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Abstract
We formulate an order over constraint sets A ⊆ R`, called the parallelogram

order, which guarantees that argmin
{
p · x : x ∈ A

}
increases in the product order

as A increases in the set order, for vectors p ∈ R`. Using this result, we characterize
the utility/production functions that lead to normal demand as well as the closely
related class of production functions with marginal costs that increase with factor
prices. By generalizing the concept of supermodularity, we also characterize the
class of production functions for which factors are complements. In the context of
decision-making under uncertainty, our new set order leads to natural generaliza-
tions of first order stochastic dominance in multi-prior models.

Keywords: parallelogram order, increasing differences, complementarity, ambigu-
ity, first order stochastic dominance, normal demand, marginal costs

JEL Classification: C61, D21, D24

1 Introduction

This paper studies the monotone comparative statics of optimization problems with linear

objectives. We pose the following question. Given two nonempty subsets A, A′ of the Eu-

clidean space R`, what relation between them guarantees that Φ′ = argmin
{
p · x : x ∈ A′}

is higher (in an appropriate sense) than Φ = argmin
{
p · x : x ∈ A

}
, for all p ∈ R`?

∗ Department of Economics, University of Sussex. E-mail: P.K.Dziewulski@sussex.ac.uk.
† Department of Economics, Johns Hopkins University and Department of Economics, National Uni-

versity of Singapore. E-mail: john.quah@jhu.edu.
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When Φ′ and Φ are singletons consisting of x′ and x, respectively, it is clear that

‘higher’ means x′ ≥ x. More generally, if Φ′ and Φ are nonempty sets, a minimal require-

ment for Φ′ to be higher than Φ, is for the former to dominate by the latter in the weak

order: for any x ∈ Φ, x′ ∈ Φ′, there is y ∈ Φ, y′ ∈ Φ′ such that x′ ≥ y and y′ ≥ x.

A well-known result in monotone comparative statics states that if A′ dominates A

in the strong set order, then argmin
{
F (x) : x ∈ A′} dominates argmin

{
F (x) : x ∈ A

}
in the same sense, so long as F is submodular or (more generally) quasisubmodular (see

Topkis (1978) and Milgrom and Shannon (1994)). By definition, A′ dominates A by

the strong set order if for any x ∈ A, x′ ∈ A′, we have x ∧ x′ ∈ A and x ∨ x′ ∈ A′.1

The strong set order implies the weak order since we can choose y′ = x ∨ x′ ≥ x and

y = x ∧ x′ ≤ x′. Given that linear functions are also submodular, this result gives a

possible solution to the problem we pose. However, since we consider a class of objective

functions than is narrower than the class of submodular functions, we could potentially

allow for more general comparisons between constraint sets. This would be particularly

desirable in those applications where the strong set order is too restrictive.

We find that, for the question we pose, the relevant relationship between A′ and A is

the parallelogram order. Set A′ dominates A by the parallelogram order if for any x ∈ A,

x′ ∈ A′, there is y ∈ A, y′ ∈ A′ such that x′ ≥ y, y′ ≥ x, and x + x′ = y + y′. This

ordering is stronger than the weak order, but weaker than the strong set order, which

requires y = x∧x′ and y′ = x∨x′. We show that, if A′ dominates A by the parallelogram

order, then Φ′ = argmin
{
p · x : x ∈ A′} dominates Φ = argmin

{
p · x : x ∈ A

}
in the

same sense, for any p ∈ R`. Furthermore, the values of the optimization problem satisfy

increasing differences in the sense that, whenever p′ ≥ p, then

min
{
p′ · y : y ∈ A′}−min

{
p · y : y ∈ A′} ≥ min

{
p′ · y : y ∈ A

}
−min

{
p · y : y ∈ A

}
.

Furthermore, if sets A and A′ convex, then the following three statements are equivalent:

(1) A′ dominates A by the parallelogram order; (2) Φ′ dominates Φ by the weak order

for all p ∈ R`; (3) the values obey increasing differences.

Many basic decision problems in economics belong to the class of linear optimization

problems. We give three broad applications of our results.
1 Here, x∧x′ denotes the greatest lower bound (meet) of x and x′, while x∨x′ denotes the least upper

bound (join). The function F is submodular if F (x) + F (x′) ≥ F (x ∨ x′) + F (x ∧ x′) for all x, x′ ∈ R`,
and is supermodular if the inequality is reversed.
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Application 1: Factor Demand and Marginal Cost An obvious application is to

the study of normality in a firm’s conditional factor demand or (what is formally similar)

a consumer’s Marshallian demand. Suppose a firm produces with ` factors and has the

production function F : R`
+ → R+. We denote the upper contour sets by U(q), i.e.,

U(q) =
{
x ∈ R`

+ : F (x) ≥ q
}

. If p ∈ R`
++ is the price vector of the ` factors, then the

firm’s factor demand at output q is H(p, q) = argmin
{
p · x̃ : x̃ ∈ U(q)

}
. It is natural to

ask what conditions on F will guarantee that factor demand is normal, in the sense that

H(p, q) rises with q, at least with respect to the weak order.

Normality will hold whenever U(q′) dominates U(q) by the strong set order, for q′ ≥ q.

However, this condition is very stringent and fails for any strictly increasing production

function F . Indeed, suppose x ∈ U(q) with F (x) = q and x′ ∈ U(q′) with x′ 6≥ x. Then

x > x ∧ x′ which implies that F (x) > F (x ∧ x′), and so x ∧ x′ cannot be in U(q).

There are well-known examples of production functions that generate normal demand,

including homothetic technologies, or functions that are supermodular and concave in x−i

for all i = 1, . . . , ` (see Quah, 2007). We show that these two classes have upper contour

sets that are ranked by the parallelogram order. However, the parallelogram order also

covers functions not captured by these two classes. For example, suppose a firm has

two plants/teams, each of which has a homothetic production function. Then the firm’s

overall production function that maps a given bundle of factors x to the greatest output

possible among all possible allocations of x (between the two plants/teams), will satisfy

the parallelogram property, even though it is not necessarily homothetic.

When upper contour sets are ranked by the parallelogram order, our basic result states

that the resulting value function has increasing differences. In this context, it means that

the firm’s marginal cost of raising output increases with factor prices. This property

is sufficient (and, in a sense, necessary) to guarantee that a firm’s profit-maximizing

response to higher factor prices is to produce less (and raise the price of its output).

Application 2: Complementary demand A firm with technology F chooses a bun-

dle of factors x ∈ R`
+ to maximize profit F (x)−p·x, for input prices p ∈ R`

++ . The factors

are said to be complements if lowering the price of a factor i raises the (unconditional)

demand for all factors. A well-known condition to guarantee that complementarity holds

is for F to be a supermodular function, but this property is not necessary for comple-
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mentarity. We deploy our basic theorem to give a sharper analysis of this problem.

The firm’s profit maximization problem could be thought of as a linear optimization

problem, subject to a constraint which is the firm’s production possibility set. We show

that a change in the price of a factor (say, a fall in the price of some factor i) could be

modeled as a change in the firm’s production possibility set. Complementarity holds if

the production possibility set before and after the drop in the price of i can be ranked by

the parallelogram order. This approach yields a weaker property on F that guarantees

complementarity, which we call super*modularity.2 In addition, we show that whenever

F is concave, super*modularity is also necessary for factors to be complements.

The function F is super*modular if, for any x and x′, there is y ≤ x∧x′ and y′ ≥ x∨x′

and such that x+x′ = y+y′ and F (x)+F (x′) ≤ F (y)+F (y′). This property generalizes

supermodularity, which requires y′ = x ∨ x′ and y = x ∧ x′ and is, in fact, strictly

weaker. For example, consider again a firm with two plants/ teams, each of which has

a supermodular production function. The overall production function of this firm may

still violate supermodularity, but we show that it satisfies super*modularity, which is

preserved under such aggregation (unlike supermodularity).

Moreover, our approach to complementarity allows us to develop conditions for partial

complementarity, under which a subset of factors could be complements of each other,

but not of factors outside that set. Related to this, we show that complementarity is

always a symmetric property, i.e., if F is such that a fall in the price of i always raises

the demand for j, then a fall in the price of j always raises the demand for i.

Application 3: First order stochastic dominance in multi-prior models Imag-

ine an agent who has to take an action under uncertainty. The agent’s payoff is g(x, s),

where x ∈ X ⊆ R denotes the agent’s action and s ∈ S ⊆ R is the realized state of the

world. If the agent maximizes expected utility, with λ being the cumulative distribution

function on S, then the utility of action x is f(x, λ) =
∫
g(x, s)dλ(s).

Now, suppose that g satisfies increasing differences, which means that the marginal

payoff of a higher action increases with s; formally, for any x′ ≥ x, the difference

g(x′, s)− g(x, s) is increasing in s. It seems reasonable that this would imply that the

expected marginal payoff of a higher action would also be greater when higher states are
2 We suggest reading ‘super*modular’ as ‘super-star-modular.’
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more likely. This intuition is correct: if λ′ first order stochastically dominates λ, then

f satisfies increasing differences, i.e., f(x′, λ′) − f(x, λ′) ≥ f(x′, λ) − f(x, λ), for any

x′ ≥ x. This in turn is sufficient to guarantee that argmax
{
f(x, λ′) : x ∈ X

}
dominates

argmax
{
f(x, λ) : x ∈ X

}
by the strong set order.3

Suppose that instead of maximizing expected utility, the agent is ambiguity averse and

has maxmin preferences à la Gilboa and Schmeidler (1989), so that the ex-ante utility of

action x is f(x,Λ) = min
{ ∫

S
g(x, s)dλ(s) : λ ∈ Λ

}
, where Λ denotes a set of cumulative

distribution functions over S. Now, suppose that there is a shift in the set of distributions

from Λ to Λ′. Assuming that g has increasing differences, what relationship between Λ′

and Λ guarantees that this is also true of f , i.e., for any x′ ≥ x,

f(x′,Λ′)− f(x,Λ′) ≥ f(x′,Λ)− f(x,Λ)

We show that the Nature’s problem of choosing a distribution in Λ (or Λ′) that minimizes

expected utility can be formulated as a constrained linear optimization problem. Our

basic result then tells us that f satisfies increasing differences if the constraint sets are

ranked by the parallelogram order; in this context, the constraint sets are Λ′ and Λ, and

Λ′ dominates Λ by the parallelogram order if, for any cumulative distribution functions

λ ∈ Λ and λ′ ∈ Λ′, there is µ ∈ Λ and µ′ ∈ Λ′ such that µ is first order stochastically

dominated by λ′, µ′ first order stochastically dominates λ, and λ+ λ′ = µ+ µ′.4

Organization of the paper. Section 2 is devoted to the basic results and a discussion

on the related literature, in particular, Topkis (1978), Milgrom and Shannon (1994), and

Quah (2007). Conditions for normal factor demand and the closely related (but weaker)

conditions needed for marginal cost to increase with factor prices are formulated in Section

3. This section also discusses the normality of Marshallian demand and the normality of

the set of efficient bundles. Section 4 formulates conditions for factors to be complements
3 As a simple example, let x be the agent’s current consumption in a two-date model where s is the

uncertain income of tomorrow. Assuming that tomorrow’s consumption has diminishing marginal utility,
a first order shift in tomorrow’s income distribution will increase today’s consumption (see Example 15).

4 Another natural set generalization of first order stochastic dominance is the relationship between
Λ and Λ′ which guarantees that min

{ ∫
S
φ(s)dλ : λ ∈ Λ

}
≤ min

{ ∫
S
φ(s)dλ : λ ∈ Λ′}, for any in-

creasing function φ. This leads to an order between Λ and Λ′ that is weaker than the parallelogram
order (see Section S.6 of the Online Supplement); thus, in multi-prior models, there is a distinction be-
tween stochastic dominance that guarantees monotone utility and stochastic dominance that guarantees
monotone comparative statics.
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and introduces the concept of super*modularity. In Section 5 we formulate first order

stochastic dominance for multi-prior models; it covers the maxmin model as well as the

variational and multiplier preference models. There is an Appendix containing the more

elaborate proofs and also an Online Supplement. In particular, the Online Supplement

contains results on monotone decision rules for ambiguity averse agents in a dynamic

setting, generalizing known results for agents maximizing discounted expected utility

(see Hopenhayn and Prescott, 1992).

2 The parallelogram order

A partial order ≥X over a set X is a reflexive, transitive, and antisymmetric binary

relation. A partially ordered set, or a poset, is a pair (X,≥X) consisting of a set X and a

partial order ≥X . Whenever it causes no confusion, we denote (X,≥X) with X. A poset

is a lattice if, for any x and x′ in X, their meet (the greatest lower bound) x ∧ x′ and

their join (the least upper bound) x ∨ x′ both belong to X. A subset Y of a lattice X is

a sublattice if for any x, x′ ∈ Y , x ∨ x′ and x ∧ x′ are also in Y .

Most of our analysis is carried out in the Euclidean space R`. For any vector x ∈ R`,

we denote its i’th entry by xi; for any set K ⊆ {1, 2, . . . , `}, let xK := (xi)i∈K be the

sub-vector of entries in x that belong to K. Thus, we can write x as (xK , x−K), where

x−K := (xi)i 6∈K . The product order ≥ on R` is defined as follows: for any x, x′ ∈ R`,

x′ ≥ x if x′
i ≥ xi for all i = 1, 2, . . . , `. The relation is said to be strict, and denoted by

x′ > x, whenever x′ ≥ x and x′ 6= x. It is straightforward to check that (R`,≥) constitutes

a lattice, with (x ∧ x′)i = min{xi, x
′
i} and (x ∨ x′)i = max{xi, x

′
i}, for i = 1, 2, . . . , `.

Definition (Parallelogram order). Let A, A′ ⊆ R` and K ⊆ {1, 2, . . . , `}. The set A′

dominates A in K by the parallelogram order if for any x ∈ A, x′ ∈ A′, there is y ∈ A,

y′ ∈ A′ such that x + x′ = y + y′ and x′
K ≥ yK , y′K ≥ xK . Whenever we refer to the

parallelogram order without mentioning K, our default is K = {1, 2, . . . , `}.

Given two nonempty sets A,A′ ⊆ R`, we say that A′ dominates A in K by the weak

order if, for any x ∈ A there y′ ∈ A′ such that xK ≤ y′K , and for any x′ ∈ A′ there is

y ∈ A such that yK ≤ x′
K . Clearly, whenever A′ dominates A in K by the parallelogram

order, then A′ also dominates A in K by the weak order.
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A widely-used property in monotone comparative statics is the strong set order (see

Topkis, 1978). Given a lattice X and subsets A,A′ of X, the set A′ dominates A by the

strong set order if, for any x ∈ A, x′ ∈ A′, we have x ∧ x′ ∈ A and x ∨ x′ ∈ A′. If X is

a sublattice of R`, then when A′ dominates A by the strong set order, A′ also dominates

A by the parallelogram order, since we can choose y = x ∧ x′ and y′ = x ∨ x′.

Our comparative statics results are typically formulated in a setting where there is a

collection of sets related by the parallelogram order. This is formally captured through

a correspondence Γ from a poset (T,≥T ) to R`; we say that Γ is P-increasing in K if,

for any t′ ≥T t, Γ(t′) dominates Γ(t) in K by the parallelogram order. Clearly, if Γ is

nonempty-valued and P-increasing in K then it is also W-increasing in K, in the sense

that, if t′ ≥T t, then the set Γ(t′) dominates Γ(t) in K by the weak order.5

Example 1. Figure 1a depicts values of a correspondence Γ for t′ >T t. The mapping

is P-increasing for K = {1, 2} since, given x ∈ Γ(t) and x′ ∈ Γ(t′), we can find y ∈ Γ(t)

and y′ ∈ Γ(t′) such that x′ ≥ y and y′ ≥ x, and the four points form a parallelogram.

This holds because the boundary of the set Γ(t̃) becomes flatter as t̃ increases. Formally,

if x2 = x̄2(x1, t̃) is the equation of the boundary of Γ(t̃) (for x1 in an interval X1), then

Γ is P-increasing if x̄2 is increasing in (x1, t̃) and dx̄2/dx1 is decreasing in t̃. (See the

Appendix for a proof of this claim and the converse.) Note that Γ is not increasing in

the strong set order. Indeed, in the figure, vector x ∨ x′ is not in Γ(t′).

In contrast, in Figure 1b, the boundary of Γ(t′) is steeper rather than flatter than

that of Γ(t). The figure depicts x ∈ Γ(t) and x′ ∈ Γ(t′) with x′
1 < x1 but it is impossible

to find y ∈ Γ(t) and y′ ∈ Γ(t′) such that x′
1 ≥ y1, y′1 ≥ x1, and x + x′ = y + y′. For the

‘unsuccessful’ choice of y and y′ shown in the figure, x′
1 ≥ y1, y ∈ Γ(t), and x+x′ = y+y′,

but y′ /∈ Γ(t′). Thus Γ is not P-increasing in {1} or in {1, 2}. We leave the reader to

check that Γ is P-increasing in {2}.

The parallelogram order is closed under scalar multiplication and addition; these

features turn out to be important in certain applications (see Examples 6 and 14). In

contrast, the strong set order is closed under scalar multiplication, but not under addition.

For example, although the set A′ = {1} dominates A = {0}, and B = B′ = {0, 2} are
5 Similarly, we could speak of Γ being P-decreasing or W-decreasing in K.
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Γ(t′)

Γ(t)

b x
b

x′
bc

x ∨ x′

bc
y

bc
y′

x1

x2

(a) Γ(t′) dominates Γ(t) by parallelogram order
for K = {1, 2}.

Γ(t′)

Γ(t)

b

x

b
x′

bc
y

bc
y′

x1

x2

(b) Γ(t′) fails to dominate Γ(t) for K = {1} and
K = {1, 2}.

Figure 1: The parallelogram order

(trivially) ranked in the strong set order, the set A + B = {0, 2} is not dominated by

A′ +B′ = {1, 3} in this sense. We omit the obvious proof of the next result.

Proposition 1. Let the correspondences Γ, Γ′ : T → R` be nonempty-valued and P-

increasing in K ⊆ {1, . . . , `}. Then the correspondence αΓ+Γ′ is P-increasing in K, for

any α ≥ 0.

Our first main result justifies the attention we give to the parallelogram order. It

states that when a family of constraint sets are ordered in this sense, then so are the

solutions to an optimization problem with a linear objective.

Theorem 1. Suppose the correspondence Γ : T → R` is P-increasing in K. Then for

any p ∈ R`, the correspondence Φ : T → R`, given by

Φ(t) := argmin
{
p · y : y ∈ Γ(t)

}
, (1)

is P-increasing in K. Furthermore, if the values of Γ are nonempty, compact, and convex,

then Γ is P-increasing in K if Φ is W-increasing in K for every p ∈ R`.

Remark 2.1. The first part of this result makes no ancillary assumptions on Γ and,

thus, Φ(t) may be empty for some values of t. When Φ(t) is nonempty (as it will be if

Γ is nonempty and compact) then Φ will also be W-increasing in K if it is P-increasing

in K. The second part of this result states that, under ancillary assumptions on Γ which

(in particular) guarantee that Φ has nonempty, compact, and convex values, then Γ must

be P-increasing in K if we require Φ to be W-increasing in K.

8



Remark 2.2. While Theorem 1 focuses on minimization problems, it is clear that, for any

p ∈ R`, the correspondence Ψ(t) := argmax
{
p · y : y ∈ Γ(t)

}
inherits the parallelogram

order from Γ, since y ∈ Γ(t) maximizes p · y if, and only if, it minimizes (−p) · y.

Remark 2.3. Consider three nonempty compact and convex sets where A3 dominates

A2, and A2 dominates A1 in K by the parallelogram order. Define Γ by Γ(t) = At. By

Theorem 1, for every p ∈ R`, Φ(3) dominates Φ(2) in K and Φ(2) dominates Φ(1) in

K. This clearly implies that Φ(3) dominates Φ(1) in K. By the converse part of this

theorem, we conclude that Γ(3) = A3 dominates Γ(1) = A1 in K by the parallelogram

order. We conclude that domination in K by the parallelogram order is a transitive

relation on the family of nonempty, compact, and convex subsets of R`. Obviously, this

relation is also reflexive, and thus it constitutes a preorder. We show in Section S.1 of

the Online Supplement that this relation is also anti-symmetric if K = {1, 2, . . . , `}.

We postpone discussion of the second claim in Theorem 1, which is an immediate

consequence of Theorem 2 (see Remark 2.4). The proof of the first claim is straightforward

and useful for building intuition.

