Regardless of which career you choose, your Sussex Mathematics degree will serve you well. If you study with us, you will be equipped with skills that are highly sought after by employers. On top of that, you will not only get a first-rate mathematics education, you will also have access to all the resources you need to successfully enter the graduate job market or secure a place for postgraduate study. Our close partnerships with local organisations give you invaluable industry insights, the chance to meet potential future employers and secure placement opportunities, and the opportunity to hone your practical and professional skills.

OUR ALUMNI HAVE GONE ON TO CAREERS:

IN FINANCIAL SERVICES
Alpha PMC • American Express • Bank of England • Clydesdale Bank • Deloitte LLP • GE • IBM UK • KPMG • PwC • Siemens IT Solutions & Services Ltd

IN TEACHING
Cardinal Newman Catholic School, Hove • Cavendish School, Eastbourne • Kingsbridge Community College • Ration School, Eastbourne • Sayers School & 6th Form, Chertsey • Westcliff-on-Sea High School

We work closely with the University careers service to provide mathematics specific careers activities and to embed transferable skills into your degree. In the second year you will take an assessed careers module to help you to make successful applications, identify your skills and experience, research potential career options, and develop a personalised plan to reach your chosen vocational goal.

“**There is a lovely sense of community amongst staff and students and the support is fantastic. I love working with other students in the unique student study spaces and everyone is incredibly friendly and helpful so you never feel alone. Choosing to study Maths at Sussex has honestly been one of the best choices I have ever made.**”

CLAIRE BLACKMAN, MATHEMATICS BSc

It’s important that our employees are able to handle vast amounts of data. Studying Maths at Sussex meant that I was familiar with this and confident enough to be able to take resulting insights to our clients based on my analysis.”

HARRIETT HAYDEN, MATHEMATICS WITH ECONOMICS BSc GRADUATE, HEAD OF BUSINESS OPERATIONS (NORTH AMERICA), DC STORM LIMITED

APPLICANT VISIT DAYS
All applicants who receive an offer and meet the advisory UCAS applications deadline are invited to attend an Applicant Visit Day. You will get a first-hand impression of what it is like to study here, a fuller picture of your chosen degree course, and an idea of what life is like as a student at the University of Sussex. There will be general and departmental talks, tours of the campus, accommodation and Brighton, and plenty of opportunities to meet lecturers and current students.

MORE QUESTIONS?
See our online prospectus at www.sussex.ac.uk/study/ug for more information, including the latest on:

- entry requirements
- how to apply
- fees, scholarships, bursaries and other financial support
- how to arrange to visit us.

CONTACT US
Department of Mathematics
Pevensey 2 Building
University of Sussex
Falmer Campus
Brighton BN1 9QH, UK
T +44 (0)1273 873254
F +44 (0)1273 877097
E ug.admissions@mps.sussex.ac.uk
www.sussex.ac.uk/maths

APPLICATIONS

- Undergraduate study
- Further information
- Applicant visit days
- More questions?
- Contact us
Mathematics

At Sussex we recognise that mathematics is the foundation of the natural sciences. It plays a major role in disciplines such as finance, economics, physics, computer science and life sciences.

• Our lecturers bring their passion for mathematics to all of their teaching. You will join an international department, where staff have experience in conducting research and teaching across the globe.

OUR COURSES

We offer a range of courses for all levels, from foundation year to the four year MMath, and a number of courses with a minor subject, such as Economics or Finance.

Our degrees provide you with a foundation of core mathematical knowledge and statistical knowledge to ensure you are numerate, computer literate and able to think logically and quantitatively. While the range of courses we offer allows you to enhance your degree in different ways. All degrees have a common framework of organisation and assessment, and each module taken is assessed in the same term. This allows flexibility in your choice of modules and enables you to transfer between degree courses.

