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Abstract 
Direct rebound effects result from increased consumption of cheaper energy services. For 

example, more fuel-efficient cars encourage more car travel. This study is the first to quantify 

this effect for personal automotive travel in Great Britain. We use aggregate time-series data 

on transport activity, fuel consumption and other relevant variables over the period 1970-2011 

and estimate the direct rebound effect from the elasticity of vehicle kilometres with respect to: 

a) vehicle fuel efficiency (km/MJ); b) the fuel cost of driving (£/km); and c) road fuel prices 

(£/MJ). We estimate a total of 54 models, paying careful attention to methodological issues 

and model diagnostics. Taking changes in fuel efficiency as the explanatory variable, we find 

no evidence of a long-run direct rebound effect in Great Britain over this period. However, 

taking changes in either the fuel cost of driving or fuel prices as the explanatory variable we 

estimate a direct rebound effect in the range 10% to 27% with a mean of 18%. This estimate 

is consistent with the results of US studies and suggests that one fifth of the potential fuel 

savings from improved car fuel efficiency may have been eroded through increased driving. 

We also show how the normalisation of distance travelled (per capita, per adult or per driver) 

affects the results obtained.  

Keywords 
Rebound effect, fuel efficiency, robustness, peak car 

JEL Codes 
R41; Q41 
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1. Introduction 
Direct rebound effects relate to increased consumption of energy services whose effective 

price has fallen as a consequence of improved energy efficiency. For example, we expect 

more fuel-efficient cars to encourage more car travel, thereby offsetting some of the potential 

energy savings. The magnitude of such effects may vary widely between different energy 

services, between different social groups and over time, with long-term rebounds being of 

greatest interest for public policy (Sorrell, 2007). Compared to the majority of energy 

services, the direct rebound effect for personal automotive transport is relatively well-studied 

since data on vehicle travel and fuel consumption is routinely collected by national and 

regional authorities. However, the evidence to date is overwhelmingly dominated by studies 

from the US (Greene, 2012; Hymel et al., 2010; Sorrell, 2007). Since road fuel prices, vehicle 

efficiencies and population densities are comparatively low in the US, while car ownership 

and usage are comparatively high, US results may not provide a reliable guideline for other 

countries. 

For econometric studies, the most obvious measure of the direct rebound effect is the 

elasticity of demand for the relevant energy service (S) with respect to some measure of 

energy efficiency (H ): HKH ln/)ln()( ww SS . For example, the energy service provided by 

private cars may be measured in vehicle kilometres, their fuel consumption (E) in megajoules 

(MJ) and their fuel efficiency ( ES / H ) in km/MJ. As shown by Sorrell and Dimitropoulos 

(2007a), the elasticity of demand for fuel with respect to fuel efficiency ( )(EHK ) is then given 

by: 

1)()( � SE HH KK
 

1 

If )(SHK  is zero, an x% improvement in fuel efficiency should lead to an x% reduction in fuel 

consumption ( 1)( � EHK ). But since improved fuel efficiency makes driving cheaper, some 

of the potential fuel savings may be ‘taken back’ through increased distance travelled 

( 0)( tSHK and 1)( �tEHK ). This in turn may result from greater use of vehicles and/or 

induced increases in the vehicle stock which in turn may be associated with (induced) 

changes in land use patterns that encourage greater car dependence. In practice, however, 

reliable data may not be available on vehicle fuel efficiency, or the limited variation in 

fuel efficiency in the available data sets may preclude robust inference. Hence, a more 

common approach is to estimate the direct rebound effect from one of three price elasticities, 

namely: 
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)(S
SpK : the elasticity of demand for vehicle kilometres with respect to the fuel cost per 

kilometre ( Sp ); 

)(S
EpK : the elasticity of demand for vehicle kilometres with respect to the price of fuel 

( Ep ); or 

)(E
EpK : the elasticity of demand for fuel with respect to the price of fuel. 

Where: H/ES pp  . Estimates of price elasticities may be more precise than estimates of 

efficiency elasticities if there is greater variation in the relevant explanatory variables. But the 

first two of these elasticities ( )(S
SpK ) and )(S

EpK ) can only be considered equivalent to the 

efficiency elasticity ( )(SHK ) if fuel prices are exogenous, the demand for vehicle kilometres 

depends solely on the fuel price per kilometre, and consumers respond in the same way to 

improvements in fuel efficiency as they do to reductions in fuel prices (Sorrell and 

Dimitropoulos, 2007a). While the first of these assumptions is reasonable, the second and 

third are less so (Sorrell and Dimitropoulos, 2007a). For )(E
EpK  to be equivalent to )(SHK  

we need the additional assumption that fuel efficiency is constant - which is problematic for a 

study of rebound effects (Frondel and Vance, 2013). If fuel efficiency is instead influenced by 

fuel prices ( Epf ( H )), the following inequality should hold (Sorrell and Dimitropoulos, 

2007a): 

)()()( ESS
ESE ppp KKK dd

 
2 

If fuel efficiency depends upon fuel prices, then fuel efficiency is endogenous. Moreover, 

there may be other reasons why fuel efficiency is endogenous. For example, if drivers expect 

to travel long distances they may be more likely to choose a fuel-efficient car, thereby 

creating an additional positive correlation between vehicle kilometres and fuel efficiency that 

may bias estimates of the rebound effect (Small and Van Dender, 2005). Possible responses to 

this include finding suitable instrumental variables for fuel efficiency or estimating a 

simultaneous equation model that includes separate equations for the number of cars, the total 

distance travelled and the fuel efficiency of the car fleet. But adequate instruments can be 

difficult, if not impossible, to find (Murray, 2006) and lack of data may preclude the 

estimation of a full structural model. In view of this, Frondel and Vance (2013) recommend 
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using )(S
EpK  as the ‘best’ measure of the direct rebound effect since fuel prices are more 

likely to be exogenous. 

