. R-sq 0.743 0.743 0.743 0.743 0.743 0.743 0.743 0.743 0.743 
F-Stat 3.992 3.992 3.992 3.992 3.992 3.992 3.992 3.992 3.992 
Prob > F (0.0031) (0.0031) (0.0031) (0.0031) (0.0031) (0.0031) (0.0031) (0.0031) (0.0031) 
Log likelihood -7894 -7894 -7894 -7894 -7894 -7894 -7894 -7894 -7894 
N 6,138 6,138 6,138 6,138 6,138 6,138 6,138 6,138 6,138 
Standard errors in parenthesis 

        

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table D12 Results of CQR with bootstrapping based on CDM models  

Bootstrap robust Model 309 Model 310 Model 311 Model 312 Model 313 Model 314 Model 315 

CQR Full-sample High-pollution Non-pollution High-tech Low-tech Mnanufacturing 
Non-

manufacturing 

〈  0.412*** 0.319*** 0.429*** 0.421*** 0.401*** 0.406*** 0.396*** 
lnPATINT (15.314) (4.948) (11.841) (9.141) (10.652) (10.936) (10.436) 

lnCAPINT 
0.110*** 0.078* 0.115*** 0.088*** 0.120*** 0.134*** 0.116*** 

(7.365) (2.048) (5.668) (3.625) (5.417) (4.777) (4.426) 

lnEMP 
-0.106*** -0.178*** -0.093*** -0.054+ -0.155*** -0.049+ -0.153*** 
(-5.236) (-4.764) (-4.036) (-1.926) (-6.003) (-1.681) (-3.833) 

Individual FE Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y 
N 14,721 4,594 10,127 7,714 7,007 8,583 5,214 
Standard errors in parenthesis 

      

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
     

 

 

 

 

 

 

 

 

Table D13 Results of CQR with bootstrapping based on Extended CDM models  

Bootstrap robust Model 316 Model 317 Model 318 Model 319 Model 320 Model 321 Model 322 

CQR Full-sample High-pollution Non-pollution High-tech Low-tech Mnanufacturing 
Non-

manufacturing 

〈 

 
0.485*** 0.192 0.580*** 0.586*** 0.395*** 0.323*** 0.548*** 

lnNECOINT (9.067) (1.199) (10.939) (4.385) (7.702) (2.856) (11.01) 

〈 

 

-0.08 0.185 -0.172*** -0.161 -0.007 0.099 -0.129*** 
lnECOINT (1.559) (1.255) (-3.480) (-1.274) (-0.150) (0.877) (-3.168) 

lnCAPINT 
0.111*** 0.096** 0.119*** 0.097*** 0.123*** 0.144*** 0.096*** 

(7.424) (2.518) (5.884) (4.004) (5.573) (5.25) (4.34) 

lnEMP 
-0.101*** -0.168*** -0.092*** -0.042 -0.154*** -0.042 -0.135*** 
(-4.870) (-4.214) (-3.950) (-1.629) (-6.095) (-1.498) (-4.303) 

Individual FE Y Y Y Y Y Y Y 
Time FE Y Y Y Y Y Y Y 
N 14,721 4,594 10,127 7,714 7,007 8,583 6,138 
Standard errors in parenthesis 

      

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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