WE OFFER THE FOLLOWING COURSES:

• Mathematics degree (with a foundation year) BSc
• Mathematical Physics BSc
• Mathematics with Economics BSc
• Mathematics with Economics MMath
• Mathematics with Finance BSc
• Mathematical Physics BSc
• Mathematical Physics MMath
• Mathematics with Research Placement MMath

ACREDITATION

All our courses are accredited by the Institute of Mathematics and its Applications (IMA). The MMath courses are accredited to meet the educational requirements of the Chartered Mathematician designation awarded by the IMA.

MMAH

The popular MMAH is an integrated Master’s degree allowing you to study mathematics in greater depth. It is invaluable if you want to pursue postgraduate research or a career in which technical skills are important, such as mathematical modeling in finance or industry. It also enables you to obtain a Master’s degree whilst being eligible for undergraduate financial support.

MATH WITH RESEARCH PLACEMENT

This course provides a unique opportunity to learn about research methods and practice at the same time as developing your knowledge and understanding of mathematics. You will spend your summer vacations working with a member of faculty on a paid research project. During the placement, you will explore research methods, learn to understand and use scientific literature, and develop practical and mathematical skills. The research placement can be done with the same faculty member, or with a different member in different years. This is an exciting opportunity for students interested in a career in research.

YEAR OVERVIEW

You will learn through a combination of lectures and small group workshops. The year consists of five 22 week teaching terms: Autumn term (mid September – mid December) and Spring term (end January – mid May). A typical week for one module consists of three hours of lectures (typically in the form of one hour lecture and one hour practical/weekly tutorial) and one 2 hour revision tutorial. There are also one 1 hour workshops which take the form of small group teaching (around 25 students) with two postgraduate workshop tutors. All lectures have two 1 hour office hours where they are available to answer any questions on the material in their modules. There are also weekly drop-in sessions during term time, where postgraduate students are available to meet on a one-to-one basis. A complete set of lecture notes, and weekly tutorial hour exercises and past exam papers are available on-line for all modules. You will do a final year project for all our MMAH courses, and you have the option of doing a project in all our BSc courses.

A typical module is assessed by:
• 10% exams – weekly exercises sheets are handed out for each module. You should use the weekly workshops and ‘lecturers’ office hours as opportunities to get help with these questions.
• 90% exams – this is a one hour exam in exam conditions that takes place halfway through the term.

• 80% exams – the exams for the Autumn term module take place in January, and for those Spring term module take place in the summer.

“the lecturers are passionate and treat you like one of their peers. your study and development is as important to them as it is to you.”

PAUL EGGLETON, MATHEMATICS WITH COMPUTER SCIENCE BSc

course structure

AUTUMN TERM

YEAR 1

Module 1: Mathematical Analysis
Module 2: Linear Algebra
Module 3: Calculus
Module 4: Probability
Module 5: Discrete Mathematics
Module 6: Java Programming
Module 7: Introduction to Computer Science
Module 8: Algebra

YEAR 2

Module 1: Complex Analysis
Module 2: Introduction to Mathematical Biology
Module 3: Probability
Module 4: Further Mathematics
Module 5: Numerical Analysis
Module 6: Data Analysis
Module 7: Mathematical Methods
Module 8: Introduction to Financial Mathematics

YEAR 3

Module 1: Partial Differential Equations
Module 2: Introduction to Scientific Computing
Module 3: Numerical Linear Algebra
Module 4: Optimization
Module 5: Introduction to Financial Mathematics
Module 6: Financial Mathematics
Module 7: Introduction to Mathematical Biology
Module 8: Further Mathematics

YEAR 4

Module 1: Research Project
Module 2: Advanced Topics in Mathematical Finance
Module 3: Advanced Topics in Financial Mathematics
Module 4: Advanced Topics in Mathematical Biology
Module 5: Advanced Topics in Numerical Analysis
Module 6: Advanced Topics in Optimization
Module 7: Advanced Topics in Scientific Computing
Module 8: Advanced Topics in Data Analysis