These difficulties have led to a variety of approaches to estimating the direct rebound effect 

for personal automotive transport, with most studies basing their estimates on the elasticity of 

vehicle kilometres with respect to the fuel cost per kilometre ( )(S
SpK ). Sorrell et al (2009) 

reviewed 17 of these studies, including seven using aggregate time-series and cross-sectional 

data, four using aggregate panel data and five using household survey data. All but one of 

these studies applied to the US. Despite wide differences in specifications and methodologies, 

most estimated the long-run direct rebound effect to lie in the range 10-30%.  

Perhaps the most rigorous study was by Small and van Dender (2005) who used panel data 

from US states over the period 1961-2001. Small and van Dender estimated a simultaneous 

equation model that allowed )(S
SpK  to be derived, as well as a variant that allowed )(SHK  to 

be estimated. The variant performed relatively poorly, with the estimate of )(SHK  being small 

and statistically insignificant. Hence, Small and van Dender based their conclusions on their 

estimates of )(S
SpK  - which suggested a long-run direct rebound effect of ~22%. More 

recently, Greene (2012) investigated the direct rebound effect for US transport over a similar 

time period, but using national time-series data instead. Similar to Small and van Dender, 

Greene failed to obtain a statistically significant estimate of )(SHK . However, his estimates of 

)(S
EpK  suggested a long-run rebound effect of ~23% - virtually identical to Small and Van 

Dender. Greene also tested and rejected the hypothesis that )()( SS
Ep HKK �  - thereby 

raising doubts about the validity of )(S
SpK  as a measure of the direct rebound effect. 

In summary, while an efficiency elasticity ( )(SHK ) may be the preferred measure of the direct 

rebound effect for personal automotive transport, most studies have either been unable to 

estimate this elasticity or have found the relevant coefficient to be statistically insignificant. In 

contrast, many studies have used one or more price elasticities ( )(S
EpK , )(S

SPK  or )(E
EpK ) 

as alternative measures of the direct rebound effect for personal automotive transport and 

have commonly obtained statistically significant results. The reasons for these differences are 

unclear, but may be linked to the endogeneity of fuel efficiency, the limited variation of fuel 

efficiency in the available data sets and/or because consumers respond differently to changes 

in fuel prices than to changes in fuel efficiency (perhaps because fuel efficiency is correlated 
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with other attributes of the energy service provided by private cars). While the absence of 

significant estimates of )(SHK  suggests a long-run direct rebound effect close to zero, the 

multiple estimates of price elasticities suggest that the long-run direct rebound effect lies in 

the range 10-30%. These contradictory findings suggest the need for caution in interpreting 

the results of such studies.  

Since the publication of the review by Sorrell (2007), the literature on rebound effects has 

grown considerably. However, most of the estimates for personal automotive transport are in 

line with the above findings (e.g. Greene, 2012; Hymel et al., 2010; Su, 2011, 2012). Notable 

exceptions include Frondel et al (2008; 2012) who find much larger rebound effects for car 

travel in Germany and Linn (2013) who finds the same for the US. Linn’s study is also unique 

in obtaining statistically significant estimates of )(SHK  and in finding these to be larger than 

his estimates of )(S
EpK . Recent US literature has indicated that the direct rebound effect may 

fall over time as incomes rise and car ownership and use approaches saturation levels (Hughes 

et al., 2006; Hymel et al., 2010; Small and Van Dender, 2007).  

All these studies use either aggregate panel data from US states or detailed micro-data on car 

ownership and use by individual households and the large number of observations in these 

datasets allows the specification of structural models that provide more precise parameter 

estimates. But since this type of data is not available for GB, we adopt a simpler approach 

using aggregate time-series data on car use and fuel consumption over the period 1970-2011. 

We develop a number of models with different specifications and use these to estimate and 

compare three different measures of the long-run direct rebound effect, namely ),(SHK  

)(S
SpK  and )(S

EpK . In addition, we explore how different normalisations of our measure of 

distance travelled influence the results and pay careful attention to evaluating and comparing 

the statistical robustness of the estimated models.  

2. Methodology 
Our approach involves estimating a total of 54 models, each of which falls into one of 6 

Groups – listed in Table 1 We first estimate two base models within each Group – one of 

which is a static specification and the second a dynamic specification. We then explore a 

number of variants of those models and use a series of robustness tests to choose the ‘best 

performing' models. Below we explain in turn the definition of model Groups, the 

specification of base models, the specification of model variants and the robustness tests. 
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Model Groups 
The model Groups are defined by the normalisation of the explanatory variable and the 

specification of the fuel costs of driving (Table 1). 