Proof of the first part of Theorem 1. Take any p ∈ R`, t′ ≥T t, and x ∈ Φ(t), x′ ∈ Φ(t′).

Since x ∈ Γ(t), x′ ∈ Γ(t′), and Γ is P-increasing, there is y ∈ Γ(t), y′ ∈ Γ(t′) such that

x + x′ = y + y′ and x′
K ≥ yK , y′K ≥ xK . We claim that y ∈ Φ(t) and y′ ∈ Φ(t′). Since

y ∈ Γ(t) and x ∈ Φ(t), it must be that p · y ≥ p · x. Similarly, p · y′ ≥ p · x′. Thus,

p · (y + y′) ≥ p · (x+ x′) = p · (y + y′),

which holds only if p · y = p · x and p · y′ = p · x′, and so y ∈ Φ(t), y′ ∈ Φ(t′).

The following example illustrates the use of Theorem 1.

Example 2. A firm hires an employee with a utility u that depends on the effort level

e ≥ 0 the employee exerts, and the payment c ≥ 0 to the employee. The employee

has an outside opportunity that yields utility t. The firm transforms e into revenue re,

where r > 0. Thus, it chooses (e, c) to maximize re − c subject to Γ(t) =
{
(e, c) ∈ X :

u(e, c) ≥ t
}

, where X is the domain of u. Assuming that u(e, c) is strictly decreasing in

e and strictly increasing in c, the indifference curves are upward sloping, as depicted in

9



Figure 1(a) (with effort on the horizontal axis). If Γ is P-increasing, then an improvement

in the outside opportunity t will lead to the firm paying more and requiring higher effort.

This holds if the indifference curves c = c̄(e, t) become flatter with higher t, i.e., for each

e, the derivative dc̄/de increases with t (see Example 1). A quick check with implicit

differentiation will confirm that this occurs if u is supermodular in (e, c) and convex in c.

Theorem 1 guarantees the pairwise comparability of the optimal solutions, in the

sense that Φ(t) and Φ(t′) are ordered whenever t and t′ are ordered. In fact, under

mild assumptions, we could reach a stronger conclusion. The next result (proved in the

Appendix) states that there is an increasing selection from Φ.

Proposition 2. Suppose that the correspondence Φ : T → R` is P-increasing in K

and has nonempty and compact values. Then there is a function φ : T → R` such that

φ(t) ∈ Φ(t) for all t ∈ T , and φK(t
′) ≥ φK(t) whenever t′ ≥T t.6

Value Functions Given the constraint sets Γ(t) and p ∈ R`, we may define the value

function f : R` × T → R, where f(p, t) := min
{
p · y : y ∈ Γ(t)

}
. This function has

increasing differences in (pK , t) if, for any p′K ≥ pK and t′ ≥T t, and p−K ,

f
(
(p′K , p−K), t

′)− f
(
(pK , p−K), t

′) ≥ f
(
(p′K , p−K), t

)
− f

(
(pK , p−K), t

)
. (2)

For certain comparative statics applications (see Propositions 3 and 7), this property on

f plays a crucial role and the next theorem gives a characterization of this property. The

condition on Γ needed to guarantee that f satisfies increasing differences is close to, but

not identical with, what is needed to guarantee that Φ is P-increasing in K. The required

property is that the convex hull of Γ(t′), which we denote by co Γ(t′), dominates co Γ(t) in

K by the parallelogram order whenever t′ ≥T t; in other words, the correspondence co Γ

is P-increasing in K. This property is weaker than requiring Γ to be P-increasing in K.

Indeed, one could check that co Γ(t′) dominates co Γ(t) in K by the parallelogram order

if (and, obviously, only if) for any x ∈ Γ(t), x′ ∈ Γ(t′), there is y ∈ co Γ(t), y′ ∈ co Γ(t′)

such that x + x′ = y + y′ and x′
K ≥ yK , y′K ≥ xK .7 It immediately follows from this

6 If Φ is merely W-increasing in K (rather than P-increasing in K) then there is no guarantee that
it would have an increasing selection. See Example 3.4 in Kukushkin (2013).

7 Indeed, for any x ∈ co Γ(t) and x′ ∈ co Γ(t′), we can find αj ≥ 0, xj and x′j such that
∑J

j=1 α
jxj = x

and
∑J

j=1 α
jx′j = x′. For each pair, xj and x′j , there is yj ∈ co Γ(t) and y′j ∈ co Γ(t′) such that yj ≤ x′j ,

xj ≤ y′j , and xj+x′j = yj+y′j . The required condition holds with y =
∑J

j=1 α
jyj and y′ =

∑J
j=1 α

jy′j .
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observation that Γ is P-increasing in K only if the correspondence co Γ is P-increasing

in K.

Theorem 2. Let T be a poset and Γ : T → R` be a correspondence with nonempty and

compact values. For any K ⊆ {1, 2, . . . , `}, the following statements are equivalent.

(i) co Γ is P-increasing in K.

(ii) For any p ∈ R`, coΦ is P-increasing in K, where Φ is defined as in (1).

(iii) For any p ∈ R`, Φ is W-increasing in {i}, for each i ∈ K.

(iv) The value function f : R` × T → R has increasing differences in (pK , t).

Remark 2.4. The claim in Theorem 1 that, when Γ has nonempty, compact, and convex

values then it is P-increasing for K only if Φ is P-increasing in K (for all p ∈ R`) follows

from the equivalence of (i) and (iii) in Theorem 2 since, when Γ is convex-valued, Γ = coΓ.

Indeed, the equivalence of (i) and (iii) tells us something stronger: if (for all p ∈ R`) we

require Φ to be W-increasing in {i} for each i ∈ K, then Γ = coΓ must be P-increasing in

K. Thus the P-increasing property on Γ is necessary even for a very minimal requirement

on comparative statics.

Remark 2.5. Comparing this result with Theorem 1, we see that the P-increasing prop-

erty on co Γ guarantees that Φ is increasing in {i} for each i ∈ K, but not necessarily in

K jointly. This phenomenon is illustrated in Example 4 in the following section.

Proof of Theorem 2. By Theorem 1, if (i) holds then Ψ(t) := argmin
{
p · y : y ∈ co Γ(t)

}
is P-increasing in K; (ii) follows immediately since Ψ(t) = coΦ(t).

To show that (ii) implies (iii), let coΦ be P-increasing for K. Then, t′ ≥T t and

x ∈ Φ(t) imply y′K ≥ xK , for some y′ ∈ coΦ(t′). Thus, there are vectors zj ∈ Φ(t′) and

numbers αj ≥ 0, for j = 1, . . . ,m, such that y′ =
∑m

j=1 α
jzj and

∑m
j=1 α

j = 1. Since

y′K ≥ xK , there is j with zji ≥ xi. Analogously, for any x′ ∈ Φ(t′) and i ∈ K, there is

some z ∈ Φ(t) satisfying x′
i ≥ zi.

We prove that (iii) implies (iv). It is well-known that f is a concave function. In par-

ticular, the map from z ∈ [pi, p
′
i] to f(z, p−i, t) is concave and continuous over the interval

[pi, p
′
i]. Hence, it is absolutely continuous and, thus, almost everywhere differentiable (see

Theorem 25.5 in Rockafellar, 1970), with

f
(
(p′i, p−i), t

)
− f

(
(pi, p−i), t

)
=

∫ p′i

pi

∂f

∂pi

(
(z, p−i), t

)
dz.
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By Theorem 25.1 in Rockafellar (1970) (Shephard’s Lemma), if ∂f/∂pi
(
(z, p−i), t

)
exists

then yi = y′i = ∂f/∂pi
(
(z, p−i), t

)
, for any y, y′ ∈ Φ(t), where p = (z, p−i). Since Φ is W-

increasing {i} (for i ∈ K), for any t′ ≥T t, we have ∂f/∂pi(z, p−i, t) ≤ ∂f/∂pi(z, p−i, t
′),

for almost all z ∈ [pi, p
′
i]. This leads to f

(
(p′i, p−i), t

)
− f
(
(pi, p−i), t

)
≤ f

(
(p′i, p−i), t

′)−
f
(
(pi, p−i), t

′). Thus, we have shown that the function f has increasing differences in

(pi, t), for any i ∈ K, which implies that f has increasing differences in (pK , t).

The claim that (iv) implies (i) is harder to prove and we leave that to the Appendix.

Our argument employs the separating hyperplane theorem to show that if Γ fails to be

P-pseudoincreasing, then f violates increasing differences.

Theorem 2 determines the comparative statics of minimization problems with an

arbitrary linear objective. In some applications we require comparative statics over the

narrower class of strictly increasing linear objectives. The next theorem (which we prove

in the Appendix) covers that case. Instead of requiring Γ to be compact-valued, we impose

the following assumption: Γ(t) is closed and upward comprehensive, and its asymptotic

cone, denoted by AΓ(t), is equal to R`
+, for all t ∈ T . These conditions guarantee that

co Γ(t) is a closed set and Φ(t) is nonempty for all p ∈ R`
++.8 A sufficient (but by no

means necessary) condition for AΓ(t) = R`
+ is for Γ(t) to be bounded from below, i.e.,

there is xt such that y ≥ xt for all y ∈ Γ(t).

Theorem 3. Let T be a poset and Γ : T → R` be a correspondence such that Γ(t) is

nonempty, closed, upward comprehensive, and satisfies AΓ(t) ⊆ R`
+, for all t ∈ T . For

any K ⊆ {1, 2, . . . , `}, the following statements are equivalent.

(i) co Γ is P-increasing in K.

(ii) For any p ∈ R`
++, coΦ is P-increasing in K, where Φ is given in (1).

(iii) For any p ∈ R`
++, Φ is W-increasing in {i}, for each i ∈ K.

(iv) The value function f : R`
++ × T → R has increasing differences in (pK , t).

Remark 2.6. Suppose that, in addition to the properties listed in this theorem, Γ is

convex-valued. Then, the equivalence of (i) and (iii) means that Γ is P-increasing in K

if, for every p ∈ R`
++, Φ is W-increasing in {i}, for each i ∈ K.

8 This claim is related to fairly standard results in convex analysis; for completeness we provide a
proof in Section S.2 (Proposition S.2) of the Online Supplement. A set S ⊆ R` is upward comprehensive
if x ∈ S and x′ ≥ x implies x′ ∈ S. The asymptotic cone of S consists of all limits x̃ ∈ R` of sequences{
λnxn

}
, for some xn ∈ S and positive scalars λn that converge to 0.

12



Remark 2.7. There is an analogous version of Theorem 3 for maximization problems.

If Γ has closed, downward comprehensive, and bounded from above values, the follow-

ing are equivalent: (i) co Γ is P-increasing in K; (ii) co Φ̃ is P-increasing in K, where

Φ̃(t) := argmax
{
p · y : y ∈ Γ(t)

}
, for any p ∈ R`

++; (iii) Φ̃ is W-increasing in {i}, for

each i ∈ K and for any p ∈ R`
++; (iv) the value f̃(p, t) := max

{
p · y : y ∈ Γ(t)

}
has in-

creasing differences in (pK , t). This result can be obtained by applying Theorem 3 to the

correspondence Γ∗ : T → R`, where Γ∗(t) = −Γ(t); note that co Γ∗ is P-decreasing in K

if, and only if, co Γ is P-increasing in K.

We now discuss the relationship between our results and the monotone comparative

statics results by Topkis (1978), Milgrom and Shannon (1994), and Quah (2007).

Let (X,≥X) be a lattice and Γ : T → X be a correspondence that is increasing in

the strong set order. Topkis (1978) showed that the correspondence of optimal points

Φ(t) := argmin
{
φ(y) : y ∈ Γ(t)

}
is also increasing in the strong set order if the objective

function φ : X → R is submodular, i.e., satisfies φ(x) + φ(x′) ≥ φ(x ∧ x′) + φ(x ∨ x′),

for any x, x′ ∈ X. Observing that any comparative statics result on Φ must be inde-

pendent of strictly increasing transformations of the objective function, Milgrom and

Shannon (1994) generalize Topkis’ result by showing that it suffices for φ to satisfy the

ordinal counterpart of submodularity, called quasisubmodularity; this property requires

that φ(x ∧ x′) ≥ (>)φ(x) implies φ(x′) ≥ (>)φ(x ∨ x′), for any x, x′ ∈ X.

Quah (2007) observes that for certain economic problems, the strong set order on Γ

is an overly strong assumption. He develops a comparative statics result that requires an

ordinal condition on the objective function φ that is stronger than quasisubmodularity

(called C-quasisubmodularity9), while relaxing the strong set order requirement on Γ.

Specifically, the correspondence Γ is required to be increasing in the C-flexible set order

for K ⊆ {1, 2, . . . , `}, which means that, for any t′ ≥T t, x ∈ Γ(t), and x′ ∈ Γ(t′)

with x′
K 6≥ xK , there is some λ ∈ [0, 1] such that

[
λx′ + (1 − λ)(x ∧ x′)

]
∈ Γ(t) and[

λx+ (1− λ)(x ∨ x′)
]
∈ Γ(t′). Obviously, this order is weaker than the strong set order,

which corresponds to the case where λ = 0. It is shown that if Γ increases in the C-flexible

set order for K, then so does Φ, for any C-quasisubmodular function φ.

In this paper, we push the approach in Quah (2007) even further, by requiring the
9A sufficient condition for this property is that φ is submodular and convex.
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objective φ to be linear, in order to obtain the most permissive conditions on Γ needed for

monotone comparative statics. Notice that the C-flexible set order is a special case of the

parallelogram order since, if we let y = λx′+(1−λ)(x∧x′) and y′ = λx+(1−λ)(x∨x′), then

y′ ≥ x, x′ ≥ y, and x + x′ = y + y′. In some applications, the parallelogram order holds

but the C-flexible set order does not. For example, we know that Γ(t′) dominates Γ(t)

by the parallelogram order in Figure 1a, yet the C-flexible set order cannot hold between

these sets. This is because the boundaries of Γ(t) and Γ(t′) are strictly upward sloping

and we could always choose x and x′ on the boundary of Γ(t) and Γ(t′), respectively, as

depicted in Figures 1(a), with the entire line connecting x′ and x ∨ x′ outside of Γ(t′).

3 Normal demand and monotone marginal cost

It is commonplace to hear that a firm has found it necessary to raise the price of its

output because of increases in the price of raw materials. In this section we explain the

precise conditions under which such a claim is correct.10 In formal terms, we discuss the

relationships linking the parallelogram order, factor demand, and marginal cost. We also

examine the closely related issue of characterizing normal demand for consumers.

3.1 Conditional factor demand and marginal costs

The firm has a continuous and increasing production function F : R`
+ → R. We denote

the range of F by Q :=
{
F (x) : x ∈ R`

+}.11 For any q ∈ Q, let

U(q) :=
{
x ∈ R` : F (x) ≥ q

}
.

We refer to U as the upper contour correspondence of F . The set U(q) is upward com-

prehensive, bounded from below by 0, and closed (since F is continuous).

Definition. The function F : R` → R is P-increasing in K if its upper contour corre-

spondence U : Q → R is P-increasing in K (where Q is the range of F ). The function is

quasi-P-increasing whenever the correspondence q → coU(q) is P-increasing in K.

We assume that the firm is a price-taker in the market for factors/inputs and faces

strictly positive input prices p = (p1, p2, . . . , p`). The conditional factor/input demand at
10 We would like to thank the anonymous referee who suggested this motivation.
11 Our analysis could be performed for functions F defined over a general domain X ⊆ R`

+. However,
to keep the exposition simple, we restrict our attention to the special case of X = R`

+.
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(a) A homothetic function is P-increasing.
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(b) The set of cost-minimisers is not P-
increasing in {1, 2}, but its convex hull is.

Figure 2: Illustrations for Examples 3 (left) and 4 (right).

p and output q ∈ Q refers to those bundles that achieve output of at least q with the

least cost. Formally, input demand is the correspondence H : R`
++ × Q → R`

+, where

H(p, q) = argmin{p · x : x ∈ U(q)}. Our assumptions on F guarantee that H(p, q)

is nonempty and compact, for all (p, q) in R`
++ × Q. The associated cost function is

C(p, q) = min{p · x : x ∈ U(q)}.

Theorem 1 tells us that if U is P-increasing in K then the conditional factor demand

H(p, ·) is also P-increasing in K. In particular, the factor demand is increasing in K (as

target output q increases); the conventional usage in this context would say that demand

is normal (more precisely, jointly normal) in K. We may also conclude that, for each p,

H(p, ·) admits a selection h(p, q) ∈ H(p, q), for all q ∈ Q, such that hK(p, q
′) ≥ hK(p, q)

whenever q′ ≥ q (see Proposition 2). If F is quasiconcave (so that U(q) is convex) we

obtain the converse result that U is P-increasing in K if, at every factor price p ∈ R`
++,

the factor demand for each i ∈ K is normal. This follows from Theorem 3 (Remark 2.6).

The following is a basic example of a P-increasing production function; more examples

are presented at the end of this subsection.

Example 3. A production function F : R`
+ → R is homothetic if F (x′) ≥ F (x) implies

F (λx′) ≥ F (λx), for any scalar λ > 0. It is well-known that if F is homothetic then its

factor demand is jointly normal; in fact, the following (much stronger) property holds:

if x ∈ H(p, q), then tx ∈ H(p, q′), where t > 1 if q′ < q and t > 1 if q′ < q. Thus a

production function that is homothetic and quasiconcave must be P-increasing.
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This can be directly confirmed. Suppose x ∈ U(q) and x′ ∈ U(q′), with q′ > q. We

focus on the case where F (x) < q′ ≤ F (x′) and x′ and x are not ordered (the other cases

being straightforward). Since F is continuous and increasing, there is a scalar a > 1

such that F (x) = F (x′/a) and, by the homotheticity of F , we obtain F (ax) = F (x′) (see

Figure 2a). Set y = x′/a and y′ = x′ + (x− (x′/a)). The bundle y′ is on the line segment

joining ax and x′ and, since F is quasiconcave, y′ ∈ U(q′). We also have y ≤ x′, x ≤ y′

and x+ x′ = y + y′, as required by the parallelogram property.

The cost function C has increasing differences in (pK , q) if, for any input prices

p′K ≥ pK , p−K , and output levels q′ ≥ q, we have

C
(
(p′K , p−K), q

′)− C
(
(p′K , p−K), q

)
≥ C

(
(pK , p−K), q

′)− C
(
(pK , p−K), q

)
. (3)

Thus, the increase in cost when output is raised from q to q′ is greater at the input prices

(p′K , p−K) compared to the prices (pK , p−K), when p′K ≥ pK . When C is differentiable in

output, this is equivalent to ∂C/∂q
(
(pK , p−K), q

)
being increasing in pK , i.e., an increase

in the price of a factor in the set K leads to a higher marginal cost.

By Theorem 3, the cost function C has increasing differences in (pK , q) if, and only

if, coU is P-increasing in K (equivalently, the function F is quasi-P-increasing). This

is enough to guarantee that demand is normal in {i} for each i ∈ K, but not enough to

guarantee that demand is jointly normal in K (which requires U to be P-increasing in

K). The next example illustrates this distinction.

Example 4. The production function F : R2
+ → R has isoquants depicted in Figure 2b.

It is quasi-P-increasing, since coU(q) =
{
(x1, x2) : x1 + x2 ≥ q

}
, for all q ∈ Q. In line

with statement (iii) in Theorem 3, factor demand is normal in factor 1 and in factor 2

separately. For example, as shown in the figure, when p1 = p2 and given x ∈ H(p, q),

there is x′ ∈ H(p, q′) such that x′
1 ≥ x1, and x′′ ∈ H(p, q′) such that x′′

2 ≥ x2. However,

U is not P-increasing for K = {1, 2} and joint normality in both goods does not hold:

there is no bundle in H(p, q′) that is higher than x in both goods. Nonetheless, due to the

quasi-P-increasing property, the cost function has increasing differences in
(
(p1, p2), q

)
.

Our ability to sign the impact of higher factor prices on marginal cost allows us to

predict how the firm’s profit-maximizing output will change. Let R : Q → R+ be the
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revenue that the firm earns when it produces q ∈ Q. The firm chooses q ∈ Q to maximize

profit Π(p, q) = R(q)−C(p, q). When C has increasing differences in (pK , q), a rise in the

price of any factor in K raises marginal cost and reduces the profit-maximizing output.

Conversely, if the optimal output decreases with pK for any increasing revenue function

R, then C must have increasing differences in (pK , q). The following result (which we

prove in the Appendix) summarizes our claims.