SPRING TERM

YEAR 1

Module 1: Calculus
Module 2: Linear Algebra
Module 3: Calculus
Module 4: Probability
Module 5: Discrete Mathematics
Module 6: Java Programming
Module 7: Introduction to Computer Science
Module 8: Algebra

YEAR 2

Module 1: Complex Analysis
Module 2: Introduction to Mathematical Biology
Module 3: Probability
Module 4: Further Mathematics
Module 5: Numerical Analysis
Module 6: Data Analysis
Module 7: Mathematical Methods
Module 8: Introduction to Financial Mathematics

YEAR 3

Module 1: Partial Differential Equations
Module 2: Introduction to Scientific Computing
Module 3: Numerical Linear Algebra
Module 4: Optimization
Module 5: Introduction to Financial Mathematics
Module 6: Financial Mathematics
Module 7: Introduction to Mathematical Biology
Module 8: Further Mathematics

YEAR 4

Module 1: Research Project
Module 2: Advanced Topics in Mathematical Finance
Module 3: Advanced Topics in Financial Mathematics
Module 4: Advanced Topics in Mathematical Biology
Module 5: Advanced Topics in Numerical Analysis
Module 6: Advanced Topics in Optimization
Module 7: Advanced Topics in Scientific Computing
Module 8: Advanced Topics in Data Analysis

“the lecturers are passionate and treat you like one of their peers. your study and development is as important to them as it is to you.”

PAUL EGGLETON, MATHEMATICS WITH COMPUTER SCIENCE BSc

course structure

AUTUMN TERM

YEAR 1

Module 1: Mathematical Analysis
Module 2: Linear Algebra
Module 3: Calculus
Module 4: Probability
Module 5: Discrete Mathematics
Module 6: Java Programming
Module 7: Introduction to Computer Science
Module 8: Algebra

YEAR 2

Module 1: Complex Analysis
Module 2: Introduction to Mathematical Biology
Module 3: Probability
Module 4: Further Mathematics
Module 5: Numerical Analysis
Module 6: Data Analysis
Module 7: Mathematical Methods
Module 8: Introduction to Financial Mathematics

YEAR 3

Module 1: Partial Differential Equations
Module 2: Introduction to Scientific Computing
Module 3: Numerical Linear Algebra
Module 4: Optimization
Module 5: Introduction to Financial Mathematics
Module 6: Financial Mathematics
Module 7: Introduction to Mathematical Biology
Module 8: Further Mathematics

YEAR 4

Module 1: Research Project
Module 2: Advanced Topics in Mathematical Finance
Module 3: Advanced Topics in Financial Mathematics
Module 4: Advanced Topics in Mathematical Biology
Module 5: Advanced Topics in Numerical Analysis
Module 6: Advanced Topics in Optimization
Module 7: Advanced Topics in Scientific Computing
Module 8: Advanced Topics in Data Analysis

“the lecturers are passionate and treat you like one of their peers. your study and development is as important to them as it is to you.”

PAUL EGGLETON, MATHEMATICS WITH COMPUTER SCIENCE BSc

course structure

AUTUMN TERM

YEAR 1

Module 1: Mathematical Analysis
Module 2: Linear Algebra
Module 3: Calculus
Module 4: Probability
Module 5: Discrete Mathematics
Module 6: Java Programming
Module 7: Introduction to Computer Science
Module 8: Algebra

YEAR 2

Module 1: Complex Analysis
Module 2: Introduction to Mathematical Biology
Module 3: Probability
Module 4: Further Mathematics
Module 5: Numerical Analysis
Module 6: Data Analysis
Module 7: Mathematical Methods
Module 8: Introduction to Financial Mathematics

YEAR 3

Module 1: Partial Differential Equations
Module 2: Introduction to Scientific Computing
Module 3: Numerical Linear Algebra
Module 4: Optimization
Module 5: Introduction to Financial Mathematics
Module 6: Financial Mathematics
Module 7: Introduction to Mathematical Biology
Module 8: Further Mathematics

YEAR 4

Module 1: Research Project