Table 1 Classification of model groups  
Group Type Rebound elasticity Normalisation of vehicle kilometres 

1  

Type A 

Vehicle fuel efficiency 

(km/MJ) 

 

Fuel prices (£/MJ) 

Per capita 

2 Per adult 

3 Per licensed driver 

4  

Type B 

 

 

Fuel cost of driving (£/km) 

Per capita 

5 Per adult 

6 Per licensed driver 

In common with most previous studies, we use the annual distance travelled by personal 

automotive vehicles (in vehicle kilometres) as our explained variable (St). In practice, changes 

in fuel economy may also influence the average load factor of cars (measured by the ratio of 

passenger to vehicle kilometres) or the average power and weight of cars (measured, for 

example by tonne kilometres) but these complexities are not addressed here. 

Previous studies have not been consistent in their specification of distance travelled, either 

measuring it in absolute terms or normalising it to population, the number of adults or the 

number of licensed drivers (Sorrell and Dimitropoulos, 2007b). Changes in the age structure 

of the population, the propensity of young people to learn to drive and/or the proportion of 

female drivers will have different effects on the explained variable depending upon the 

normalisation used - thereby influencing the coefficients of the relevant models. For example, 

if the proportion of licensed drivers in the population is increasing, then normalising distance 

travelled to population may lead to a higher estimate of income elasticity than normalising to 

the number of drivers. To allow for this, we estimate and compare models using all three 

normalisations. 

We then explore two Types of model (A and B) for annual distance travelled, namely:  

x Type A models which include retail fuel prices ( Ep ) and fleet average fuel efficiency 

( H ) as separate explanatory variables, thereby allowing )(S
EpK  and )(SHK  to be 

estimated; and 
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x Type B models which combine fuel prices and fuel efficiency into a single 

explanatory variable, the fuel cost of driving ( H/ES pp  ), thereby allowing )(S
SpK  

to be estimated 

Type B models impose the hypothesis that the response to improved fuel efficiency is 

identical to the response to lower fuel prices, while Type A models allows this hypothesis to 

be tested. By estimating both types, we can compare the results obtained.  

This combination of two types of model and three normalisations of the explained variable 

leads to the six different model groups summarised in Table 1. 

Base models  
In common with most studies in this area, we specify the annual distance travelled (St) by 

personal automotive vehicles in Great Britain as a function of real equivalised household 

income (Yt) and the real fuel cost of driving - whether specified in the Type A ( Ep  and H ) or 

Type B ( H/ES pp  ) forms. We also include a proxy variable for the level of congestion (Ct) 

on GB roads, together with a dummy variable (Xt) that is non-zero in years when there was an 

oil price shock. Using only four variables is appropriate given our limited number of 

observations. 

In each model Group we estimate base models using both static and dynamic specifications. 

The former specify distance travelled as a function of the explanatory values in the same time 

period – thereby implicitly assuming that the observed demand is in equilibrium. But since 

responses to efficiency improvements and fuel price changes take time, this type of model 

may not adequately capture the long-run adjustments we are interested in. Hence we also 

investigate dynamic models in which distance travelled is specified as a function of historic 

values of the explained variables. To conserve degrees of freedom we use the standard ‘partial 

adjustment’ specification which simply adds a one period lag of the explained variable. In 

both cases we choose the standard double log (constant elasticity) formulation.  

The static and dynamic versions of each model type are then as follows: 

Type A static: 

AS
tt

AS
t

AS
t

AS
E

AS
t

ASAS
t uCXpYS

t
������ 543210 lnlnlnln EEHEEEE

 
3 
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Type A dynamic: 

AD
tt

AD
t

AD
t

AD
t

AD
E

AD
t

ADAD
t uSCXpYS

t
������� �16543210 lnlnlnln EEEHEEEE

 
4 

Type B static: 

AS
tt

BS
t

BS
S

BS
t

BSBS
t uCXpYS

t
����� 43210 lnlnln EEEEE

  
5 

Type B dynamic: 

BD
tt

BD
t

BD
t

BD
S

BD
t

BDBD
t uSCXpYS

t
������ �1543210 lnlnln EEEEEE

  
6 

Where tS  is vehicle or passenger kilometres travelled by the personal automotive fleet in 

Great Britain (GB) in year t, 
tEp  is real average fuel prices (£/MJ), tH  is fleet average fuel 

efficiency (vkm/MJ), 
tsp  is real fuel costs per vehicle kilometre (£/vkm), tY  is real 

equivalised household income, tX  is a dummy variable for the oil price shock years of 1974 

and 1979, tC  is a proxy measure for road congestion and tu  is the error term.  

For illustration, the long-run elasticity of distance travelled with respect to the fuel cost of 

driving ( )(S
SpK ) is given by BS

2E  in the static Type B model (Equation 5) and 

)1/(( 52
BDBD EE �  in the dynamic version (Equation 6). In the latter, BD

2E  is the short-run 

elasticity and BD
5E  measures the speed of adjustment. 