Proposition 3. For any continuous and increasing production function F : R`
+ → R,

the following statements are equivalent.

(i) F is quasi-P-increasing in K.

(ii) For all p ∈ R`
++, H(p, ·) is normal in {i}, for each i ∈ K.

(iii) C has increasing differences in (pK , q).

(iv) The set argmax
{
R(q)− C(p, q) : q ∈ Q

}
is decreasing in pK � 0 in the strong set

order, for any function R : Q → R.

Going back to the issue we raised at the beginning of this section, Proposition 3

states that the quasi-P-increasing property in K of the technology F is sufficient and (in

a sense) necessary for the profit-maximizing output to fall when pK increases. Whenever

the price of output is determined by a downward sloping demand curve, this also implies

that the firm charges a higher price for its output when pK increases.

We end this subsection with three more examples of P-increasing production functions

(besides the homothetic case already considered in Example 3).

Example 5. A function F : R`
+ → R is increasing in K ⊆ {1, 2, . . . , `} by the C-flexible

set order if the correspondence q → U(q) is increasing in K by the C-flexible set order;

this property implies that F is P-increasing in K. (Recall the discussion on the C-flexible

set order at the end of Section 2.) It is known that F is increasing in K by the C-

flexible set order if it is continuous, increasing, supermodular, and concave in x−i, for

i ∈ K; for a proof see Quah (2007) or Section S.3 of the Online Supplement. For example,

F (x1, x2, x3) :=
√
x1x2+x3 for (x1, x2, x3) ∈ R3

+ is increasing, supermodular, and concave

and thus is increasing (in K = {1, 2, 3}) by the C-flexible set order.

The next two examples give economically interpretable ways of constructing new P-

increasing production functions from other production functions with that property.
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Example 6. Suppose that one unit of output can be produced from one unit each of n

intermediate goods. Each intermediate good is produced from ` factors, with f j : R`
+ → R

being the production function for the jth intermediate good. Assuming that any bundle

x of factors is efficiently assigned, the firm’s production function F : R`
+ → R is

F (x) := max
{
minj=1,...,n

{
f j(yj)

}
: x ≥

∑n

j=1
yj
}
.

It is straightforward to check that its upper contour correspondence U satisfies U(q) =∑n
j=1 U

j(q), where U j is the upper contour correspondence associated with f j. By

Proposition 1, U is P-increasing in K if each U j is P-increasing in K. For example,

F (x1, x2, x3) := min
{
x2
1, x2 + x3

}
is P-increasing since f 1(x) = x2

1 and f 2(x) = x2 + x3

are both homothetic and thus P-increasing. (In fact, both functions are also increasing

in the C-flexible set order.) While F is P-increasing, it is clearly not homothetic and

neither is it increasing in the C-flexible set order.12

Example 7. Another aggregation procedure preserving the parallelogram order is as

follows. Given production functions f j : R`
+ → R (j = 1, 2 . . . , n), define F : R`

+ → R by

F (x) := max
{
G
(
f 1(y1), f 2(y2), . . . , fn(yn)

)
: x ≥

∑n

j=1
yj
}
, (4)

where G : ×n
j=1Q

j → R is an increasing function that aggregates the values of f j, and Qj

contains the range of f j. We show in the Appendix that F is P-increasing in K provided

that f j is continuous, concave, and is P-increasing in K (for each j), and the aggregating

function G is increasing in the C-flexible set order.13

For example, if G(q1, q2, . . . , qn) =
∑n

k=1 q
k, then G is increasing in the C-flexible

set order. In this case F can be interpreted as the production function of a firm that

allocates its output efficiently across n plants, with plant j having the production function

f j. Thus, the following functions are P-increasing.

(i) F (x1, x2, x3, x4) :=
√
x1 x2 +

√
x3 + x4;

(ii) F (x1, x2, x3) := max
{√

x1 y +
√
x3 + z : x2 ≥ y + z

}
.

12 If x =
(√

5, 0, 5
)

and x′ =
(√

6, 6, 0
)
, then F (x) = 5, F (x′) = 6, F (x ∧ x′) = F

(
(
√
5, 0, 0)

)
= 0, and

F (x ∨ x′) = F
(
(
√
6, 6, 5)

)
= 6. For F to be increasing in the C-flexible set order, we must find λ ∈ [0, 1]

such that F
(
λx′ + (1 − λ)(x ∧ x′)

)
≥ F (x) = 5 and F

(
λx + (1 − λ)(x ∨ x′)

)
≥ F (x′) = 6. But this is

impossible since F (x ∧ x′) < 5 and if λ > 0, F
(
λx+ (1− λ)(x ∨ x′)

)
< 6.

13 This example does not generalize Example 6: while the ‘min’ function is increasing in the C-flexible
set order, Example 6 does not require f j to be concave, which is required in this example.
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In (i) the two plants produce output with completely distinct factors (the first plant with

factors 1 and 2 and the second with factors 3 and 4) while in case (ii), one factor (factor 2)

is used by both plants. Notice that both plants have homothetic production functions,

but since one plant has constant returns to scale while the other has diminishing returns,

F is not homothetic in both (i) and (ii).

3.2 Sequential optimization and efficient bundles

Our basic results tell us that, if two constraint sets are ordered by the parallelogram order,

then so are the minimizers of a linear objective over those sets. This feature makes our

results applicable to decision procedures where linear objectives are sequentially applied.

For example, in the context of factor demand, the firm may choose, among those bundles

that minimize cost, the ones that minimize the usage of one or a combination of factors

belonging to C ⊆ {1, 2, . . . , `} (perhaps for environmental reasons, or to minimize the

firm’s vulnerability to supply disruptions). In that case, the firm’s factor demand at

factor prices p ∈ R`
++ and output q is H∗(p, q) := argmin

{∑
i∈C xi : x ∈ H(p, q)

}
. By

Theorem 1, if F is P-increasing, then H(p, ·) is P-increasing, and so is H∗(p, ·).

Another application is to guarantee normality for efficient bundles. For a given pro-

duction function F , a bundle x ∈ R`
+ is efficient at producing q if x ∈ U(q) and x′ < x

implies x′ 6∈ U(q), for any alternative x′. Let E(q) denote the set of bundles that pro-

duce q efficiently. Given x ∈ E(q) and q′ > q, we ask whether there is x′ ∈ E(q′) such

that x′ ≥ x. For example, suppose x represents the effort levels of ` team members in

a joint project, and gives an efficient way of allocating the effort among the team mem-

bers to produce q. If the output target is now higher at q′, is there a way of producing

this efficiently, while ensuring that no team member contributes strictly less? This is

not always possible. For example, suppose U(q) =
{
(x1, x2) ∈ R2

+ : x1x2 = 1
}

and

U(q′) =
{
(x1, x2) ∈ R2

+ : min{x1, x2} ≥ 2
}

. Then {(2, 2)} = E(q′) and (3, 1/3) ∈ E(q),

but clearly (2, 2) 6≥ (3, 1/3).

The situation in this example cannot occur when the upper contour sets are convex

sets ranked by the parallelogram order. Indeed, according to Che et al. (2020), if x ∈ E(q)

and U(q) is convex, then there is a sequence of non-zero weights p1, p2, . . . , pm−1 ∈ R`
+

and pm ∈ R`
++ such that x ∈ Φm(q), where Φk(q) := argmin

{
pk · x : x ∈ Φk−1(q)

}
and
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Φ0(q) = U(q). If U(q′) dominates U(q) in the parallelogram order then, by consecutive

application of Theorem 1, we know that Φm(q′) dominates Φm(q) in the parallelogram

order. Thus (subject to standard conditions guaranteeing that Φm(q′) is nonempty), there

is x′ ∈ Φm(q′) such that x′ ≥ x. Since pm � 0, the bundle x′ ∈ E(q′).14

3.3 Consumer demand

Our results on conditional factor demand can be straightforwardly re-formulated to guar-

antee that Marshallian demand is normal. Apart from being an intrinsically appealing

property for most product categories, normality plays an important role in many model

settings. For example, normality is used in Bergstrom et al. (1986) to guarantee the

uniqueness of Nash equilibria in a public goods game; the results on general equilibrium

comparative statics in Nachbar (2002) and Quah (2003) hinge on their assumption that

demand is normal; in Blundell et al. (2005), normality helps to determine how provision

of a public good varies with intra-household bargaining power; and normality simplifies

the non-parametric estimation of demand functions in Blundell et al. (2003). Thus it is

important to have a thorough understanding of the foundations of this property.

Suppose a consumer has a utility function u : R`
+ → R, defined over bundles of `

commodities. At prices p ∈ R`
++ and income m ≥ 0, the consumer chooses a consumption

bundle x ∈ R`
+ that is affordable and maximizes her utility; the solution to this problem

is captured by the Marshallian demand correspondence D : R`
++ × R+ → R`

+, where

D(p,m) := argmax
{
u(x) : p · x ≤ m

}
. The indirect utility function v : R`

++ × R+ → R

is given by v(p,m) := max
{
u(x) : p · x ≤ m

}
.

Given the range V of u, the Hicksian demand H : R`
++ × V → R`

+ maps prices p and

utility levels v to those bundles that minimize the expenditure p · x over all alternatives

satisfying u(x) ≥ v. Obviously, the Hicksian demand is formally identical to the input

demand in the production context, while the analog to the cost function is the expenditure

function e : R`
++ × V → R+, where e(p, v) := min

{
p · x : u(x) ≥ v

}
.

14 There are other manifestations of this result. For example, suppose V ′ and V are two convex sets
representing the utility-possibilities of ` agents. If V ′ dominates V in the parallelogram order, then
(using essentially the same argument) we may conclude that for every Pareto optimal utility allocation
v′ ∈ V ′ there is a Pareto optimal allocation v ∈ V such that v′ ≥ v. In other words, suppose the initial
allocation is v′ and the economy shrinks from V ′ to V ; then there is a new allocation v which is Pareto
optimal and which involves all agents sharing in the loss – no one is strictly better off.
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Suppose that utility u is continuous and locally non-satiated.15 In such a case, corre-

spondences D and H are well-defined. Moreover, we have p · x = m, for all x ∈ D(p,m),

while the two demands are related by the identity D(p,m) = H
(
p, v(p,m)

)
, for any prices

p and income m (see Proposition 3.E.1 in Mas-Colell et al., 1995).

Let K ⊆ {1, 2, . . . , `}. We say that D is normal in K if, for any prices p, income levels

m,m′, and x ∈ D(p,m), there is x′ ∈ D(p,m′) such that m′ ≥ m implies x′
K ≥ xK and

m′ ≤ m implies x′
K ≤ xK . The demand D is normal in input i if it is normal in K = {i}.

Finally, if K = {1, 2, . . . , `}, we simply say that D is normal.

The equivalence of demands D and H allows us to translate normality results on

Hicksian demand into results on Marshallian demand. In particular, the following result

on utility functions that are P-increasing (in the sense defined in Section 3.1) follows

immediately from Theorem 3 and Remark 2.6.

Proposition 4. Let u : R`
+ → R be a continuous and increasing utility function. If u

is P-increasing in K ⊆ {1, 2, . . . , `} then, for any prices p ∈ R`
++, the correspondence

m → D(p,m) is P-increasing in K. In particular, D is normal in K. Furthermore, if u

is quasiconcave and D is normal in K, then u is P-increasing in K.

It is well-known that if a Marshallian demand function d is normal for good i, then

the demand for i obeys the law of demand, i.e., function di
(
(pi, p−i),m

)
is decreasing

in pi, for all p−i and m. We know that if, for all p ∈ R`
++, the Marshallian demand

D(p, ·) is P-increasing in K, then D admits a selection d that satisfies normality (see

Proposition 2). Therefore, an immediate consequence of Proposition 4 is the following:

for any continuous and locally non-satiated utility u : R`
+ → R that is P-increasing in K,

there is d(p,m) ∈ D(p,m) that obeys the law of demand for every good i ∈ K.

Example 8. Consider an agent who lives for ` periods and has a preference over con-

sumption streams x = (x1, x2, . . . , x`) ∈ R`
+. In this context, it is natural to assume that

this agent’s utility has a recursive form, where

u(x) := h1

(
x1, h2

(
x2, h3

(
x3, . . . h`−1

(
x`−1, x`)

)))
15 Utility function u is locally non-satiated if, for any bundle x ∈ R`

+, there is another bundle y

arbitrarily close to x such that u(y) > u(x).
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Let hi : R2
+ → R+ be continuous, increasing, concave, and supermodular. Then hi

is increasing in the C-flexible set order (see Example 5); consequently, the map from

(x`−2, x`−1, x`) to h`−2

(
x`−2, h`−1(x`−1, x`)

)
is P-increasing16 and concave, because both

h`−2 and h`−1 are concave functions. Repeating this argument, we eventually conclude

that u is concave and P-increasing, and hence it has a normal Marshallian demand.

3.4 Related results on normal demand

Some version of the equivalence between normality of demand and monotonicity of

marginal costs is known at least since Fisher (1990). Fisher’s original argument as-

sumes that F is differentiable and generates a unique demand; we dispense with these

assumptions. Our argument that normality implies increasing marginal costs (which is

the proof that statement (iii) implies (iv) in Theorem 2) does not significantly break new

ground, but our converse result is stronger, because it does not assume that demand is

unique or that F is quasiconcave. Our proof goes through statement (i) and, thus, hinges

on our characterization of normality using the parallelogram order.17

Alarie et al. (1990) and Bilancini and Boncinelli (2010) also characterize normal de-

mand, under the condition that the objective function F : R`
++ → R is strictly increasing,

strictly quasiconcave, and twice-differentiable. Note that these conditions on F are suffi-

cient for demand to be strictly positive for all goods and a smooth function of prices. Let

G(x) and J(x) denote the gradient and the Hessian of F , respectively, at some bundle x.

The corresponding bordered Hessian J̃(x) is given by

J̃(x) :=

 J(x) G(x)

G′(x) 0

 ,

where G′(x) is the transposition of the column vector G(x). Let J̃i,j(x) denote the (i, j)-

th minor of J̃(x) and
∣∣J̃i,j(x)

∣∣ be its determinant. Bilancini and Boncinelli (2010) show
16 We obtain this by applying the result in Example 7 with G = h`−2, f1(x`−2, x`−1, x`) = x`−2, and

f2(x`−2, x`−1, x`) = h`−1(x`−1, x`).
17 One could obtain a weaker version of (ii) from (iii) through a direct argument. Given any p̂−i,

p′′i > p′i, and q′′ > q′, Hi(pi, p̂−i, q) is unique at q = q′, q′′, for almost every pi ∈ [p′i, p
′′
i ]. We

claim that, if (iv) holds, then there cannot be a generic violation of normality, in the sense of having
Hi(pi, p̂−i, q

′) > Hi(pi, p̂−i, q
′′) for almost every pi ∈ [p′i, p

′′
i ]. Indeed, since C(p′′i , p̂−i, q)−C(p′i, p̂−i, q) =∫ p′′

i

p′
i
Hi(pi, p̂−i, q) dpi, we would obtain C(p′′i , p̂−i, q

′) − C(p′i, p̂−i, q
′) > C(p′′i , p̂−i, q

′′) − C(p′i, p̂−i, q
′′),

which violates (iii). Obviously, this conclusion is weaker than (ii) (as stated in Proposition 3), where
normality holds at every price for each good i ∈ K, whether or not demand is unique.
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that the demand function is normal in K ⊆ {1, 2, . . . , `} if, and only if,

(−1)i−1
∣∣J̃i,(`+1)(x)

∣∣ ≥ 0, (5)

for all i ∈ K and each x ∈ R`
++. By combining Proposition 4 with this result, we conclude

that the condition (5) is equivalent to F being P-increasing in K, when F satisfies the

ancillary smoothness assumptions in their setup.

4 Factor complementarity

In this section, we show how our results can be applied to investigate complementary

demand in the standard quasilinear optimizing model. This model appears in many

contexts in economic modeling, but to keep the exposition focused, we shall refer to the

problem as one of a firm choosing ` factors from a set X, a nonempty, closed subset of

R`
+ to maximize profit. We denote the firm’s production function by F : X → R and

the asymptotic cone generated by its production possibility set by AF .18 We assume

that F is continuous and AF = R`+1
− . The last condition requires that F (x) cannot grow

too quickly as x increases; it holds if F is uniformly bounded above but this is not a

necessary condition.19 In some models of quasilinear demand (see, for example, Ausubel

and Milgrom (2002)) the domain X is finite or discrete and we allow for that here. Note

also that F need not be concave or quasiconcave.

At factor prices p ∈ R`
++, the firm’s (unconditional) input/factor demand are those

bundles that maximize profit, i.e.,

H(p) := argmax
{
F (x)− p · x : x ∈ X

}
.

Our assumptions on X and F guarantee that H(p) is nonempty for all p ∈ R`
++.20 The

firm’s profit is π(p) = F (x)− p · x, for x ∈ H(p).

Definition (Complements). For any j and K ⊆ {1, 2, . . . , `}, the set K is a complement

of j if, for any p, p′ ∈ R`
++ satisfying p−j = p′−j, and any x ∈ H(p), there is x′ ∈ H(p′)

18 The production possibility set associated with F is
{
z ∈ R`+1 : z ≤

(
− x, F (x)

)
, for x ∈ X

}
.

19 Since the production possibility set is downward comprehensive, we have R`+1
− = AF . Loosely

speaking, the two sets are equal when F grows slowly. For example, AF = R2
− if x ∈ R+ and F (x) =

√
x.

20 In formal terms, this claim is similar to the claim that Φ is nonempty for any p ∈ R`
++ under the

assumptions of Theorem 3 (see footnote 8). We prove this claim in Section S.2 of the Online Supplement.
For general results linking the domain of H and AF , see, for example, Neuefeind (1980).
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such that x′
K ≥ xK if p′j ≤ pj and x′

K ≤ xK if p′j ≥ pj. The factors in K are joint

complements if K is a complement of j, for any j ∈ K.

Consider a change in factor prices from (pK , p−K) to (p′K , p−K) (with factor prices

outside the set K being fixed). Clearly, this price change can be broken into |K| steps,

with the price of one good in K changing at each step. With this observation, we conclude

that the factors in K are joint complements if, and only if, for any x ∈ H(pK , p−K), there

is x′ ∈ H(p′K , p−K) such that x′
K ≥ xK if p′K ≤ pK , and x′

K ≤ xK if p′K ≥ pK .

We first apply our method to answer a fundamental question: if factor i is a comple-

ment of factor j, then is j a complement of i? A well-known and widely-applied result

in monotone comparative statics states that the set of all factors are joint complements

if F is a supermodular function (see Topkis, 1978). Obviously, in this case the question

we pose does not arise, but when complementarity patterns are more complicated, is it

still true that complementarity is a symmetric property?

To answer this question, define the correspondence Γj with the domain T = R−, by

Γj(t) :=
{
(y, v) ∈ R`+1 : (y, v) ≥

(
x,−F (x)− txj

)
for some x ∈ X

}
. (6)

It is straightforward to check that, for any p ∈ R`
++,

x ∈ H(pj − t, p−j) ⇐⇒
(
x,−F (x)− txi

)
∈ argmin

{
(p, 1) · y : y ∈ Γj(t)

}
and thus π(pj − t, p−j) = −min

{
(p, 1) · y : y ∈ Γj(t)

}
. Theorem 3 (with K = {i})

guarantees that the following are equivalent: (i) co Γj is P-increasing in {i}; (ii) i is a

complement of j; and is (iii) −π(pj − t, p−j) has increasing differences in (t, pi). Notice

that condition (iii) is equivalent to π being supermodular in (pi, pj), other prices being

fixed. Since supermodularity is a symmetric property, we conclude that i is a complement

of j if, and only if, j is a complement of i, with both equivalent to the supermodularity

of π in (pi, pj). The following result summarizes our discussion.

Proposition 5. Let X be a closed set in R`
+ and F : X → R+ a continuous function

with AF = R`+1
− .21 Then, for any distinct i, j ∈ {1, 2, . . . , `}, factor i is a complement of

j if, and only if, j is a complement of i.
21 It is straightforward to check that these properties on F guarantee that Γj (as defined by (6))

satisfies the ancillary conditions required for the application of Theorem 3.
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Let K ⊆ {1, 2, . . . , `}. Then, any two factors in K are complements if, and only if,

π(pK , p−K) is a supermodular function of pK, for any fixed p−K.22

We now turn to the conditions on F which guarantee that complementarity holds.