We form our proxy measure of congestion ( tC ) by dividing the normalising variable for the 

explained variable (i.e. population, number of adults or number of licensed drivers) by the 

total road length in GB in that year. This is a relatively crude approach, but data on 

congestion in GB is of poor quality and actual congestion is likely to be endogenous (Small 

and Van Dender, 2005). Alternative methods for measuring congestion are discussed in (Su, 

2010). We form our fuel consumption variable ( tE ) by summing petrol and diesel 

consumption by cars and our fuel price variable ( tEp ) by weighting the price of each by their 

share of total car fuel consumption. This aggregation is necessary because our data on 

distance travelled does not distinguish between petrol and diesel cars. In practice, diesel cars 

tend to be more fuel-efficient, larger and more powerful than petrol cars, as well as being 

more intensively used (Schipper and Fulton, 2013). The proportion of diesel cars in the GB 
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fleet grew rapidly after 1990, and by 2011 diesels accounted for ~40% of total GB car fuel 

consumption. 

Model variants 
With two base models (static and dynamic) in each of six Groups, this leads to a total of 12 

base models. We then investigate re-specifying these models in four ways, described below.  

Quadratic income variants 
First, we investigate the addition of a quadratic term for log equivalised per capita income 

( tYln ) to allow for the possibility of a ‘peaking’ relationship between income and distance 

travelled. Such a relationship is suggested by our data (Figures 1 and 2) and is consistent with 

the broader evidence on ‘peak car’ (Metz, 2013). For illustration, the Type B static model 

becomes: 

AS
tt

BS
t

BS
S

BS
t

BS
t

BSBS
t uCXpYYS

t
������ 543

2
210 ln)(lnlnln EEEEEE

 
7 

The level of equivalised per capita income at which distance travelled starts to fall ( pY ) is 

then given by: 

»
»
¼

º

«
«
¬

ª�
 BS

BS

pY
2

1

2
exp

E
E

 8 

And the long-run income elasticity of distance travelled is given by: 

YS BSBS
Y ln2)( 21 EEK � 
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The equivalent expression for this elasticity in the dynamic model is: 

� �
BD

BDBD

Y
Y

S
5

21

1

ln2
)(

E

EE
K

�

�
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Hence, in the quadratic variants, the income elasticity varies with the level of per capita 

income and becomes negative when pYY ! . In presenting the results below, we evaluate this 

elasticity at the mean value of Yln  in our dataset. 

Asymmetric variants 
Second, we investigate the possibility of asymmetric responses to changes in either fuel prices 

( Ep  - Type A) or driving costs ( Sp  - Type B). Asymmetric responses have been widely 

observed in the literature (Gately, 1992; Gately and Huntington, 2002) and are typically 

ascribed to a combination of induced technical change, irreversible investments, habits and/or 
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the embodiment of higher efficiency standards in regulations (Frondel and Vance, 2013). 

Following Dargay (2007), our approach involves decomposing tEp  (or tSp ) as follows: 

f
E

r
EEE ttt

pppp �� 
0  

11 

Where: 

> @¦ � 
�t

EE
r
E ttt

ppp )(,0max
1  12 

> @¦ � 
�t

EE
f
E ttt

ppp )(,0min
1  13 

Where r
Et

p  ( f
Et

p ) represents the cumulative effects of all increases (decreases) in price since 

the start of the sample:1 Hence, r
Et

p  is non-negative and non-decreasing, while f
Et

p  is non-

positive and non-increasing. It is the coefficient on the latter that is relevant to rebound 

effects. 

Reduced variants 
Third, we investigate eliminating variables that are found to be insignificant2 in the above 

specifications and then re-estimating these reduced models. This approach places a priority 

on parsimony. In practice, if the eliminated variables are co-linear they may be individually 

insignificant but jointly significant. For simplicity we do not test for this, but a test for 

multicollinearity forms one of our robustness checks. 

Co-integrated variants 
Finally we investigate the stationarity of the time series in our ‘best fitting’ static models. 

With time series data it is common for one or more of the variables to be non-stationary, 

creating the risk of spurious regressions.3 While this may be avoided by differencing the data, 

this would prevent the estimation of long-run relationships. But it is possible for two or more 

non-stationary variables to be co-integrated, meaning that certain linear combinations of these 

variables are stationary and that there is a stable long-run relationship between them. Co-

integration techniques allow these relationships to be identified. Hence, we also test the time 

series and residuals in the ‘best performing’ static models for unit roots and, if found, re-

estimate these co-integrated models using relevant techniques. 
                                                           
1 An alternative approach (Gately and Huntington, 2002) distinguishes between rises that do or do not result in new maxima, but this 
categorisation is sensitive to the starting point of the data (Griffin and Schulman, 2005). 
2 Unless otherwise stated, the significance level in the reported results is 0.05 (5%).  
3 The mean and variance of a stationary process are constant over time and the covariance between two points depends only on the time 
distance between them and not the time period itself. 
. 
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Modelling sequence 
This procedure leads us to estimate a total of nine models in each of the six groups, or 54 
models in total. Each group contains static and dynamic versions of the base, quadratic, 

asymmetric and reduced specifications, together with a single co-integrated specification. We 

estimate the co-integrated model with a specialised technique (‘canonical co-integrating 

regression’) and the remainder with OLS. 

The procedure for selecting the models relies upon a comprehensive series of robustness tests 
that are described below. These tests are used to create an aggregate robustness score for each 

model which guides their selection at each stage. The procedure for selecting the model 

variants is as follows: 

1. Base models: We first estimate the base static and dynamic models in each of the twelve 

groups (using OLS) and evaluate the robustness of each using the tests illustrated in Table 

2 (12 models in total). 

2. Quadratic income variants: We then add a quadratic term for log per capita income to 

each model and repeat the estimations and robustness tests. We compare the aggregate 

robustness score for each model in Stage 2 with the corresponding score for the model 

without the quadratic income term from Stage 1 and choose the best performing 

specification to take through to Stage 3 (12 models in total). 

3. Asymmetric variants: We take the best performing model (base or quadratic) and add 

terms to allow for asymmetric price responses. We then repeat the estimations and 

robustness tests and also apply a Wald test to identify whether asymmetry is present. We 

select the Stage 3 specification over the Stage 1 or 2 specifications if the former has a 

higher robustness score AND the Wald test is significant. If not, we continue with the 

Stage 1 or Stage 2 specification. The selected models are taken through to Stage 4 (12 

models in total). 

4. Reduced variants: We take the selected models from Stage 3 and remove those 

coefficients which were found to be insignificant at the 5% level– thereby creating 

‘reduced’ specifications. We then repeat the estimations and robustness tests. (12 models 

in total) 

5. Co-integrated variants: Finally, we examine the results of the last four stages and select 

the ‘best performing’ static models in each of the six groups on the basis of their 

robustness scores. For each of these we test the data and residuals for unit roots using a 

method proposed by Phillips and Perron (1988). If the variables are found to be co-
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integrated we re-estimate the model using a co-integration technique proposed by Park 

(1992). In practice, all six ‘best performing’ models were found to be co-integrated4 and 

hence all were re-estimated at this stage (6 models in total). 

Robustness tests 
To estimate the robustness of each model, we conduct a series of diagnostics tests and 

aggregate the results into an overall robustness score - with higher scores implying better 

models. In Stages 1-4, we evaluate each static and dynamic model against thirteen different 

diagnostic tests that are summarised in Table 2Error! Reference source not found.. We 

score the performance of each model against each of these tests and construct a weighted sum 

of results to obtain an overall score which we express in percentage terms. We use two 

different weighting rules: the first based on our judgement of the ‘relative importance’ of each 

diagnostic test, and a second which gives equal weighting to each test (to avoid charges of 

subjectivity).  

Some of these tests are not appropriate for co-integrated models, while others are not 

available for such models with our software (EViews). Hence, for the co-integrated models in 

Stage 5 we use a more limited set of six diagnostic tests summarised in Table 3. Tests for 

serial correlation and endogeneity are not included for the cointegrated models and there is 

some debate about whether our estimation technique (‘canonical co-integrating regression’) is 

immune to these (Kurozumi and Hayakawa, 2009; Montalvo, 1995; Park, 1992). CUSUM and 

CUSUM of squares are also not available for co-integrated models in EViews so instead we 

use a test that simultaneously identifies co-integrated time series and parameter stability 

(Hansen, 1992). Similarly, the three information criteria are not available, so we use a simple 

goodness of fit measure instead (R2).  

                                                           
4 All variables in the best performing models (excluding the binary oil price shock variable) could not reject the null hypothesis of a unit root 
(i.e. non-stationarity) in levels form, but all variables rejected the null in first differences. In all cases, the residuals reject the null hypothesis 
of a unit root in levels form. 
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Table 2 Summary of diagnostic tests and scoring rules for the models in Stages 1-4 

No. Name Description Weighting 
A 

Weighting 
B 

1 Coefficient signs Do all statistically significant coefficients 

(P<0.05) have the expected signs? Score for yes. 

2 1 

2 Coefficient 

magnitudes 

Do all statistically significant coefficients have 

plausible magnitudes? Score for yes5 

2 1 

3 Serial correlation Lagrange multiplier6 with two lags used to test 

for serial correlation of the residuals (Breusch 

and Pagan, 1979). Score for absence of serial 

correlation. 

2 1 

4 Heteroscedasticity Lagrange multiplier used to test for 

heteroskedasticity of the residuals (Breusch and 

Pagan, 1979). Score for absence of 

heteroscedasticity  

1 1 

5 Normality Lagrange multiplier used to test for normality of 

the residuals (Jarque and Bera, 1987). Score for 

normally distributed residuals. 

1 1 

6 Multicollineairty  Centred variance inflation factors used to test 

for collinear variables. Score for absence of 

multicollinearity. 

1 1 

7 CUSUM Cumulative sum of recursive residuals used to 

test for the stability of coefficient estimates over 

time (Brown et al., 1975). Score for residual 

stability 

2 1 

8 CUSUM of 

squares 

Cumulative sum of recursive squared residuals 

used to test the. stability of coefficient estimates 

over time (Brown et al., 1975). Score for 

residual stability. 