Let K ⊆ {1, 2, . . . , `}. By Theorem 1, if Γj (as defined by (6)) is P-increasing in K then

the map from t ∈ R− to H(pj − t, p−j) is P-increasing in K. In other words, the set of

factors K is complementary to j. The following property on F is sufficient to guarantee

that Γj is P-increasing in K, for all j ∈ K.

Definition. Let X be a subset of R`. The function F : X → R is super*modular in

K ⊆ {1, . . . , `} if, for any x, x′ ∈ X there is y, y′ ∈ X such that (x ∧ x′)K ≥ yK ,

y′K ≥ (x ∨ x′)K , x+ x′ = y + y′, and F (x) + F (x′) ≤ F (y) + F (y′).

When F is super*modular in K = {1, 2, . . . , `}, we simply refer to it as super*modular.

A supermodular function is clearly super*modular, since the condition required by the

latter holds simply by choosing y = x ∧ x′ and y′ = x ∨ x′. In general, super*modularity

is a strictly weaker condition.23 Implicit in our definition of super*modularity is that the

domain X is lattice-like in K in the sense that, for any x, x′ ∈ X there is y, y′ ∈ X such

that (x ∧ x′)K ≥ yK and x+ x′ = y + y′. This property is strictly weaker than requiring

X to be a sublattice of R` (see Example 10).

The next result states that super*modularity is a sufficient and (under certain ancil-

lary conditions) a necessary condition for complementarity.

Proposition 6. Let X ⊆ R`
+ and F : X → R be a super*modular function in K ⊆

{1, . . . , `}. Then, the map from pK to H(pK , p−K) is P-decreasing in K.24 Moreover, if

X = R`
+ and F is continuous, increasing, and concave, then F is super*modular in K if

the factors in K are joint complements.
22 Theorem 10 in Ausubel and Milgrom (2002) states that all inputs are substitutes (rather than

complements) if, and only if, the profit function π is submodular with respect to their prices. However,
their definition of substitutes applies only to those prices at which the demand is a singleton, whereas
our definition of complementarity (and its obvious modification for substitutability) applies at all prices.
Modifying our proof of Proposition 5 in the obvious way will allow us to conclude that (a) for i 6= j, i is
a substitute of j if and only if j is a substitute of i, and (b) π is submodular if and only if i and j are
substitutes for any i 6= j. See Section S.4 of the Online Supplement for a fuller discussion.

23 For example of a super*modular function that is not supermodular, suppose X = {0, 1, 2, 3}×{0, 1},
and define F : X → R by F (x1, 0) = x1 and F (0, 1) = 1, F (1, 1) = F (2, 1) = 2, F (3, 1) = 4. Since
3 = F (1, 0) + F (2, 1) < F (1, 1) + F (2, 0) = 4, the function is not supermodular. However, one could
check that F is super*modular; in particular, F (3, 1) + F (0, 0) = F (1, 1) + F (2, 0).

24 This means that H(pK , p−K) dominates H(p′K , p−K) in K by the parallelogram order if p′K ≥ pK .
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We know that if F is supermodular, then the map from p to H(p) is decreasing in the

strong set order (see Topkis, 1978). In Proposition 6, this map is P-decreasing, which is

a weaker property that follows from the weaker assumption that F is super*modular (in

K = {1, 2, . . . , `}). Nonetheless, this property on H suffices to guarantee that the factors

in K are joint complements.

We end this section with three examples of super*modular functions.

Example 9 (Representative Agent). It is well-known that the aggregate demand of

multiple agents with quasilinear objectives is in turn representable by a single agent

with a quasilinear objective. Formally, suppose H(p) is the factor demand at prices

p ∈ R`
++ generated by F n : Xn → R (where Xn ⊆ R`

+) for n = 1, . . . , N . Then the

aggregate demand H(p) =
∑N

i=1Hn(p) admits a representative agent in the sense that

H(p) = H∗(p), where H∗ is the factor demand generated by F ∗ : X∗ → R, where

X∗ =
∑N

n=1 X
n and F ∗(x) := max

{∑N
n=1 F

n(yn) :
∑N

n=1 y
n = x

}
.

If each F n is a supermodular function, then Hn has the property that all factors are

joint complements, which in turn guarantees that all factors are joint complements for ag-

gregate demand H. This raises the question of whether the representative agent’s utility

function F ∗ is also supermodular. This is not generally true.25 However, super*modu-

larity is preserved by aggregation, so F ∗ will be super*modular if F n is super*modular

(and, in particular, supermodular) for all n. If we interpret F ∗ as the production function

of a firm and F n as the production of the nth team (or plant or division) of the firm,

then our observation means that one has to be careful in modeling the firm’s (overall)

production function as supermodular even if its sub-units have that property, because

only super*modularity is preserved by aggregation.26

We now show that F ∗ is super*modular. For any x, x′ ∈ X, there is un, un′ ∈

Xn, for n = 1, . . . N , such that x =
∑

n u
n, x′ =

∑
n u

n′, F ∗(x) =
∑

n F
n(un), and

F ∗(x′) =
∑

n F
n(un′). If F n is super*modular, then there is vn, vn′ ∈ Xn satisfying

[a] un
K , u

n′
K ≥ vnK , [b] vn + vn′ = un + un′, and [c] F n(vn) + F n(vn′) ≥ F n(un′) + F n(un′).

Denote y =
∑

n v
n, y′ =

∑
n v

n′. Summing across n, [a] guarantees that xK , x
′
K ≥ yK ,

25 Suppose F 1(x1, x2, x3) = x
1/2
1 x

1/4
2 and F 2(x1, x2, x3) = x

1/2
1 x

1/4
3 for (x1, x2, x3) ∈ R3

+. Then one
could check that F ∗(x1, x2, x3) =

√
x1

√√
x2 +

√
x3. While F 1 and F 2 are supermodular functions, F ∗

is not, since the cross derivative of x2 and x3 is negative.
26 We may contrast this with a property such as concavity which is more robust in the sense that F ∗

is concave if each function Fn is concave.
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[b] implies that x+ x′ = y + y′, and [c] gives

F ∗(x)+F ∗(x′) =
∑
n

F n(un)+
∑
n

F n(un′) ≤
∑
n

F n(vn′)+
∑
n

F n(vn′) ≤ F ∗(y)+F ∗(y′).

Thus, the function F ∗ is super*modular in K.

Example 10. Let X =
{
B ·z : z ∈ Rk

+

}
, where B be an `×k matrix B with positive en-

tries. Given a function f : Rk
+ → R, define F : X → R by F (x) := max

{
f(z) : B · z = x

}
.

We can interpret F as the production function of a two-stage production process: the

final output is produced from k intermediate goods and governed by the production func-

tion f ; in turn, each intermediate good is produced from ` factors, with the jth column

of B being the vector of factors needed to produce one unit of the jth intermediate good.

We claim that F is super*modular if f is super*modular. Indeed, take any x, x′ ∈ X

and z, z′ ∈ Z such that x = B · z, x′ = B · z′, f(z) = F (x) and f(z′) = F (x′). Since

all entries in B are positive, B · (z ∧ z′) ≤ B · z and B · (z ∧ z′) ≤ B · z′, implying

B · (z ∧ z′) ≤ (B · z) ∧ (B · z′) = x ∧ x′. Since f is super*modular, there is z̃, z̃′ ∈ Z

such that (z ∧ z′) ≥ z̃′, z + z′ = z̃ + z̃′, and f(z̃) + f(z̃′) ≥ f(z) + f(z′). Note that

B · z̃′ ≤ B · (z ∧ z′) ≤ x ∧ x′. We also have (B · z̃) + (B · z̃′) = x + x′. Let y = B · z̃

and y′ = B · z̃′. Then x ∧ x′ ≥ y′, x+ x′ = y + y′, and

F (x) + F (x′) = f(z) + f(z′) ≤ f(z̃) + f(z̃′) ≤ F (y) + F (y′).

Note that while F is a super*modular function, it need not be supermodular, even

when f is supermodular. In fact, the set X need not even be a sublattice of R`.27

Unlike supermodularity, which allows us to analyze only complementarities between

all inputs jointly, super*modularity can be employed to the study of complementarities

between subsets of inputs. In the next example, we discuss one such case.

Example 11. Let I1, I2, . . . , In be a partition of {1, . . . , `} and Xj ⊆ R|Ij |, for all j =

1, . . . , n. Suppose that gj : Xj → Yj (where Yj ⊆ R) is P-increasing in {ij} ∈ Ij. Then

for any increasing and supermodular function A : ×jYj → R, the function F : ×jXj → R,

F (x) := A
(
g1(xI1), g2(xI2), . . . , gn(xIn)

)
,

27 For example, suppose three factors are used to produce two intermediate goods and B is the matrix
with two columns (1, 1, 0) and (0, 1, 1). Let x = B · (1, 0)T = (1, 1, 0)T and x′ = B · (0, 1)T = (0, 1, 1)T .
Note that there is no z ∈ Z for which B · z = (0, 1, 0)T = x ∧ x′. Hence, X is not a sublattice of R2.
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is super*modular in K = {i1, . . . , in}. We prove this claim in the Appendix. Notice that

the factors within each group Ij are not necessarily complements, even if gj is P-increasing

in Ij (rather than just {ij}). For example, suppose F (x) = (x1 + x2)(x3 + x4). Then

A = y1y2 is supermodular, and h1 = x1 + x2 and h2 = x3 + x4 are both supermodular

and concave functions (and hence P-increasing in {1, 2} and {3, 4} respectively). Thus

factors across groups – such as 1 and 3 or 1 and 4 – are joint complements. However,

factors within a group are clearly not complements. Indeed suppose there is a drop in

the price of factor 1, so it goes from being above to below the price of 2. The firm would

use only factor 2 initially since it is cheaper than 1, and it switches completely to factor 1

at the new price. Thus the demand for 1 increases but that of 2 drops to zero.

5 First order stochastic dominance under ambiguity

We consider an agent making decisions in an uncertain environment. Suppose that the

possible states of the world are represented by a set S ⊆ R; to keep our exposition

focused on the essentials we assume that the set S = {s1, s2, . . . , s`, s`+1} is finite, where

s1 < s2 < . . . < s` < s`+1. We denote the set of distributions on S by 4S. We represent

these distributions by their cumulative distribution functions. Let λ, µ : S → R be two

cumulative distribution functions. The distribution λ first order stochastically dominates

µ if λ(s) ≤ µ(s) for all s ∈ S; we denote this by λ � µ. An important feature of (4S,�)

is that it is a lattice. For distributions λ and λ′ their meet and join are defined by

(λ ∧ λ′)(s) = max
{
λ(s), λ′(s)

}
and (λ ∨ λ′)(s) = min

{
λ(s), λ′(s)

}
, respectively.

The concept of first order stochastic dominance (FSD) allows us to compare distribu-

tions by expected utility; indeed, λ � µ if, and only if,
∫
S
u(s)dλ(s) ≥

∫
S
u(s)dµ(s) for

all increasing functions u : S → R. This basic result also has a simple and widely-used

corollary that allows us to compare the actions of an agent maximizing expected utility.

Suppose this agent chooses an action from a set X ⊆ R and her utility from action x is

g(x, s) when state s is realized. Let λ(·, t) be a distribution over S (parameterized by t

in a poset T ) which captures the agent’s belief about the likelihood of different states.

Then the expected utility of taking action x is f(x, t) =
∫
S
g(x, s)dλ(s, t). Suppose that

g(x, s) has increasing differences in (x, s) (equivalently, is supermodular in (x, s)) and λ

is ordered by first order stochastic dominance in the sense that λ(·, t′) � λ(·, t) whenever
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t′ ≥ t. In such a case, x′ ≥ x implies that

f(x′, t)− f(x, t) =

∫
S

[
g(x′, s̃)− g(x, s̃)

]
dλ(s̃, t)

is increasing in t, since s →
[
g(x′, s) − g(x, s)

]
is increasing in s. In other words, f has

increasing differences in (x, t), which guarantees that argmax
{
f(x, t) : x ∈ X

}
increases

with t in the strong set order (see Topkis (1978) or Milgrom and Shannon (1994)).

Our objective in this section is to extend this simple result on comparative statics to

some widely-used multi-prior models of decision-making under uncertainty.

5.1 First order stochastic dominance (FSD) in the maxmin model

In the maxmin model of Gilboa and Schmeidler (1989), the agent evaluates an uncertain

environment with a convex set of distributions over S ⊆ R. If g(x, s) is the utility from

action x ∈ X ⊆ R when s ∈ S is realized, then the agent’s utility (ex ante) is

f(x, t) := min

{∫
S

g(x, s)dλ(s) : λ ∈ Λ(t)

}
, (7)

where Λ(t) is a convex set of distributions parameterized by t ∈ T . This leads naturally

to the following question: when g is a supermodular function, what shift in the set Λ(t)

would guarantee that the agent chooses a higher action? The next definition gives the

set generalization of first order stochastic dominance that is appropriate for this purpose.

Definition. Let T be a poset. The correspondence Λ : T → ∆S is FSD-increasing by

the parallelogram order (or PFSD-increasing, for short) if for any t′ ≥T t and distributions

λ ∈ Λ(t), λ′ ∈ Λ(t′), there is some µ ∈ Λ(t), µ′ ∈ Λ(t′) such that

λ′ � µ, µ′ � λ, and 1
2
λ+ 1

2
λ′ = 1

2
µ+ 1

2
µ′.

Our set-generalization of first order stochastic dominance is clearly just a version of

the parallelogram order. To be precise, the correspondence Γ : T → R` given by

Γ(t) :=
{
y ∈ R` : yi = −λ(si), for all i = 1, 2, . . . , ` and λ ∈ Λ(t)

}
(8)

is P-increasing if, and only if, Λ is PFSD-increasing. In particular, this tells us that if Λ

is PFSD-increasing, then so is coΛ.
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Proposition 7. Suppose that Λ : T → 4S has compact and convex values. Then

f : X × T → R, as defined by (7), has increasing differences in (x, t) for any supermod-

ular function g : X × S → R if, and only if, Λ is PFSD-increasing.28

Remark 5.1. We show in the Appendix that Proposition 7 remains true if S is a compact

interval of R and function g(x, ·) is Riemann-Stieltjes integrable with respect to each

λ ∈ Λ(t), for all x ∈ X and t ∈ T . This holds if any of the following conditions are

satisfied: (a) function g(x, s) is continuous in s ∈ S; (b) g(x, s) is bounded on S and

has only finitely many discontinuities in s, and all distributions in Λ(t) are atomless; or

(c) g(x, s) is bounded and monotone on S, and all distributions in Λ(t) are atomless.

Remark 5.2. Proposition 7 can be equivalently formulated as saying that the map

from (x, t) to max
{ ∫

S
g(x, s)dλ(s) : λ ∈ Λ(t)

}
has increasing differences in (x, t), for

any supermodular g if, and only if, Λ is PFSD-increasing.29 The α-maxmin model by

Ghirardato et al. (2004) allows for both ambiguity averse and ambiguity loving behavior,

with the agent’s utility function having the form

α min

{∫
S

g(x, s)dλ(s) : λ ∈ Λ(t)

}
+ (1− α) max

{∫
S

g(x, s)dλ(s) : λ ∈ Λ(t)

}
,

for some α ∈ [0, 1]. This function has increasing differences in (x, t) if Λ is PFSD-increasing,

since both elements of the sum have increasing differences; this in turn guarantees that

the set of optimal actions increases with t in the strong set order.

Remark 5.3. The PFSD-increasing property is one possible set-generalization of first

order stochastic dominance. As pointed out at the beginning of this section, if the distri-

butions λ(·, t) are FSD-increasing with t, then the map t →
∫
u(s)dλ(s, t) is increasing, for

any increasing function u. This leads naturally to the analogous question for multiple pri-

ors: what conditions on Λ will guarantee that the function t → min
{ ∫

u(s)dλ(s) : λ ∈ Λ(t)
}

is increasing, for any increasing utility function u? We show in that this leads to a set-
28 Milgrom and Shannon (1994) show that a weaker condition on f than supermodularity, called single

crossing differences in (x, t), is sufficient for argmax
{
f(x, t) : x ∈ X

}
to be increasing in the strong set

order. We show in Section S.5 of the Online Supplement that PFSD monotonicity of Λ is also necessary
for f to have single crossing differences in (x, t), for any supermodular function g.

29 Indeed, Proposition 7 guarantees that min
{∫

S
−g(x, s)dλ(s) : λ ∈ Λ(t)

}
has decreasing dif-

ferences in (x, t) since −g(x, s) is submodular; therefore max
{∫

S
g(x, s)dλ(s) : λ ∈ Λ(t)

}
=

−min
{∫

S
−g(x, s)dλ(s) : λ ∈ Λ(t)

}
has increasing differences in (x, t).
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generalization of first order stochastic dominance that is weaker than the PFSD-increasing

property.30

Remark 5.4. Whenever g(x, s) is increasing in s, we can assume, without loss of gen-

erality, that Λ is upper comprehensive, i.e., if λ ∈ Λ(t) and λ′ � λ, then λ′ ∈ Λ(t).31 In

Section S.7 of the Online Supplement, we show that when Λ is upper comprehensive, the

PFSD-increasing property on Λ remains necessary for f to have increasing differences for

all g(x, s) that are supermodular in (x, s) and increasing in s.

Proof of Proposition 7. Define Γ : T → R` by (8). If Λ is PFSD-increasing, then Γ is

P-increasing. For any function g : X × S → R and distribution λ,

∫
S

g(x, s)dλ(s) = g(x, s1)λ(s1) +
∑̀
i=1

g(x, si+1)
[
λ(si+1)− λ(si)

]
= g(x, s`+1) +

∑̀
i=1

[
g(x, si+1)− g(x, si)

][
− λ(si)

]
. (9)

Given x′ ≥ x, we define p, p′ ∈ R` by pi = g(x, si+1)−g(x, si) and p′i = g(x, si+1)−g(x, si),

for i = 1, 2, . . . , `. Then inequality (9) gives

f(x, t′)− f(x, t) = min
{
p · y : y ∈ Γ(t′)

}
−min

{
p · y : y ∈ Γ(t)

}
, (10)

with a similar formula for f(x′, t′) − f(x′, t). If g is supermodular, then p′ ≥ p and

Theorem 2 guarantees that min
{
p · y : y ∈ Γ(t′)

}
− min

{
p · y : y ∈ Γ(t)

}
is less than

min
{
p′ ·y : y ∈ Γ(t′)

}
−min

{
p′ ·y : y ∈ Γ(t)

}
. Thus, f(x, t′)−f(x, t) ≤ f(x′, t′)−f(x′, t),

and so f has increasing differences.

To show the converse suppose Λ is not PFSD-increasing and thus Γ is not P-increasing.

By Theorem 2, there are vectors p′ ≥ p in R` and t′ ≥T t such that

min
{
p · y : y ∈ Γ(t′)

}
−min

{
p · y : y ∈ Γ(t)

}
> min

{
p′ · y : y ∈ Γ(t′)

}
−min

{
p′ · y : y ∈ Γ(t)

}
. (11)

30 This weaker notion of stochastic dominance is not sufficient to guarantee comparative statics except
in special cases. One such special case is considered in Ui (2015) which studies global games with
ambiguity. Section S.6 of the Online Supplement explains Ui’s formulation in greater detail.

31 Given a correspondence Λ, let Λ̄(t) =
{
λ ∈ 4S : λ � λ′, for λ′ ∈ Λ(t)

}
. It is clear that Λ̄ is upper

comprehensive and that min
{ ∫

S
g(x, s)dλ(s) : λ ∈ Λ(t)

}
= min

{ ∫
S
g(x, s)dλ(s) : λ ∈ Λ̄(t)

}
.
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Take any x, x′ ∈ X satisfying x′ > x.32 Define a supermodular function g : X × S → R

as follows: g(y, s1) = 0 for all y ∈ X and for i > 2, g(y, si) :=
∑i−1

j=1 pi if y ≤ x and

g(y, si) :=
∑i−1

j=1 p
′
i otherwise. The formula (10), together with (11), gives f(x, t′) −

f(x, t) > f(x′, t′)− f(x′, t), so f violates increasing differences.

The following are examples of PFSD-increasing correspondences.

Example 12 (Strong set order). Suppose Λ is increasing in the strong set order, i.e., for

any t′ ≥ t, λ ∈ Λ(t), and λ′ ∈ Λ(t′), we have λ ∧ λ′ ∈ Λ(t) and λ ∨ λ′ ∈ Λ(t′). By setting

µ = λ ∧ λ′ and µ′ = λ ∨ λ′, we conclude that Λ is PFSD-increasing. For example, let

ν̄t and νt be distributions on S ⊂ R that increase with respect to first order stochastic

dominance in t and satisfy ν̄t � νt. for all t. Then Λ(t) = [ν̄t, νt], which consists of

all distributions ordered between ν̄t and νt, is convex-valued, and the correspondence Λ

increases with t in the strong set order.

For another simple example, let Λ(t) be a set of normal distributions with a fixed

variance and means drawn from a set MΛ(t) ⊂ R. In this case, the family of normal

distributions is totally ordered by the mean, i.e, one distribution first order stochastically

dominates another distribution if and only if the former has a higher mean than the

latter. Then it is clear that Λ(t) increases with t in the strong set order if and only if

MΛ(t) (as sets in R) increases with t in the strong set order.33

Example 13 (Increasing mean). Take an increasing function h : S → R and suppose

that Λ(t) consists of all distributions over S for which the expected value of h is equal

to t, i.e., Λ(t) =
{
λ ∈ 4S :

∫
S
h(s)dλ(s) = t

}
. It is clear that Λ is not increasing in the

strong set order since the supremum or infimum of two distributions µ and µ′ will not

generally have the same mean as µ or µ′. However, we show in the Appendix that Λ is

PFSD-increasing because Γ (as defined by (8)) is increasing in the C-flexible set order.

Example 14 (Convex combinations). Since the PFSD-increasing property is just a ver-

sion of the parallelogram order, it is also preserved by convex combinations, i.e., if Λ1

32 Clearly, the proof requires that X is nonempty and contains at least two elements.
33 It is common in applications to model ambiguity with a parametric family of distributions having

different means, while keeping other parameters unchanged (see Bianchi et al. (2018) and Ilut and
Schneider (2022)). In these cases, the distributions are often totally ordered by first order stochastic
dominance, so our example applies beyond the family of normal distributions.
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and Λ2 are PFSD-increasing, then so is Λ := αΛ1 + (1− α)Λ2, for α ∈ (0, 1) (see Proposi-

tion 1). In particular, instances of the PFSD-increasing property given in the two previous

examples could be combined to generate more examples. We give two instances where

such combinations occur naturally.

Firstly, in ε-contamination models of ambiguity aversion (see, for example, Epstein

and Wang (1994) and Nishimura and Ozaki (2004)), the agent has a set of priors which

is the convex combination of the set of all distributions on S and a single distribution

interpreted as the agent’s belief, held with incomplete confidence. The weight on the

former is ε so, in our notation, Λ1(t) is the set of all priors, Λ2(t) is a singleton set,

and α = ε. Clearly, if the distribution Λ2(t) is FSD-increasing in t, then Λ(t) has the

PFSD-increasing property.

Secondly, prior sets which are convex combinations of other sets of distributions could

arise because of set predictions. For example, suppose a firm uses a model to forecast

future demand for its product. This model gives a set prediction of demand levels con-

ditional on the prevailing state of the economy ω ∈ Ω and some other parameter t ∈ T

(such as the firm’s advertising expenditure in the current period). We denote by A(ω, t)

the finite set of demand forecasts at (ω, t). Suppose that, for any ω, A(ω, t) increases

with t in the strong set order and let Λω(t) be the set of degenerate probability distri-

butions corresponding to A(ω, t).34 Assuming that the firm knows that ω occurs with

probability π(ω), the set of possible demand distributions (for a given t and before the

realization of ω) is Λ(t) =
∑

ω∈Ω π(ω)Λω(t). In other words, a typical element of Λ(t) is a

distribution where some sω ∈ A(ω, t) occurs with probability π(ω). Since Λω is increasing

in the strong set order, Λ, and thus also coΛ, is PFSD-increasing.35 However, Λ need not

increase in the strong set order, nor in the C-flexible sense.36

We conclude this subsection with three economic applications. Further applications

are found in Section S.9 of the Online Supplement, where we apply our results to formulate
34 For example, suppose the firm models the possible demand outcomes (given (ω, t)) as the optimal

choices of a representative agent with the quasilinear utility function Q(s, ω, t) = φ(s, ω, t)− s, where φ

is supermodular in (s, t). Then A(ω, t) = argmaxs∈S Q(s, ω, t) increases with t in the strong set order.
35 Elements of coΛ(t) have a natural interpretation: each element is a distribution over demand that

arises from choosing a distribution over A(ω, t) (for each ω), with ω occurring with probability π(ω).
The maxmin model requires the set of priors to be convex, but it makes no difference here whether the
set of priors is Λ(t) or coΛ(t), since the value of f(x, t) (as defined by (7)) is the same in either case.

36 Section S.8 of the Online Supplement provides a specific example.
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conditions for monotone decision rules for ambiguity averse agents choosing in a dynamic

context; this generalizes known results on monotone decision rules (see Hopenhayn and

Prescott, 1992) for agents maximizing discounted expected utility.

Example 15 (Optimal savings). An agent lives for two periods, with income m in pe-

riod 1 and uncertain income s in period 2.37 With saving x ∈ [0,m] in period 1, the

agent’s utility conditional on s is g(x, s) = u(m− x) + βu
(
x(1 + r) + s

)
, where u is the

per-period utility, β is the discount rate, and r is the interest. The function g is increasing

in s if u is increasing, and it is submodular in (x, s) (equivalently, gxs ≤ 0) if u is concave.

Suppose the agent has maxmin preferences of the form (7). Since g is submodular, f has

decreasing differences in (x, t) if Λ is PFSD-increasing. It follows that the agent saves less

with higher t; formally, argmaxx∈[0,m] f(x, t) falls with t in the strong set order.

In particular, suppose that through the news and other channels, this agent is confi-

dent that the mean income in period 2 is t, but is not confident of the precise distribution

that s takes. In this case, he may behave as though Λ(t) consists of all distributions with

mean t (as in Example 13); if so, any news that raises the agent’s belief about the mean

income in period 2 will cause him to save less in period 1.

Example 16 (Portfolio problem). An investor divides her wealth m > 0 between a safe

asset, that pays out r > 0 for sure, and a risky asset with an uncertain return of s in

S ⊆ R+. The investor’s beliefs over the risky return is captured by the correspondence

Λ. The investor chooses to invest x ∈ X ⊆ R in the risky asset, with the rest of his

wealth invested in the safe security. We allow the investor to go short on either asset but

require her to be solvent, i.e., it must be that xs+(m−x)r ≥ 0, for all s ∈ S and x ∈ X.

Assuming that her Bernoulli index is u : R+ → R and the investor is ambiguity averse,

the investor’s utility at x ∈ X is

f(x, t) := min

{∫
S

u
(
xs+ (m− x)r

)
dλ(s) : λ ∈ Λ(t)

}
. (12)

We know that f has increasing differences in (x, t) if Λ is PFSD-increasing and g(x, s) :=

u
(
xs+ (m− x)r

)
is supermodular. Assuming that u is strictly increasing, concave, and

twice continuously differentiable, it is straightforward to check that g is supermodular if
37 For other discussions of the two-period savings problem with ambiguity aversion, see ? and Ilut

and Schneider (2022). The latter also contains a review of infinite horizon consumption-saving problems
with ambiguity aversion and of the evidence of ambiguity aversion in household survey data.
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the coefficient of relative risk aversion of u is less than 1.38 With this condition on u, f

has increasing differences in (x, t) and (consequently) the investor’s holding in the risky

asset increases with t. This is valid even if her preference has the α-maxmin form.39

To be more specific, suppose that the investor uses different models of the return

on the risky asset and these models returning an interval of distributions [ν, ν̄], with

ν̄ being the most optimistic and ν the least. This return attracts tax and we denote

by t the proportion of the return that is retained after tax. Then Λ(t) = [νt, ν̄t] is

the set of distributions after tax, where νt and ν̄t are the after-tax return distributions

corresponding to ν and ν̄ respectively. Clearly, νt and ν̄t are both FSD-increasing with t

and thus Λ is PFSD-increasing (see Example 12).40

The next example has a different flavor from Examples 15 and 16: it has both x and

t as choice variables and exploits the fact that supermodularity is preserved by the sum.

Example 17. A firm operating in uncertain market conditions must decide how much

to produce and how much to spend on advertising. In period 1, the marginal cost of

production is c > 0 and the marginal cost of advertising is a > 0. If the firm chooses

t units of advertising, its belief on the demand for its output s is given by a set of

distributions Λ(t). We assume that higher advertising leads to greater demand in the

sense that Λ is PFSD-increasing. For an example of how this could arise, see Example 14.

In period 2, s is realized and the firm has to meet this demand even if it exceeds

its period 1 output; the profit in period 2 is π(x, s) := s − κ(max{s − x, 0}). Function

κ : R+ → R+ should be interpreted as the cost of producing the additional units to meet

demand in period 2. At the same time, goods for which there is no demand can be freely

disposed. Also, notice that π(x, s) need not be increasing in s.

The firm chooses x ≥ 0 and t ≥ 0 in period 1 to maximize

Π(x, t, c, a) := min

{∫
S

π(x, s)dλ(s) : λ ∈ Λ(t)

}
− cx− at.

38 Note that, since x can take negative values, function g does not increase in s.
39 There are other discussions of the portfolio choice model under ambiguity. For example, Gollier

(2011) examines how the demand for the risky asset changes with the level of ambiguity aversion, in
the context of the smooth ambiguity model. Cherbonnier and Gollier (2015) study both the smooth
ambiguity model and the α-maxmin model; the authors provide conditions under which the demand for
the risky asset increases with respect to initial wealth. See also the survey of Ilut and Schneider (2022).

40 Assuming that only positive returns are taxed proportionately, we obtain νt(s) = ν(s), for s ≤ 0,
and νt(s) = ν(s/t) otherwise.
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It is straightforward to check that π is supermodular if κ is increasing, convex, and

κ(0) = 0.41 Proposition 7 guarantees that f(x, t) = min
{∫

S
π(x, s)dλ(s) : λ ∈ Λ(t)

}
is a

supermodular function of (x, t) and therefore Π is supermodular in (x, t). Furthermore, Π

has increasing differences in
(
(x, t), (−c,−a)

)
. Thus argmax(x,t)∈R2

+
Π(x, t, c, a) decreases

with (c, a) in the strong set order, i.e., a fall in advertising cost or a fall in the period 1

cost of production leads to more advertising and greater output.

5.2 Variational and multiplier preferences

Proposition 7 can be extended to cover a broader class of preferences. Maccheroni et al.

(2006) introduce and axiomatize a generalization of the maxmin model, called variational

preferences. In this model, the utility of action x ∈ X ⊂ R is

f(x, t) = min

{∫
S

g(x, s)dλ(s) + c(λ, t) : λ ∈ 4S

}
, (13)

where c(·, t) is a convex function parameterized by t ∈ T . Loosely speaking, the agent’s

utility from action x is obtained by minimizing her expected utility over the set of all

probability distributions; unlike the maxmin model where the agent is restricted to a

subset of 4S, any distribution in 4S could be ‘picked’ in the variational preferences

model, though each distribution λ is associated with a different cost c(λ, t). The next

result identifies those shifts in the cost function c which guarantee that the agent’s utility

has increasing differences in (x, t).

Proposition 8. Let c : 4S × T → R+ be a continuous and convex function on 4S, for

all t ∈ T . The following statements are equivalent.

(i) The function c satisfies the following property:

(C) for any t′ ≥ t in T and λ, λ′ in 4S there is µ, µ′ in 4S such that

λ′ � µ, µ′ � λ, 1
2
λ+ 1

2
λ′ = 1

2
µ+ 1

2
µ′, and c(λ, t) + c(λ′, t′) ≥ c(µ, t) + c(µ′, t′).

(ii) The function f : X×T → R defined in (13) is supermodular, for any supermodular

function g : X × S → R.42

41 Take any x′ ≥ x and consider three cases. If (i) s ≤ x, then δ(s) :=
[
π(x′, s)−π(x, s)

]
= 0; whenever

(ii) x < s ≤ x′, then δ(s) = κ(s−x); and finally (iii) s > x′ implies δ(s) = κ(s−x)−κ(s−x′). In either
case, under the assumptions imposed on κ, the function δ is increasing in s.

42 As in the case of Proposition 7, statement (ii) in Proposition 8 is equivalent to f(x, t) having single
crossing differences in (x, t), for all supermodular functions g that are increasing in s.
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To better understand condition (C), which may seem opaque initially, notice that it

captures the change in the function c that leads to an upward revision in the agent’s

belief about the state. To be specific, suppose that λ∗ and λ′
∗ are distributions that

minimize
∫
S
g(x, s)dλ(s) + c(λ, t) and

∫
S
g(x, s)dλ(s) + c(λ, t′), respectively, with t′ ≥T t.

(C) guarantees that there are distributions µ∗ and µ′
∗ such that λ′

∗ � µ∗, µ′
∗ � λ∗, and∫

S

g(x, s)dλ∗(s) +

∫
S

g(x, s)dλ′
∗(s) + c(λ∗, t) + c(λ′

∗, t
′) ≥∫

S

g(x, s)dµ∗(s) +

∫
S

g(x, s)dµ′
∗(s) + c(µ∗, t) + c(µ′

∗, t
′).

Thus, µ∗ also minimizes
∫
S
g(x, s)dλ(s)+c(λ, t) and µ′

∗ minimizes
∫
S
g(x, s)dλ(s)+c(λ, t′).

In other words, as t increases the distribution the agent uses to evaluate the utility of an

action x shifts up in the sense of first order stochastic dominance (from λ∗ to µ′
∗).

The proof of Proposition 8 is in the Appendix. Note that (C) can be thought of as

a generalization of the PFSD-increasing property imposed on Λ : T → 4S. Indeed, given

Λ, let c(λ, t) = 0 if λ ∈ Λ(t), and ∞ otherwise. Then c obeys (C) if, and only if, Λ is

PFSD-increasing (while (13) reduces to the maxmin form (7) in this case). Below are two

more examples of cost functions that satisfy property (C).43

Example 18 (Submodular cost and decreasing differences). Let c : 4S × T → R+ be a

submodular function of λ that has decreasing differences in (λ, t). Then, for all λ, λ′ ∈ 4S

and t, t′ ∈ T with t′ ≥T t, we have

c(λ′, t)− c(λ′ ∧ λ, t) ≥ c(λ′ ∨ λ, t)− c(λ, t) ≥ c(λ′ ∨ λ, t′)− c(λ, t′)

and condition (C) holds, if we choose µ = λ ∧ λ′ and µ′ = λ ∨ λ′.

An important sub-class of variational preferences are multiplier preferences, which

were used in Sargent and Hansen (2001) and axiomatized by Strzalecki (2011a). In this

case, the cost function is c(λ, t) = θR
(
λ‖λ∗(·, t)

)
, for θ ≥ 0 and λ∗(·, t) ∈ 4S, where

R
(
λ‖λ∗(·, t)

)
:=

∫
S

ln

(
dλ(s)

dλ∗(s, t)

)
dλ(s)

is the relative entropy.44 Note that dλ(s), dλ∗(s, t) denote the probability of state s in

the distribution λ, λ∗(·, t), respectively. This representation can be interpreted in the
43 Note that (C) restricts how c(λ, t) varies jointly with λ and t; for a fixed t, it has no content.
44 See Strzalecki (2011b) for a detailed discussion on the relation between variational preferences,

multiplier preference, and subjective expected utility.
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following manner. The decision maker has a belief over the states of the world given by a

reference or benchmark distribution λ∗(·, t), but she is not completely confident that she is

exactly correct. To accommodate this concern, the decision maker takes all distributions

in 4S into account when evaluating her utility from a given action, though distributions

further away from λ∗(·, t) cost more and are thus less likely to be the distribution that

solves the minimization problem in (13).

We show in the Appendix that for multiplier preferences, c is a submodular function

of λ. Furthermore, c has decreasing differences in (λ, t) if λ∗(·, t) is increasing in t with

respect to the monotone likelihood ratio (MLR).45 For many commonly used distributions

(such as the normal, lognormal, or exponential distributions) the MLR condition is satis-

fied if t is the mean of the distribution. In other words, for reference distributions drawn

from one of these classes, an increase in its mean is sufficient to guarantee an increase in

the optimal choice of the action x.

Example 19. Suppose that c̃ : R × T → R has decreasing differences in (m, t) and

the cost function c : 4S × T → R is evaluated by c(λ, t) := c̃
(∫

S
h(s)dλ(s), t

)
for some

increasing function h : S → R. In other words, the cost function depends only on the

mean of the random variable h with respect to the distribution λ, and the parameter t.

We claim that c satisfies (C). Let t′ ≥T t; take any λ, λ′ in 4S and denote the mean

of function h corresponding to each distribution by m, m′, respectively. Suppose that

m′ ≥ m; then there are distributions µ, µ′ with means m, m′, respectively, such that

λ′ � µ, µ′ � λ, and (1/2)λ + (1/2)λ′ = (1/2)µ + (1/2)µ′.46 Since c(λ, t) = c(µ, t) and

c(λ′, t′) = c(µ′, t′), we obtain (as required) c(λ, t)+ c(λ′, t′) = c(µ, t)+ c(µ′, t′). If m′ < m,

then choose µ = λ′ and µ′ = λ; since c̃ has decreasing differences in (m, t) we obtain

c(λ, t) + c(λ′, t′) = c̃(m, t) + c̃(m′, t′) ≥ c̃(m′, t) + c̃(m, t′) = c(µ, t) + c(µ′, t′).

In Examples 15, 16, and 17, we gave economic applications of Proposition 7, which

assumes that the agent has maxmin utility. It is clear that, by appealing to Proposition 8,

the conclusions in those examples will continue to hold, mutatis mutandi, if the agent

has variational or multiplier preferences.
45 This requires that, for any t′ ≥ t, the ratio dλ∗(s, t′)/dλ∗(s, t) be increasing with s. This property

implies λ∗(·, t′) � λ∗(·, t), hence, it is stronger than the first order stochastic dominance.
46 For a proof of this claim, see the proof of Example 13 in the Appendix.
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Appendix

Proofs for Example 1 Let dx̄2/dx1 be decreasing in t̃. Take t′ ≥T t and x ∈ Γ(t), x′ ∈

Γ(t′). Let x̄2(x1, t) = x2 and x̄2(x
′
1, t

′) = x′
2. Γ is P-increasing if we can find y ∈ Γ(t),

y′ ∈ Γ(t′) such that y′ ≥ x, x′ ≥ y, and x+ x′ = y+ y′. If x′
1 ≥ x1, then x′

2 = x̄2(x
′
1, t

′) ≥

x̄2(x1, t) = x2, and we can choose y′ = x′ and y = x. If x′
1 < x1, let y be given by y1 = x′

1

and y2 = x̄2(x
′
1, t) ≤ x̄2(x

′
1, t

′) = x′
2. Therefore, x′ ≥ y and y ∈ Γ(t). Set y′ = x+ x′ − y.

Since dx̄2/dx1 decreases in t̃, we obtain x̄2(x1, t)− x̄2(x
′
1, t) ≥ x̄2(x1, t

′)− x̄2(x
′
1, t

′), which

implies that y′2 ≥ x̄2(x1, t
′) = x̄2(y

′
1, t

′), and so y′ ∈ Γ(t′).47

If the function x1 → x̄2(x1, t̃) is C1 and convex (in x1), then the converse is also

true. Otherwise, there is t′ ≥T t and z1 such that dx̄2/dx1(z1, t) < dx̄2/dx1(z1, t
′);

then, since x̄2 is C1, there is z′1 < z1 such that dx̄2/dx1(z1, t) < dx̄2/dx1(z
′
1, t

′). By

convexity of x̄2, dx̄2/dx1(v1, t) < dz̄2/dx1(v
′
1, t

′) for any v′1 ≥ x′
1 and v1 ≤ z1. Thus

x̄2(z1, t) − x̄2(y1, t) < x̄2(y
′
1, t

′) − x̄2(z
′
1, t

′), for any y1, y
′
1 such that y′1 ≥ z1, z′1 ≥ y1, and

z1 + z′1 = y1 + y′1. This guarantees that there is no y ∈ Γ(t), y′ ∈ Γ(t′) such that y′1 ≥ z1,

z′1 ≥ y1, and z + z′ = y + y′ and thus Γ is not P-increasing in K = {1}. �

Proof of Proposition 2 Without loss of generality, suppose that K = {1, 2, . . . , n},

for some n ≤ `. Let φ(t) :=
{
x ∈ Φ(t) : x >lex y, for all y ∈ Φ(t)

}
, where >lex denotes

the lexicographic order.48 Take any p ∈ R`. Since Φ is compact-valued, φ is well-defined

and φ(t) ∈ Φ(t), for all t ∈ T . We claim that φK(t
′) ≥ φK(t), for any t′ ≥T t. Since Φ

is P-increasing in K, there is y ∈ Φ(t), y′ ∈ Φ(t′) such that φ(t) − y = y′ − φ(t′) and

y′K ≥ φK(t), φK(t
′) ≥ yK . If φK(t

′) 6≥ φK(t), then φK(t) 6= yK , and so φK(t) >lex y.