2 1 

9 Akaike 

information 

Akaike information criterion (Akaike, 1974; 

Akaike, 1998) used to evaluate the trade-off 

Max of 1 Max of 1 

                                                           
5 Details about the boundaries used to operationalise this criterion are available from the authors. 
6 Used in preference to Durbin-Watson test because the latter is only operationalised with one lag and is not applicable where lagged 
explained variables are included. 
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criterion between goodness of fit and model complexity 

in each model group.7 Involves comparing and 

ranking the base, quadratic, asymmetric and 

reduced model variants in each group. Score 1 

for rank 1, 0.5 for rank 2, 0.33 for rank 3 and 0 

for rank 4.  

10 Hannan and 

Quinn 

information 

criterion 

Hannan and Quinn information criterion 

(Hannan and Quinn, 1979) used to evaluate the 

trade-off between goodness of fit and model 

complexity in each model group. Involves 

comparing and ranking the base, quadratic, 

asymmetric and reduced model variants in each 

group. Score 1 for rank 1, 0.5 for rank 2, 0.33 

for rank 3 and 0 for rank 4.  

Max of 1 Max of 1 

11 Schwarz 

information 

criterion 

Schwarz information criterion (Schwarz, 1978) 

used to evaluate the trade-off between goodness 

of fit and model complexity in each model 

group. Involves comparing and ranking the 

base, quadratic, asymmetric and reduced model 

variants in each group. Score 1 for rank 1, 0.5 

for rank 2, 0.33 for rank 3 and 0 for rank 4.  

Max of 1 Max of 1 

12 RESET-1 Ramsey's regression specification error test used 

to determine whether the inclusion of 1 ftted 

term (e.g. squares of the explanatory variables) 

would better describe the data. Score for passing 

this test Score for passing this test. 

2 1 

13 RESET-2 Ramsey's regression specification error test used 

to determine whether the inclusion of 2 fitted 

terms (e.g. cubes and squares of the explanatory 

variables) would better describe the data. Score 

for passing this test. 

2 1 

 
 

                                                           
7 Models which are too complicated risk ‘over-fitting’ the data (Burnham and Anderson, 2002). Alternative tests are available which define 
parsimony in terms of the complexity of model functional form (Rissanen, 1987). 
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Table 3 Summary of diagnostic tests and scoring rules for the models in Stage 5  
No. Name Description Weighting 

A 
Weighting 

B 

1 Coefficient 

signs 

Do all statistically significant coefficients 

(P<0.05) have the expected signs? Score for yes. 

2 1 

2 Coefficient 

magnitudes 

Do all statistically significant coefficients have 

plausible magnitudes? Score for yes 

2 1 

3 Normality Lagrange multiplier used to test for normality of 

the residuals (Jarque and Bera, 1987). Score for 

normally distributed residuals. 

1 1 

4 Multicollinearity Centred variance inflation factors used to test for 

collinear variables. Score for absence of 

multicollinearity. 

1 1 

4 Hansen A test after Hansen (Hansen, 1992) used to test 

the stability of coefficient estimates over time. 

Score for passing this test.  

2 1 

5 R2 Simple R2 test used to evaluate goodness of fit. 

For scoring system A (B), score 2 (1) if R2>0.95 

and score 1.75 (0.875) if R2 > 0.90 

2 1 

3. Data 
We take data on distance travelled by cars in GB (St) over the period 1970-20118 from DTp 

(2012), and data on UK car fuel consumption (Et) over the same period from DECC (2013a). 

Both time series include commercially rented vehicles (e.g. taxis) and company cars, since 

travel and fuel consumption by these groups are not independently identified.9 We scale the 

DECC data in proportion to the GB share in UK population and use this to construct our 

aggregate fuel efficiency variable ( ttt ES / H ). Schipper et al (1993) provides an insightful 

discussion of the uncertainties and potential biases with this type of approach, but our data 

provides little alternative. We take nominal petrol and diesel prices from DECC (2013b), 

convert these to 2011 prices with a ‘before housing costs deflator’ (Cribb et al., 2013) and 

construct an aggregate fuel price by weighting by the relative share of petrol and diesel 

consumption in each year. Reflecting changes in fuel specifications, we use the price of 4* 

petrol before 1989 and the price of ‘premium unleaded’ petrol after that date (Bolton, 2013). 

                                                           
8 We excluded 2012 as household income data for that year was not available at the time the research was carried out.  
9 Changes in the tax treatment of company cars are likely to have influenced both new-car purchases and car usage patterns. 
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We take data on mean equivalised real household income (Yt) from IFS (2013), population 

data from ONS (2014) and data on licensed drivers and road length from DTp (2012, 2013). 

Where necessary, we use linear interpolation to adjust these data series to end of year values. 

The use of equivalised incomes adjusts for changes in average family size and composition. 

Trends in each of these variables are illustrated in Figures 1-3. Vehicle kilometres have 

approximately doubled since 1970, but the rate of growth slowed after the 1990 recession, 

subsequently plateaued and then declined (Figure 1). This pattern (‘peak car’) has been 

observed in several countries and typically predates the fall in per capita income that followed 

the 2008 financial crisis. This important trend appears to be driven by a number of factors that 

are only partly captured by the (quadratic) income and congestion variables in our 

specifications (Metz, 2013).  

Fleet average on-road fuel efficiency has improved by ~67% since 1970 with most of these 

improvements occurring after 1980 (Figure 2). Retail fuel prices were volatile during the 

1970s and have since been on an upward trend. The range of variation in these variables in 

GB over the last 40 years has been less than in the US owing to: first, the relatively higher 

efficiency of the GB vehicle fleet; second, the absence (until recently) of fuel efficiency 

regulations in GB; and third, the much higher taxation of road fuels in GB (~60% of retail 

price) which dampens the impact of international oil price fluctuations. The fuel price trends 

since 1990 have increased the average fuel cost per kilometre while the fuel efficiency trends 

have reduced it, with the result that the real fuel cost per vehicle kilometre ( Sp ) has remained 

fairly constant since that date. Such factors are likely to make the estimation of rebound 

effects more difficult for GB than for the US, since there is less variation in the relevant 

explanatory variables.  

Figure 3 shows that equivalised real per capita income doubled between 1970 and 2009, but 

fell slightly following the financial crisis. Road building has kept up with population growth 

throughout this period, but not with the growth in the number of drivers, leading to a 65% 

increase in the ratio of drivers to road length (~89 drivers per km in 2011). This is likely to 

have increased congestion, although factors such as the degree of urbanisation, traffic 

management and changes in the relative proportion and use of different types of roads will 

also affect congestion trends.  
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Figure 1 Trends in three measures of distance travelled in cars in Great Britain 1970-2011. 

 

Figure 2  Trends in fuel intensity, real fuel prices and real fuel cost per kilometre for cars in 
Great Britain 1970-2011 

 

Figure 3 Trends in income and three congestion proxies for Great Britain 1970-2011 

 



19 
 

4. Results 
In this section we report and interpret the most relevant results from the 54 modelling runs. 

We focus upon statistically significant estimates of the relevant coefficients and give priority 

to the more robust models. Specifically, we report in turn: the coefficient estimates; the 

significant estimates of rebound effects; and the relationship between rebound estimates and 

model robustness. Full details of the results are available from the authors. 

Coefficient estimates 
As shown in Table 4, we obtained 39 statistically significant estimates of the long-run income 

elasticity of distance travelled, ranging from 0.18 to 0.83. The results suggest that, on average, 

a 1% increase in equivalised per capita income was associated with a 0.51% increase in 

distance travelled over this period. As expected, normalising distance travelled to the number 

of licensed drivers led to lower estimates of income elasticity, but there was little difference 

between the results for static, dynamic and co-integrating specifications. For comparison, a 

review of international studies by Goodwin et al (2004) found a mean estimate for income 

elasticity of 0.5 from static models and 0.3 from dynamic models (both for vehicle 

kilometres) while a UK study by Dargay (2007) produced estimates in the range 0.95 to 1.12.  

The quadratic specifications performed well, with 33 significant estimates of the level of 

income at which vehicle kilometres began to fall – ranging from £457 to £639. The mean 

estimate of £532/week was slightly lower than the mean equivalised household income in 

2003 - although the latter fell after 2008. 

Table 4 Mean estimates of the elasticity of distance travelled with respect to equivalised per 
capita income 

 Per capita Per adult Per driver Mean 

VKM 0.57 

(12/18) 

0.57 

(13/18) 

0.39 

(1418) 

0.51 

(39/54) 

Note Each table entry is the mean of the statistically significant estimates in that category, while the numbers in brackets 

indicate the fraction of models in each category that provided statistically significant estimates. 

We obtained 18 statistically significant estimates of the long-run elasticity of distance 

travelled with respect to our proxy measures of ‘congestion’.10 These suggest that, on average, 

a 1% increase in these proxies was associated with a 1.25% reduction in vehicle kilometres 

over this period. Although road length per driver changed significantly more than road length 

per person and per adult over this period (Figure 3), the coefficient on the former was not 
                                                           
10 Estimates ranged from -1.47 to -0.85. 



20 
 

significant in any of the relevant models. However, this difference may result in part from the 

explained variable being normalised to the same measure as the congestion proxy in each 

model (i.e. people, adults or drivers). US studies (Hymel et al., 2010; Small and Van Dender, 

2005) have yielded substantially smaller estimates for these proxies, but congestion is likely 

to be lower in the US since there is around three times more road space per driver.  

We obtain 23 statistically significant estimates of the oil price shock coefficient, ranging from 

-0.068 to -0.041. On average, these suggest that the 1974 and 1979 oil price shocks were 

associated with a contemporaneous 5.2% reduction in vehicle kilometres. Despite applying to 

GB, our mean estimate for this variable is close to recent estimates from the US (Greene, 

2012; Hymel et al., 2010; Small and Van Dender, 2005). 

The most important results are the coefficients relevant to rebound effects. These are 

summarised below. 