Thus, there is j ≤ n such that φi(t) = yi, for all i ≤ j, and φj(t) > yj. However,

φK(t) − y = y′ − φK(t
′), and so y′i = φi(t

′), for all i ≤ j, and y′j > φj(t
′). Hence,

y′ >lex φ(t′), which contradicts the definition of φ(t′). �

Continuation of the proof of Theorem 2 We show that statement (iii) implies (i)

by contradiction. Suppose co Γ is not P-increasing. There is t′ ≥T t and x ∈ co Γ(t),

x′ ∈ co Γ(t′) for which there is no y ∈ co Γ(t), y′ ∈ co Γ(t′) satisfying x+ x′ = y + y′ and
47 It is clear from this proof that so long as dx̄2/dx1 is decreasing in t̃, then Γ is P-increasing in {1}.

The further assumption that x̄2 is increasing in (x1, t) guarantees that Γ is P-increasing in {1, 2}.
48 By definition, x >lex y if xi = yi, for all i ≤ j, and xj > xj , for some j ≤ `.

39



x′
K ≥ yK , y′K ≥ xK . Take any such x, x′ and define

C :=
{
(x− y′, x′ − y) ∈ R` × R` : y ∈ co Γ(t) and y′ ∈ co Γ(t′)

}
and

D :=
{
(d, d′) ∈ R` × R` : d+ d′ = 0 and d′K ≥ 0

}
.

Clearly, both sets are closed, convex, and C ∩ D = ∅. Moreover, since C is compact,

one can show that the difference D−C is closed.49 By the strong separating hyperplane

theorem, there are non-zero vectors p, p′ ∈ R` and a number b that satisfy

sup
{
p · c+ p′ · c′ : (c, c′) ∈ C

}
< b < inf

{
p · d+ p′ · d′ : (d, d′) ∈ D

}
. (A1)

Since (0, 0) ∈ D, we have b < 0. Let εi ∈ R`
+ be the vector with the i’th entry equal

to 1 and zeros elsewhere, for i = 1, 2, . . . , `. Given that α(−εi, εi) ∈ D, for all numbers

α ≥ 0 and i ∈ K, we have p′K ≥ pK . Since α(−εi, εi) belongs to D, for all α and i 6∈ K, it

must be that p′−K = p−K . The first inequality in (A1) gives p ·x+p′ ·x′ < b+p ·y′+p′ ·y,

for all y′ ∈ Γ(t′) and y ∈ Γ(t). Therefore, we obtain

f(p, t) + f(p′, t′) ≤ p · x+ p′ · x′

< min
{
p · z : z ∈ Γ(t′)

}
+min

{
p′ · z : z ∈ Γ(t)

}
= f(p, t′) + f(p′, t),

which contradicts our assumption that f(p, t) has increasing differences in (pK , t). �

Proof of Theorem 3 Implication (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) follows directly from The-

orem 2. It suffices to show that (iv) ⇒ (i). Suppose that this property is violated for

some x ∈ co Γ(t), x′ ∈ co Γ(t′). Define the nonempty closed sets C and D as in the

the proof of Theorem 2. Since AΓ(t) = R`
+ and Γ(t) is upward comprehensive, we have

A
(
co Γ(t)

)
= R`

+.50 Thus, we have AC = R2`
− . Since AD = D and any nonzero element

of D must have entries with strictly different signs, it must be that AC ∩ AD = {0};

this suffices for D − C to be closed (see Border, 1985, Proposition 2.38). By the strong

separating hyperplane theorem, there are non-zero vectors p, p′ ∈ R` and a number b > 0

that satisfy (A1), and p′K ≥ pK , pK = p′K , as in the proof of Theorem 2. Finally, since C

is downward comprehensive, p, p′ ≥ 0.
49 We denote (D − C) :=

{
d− c : d ∈ D and c ∈ C

}
.

50 For the proof of this claim, see Proposition S.1 in Section S.2 of the Online Supplement.
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Let p̃ := (p+δ1) and p̃′ := (p′+δ1), where δ > 0 and 1 ∈ R` is the unit vector. Clearly,

p̃, p̃′ ∈ R`
++, p̃′K ≥ p̃K , and p̃′−K = p̃−K . Since d+d′ = 0, we obtain p̃·d+p̃′ ·d′ = p·d+p′ ·d′

for any (d, d′) ∈ D and δ > 0. Thus, inf
{
p · d+ p′ · d′ : (d, d′) ∈ D

}
= inf

{
p̃ · d+ p̃′ · d′ :

(d, d′) ∈ D
}

. Note that 1 · y is uniformly bounded below over Γ(t) and Γ(t′), since both

Φ(t) and Φ(t′) are nonempty for p = 1. Thus, sup
{
p̃ · c+ p̃′ · c′ : (c, c′) ∈ C

}
is arbitrarily

close to sup
{
p ·c+p′ ·c′ : (c, c′) ∈ C

}
for an arbitrarily small δ > 0, and we can guarantee

that the former term (like the latter) is strictly lower than b. We conclude that (A1) still

holds, even with p̃, p̃′ ∈ R`
++ taking the place of p and p′. Re-tracing the proof that (iv)

⇒ (i) in Theorem 2, we obtain f(p̃, t) + f(p̃′, t′) < f(p̃, t′) + f(p̃′, t), contradicting the

assumption that f has increasing differences in (pK , t). �

Proof of Proposition 3 The equivalence of statements (i), (ii), and (iii) follows from

Theorem 3. That (iii) implies (iv) follows from Topkis (1978). It remains to show

that (iv) implies (iii). Suppose (iii) fails and there is p′′i ≥ p′i and q′′ ≥ q′ such that

C
(
(p′′i , p−i), q

′′) − C
(
(p′i, p−i), q

′′) < C
(
(p′′i , p−i), q

′) − C
(
(p′i, p−i), q

′), for some p−i. Let

R(q) := C
(
(p′′i , p−i), q

)
, for all q < q′′, and R(q) := C

(
(p′′i , p−i), q

′′), for all q ≥ q′′. Since

C
(
(p′′i , p−i), q

)
is increasing in q, at price (p′′i , p−i) the firm is maximizing profit (which

equals zero) at q = q′′. However, the profit is not maximized at any q ≥ q′′ when (p′i, p−i),

since R(q′) − C
(
(p′i, p−i), q

′) > R(q′′) − C
(
(p′i, p−i), q

′′) ≥ R(q) − C(p, q), for any q ≥ q′,

since R is constant for q ≥ q′′ and C is increasing in q. �

Proof of Example 7 Take any q′ ≥ q and x, x′ ∈ X satisfying F (x) ≥ q, F (x′) ≥ q′.

If F (x) ≥ F (x′), set y := x′, y′ := x, which trivially satisfy the required condition.

Consider the case where F (x′) > F (x). Take any vectors aj, aj′ ∈ X, j = 1, . . . , n,

such that x ≥
∑n

j=1 a
j, x′ ≥

∑n
j=1 a

j′ and F (x) = G
(
f 1(a1), . . . , fn(an)

)
, F (x′) =

G
(
f 1(a1′), . . . , fn(an′)

)
. Suppose f j(aj′) ≥ f j(aj), for all j = 1, . . . , n. Since f j is P-

increasing, there is bj, bj′ ∈ X such that f j(bj) ≥ f j(aj), f j(bj′) ≥ f j(aj′), as well as

aj + aj′ = bj + bj′ and aj′K ≥ bjK , for all j = 1, . . . , n. Define y :=
∑n

j=1 b
j that satisfies

x′
K ≥

∑n
j=1 a

j′
K ≥

∑n
j=1 b

j
K = yK . Since G is an increasing function,

G
(
f 1
(
b1
)
, f 2
(
b2
)
, . . . , fn

(
bn
))

≥ G
(
f 1
(
a1
)
, f 2
(
a2
)
, . . . , fn

(
an
))

= F (x) ≥ q.
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which implies y ∈ U(q). Let y′ := x + x′ − y. Since x′
K ≥ yK , we obtain y′K ≥ xK .

Furthermore, y′ ≥
∑n

j=1 b
j′, which guarantees that y′ ∈ U(q′).

We turn to the second case where f j(aj′) < f j(aj), for some j. Denote the set of all

such indices by L, and let M be its complement. Given that the function G is increasing

and F (x′) > F (x), the set M is non-empty. Let v :=
(
f j(aj)

)n
j=1

and v′ :=
(
f j(aj′)

)n
j=1

;

v and v′ are unordered since M and L are both nonempty. Since G is increasing in

the C-flexible set order, there is λ ∈ [0, 1] such that G
(
λv′ + (1 − λ)(v ∧ v′)

)
≥ q and

G
(
λv+ (1− λ)(v ∨ v′)

)
≥ q′. Let ṽ := λv′ + (1− λ)(v ∧ v′) and ṽ′ := λv+ (1− λ)(v ∨ v′).

Note that f j(aj) = vj = ṽ′j and f j(aj′) = v′j = ṽj, for all j ∈ L.

For each j ∈ L, let b̃j := aj′ and b̃j′ := aj, so f j(b̃j) = ṽj and f j(b̃j) = ṽ′j. For each

j ∈ M , set b̃j :=
[
λaj′ + (1− λ)bj

]
and b̃j′ :=

[
λaj + (1− λ)bj′

]
, where bj, bj′ are chosen

as in the first case. Since f j is concave, f j
(
b̃j
)
≥ ṽj and f j

(
b̃j′
)
≥ ṽ′j. Furthermore,

aj + aj′ = b̃j + b̃j′ and aj′K ≥ b̃jK . Define y :=
∑n

j=1 b̃
j, and note that x′

K ≥
∑n

j=1 a
j′
K ≥∑n

j=1 b̃
j
K = yK . Since G is monotone, G

(
f 1(b̃1), . . . , fn(b̃n)

)
≥ G(ṽ) ≥ q, and so y ∈ U(q).

Let y′ := x + x′ − y. Since x′
K ≥ yK , we obtain y′K ≥ xK . Furthermore, y′ ≥

∑n
j=1 b

j′,

G
(
f 1(b̃1′), . . . , fn(b̃n′)

)
≥ G(ṽ′) ≥ q′, and so y′ ∈ U(q′). �

Proof of Proposition 6 Define the correspondence ΓK : RK
− → R`+1 by

ΓK(t) :=
{
(y, v) ∈ R` × R : (y, v) ≥

(
x,−F (x)− t · xK

)
, for some x ∈ X

}
.

Mimicking the argument we made in the main part of the paper concerning Γj, we may

conclude that the factors in K are joint complements if, and only if, ΓK is P-increasing

in K. We first show that ΓK has this property if F is super*modular in K.

Let t′ > t,
(
x,−F (x)− t ·xK

)
∈ Γ(t), and

(
x′,−F (x′)− t′ ·x′

K

)
∈ Γ(t′), for x, x′ ∈ X.

By super*modularity, there is y, y′ ∈ X such that (x ∧ x′)K ≥ yK , y′K ≥ (x ∨ x′)K ,

x+ x′ = y + y′, and F (x) + F (x′) ≤ F (y) + F (y′). Then

F (x)−F (y)+t ·(xK−yK) ≤ F (x)−F (y)+t′ ·(xK−yK) ≤ F (y′)−F (x′)+t′ ·(y′K−x′
K)

and so −F (y)−t ·yK−F (y′)−t′ ·y′K ≤ −F (x)−t ·xK−F (x′)−t′ ·x′
K . Thus we can choose

w ≥ −F (y)−t·yK , w′ ≥ −F (y′)−t′ ·y′K such that w+w′ = −F (x)−t·xK−F (x′)−t′ ·x′
K .

Since (y, w) ∈ Γ(t) and (y′, w′) ∈ Γ(t′), this proves that Γ is P-increasing in K.
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To prove the converse, let F : R`
+ → R be a continuous, increasing and concave

function and suppose that F fails super*modularity at x, x′ ∈ R`
+. Let

Z :=
{
z ∈ R|K| × R : zK ≤ (xK − yK), z|K|+1 ≤ F (y) + F (y′)− F (x)− F (x′),

for some y, y′ ∈ X such that x′
K ≥ yK and y + y′ ≤ x+ x′

}
.

Z is nonempty (since (xK − x′
K , 0) ∈ Z), convex (because F is concave), closed (because

F is continuous and X is closed and bounded from below), and downward comprehensive

(by construction). Furthermore, we have 0 /∈ Z. Otherwise, there is y and y′ such that

yK ≤ (x ∧ x′)K , y + y′ ≤ x+ x′ and F (x) + F (x′) ≤ F (y) + F (y′). Since F is increasing

we can always find y′′ ≥ y′ such that x+ x′ = y + y′′ and F (x) + F (x′) ≤ F (y) + F (y′′),

contradicting our assumption about x and x′. By the strong separating hyperplane

theorem, there is a vector p > 0 and a number b such that p · z < b < 0, for all

z ∈ Z, where p|K|+1 > 0.51 Without loss of generality, let p|K|+1 = 1 and t = −pK , t′ = 0.

Thus, there is t′ ≥ t such that, for any y, y′ ∈ X satisfying x′
K ≥ yK and y + y′ ≤ x+ x′,

[
− F (x)− t · xK

]
+
[
− F (x′)− t′ · x′

K

]
< [−F (y)− t · yK

]
+
[
− F (y′)− t′ · y′K

]
,

which is incompatible with ΓK being P-increasing in K. �

Continuation of Example 11 Take any x, x′ ∈ X and denote tj = gj(xIj), t′j =

gj(x
′
Ij
), for all j = 1, . . . , n. Since gj is P-increasing in {ij}, there is some yIj , y

′
Ij
∈ Xj,

such that g(y′Ij) ≥ tj ∨ t′j, g(yIj) ≥ tj ∧ t′j, (x ∧ x′)ij ≥ yij and xIj + x′
Ij
= yIj + y′Ij . Let

y = (yIj)
n
j=1 and y′ = (y′Ij)

n
j=1. Clearly, (x ∧ x′)ij ≥ yij , for all j, and x + x′ = y + y′.

Since A is supermodular and increasing,

F (x) + F (x′) = A(t) + A(t′) ≤ A(t ∧ t′) + A(t ∨ t′)

≤ A
(
g1(yI1), . . . , gn(yIn)

)
+ A

(
g1(y

′
I1
), . . . , gn(y

′
In)
)

= F (y) + F (y′).

Thus F is super*modular in K = {i1, . . . , in}. �

Proof of Remark 5.1 Suppose S = [a, b]. Let {sni }ni=0 be a sequence with n+1 terms

such that a = sn0 < sn1 < . . . < snn−1 < snn = b. Since at each (x, t), function g(x, ·) is the
51 Suppose that p|K|+1 = 0. Since X is lattice-like in K, there is y, y′ such that (x ∧ x′)K ≥ yK and

x+x′ = y+ y′. Thus, there is z̃ ∈ Z such that z̃K ≥ 0, which leads to p · z̃ ≥ 0, yielding a contradiction.
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Riemann-Stieltjes integrable with respect to λ ∈ Λ(t), we can choose {sni }ni=0 so that∫
S

g(x, s)dλ(s) = lim
n→∞

n−1∑
i=0

g(x, si+1)
[
λ(si+1)− λ(si)

]
for all λ ∈ Λ(t). This guarantees that limn→∞ fn(x, t) = f(x, t) for all (x, t), where

fn(x, t) := min

{
n−1∑
i=0

g(x, sni+1)
[
λ(sni+1)− λ(sni )

]
: λ ∈ Λ(t)

}
.

We know, from the case where S is finite, that fn : X×T → R is a supermodular function.

Since supermodularity is preserved by pointwise convergence, f is supermodular. �

Continuation of Example 13 Take any t′ ≥ t and λ ∈ Λ(t), λ′ ∈ Λ(t′). Since∫
S
h(s)d(λ∧λ′)(s) ≤

∫
S
h(s)dλ′(s) = t and

∫
S
h(s)dλ′(s) = t′, there is α ∈ [0, 1] such that

α

∫
S

h(s)dλ′(s) + (1− α)

∫
S

h(s)d(λ ∧ λ′)(s) = t.

Let µ = αλ′ + (1− α)(λ ∧ λ′) and µ′ = αλ + (1− α)(λ ∨ λ′). Clearly, µ ∈ Λ(t), λ′ � µ,

and λ � µ′. Since λ+ λ′ = (λ ∨ λ′) + (λ ∧ λ′), we also obtain λ+ λ′ = µ+ µ′. Hence,∫
S

h(s)dµ′(s) =

∫
S

h(s)dλ(s) +

∫
S

h(s)dλ′(s)−
∫
S

h(s)dµ(s) = t+ t′ − t = t′.

Thus µ′ ∈ Λ(t′). We conclude that Λ(t′) dominates Λ(t) in the C-flexible set order. �

Proof of Proposition 8 Let t′′ >T t′ and let M satisfy M > max
{
c(λ, t′), c(λ, t′′)

}
,

for all λ ∈ 4S. The correspondence Γ : T ′ → R`+1, where T ′ = {t′, t′′}, is defined by

Γ(t) :=
{
y ∈ R`+1 : yi = −λ(si), for i = 1, 2, . . . , `, and y`+1 ∈

[
c(λ, t),M

]
for λ ∈ 4S

}
.

Since c is convex, Γ is convex-valued and it is straightforward to check that Γ is P-

increasing if, and only if, c obeys (C). Indeed, if c obeys (C), define p′, p ∈ R` by p′i =

g(x′, si+1)− g(x′, si) and pi = g(x, si+1)− g(x, si), for i = 1, . . . , `, for some supermodular

function g. By supermodularity of g, we have p′ ≥ p when x′ ≥ x. By Theorem 2 and

the integration formula (9), for any x′ ≥ x and t′ ≥T t, we obtain

f(x, t′)− f(x, t) = min
{
(p, 1) · y : y ∈ Γ(t′)

}
−min

{
(p, 1) · y : y ∈ Γ(t)

}
≤ min

{
(p′, 1) · y : y ∈ Γ(t′)

}
−min

{
(p′, 1) · y : y ∈ Γ(t)

}
= f(x′, t′)− f(x′, t).
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We prove the converse by contradiction. Suppose c violates (C) and so Γ is not

P-increasing. By Theorem 2, the function f̃ : R`+1 × T ′ → R, where f̃
(
(p̃, q), t

)
:=

min
{
(p̃, q) · y : y ∈ Γ(t)

}
, must violate increasing differences in (p̃, t), i.e., there is

p, p′ ∈ R`, t, t′ ∈ T , and q ∈ R such that p′ ≥ p, t′ >T t and

f̃
(
(p′, q), t

)
− f̃

(
(p, q), t

)
> f̃

(
(p′, q), t′

)
− f̃

(
(p′, q), t′

)
. (A2)

If q ≤ 0, then f̃
(
(p, q), t

)
= f̃

(
(p, q), t′

)
and f̃((p′, q), t) = f̃((p′, q), t′), so we only need

to consider q > 0. Given this, we can assume with no loss of generality that q = 1,

so that f̃
(
(p̃, 1), t

)
= min

{∑`
i=1 p̃i

[
− λ(si)

]
+ c(λ, t) : λ ∈ ∆S

}
. Define the function

g : X × S → R as in the proof of Proposition 7. Using (9), we obtain f(x′, t)− f(x, t) =

f̃
(
(p′, 1), t

)
− f̃

(
(p, 1), t

)
and f̃

(
(p′, 1), t′

)
− f̃

(
(p, 1), t′

)
= f(x′, t′) − f(x, t′), in which

case (A2) implies that f violates increasing differences. �

Continuation of Example 18 We first show that R
(
λ‖λ∗(·, t)

)
is submodular in λ.

Let λ, λ′ ∈ 4S and denote µ′ = λ∨λ′ and µ = λ∧λ′. To abbreviate the notation, let p∗i (t),

pi, p′i, qi, q′i be the probability of state si, for all i = 1, 2, . . . , (`+1), corresponding to the

cumulative distribution of λ∗(t), λ, λ′, µ, and µ′, respectively. R
(
λ‖λ∗(·, t)

)
is submodular

in λ if, for all i, c
(
pi
)
+ c
(
p′i
)
≥ c
(
qi
)
+ c
(
q′i
)
, where c(x) = x lnx−x ln p∗i (t). Clearly, this

inequality holds for i = 1. Consider i > 1. With no loss of generality, let µ(si−1) = λ(si−1)

and µ′(si−1) = λ′(si−1). Consider two cases. Assume that (i) p′i + λ′(si−1) ≤ pi + λ(si−1),

so that µ(si) = λ(si) and µ′(si) = λ′(si). Then qi = pi and q′i = p′i and c(pi) + c(p′i) =

c(qi) + c(q′i) holds. Suppose, instead, that (ii) p′i + λ′(si−1) > pi + λ(si−1), which implies

µ(si) = λ′(si) and µ′(si) = λ(si). Let δ = λ(si−1)− λ′(si−1) and notice that 0 ≤ δ <

p′i − pi. Since qi = p′i − δ and q′i = pi + δ, and c is convex, c(qi) + c(q′i) ≤ c(pi) + c(p′i).

To show that R
(
λ‖λ∗(·, t)

)
has decreasing differences in (λ, t), take any distribution

λ′ � λ, t′ ≥ t, and notice that

[
R
(
λ′‖λ∗(·, t′)

)
−R

(
λ‖λ∗(·, t′)

)]
−
[
R
(
λ′‖λ∗(·, t)

)
−R

(
λ‖λ∗(·, t))

]
=
∑̀
i=1

[
ln p∗i (t

′)− ln p∗i (t)
][
pi − p′i].

This is nonpositive since ln p∗i (t
′)− ln p∗i (t) is increasing in i (because λ∗(t) is increasing

in t with respect to the monotone likelihood ratio order) and λ′ � λ. �
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multi-prior beliefs”
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Abstract

This supplement contains additional results related to Dziewulski and Quah
(2022). These notes should be read in conjunction with the main paper.

In this supplement, we present proofs of the claims made in the article. In addition,

in Section S.9 we apply the results from the main paper to dynamic programming under

ambiguity. Throughout, we employ the notation introduced in the main body.

S.1 Anti-symmetry of the parallelogram order

As argued in Remark 2.3 of the main paper, the parallelogram order is transitive and

reflexive. In this section we show that it is also anti-symmetric within the class of compact

and convex subsets of R`. That is, for any compact and convex sets A, A′ ⊆ R`, if A′

dominates A, and A dominates A′ by the parallelogram order for K = {1, . . . , `}, then

the two sets are equal. First, we state one auxiliary result. We say that x ∈ A is an

extreme point of A if it is not a convex combination of any other points in A.
∗ Department of Economics, University of Sussex. E-mail: P.K.Dziewulski@sussex.ac.uk.
† Department of Economics, Johns Hopkins University and Department of Economics, National Uni-
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Lemma S.1. Take any convex sets A,A′ ⊆ R` such that A 6⊆ A′. Then, there is an

extreme point of co(A ∪ A′) that belongs to x ∈ A \ A′.

Proof. Recall that a convex hull of a set consists of all convex combinations of its extreme

points. Specifically, it must be that co(A∪A′) consists of convex combinations of extreme

points in A and A′. Towards contradiction, suppose that all such extreme points are in

A′. Since A′ is convex, we have A ⊆ co(A ∪ A′) = coA′ = A′, yielding a contradiction.

Therefore, there must be at least one extreme point of co(A ∪ A′) in A \ A′.

We continue with our main argument. Towards contradiction, suppose that A′ domi-

nates A, and A dominates A′ by parallelogram order, but A 6⊆ A′. By the lemma above,

there is an extreme point x ∈ co(A∪A′) such that x ∈ A\A′. By Theorem 12.7 in Soltan

(2015), there are vectors p1, . . . , pN , such that Φn
A = argmax

{
pn · y : y ∈ Φn−1

A

}
, for all

n = 1, . . . , N , and {x} = ΦN
A , where Φ0

A = A. Let ΦN
A′ be the set induced as above for

A′, for the same vectors p1, . . . , pN . By successive application of Theorem 2 of the main

paper, it must be that ΦN
A′ dominates ΦN

A by the parallelogram order. In particular, there

must be some x′ ∈ ΦN
A′ such that x′ ≥ x. Similarly, the set ΦN

A = {x} dominates ΦN
A′

by the parallelogram order. Thus, it must be that x ≥ x′. However, the two inequalities

imply that x = x′, which contradicts that x 6∈ A.

S.2 Asymptotic cones, convex hulls, and closed sets

In this section we discuss the relationship between asymptotic cones, convex hulls and

closed sets. We prove Proposition S.1 which we use to prove that statement (iv) in

Theorem 3 implies statement (i) (see the Appendix to the main paper). We also prove

Proposition S.2 which provides sufficient conditions under which the optimisation prob-

lems discussed in Sections 2–4 to have a solution.

We prove Proposition S.1 through three lemmas that follow. Recall that an asymptotic

cone AY of the set Y ⊆ R` is the set of limits of all sequences of the form {λnxn}, for

positive numbers λn → 0 and xn ∈ Y , for all n.

Lemma S.2. The set Y ⊂ R` satisfies AY ⊆ R`
+. The sequence {xn} is given by

xn =
∑k

i=1 α
i
ny

i
n, where αi

n ≥ 0 and yin ∈ Y , for all i and n. Suppose that {xn} and (for

every i) {αi
n} are bounded sequences. Then, for each i, the sequence {αi

ny
i
n} is bounded.

2



Proof. Towards contradiction, suppose there is a set I = {1, . . . ,m} such that the se-

quence {αi
ny

i
n} is unbounded, for all i ∈ I. Note that, the set must have at least two

elements; otherwise {xn} would be unbounded. Similarly, the sum
∑

i∈I α
i
ny

i
n must be

bounded. After taking subsequences if necessary, suppose that the sequence α1
ny

1
n/L

1
n

converges to y1 6= 0, where L1
n denotes the norm of α1

ny
1
n. The limit y1 must belong to

AY ⊆ R`
+ since α1

n/L
1
n → 0. Thus, the sequence∑m

i=2 α
i
ny

i
n

L1
n

converges to −y1 < 0, since
∑

i∈I α
i
ny

i
n/L

1
n → 0. If each term αi

ny
i
n/L

1
n for i 6= 1 is

bounded, then one of them will have a limit outside of R`
+ ⊇ AY , yielding a contradic-

tion. Alternatively, suppose that α2
ny

2
n/L

1
n is unbounded, without loss of generality. As

previously, the sequence α2
nx

2
n/(L

1
n L

2
n), where L2

n denotes the norm of α2
ny

2
n/L

1
n, has a

limit in AY = R`
+, which implies that the sequence∑m

i=3 α
i
ny

i
n

L1
n L

2
n

has a limit in R`
− \ {0}. If each sequence αi

nx
i
n/(L

1
n L

2
n) is convergent, then one of them

has a limit that is not in R`
+ ⊇ AY , yielding a contradiction. Otherwise, we can continue

the argument which will eventually lead to a contradiction.

The next lemma introduces a general class of sets that admit a closed convex hull.

Lemma S.3. Whenever the set Y ⊆ R` is closed, upward comprehensive, and AY = R`
+,

then its convex hull coY is closed.1

Proof. Let {xn} be a sequence in coY converging to x. By Carathéodory’s theorem,

we may assume that xn =
∑`+1

i=1 α
i
ny

i
n, for yin ∈ Y , αi

n ≥ 0, and
∑`+1

i=1 α
i
n = 1, for all

i = 1, . . . , ` + 1 and n, without loss of generality. Moreover αi
n converges to αi ≥ 0, for

all i = 1, . . . , ` + 1. By shifting Y by a constant if necessary, we can also assume that

x = 0. It suffices to show that x ∈ coY .

We partition the sequences of indices i = 1, . . . , `+ 1 into two groups: (i) those i for

which the sequence {yin} is bounded, and (ii) those i for which the sequence {αi
ny

i
n} is

1 Whenever Y ⊆ R` is upward comprehensive and AY ⊆ R`
+, then AY = R`

+. Take any y ∈ Y

and x ∈ R`
+. Since Y is upward comprehensive, we have (y + 1/λx) ∈ Y , for any λ > 0. Moreover,

λ(y + 1/λx) → x as λ → 0. Since x was arbitrary, this proves that R`
+ ⊆ AY .

3



bounded, but {yin} is not. Denote the two sets by I, I ′, respectively. By Lemma S.2,

these are the only two cases that we need to consider.

For each i ∈ I, we may assume that the sequence {yin} has the limit yi which belongs

to Y (since Y closed). For each i ∈ I ′, denote the limit of {αi
nx

i
n} by zi, which exists by

assumption. In particular, it must be that αi
n → 0, and so zi ∈ AY ⊆ R`

+. As a result,

we have z =
∑

i∈I′ z
i ≥ 0 and z+

∑
i∈I α

iyi = x = 0. Thus, we have
∑

i∈I α
iyi = −z ≤ 0.

Since we can always re-normalise the weights so that
∑

i∈I α
iyi ∈ coY , and since coY is

upward comprehensive, this suffices to show that x = 0 ∈ coY .

Next, we establish a relationship between asymptotic cones and convex hulls.

Lemma S.4. If AY ⊆ R`
+ then A(coY ) ⊆ R`

+, for any Y ⊆ R`.

Proof. Suppose that λnxn → z, where xn ∈ coY , for all n, and λn → 0. We claim

that z ≥ 0. By Carathéodory’s theorem, we may assume (without loss of generality)

that xn =
∑`+1

i=1 α
i
ny

i
n, where αi

n ≥ 0, yin ∈ Y , and
∑`+1

i=1 α
i
n = 1, for all i = 1, . . . , ` + 1

and n. Thus, λnα
i
n → 0, for all i = 1, . . . , ` + 1. Moreover, by Lemma S.2 and our

assumption, each sequence {(λnα
i
n)y

i
n

}
is convergent to some zi ∈ AY ⊆ R`

+, and so

λnxn = λn

∑`+1
i=1 α

i
ny

i
n converges to z =

∑`+1
i=1 z

i ≥ 0.

The next proposition follows from the previous two lemmas.

Proposition S.1. If Y ⊆ R` is closed, upward comprehensive, and AY = R`
+, then

A(coY ) = R`
+.

Proof. By Lemmas S.3, S.4, the set coY is closed and A(coY ) ⊆ R`
+. Since coY is

upward comprehensive, we have R`
+ ⊆ A(coY ), proving the claim.

The following proposition establishes sufficient conditions under which the minimum

of any strictly positive linear functional over a set Y is well-defined. This is used exten-

sively in Sections 2–4, where we focus on minimisation problems with linear objectives.

Proposition S.2. Let Y ⊆ R`
+ be closed and AY ⊆ R`

+. Then, for all p ∈ R`
++, the set

argmin
{
p · y : y ∈ Y

}
is nonempty and closed, and (thus) the function f : R`

++ → R,

where f(p) := min
{
p · y : y ∈ Y

}
is well-defined.

4



Proof. Suppose there is some p̄ � 0 for which the minimization problem has no solution.

Choose any ȳ ∈ Y and consider the set Y ′ =
{
y ∈ Y : p̄ · y ≤ p̄ · ȳ

}
. If the minimization

problem has no solution then Y ′ is unbounded; indeed, if it is bounded then it is both

closed and bounded and there will be y∗ that minimizes p̄ · y in Y ′, and also in Y .

If Y ′ is unbounded, then it contains an unbounded sequence {yn}. Let ŷn = yn/‖yn‖

have a limit given by ŷ 6= 0, which is in AY . Since p̄ · ŷn ≤ p̄ · ȳ/‖yn‖, by taking limits

we obtain p̄ · ŷ ≤ 0, which is impossible since p̄ � 0 and ŷ > 0.

At the beginning of Section 4 of the main paper, we claim that the profit func-

tion π(p) := max
{
F (x) − p · x : x ∈ X

}
of the firm is well-defined for any strictly

positive price p, whenever the asymptotic cone AF of the production possibility set

P =
{
(z, y) ∈ R` × R : (z, y) ≤

(
− x, F (x)

)
, for x ∈ X

}
is R`+1

− . Indeed, since

π(p) := max
{
F (x)− p · x : x ∈ X

}
= max

{
(p, 1) · (z, y) : (z, y) ∈ P

}
,

Proposition S.2 guarantees that the function is well-defined for any p ∈ R`
++.

S.3 Continuation of Example 5

Let X ⊆ R` be a convex lattice. In the main paper we claim that a function F : X → R

is increasing in the C-flexible order for K ⊆ {1, . . . , `} if it is continuous, increasing,

supermodular, and concave in x−i, for all i ∈ K. This result can be found in Quah

(2007); we prove it here for easy reference.

Take any q′ ≥ q and x, x′ ∈ X such that x′
K 6≥ xK and F (x) ≥ q, F (x′) ≥ q′. We show

that there is a λ ∈ [0, 1] satisfying F
(
λx′+(1−λ)(x∧x′)

)
≥ q, F

(
λx+(1−λ)(x∨x′)

)
≥ q′.

This suffices for F to be increasing in the C-flexible order for K.

Consider two cases. (i) If F (x ∧ x′) ≥ q, set λ = 0. By monotonicity of F , we have

F (x ∧ x′) ≥ F (x′) ≥ q′. Alternatively, let (ii) F (x ∧ x′) < q. Since q ≤ q′ ≤ F (x′), by

continuity of F there is some λ ∈ [0, 1] such that F
(
λx′ + (1 − λ)(x ∧ x′)

)
= q. Denote

v = x′ − (x∧ x′) = (x∨ x′)− x, which is a positive vector. Since x′
K 6≥ xK , there is some

i ∈ K such that vi = 0. In particular, we obtain

q′ − q ≤ F (x′)− F
(
λx′ + (1− λ)(x ∧ x′)

)
= F (x′)− F

(
x ∧ x′ + λv

)
≤ F (x ∨ x′)− F

(
x+ λv

)
≤ F

(
(x ∨ x′)− λv

)
− F (x),

5



where the second inequality follows from supermodularity of F and the third is implied

by the fact that F is concave in x−i and vi = 0.2 Therefore, since F (x) ≥ q, it must be

that q′ ≤ F
(
(x∨x′)−λv

)
= F

(
λx+(1−λ)(x∨x′)

)
. This suffices to show that C-flexible

order is stronger that parallelogram order. �

S.4 Substitutes in production

In Section 4 of the main paper (see footnote 22) we argued that our results can be applied

to a study of technologies that exhibit substitutability of inputs. Here, we explore this

claim. As in Section 4, let X be a non-empty and closed subset of R`
+, and F : X → R

be a production function such that the asymptotic cone generated by the corresponding

production possibility set is AF . At factor prices p ∈ R`
++, the firm’s (unconditional)

input/factor demand is given by H(p) := argmax
{
F (x)− p · x : x ∈ X

}
.

For any two distinct inputs i, j = 1, . . . , `, we say that i is a substitute of j, if, for any

p, p′ ∈ R`
++ satisfying p−j = p′−j, and any x ∈ H(p), there is x′ ∈ H(p′) such that x′

i ≥ xi

if p′j ≥ pj, and x′
i ≤ xi if p′j ≤ pj. Consider the following claim.

Proposition S.3. Let X ⊆ R`
+ be a closed set and F : X → R be a continuous function

with AF = R`
−. For any distinct i, j = 1, . . . , `, the following statements are equivalent:

(i) factor i is a substitute of j; (ii) factor j is a substitute of i; (iii) the profit function

π : R`
++ → R, where π(p) := max

{
F (x)−p·x : x ∈ X

}
, is submodular in (pi, pj) (keeping

other prices fixed).

Proof. Analogously to our argument in Section 4 of the main paper, we answer this

question by defining the correspondence Γj with the domain T = R+, by

Γj(t) :=
{
(y, v) ∈ R`+1 : (y, v) ≥

(
x,−F (x) + txj

)
for some x ∈ X

}
. (S.1)

It is straightforward to check that, for any p ∈ R`
++,

x ∈ H(pj + t, p−j) ⇐⇒
(
x,−F (x) + txi

)
∈ argmin

{
(p, 1) · y : y ∈ Γj(t)

}
and thus π(pj + t, p−j) = −min

{
(p, 1) · y : y ∈ Γj(t)

}
. Theorem 3 (with K = {i})

guarantees that the following are equivalent: (i) co Γj is P-increasing in {i}; (ii) i is a
2 We are making use of the fact that when f is concave in direction v, we have f(x − v) − f(x) ≥

f(x− v − tv)− f(x− tv), for any x ∈ X and scalar t > 0.
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substitute of j; and (iii) −π(pj + t, p−j) has increasing differences in (t, pi). Notice that

condition (iii) is equivalent to π being submodular in (pi, pj), other prices being fixed.

Since submodularity is a symmetric property, we conclude that i is a substitute of j if, and

only if, j is a substitute of i, with both equivalent to submodularity of π in (pi, pj).

S.5 Comment on Proposition 7

In Proposition 7 we concluded that the belief correspondence Λ is PFSD-increasing if,

and only if, the resulting value function f(x, t) := min
{ ∫

g(x, s)dλ(s) : λ ∈ Λ(t)
}

is

supermodular in (x, t), for any supermodular function g. As we pointed out in footnote 28

of the main paper, the PFSD-increasing property is also necessary for the function f

to satisfy a weaker conditions — single crossing differences — for any supermodular

function g.3 As shown in Milgrom and Shannon (1994), single crossing differences alone

are sufficient for the set of maximisers of f with respect to x to be increasing in t. Below,

we state the formal proof of our claim stated in footnote 28.

Suppose that f̃(x̃, t) := min
{∫

S
g̃(x̃, s)dλ(s) : λ ∈ Λ(t)

}
violates increasing differ-

ences, for some function g̃. In particular, for some x′ ≥ x and t′ ≥ t,

v := f̃(x′, t)− f̃(x, t) > f̃(x′, t′)− f̃(x, t′).

Define the function g by g(y, s) = g̃(y, s), for y ≤ x, and g(y, s) = g̃(y, s)− v otherwise.

Clearly, g is supermodular, but f given by f(x̃, t) := min
{∫

S
g(x̃, s)dλ(s) : λ ∈ Λ(t)

}
vio-

lates single crossing differences since 0 = f(x′, t)−f(x, t) > f(x′, t′)−f(x, t′). Therefore,

the maxmin value function violates increasing differences for some supermodular function

g̃ if, and only if, it violates single-crossing differences for another function. Clearly, this

suffices to show that the beliefs Λ are PFSD-increasing if, and only if, the value function

obeys single-crossing differences, for any supermodular function g.

S.6 Continuation of Remark 5.3

In Remark 5.3 of the main paper, we discussed an alternative generalization of first order

stochastic dominance to multi-prior beliefs. Formally, we are interested in conditions on
3 The function g : X × S → R has single crossing differences if g(x′, s′) ≥ (>) g(x, s′) implies

g(x′, s) ≥ (>)g(x, s), for any x′ ≥ x and s′ ≥ s, where we assume that X,S ⊆ R.
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the belief correspondence Λ : T → 4S such that, for any increasing function u : S → R,

the value function v : T → R, given by

v(t) := min

{∫
u(s)dλ(s) : λ ∈ Λ(t)

}
, (S.2)

is increasing in t. Below, we characterize this property.

Proposition S.4. Suppose the correspondence Λ : T → 4S has compact and convex

values. Then, the following statements are equivalent.

(i) Correspondence Λ satisfies the following property:

(F) if t′ ≥T t, then for any λ′ ∈ Λ(t′) there is some λ ∈ Λ(t) such that λ′ � λ.

(ii) For any increasing function u : S → R, the function v in (S.2) increases in t.

Proof. To show that (i) ⇒ (ii), take any t′ ≥T t and λ′ ∈ Λ(t′). By (F), there is some

λ ∈ Λ(t) such that λ′ � λ. Thus, for any increasing u,∫
S

u(s)dλ′(s) ≥
∫
S

u(s)dλ(s) ≥ min

{∫
S

u(s)dν(s) : ν ∈ Λ(t)

}
.

Taking the minimum over the left term gives us the result.

To show (ii) ⇒ (i), suppose (F) fails. Then there is t′ ≥ t and λ′ ∈ Λ(t′) such

that λ′ 6� λ, for all λ ∈ Λ(t). Let V =
{
y ∈ R` : yi ≥ λ′(si), for i = 1, . . . , `

}
. Since

V ∩ Λ(t′) = ∅ and
(
V −Λ(t′)

)
is closed and convex, by the strong separating hyperplane

theorem, min
{∑`

i=1 p̂iyi : y ∈ V
}

> max
{∑`

i=1 p̂iλ(si) : λ ∈ Λ(t′)
}

, for some p̂ ∈ R`.

Given that V is upward comprehensive, p̂ > 0 and
∑`

i=1 p̂iλ
′(si) = min

{
p̂ · y : y ∈ V

}
.

Define u : S → R by u(s1) = p̂1 and u(si+1) = u(si) + p̂i+1, for i = 1, . . . , `, which is an

increasing function. Since
∫
S
u(s)dµ(s) = u(s`+1)−

∑`
i=1 p̂iµ(si), for any µ ∈ 4S,

min

{∫
S

u(s)dλ(s) : λ ∈ Λ(t)

}
= u(s`+1)−max

{∑̀
i=1

p̂iλ(si) : λ ∈ Λ(t)

}

> u(s`+1)−
∑̀
i=1

p̂iλ
′(si) ≥ u(s`+1)−max

{∑̀
i=1

p̂iλ(si) : λ ∈ Λ(t′)

}

= min

{∫
S

u(s)dλ(s) : λ ∈ Λ(t′)

}
.

Thus (F) is indeed necessary for monotone maxmin utility.
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Notice that, property (F) is strictly weaker than PFSD-increasing property. Clearly,

any correspondence that increases in the latter sense satisfies (F), but the converse does

not hold. In fact, as we show below, (F) is not even sufficient for monotone comparative

statics. That is, this property alone does not guarantee that the set of maximisers of the

function f(x, t) := min
{ ∫

g(x, s)dλ(s) : λ ∈ Λ(t)
}

with respect to x is increasing in the

parameter t, for all supermodular functions g. Therefore, it is not sufficient for f(x, t) to

be supermodular, for all supermodular functions g.

Example S.1. Suppose that X = {0, 1} and S = {s1, s2, s3}. The distribution λ

is given by λ(s1) = 1/2 and λ(s2) = 3/4, while λ′ satisfies λ′(s1) = λ′(s2) = 1/2 and µ

is given by µ(s1) = 1/4, µ(s2) = 7/8. Suppose that T = {t, t′}, where t′ >T t, and

Λ(t′) = {λ′} and Λ(t) = co{λ, µ}. Since λ′ � λ, correspondence Λ obeys stochastic dom-

inance in the sense given by (F). Let g : X × S → R be such that g(0, s1) = g(0, s2) = 5,

g(0, s3) = 21, g(1, s1) = 0, g(1, s2) = 8, and g(1, s3) = 24; note that g(x, s) is increas-

ing in s and supermodular in (x, s). Since
∫
S
g(0, s)dλ′(s) >

∫
S
g(1, s)dλ′(s), we have

{0} = argmax
{
f(x, t′) : x ∈ X

}
. However, given that∫

S

g(0, s)dλ(s) >

∫
S

g(1, s)dµ(s) =

∫
S

g(1, s)dλ(s) >

∫
S

g(0, s)dµ(s),

it must be that {1} = argmax
{
f(x, t) : x ∈ X

}
.

Even though property (F) is not sufficient for monotone comparative statics within a

general class of supermodular functions g, it may suffice in certain special cases of g. For

example, suppose X consists of only two actions – 0 and 1 – with g(1, s) increasing in s

and g(0, s) decreasing in s, then obviously f(1, t)− f(0, t) is increasing in t if Λ satisfies

(F), since f(1, t) and f(0, t) are separately increasing and decreasing in t. In the study

of global games with ambiguity by Ui (2015), this is precisely the assumption imposed

on (what we call) g, which then allows the author to conclude that the higher action is

chosen by players in the game when they receive a higher signal.

S.7 Continuation of Remark 5.4

Next, we turn to the claim in Remark 5.4. Recall that, whenever the function g(x, s) is

increasing in s, one can assume that the belief correspondence Λ has upward comprehen-

sive values, without affecting the maxmin representation of preferences. In such a case,
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the PFSD monotonicity remains necessary for f in (7) to have increasing differences, for

all g(x, s) that are supermodular in (x, s) and increasing in s.

Proposition S.5. Suppose that correspondence Λ : T → 4S has compact, convex, and

upward comprehensive values. Then the following statements are equivalent.

(i) Λ is PFSD-increasing.

(ii) The function f in (7) is supermodular in (x, t), for all supermodular functions g

that are increasing in s.

Proof. Implication (i) ⇒ (ii) follows from Proposition 7. We prove the converse in two

steps. First, using Theorem 3 and an argument analogous to the one in the proof of

Proposition 7, we can show that the function f satisfies increasing differences only if the

correspondence Γ : T → R`, defined as

Γ(t) :=
{
y ∈ R` : yi ≥ −λ(si), for all i = 1, . . . , ` and some λ ∈ Λ(t)

}
,

increases in the parallelogram order. This means that for any t′ ≥T t and λ ∈ Λ(t),

λ′ ∈ Λ(t′), there is µ ∈ Λ(t), µ′ ∈ Λ(t′), θ and θ′ ∈ R` such that θi ≤ µ(si), θ′i ≤ µ′(si),

λ(si) + λ′(si) = θi + θ′i, and θi ≥ λ′(si) for all i. Therefore, Λ has the following property,

which we shall refer to as (?): for any t′ ≥T t and λ ∈ Λ(t), λ′ ∈ Λ(t′), there is µ ∈ Λ(t),

µ′ ∈ Λ(t′) such that (1/2)λ+ (1/2)λ′ � (1/2)µ+ (1/2)µ′ and λ′ � µ.

To complete the proof we show that (?) implies PFSD monotonicity when Λ is upper

comprehensive. (?) states that for any t′ ≥ t, λ ∈ Λ(t), and λ′ ∈ Λ(t′), there is µ ∈

Λ(t) and µ′ ∈ Λ(t′) such that µ(si) ≥ λ′(si) and µ(si) + µ′(si) ≥ λ(si) + λ′(si) for

all i. We modify µ and µ′ state-by-state such that the condition holds with equality.

Suppose µ(s1) + µ′(s1) > λ(s1) + λ′(s1). If it is possible, choose ν1(s1) in the interval[
λ′(s1), µ(s1)

]
such that ν1(s1) + µ′(s1) = λ(s1) + λ′(s1) and then set ν ′1(s1) = µ′(s1). If,

after setting ν1(s1) = λ′(s1), we have ν1(s1) + µ′(s1) > λ(s1) + λ′(s1), then set ν ′1(s1) =

λ(s1). Let ν1(si) = µ(si) and ν ′1(si) = µ(si) for i ≥ 2. Note that ν1 and ν ′1 are

bona fide distributions (i.e., both functions are increasing with the state) and, since Λ

is upper comprehensive, ν1 ∈ Λ(t), ν ′1 ∈ Λ(t′). Furthermore, ν1 and ν ′1 satisfy the

conditions required by (?) and ν1(s1) + ν ′1(s1) = λ(s1) + λ′(s1). Now define ν2 and

ν ′2 by ν2(si) = ν1(si) and ν ′2(si) = ν ′1(si), for all i 6= 2. If possible, set ν2(s2) ∈
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[
max{λ′(s2), ν

1(s1)}, µ(s2)
]

so that ν2(s1)+ν ′1(s2) = λ(s2)+λ′(s2) and then set ν ′2(s2) =

ν ′1(s2). Otherwise, set ν2(s2) = max{λ′(s2), ν
1(s1)} and set ν ′2(s2) so that ν2(s2) +

ν ′2(s2) = λ(s2) + λ′(s2). Note that both ν2 and ν ′2 are distributions, with ν2 ∈ Λ(t),

ν ′2 ∈ Λ(t′), and ν(si) ≥ λ′(si) for all i; furthermore, ν2(si) + ν ′2(si) ≥ λ(si) + λ′(si) for

all i, with equality in the case of i = 1, 2. By repeating this process we eventually obtain

ν ∈ Λ(t) and ν ′ ∈ Λ(t′) with the required property. Thus, PFSD monotonicity holds.

S.8 Continuation of Example 14

In this section we revisit the class of multi-prior beliefs presented in Example 14 of the

main paper. As we have shown, such correspondences are PFSD-increasing, however, in

general, they do not increase in the strong set order or in the C-flexible sense.

For example, let Ω = {ω1, ω2}, π(ω1) = π(ω2) = 1/2, and T = {t, t′}, with t′ >T t.

Let the correspondence A be given by A(ω1, t) = {0}, A(ω1, t
′) = {0, 3}, and A(ω2, t) =

A(ω2, t
′) = {1, 4}. Therefore, the set A(ω, t′) dominates A(ω, t) in the strong sense, for

all ω ∈ Ω. Let Λω(t̃) denote the set of degenerate probability distributions over A(ω, t̃),

and Λ(t̃) =
∑

i=1,2 π(ωi)Λ
ω(t̃), for all t ∈ T . We claim that the correspondence Λ does

not increase in the strong set order. Take distributions

λ(z) =


0 if z < 0

1
2

if 0 ≤ z < 4

1 otherwise;

and λ′(z) =


0 if z < 1

1
2

if 1 ≤ z < 3

1 otherwise.

Clearly, we have λ ∈ Λ(t) since the measure is obtained by mixing degenerate measures

concentrated at 0 and 4 with weights equal to π(ω1) and π(ω2), respectively. Similarly,

we have λ′ ∈ Λ(t′). However, λ ∧ λ′ and λ ∨ λ′ are given by

(λ ∧ λ′)(z) =


0 if z < 0

1
2

if 0 ≤ z < 3

1 otherwise;

and (λ ∨ λ′)(z) =


0 if z < 1

1
2

if 1 ≤ z < 4

1 otherwise.

Since the support of λ∧λ′ is {0, 3}, it could not belong to Λ(t) consisting of distributions

with the support in {0, 1, 4}. For the same reason, there is no convex combination of

λ ∧ λ′ and λ′ that belongs to Λ(t), since the supports of λ ∧ λ′ and λ′ contain 3. Hence,

the correspondence increases neither in the strong set order, nor in the C-flexible sense.
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S.9 Dynamic programming under ambiguity

In an influential paper, Hopenhayn and Prescott (1992) used the tools of monotone

comparative statics to analyze stationary dynamic optimization problems. In this section,

we show how those results could be extended to the case where the agent has a multi-prior

belief, by applying the results from the main part of paper.

Consider an agent who faces a stochastic control problem where X and S are the

sets of endogenous and exogenous state variables, respectively. To keep the exposition

simple, we shall assume that X is a sublattice of a Euclidean space and S is a subset

of another Euclidean space. The evolution of s over time follows a Markov process with

the transition function λ. The agent’s problem can be formulated in the following way

(see Stokey et al., 1989). At each period τ , given the current state (xτ , sτ ) ∈ X × S,

the agent chooses the endogenous variable xτ+1 for the following period; xτ+1 is chosen

from a non-empty feasible set B(xτ , sτ ) ⊆ X which may depend on the current state.

The single-period return is given by the function F : X × S ×X → R; F (x, s, y) is the

payoff when (x, s) is the state variable in period τ and y is the endogenous state variable

in period τ +1 chosen in period τ . Finally, we assume that the payoffs are discounted by

a constant factor β ∈ (0, 1).

The agent’s objective is to maximize her expected discounted payoffs over an infi-

nite horizon, given the initial condition (x, s). We denote the value of this optimization

problem by v∗(x, s). Under standard assumptions — in particular, the continuity and

boundedness of F and the continuity of B — this problem admits a recursive represen-

tation, where v = v∗ is the unique solution to the Bellman equation

v(x, s) = max

{
F (x, s, y) + β

∫
S

v(y, s̃)dλ(s̃, s) : y ∈ B(x, s)

}
,

where λ(·, s) is a cumulative probability distribution over states of the world in the

following period, conditional on the current state s.4 The function v∗ is bounded and

continuous. Moreover, whenever we define operator T : B → B by(
T v

)
(x, s) = max

{
u(x, s, y) + β

∫
S

v(y, s̃)dλ(s̃, s) : y ∈ B(x, s)

}
,

that maps the space B of bounded and continuous real-valued functions over X × S into

itself, then beginning at any bounded and continuous function v ∈ B, function (T nv)

4See Theorem 9.6 in Stokey et al. (1989) for details.
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converges uniformly to v∗ as n tends to infinity.5 Furthermore, the set

Φ(x, s) := argmax

{
F (x, s, y) + β

∫
S

v∗(y, s̃)dλ(s̃, s) : y ∈ B(x, s)

}
is non-empty and compact, for all (x, s) ∈ X×S, and the correspondence Φ : X×S → X

is upper hemi-continuous. We refer to any optimal control problem in which v∗ and Φ

have the properties listed in this paragraph as a well-behaved problem.

Given a well-behaved problem, Hopenhayn and Prescott (1992) (henceforth HP) apply

Theorem 4.3 in Topkis (1978) to show that the value v∗(x, s) is supermodular in x and

has increasing differences in (x, s) under the following assumptions: (i) F (x, s, y) is

supermodular in (x, y) and has increasing differences in
(
(x, y), s

)
; (ii) the graph of B is

a sublattice of X × S × X; (iii) λ(·, s) is increasing in s with respect to the first order

stochastic dominance. The properties of v∗ in turn guarantee that the function

f(x, s, y) := F (x, s, y) + β

∫
S

v∗(y, s̃)dλ(s̃, s)

is supermodular in y and has increasing differences in
(
y, (x, s)

)
. By Theorem 6.1 in

Topkis (1978), Φ(x, s) is a compact sublattice of X and is increasing in (x, s).6 This in

turn guarantees the existence of the greatest optimal selection

φ(x, s) :=
{
y ∈ Φ(x, s) : y ≥X z, for all z ∈ Φ(x, s)

}
, 7

that is increasing and Borel measurable. Lastly, the policy function φ induces a Markov

process on X × S, where, for measurable sets Y ⊆ X and T ⊆ S, the probability of

Y × T conditional on (x, s) is the probability of T conditional on s if φ(x, s) ∈ Y , and it

is zero otherwise. HP make use of the monotonicity of φ to guarantee that this Markov

process has a stationary distribution.8 We now consider a stochastic control problem

identical to the one we just described, except that we allow the agent to be ambiguity

averse. Since at each period τ the exogenous variable is drawn from the set S, the set of
5By T n we denote the n’th orbit of the operator T , i.e., we have (T n+1v) = T

(
T nv).

6 Condition (ii) on B guarantees that B(x, s) is sublattice of X and that it increases with (x, s) in
the strong set order. Given with the properties on f , we know that Φ(x, s) is a sublattice and that it
increases with (x, s); this follows from Theorem 6.1 in Topkis (1978).

7 Function is well-defined because Φ is compact-valued and a sublattice.
8 The focus in this section is on primitive conditions guaranteeing the monotonicity of the policy

function. Readers who are interested in how the distribution over (x, s) evolves over time (under mono-
tonicity or weaker assumptions) should consult Huggett (2003). HP and Stachurski and Kamihigashi
(2014) also discuss uniqueness and other issues relating to the stationary distribution.
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all possible realizations of the exogenous variable over time is given by S∞. An expected

utility maximizer behaves as though she is guided by a distribution over S∞; to obtain

the utility of a given plan of action, the agent evaluates the discounted utility on every

possible path, i.e., over every element in S∞ and takes the average across paths, weighing

each path with its probability. When the agent has a maxmin preference, her behavior

can be modeled by a set of distributions M over S∞. The utility of a plan is then given

by the minimum of the expected discounted utility for every distribution in M.

In contrast to expected discounted utility, it is known that the agent’s utility in the

maxmin model will not generally have a recursive representation. However, there is a

condition on M called rectangularity which is sufficient (and effectively necessary) for

this to hold (see Epstein and Schneider, 2003). Furthermore, it is known that a time-

invariant version of rectangularity is also sufficient to guarantee that the agent’s problem

can be solved through the Bellman equation, in a way analogous to that for expected

discounted utility (see Iyengar, 2005). This condition says that the agent’s belief over the

possible value of the exogenous variable in the following period, after observing s in the

current period, is given by a set of distribution functions Λ(s); this set depends on the

current realization of the exogenous variable and is time-invariant. The set M, given an

initial value s0, is obtained by concatenating the transition probabilities. Therefore, the

probability of a path (s1, s2, s3, . . .) is
∏∞

i=1 pi, where p1 is the probability of s1 for some

distribution in Λ(s0), p2 is the probability of s2 for some distribution in Λ(s2), etc.

With this assumption on M in place, and some other standard conditions, one could

guarantee that the value v∗(x, s) of the control problem with the initial state (x, s), is

the unique solution to the Bellman equation

v(x, s) = max
{
F (x, s, y) + β(Av)(y, s) : y ∈ B(x, s)

}
,

where (Av)(y, s) = min
{ ∫

S
v(y, s)dλ(s) : λ ∈ Λ(s)

}
(see Iyengar, 2005). Furthermore,

the problem is well-behaved in the sense defined at the beginning of this section.

With this basic set-up, we are almost in a position to recover a monotone result of the

HP type; all that is needed is a condition guaranteeing that (Av)(y, s) is a supermodular

function of (y, s), whenever v is supermodular. When X and S are one-dimensional,

Proposition 7 tells us that this holds if belief Λ(t) is PFSD-increasing.
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Proposition S.6. Consider a well-behaved optimal control problem where X, S ⊆ R,

with X compact and S finite. Let F (x, s, y) be supermodular in (x, s, y), Λ : S → 4S be

PFSD-increasing, and the graph of B : X×S → X be a sublattice; then the value function

v∗(x, s) is supermodular, and the correspondence Φ : X × S → R, where

Φ(x, s) := argmax
{
F (x, s, y) + β(Av∗)(y, s) : y ∈ B(x, s)

}
is sublattice-valued and increasing in the strong set order. Finally, the greatest selection

φ : X × S → R of Φ is well-defined, increasing, and Borel measurable.

Proof. Let v : X × S → R be a continuous and bounded function. Since the problem is

well-behaved we know that the function (T v), given by

(
T v

)
(x, s) = max

{
F (x, s, y) + β(Av)(y, s) : y ∈ B(x, s)

}
,

is a continuous function on X × S and T nv converges uniformly to v∗ as n → ∞.

By Proposition 7 in the main paper, whenever function v is supermodular, then so is

Av. This implies that F (x, s, y) + β(Av)(y, s) is supermodular over X × S ×X. Given

that the graph of correspondence B is a sublattice, by Theorem 4.3 in Topkis (1978), the

function T v is supermodular in (x, s). Since supermodularity is preserved under uniform

convergence, we conclude that v∗ = T v∗ is a supermodular function of (x, s). The set

Φ(x, s) consists of elements y that maximize F (x, s, y) + β(Av∗)(x, s) over B(x, s). Since

the objective function is supermodular, while values of correspondence B are complete

sub-lattices of X, by Theorem 6.1 in Topkis (1978), set Φ(x, s) is a complete sub-lattice of

X. Furthermore, since B increases over X ×S in the strong set order, so does Φ. As the

problem is well-behaved, Φ(x, s) admits the greatest selection φ(x, s) and this selection

is increasing. That φ is Borel measurable follows from standard arguments (see HP).

Below we discuss an application of this result.

Example S.2. Consider the following dynamic optimization problem of a firm. In each

period, the firm collects revenue π(x, s), where s ∈ S denotes the realized exogenous state

of the world and x ∈ R+ is the level of capital stock currently available to the firm. Once

s is revealed to the firm and the revenue collected, the firm may invest a ∈ [0, K] at a

cost c(a), K being a finite positive number. With this investment, capital stock in the
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next period is y = δx+a, where δ ∈ [0, 1] denotes the fraction of non-depreciated capital.

Therefore, the dividend in each period is

F (x, s, y) := π(x, s)− c(y − δx),

where the firm chooses y from the interval B(x, s) = [δx, δx + K]. We know from HP

that if the firm is an expected utility maximizer and the optimal control problem is well-

behaved, the firm has a policy function that is increasing in (x, s) under these additional

conditions: the transition function Λ : S → 4S is increasing with respect to first order

stochastic dominance and F is supermodular; the latter is guaranteed if π is supermodular

and c is concave. Proposition S.6 goes further by saying that this remains true if the firm

has a maxmin preference, so long as the belief Λ is PFSD-increasing.
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