Rebound estimates 
Estimates of the direct rebound effect can be obtained from the coefficients on fuel efficiency 

(H ) or fuel prices ( Ep ) in the Type A models, or the coefficient on the fuel cost of driving 

( Sp ) in the Type B models. Tables 7 and 8 list those estimates that were found to be 

statistically significant with plausible magnitudes and signs, and also indicate the robustness 

score of the relevant model. The estimates are listed in descending order of model robustness 

within each category. 

Importantly, none of the Type A models provided a statistically significant estimate of the 

elasticity of vehicle or passenger kilometres with respect to fuel efficiency ( )(SHK ). In other 

words, using the preferred measure of the long-run direct rebound effect, we find no evidence 

improvements in fuel efficiency have led to an increase in distance travelled in GB over the 

last 40 years. As noted earlier, two of the most rigorous US studies reached exactly the same 

conclusion (Greene, 2012; Small and Van Dender, 2005).  

However, we do find evidence that reductions in fuel prices have led to an increase in 

distance travelled ( )(S
EpK ). As shown by Table 5, 11 of the Type A models provided 

statistically significant estimates of )(S
EpK , with co-integrating specifications scoring higher 

against our robustness criteria and with no significant results from the dynamic models. These 

results imply a long-run direct rebound effect in the range 11% to 22%, with a mean of 
17%.  
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Table 5 also suggests that normalising distance travelled the number of drivers leads to lower 

estimates of the direct rebound effect, while normalising to the number of adults leads to 

higher estimates (although here the difference is smaller). One possible interpretation of the 

former is that lower driving costs encourage more people to gain licenses and purchase cars, 

as well as to drive those cars further. But to test this hypothesis properly we would need to 

estimate a full structural model.  

Table 5 Estimated rebound effects for fuel prices ( )(S
EPK ) 

 Per capita Per adult Per driver Mean  

VKM 
17.9% 

(3/9) 

20.5% 

(4/9) 

13.8% 

(4/9) 

17.2% 

(11/27) 
Note Each table entry is the mean of the statistically significant estimates in that category, while the numbers in brackets 

indicate the fraction of models in each category that provided statistically significant estimates. 

We also find evidence that a reduction in the fuel cost of driving ( H/ES pp  ) has led to an 

increase in distance travelled, with 17 of the Type B models providing statistically significant 

estimates of )(S
SpK  (Table 6). More models provided significant estimates of )(S

SPK  than 

)(S
EPK , despite fuel prices varying more than the fuel cost of driving over the last 20 years 

(Figure 3). Dynamic models provided slightly larger estimates (Table 8). The results imply a 

long-run direct rebound effect in the range 11% to 27%, with a mean of 19%.11 Again, 

normalising distance travelled to the number of drivers appears to lead to lower estimates of 

the direct rebound effect, while normalising to the number of adults leads to larger estimates.  

Table 6 Estimated rebound effects for fuel cost per kilometre ( )(S
SPK ) 

 Per capita Per adult Per driver Mean  

VKM 
18.8% 

(5/9) 

21.7% 

(7/9) 

14.4% 

(5/9) 

18.7% 

(17/27) 
Note Each table entry is the mean of the statistically significant estimates in that category, while the numbers in brackets 

indicate the fraction of models in each category that provided statistically significant estimates. 

In summary, if we were to base our estimates on )(SHK  we would conclude that the long run 

direct rebound effect was approximately zero over this period, while if we to base o A 

estimates on either )(S
EPK  or )(S

SPK  we would conclude that it lay in the range 10 to 27%, 

                                                           
11 Short-run estimates from the dynamic models range from 5.4% to 8.3% (average = 6.8%). 
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with a mean of 18%. The estimates vary with the specification and measures used, but appear 

slightly lower when distance travelled is normalised to the number of drivers rather than to 

the number of adults or people and slightly higher when rebound is estimated with respect to 

the fuel cost per mile, rather than fuel prices. However, there is a significant overlap in the 

range of estimates for each specification and measure.  

These results are consistent with the majority of studies in this area, most of which apply to 

the US and measure the direct rebound effect from )(S
SPK . Hence, the differences in 

population density, land use patterns, car ownership and other variables between the US and 

the UK do not appear to have a significant influence on the estimated direct rebound effect. 

But as noted by Greene (2012) and Small and van Dender (2005), there is an important 

discrepancy between estimates of the direct rebound effect based upon efficiency elasticities 

and those based upon price elasticities. To explore this point further, we applied a Wald Test 

to 41 of the 54 Type A models12 to test the hypothesis (imposed in the Type B models) that 

the elasticity of distance travelled with respect to fuel prices was equal and opposite to the 

elasticity of distance travelled with respect to efficiency ( )()( SS
Ep HKK � ).The results were 

ambiguous. Specifically:  

x The coefficients on the two variables were not found to be significantly different in 8 

of the 20 models, but in these cases the coefficient on fuel efficiency was always 

insignificant although mostly of the expected sign (in 6 of the 8 models).   

x Conversely, the coefficients on the two variables were found to be significantly 

different in the remaining models, but in these cases the coefficient on fuel efficiency 

was usually statistically significant but always the ‘wrong’ sign (implying that more 

efficient cars encourage less driving).  

Following Greene (2012), we conclude that the evidence in support of the hypothesis that 

consumers respond in the same way to improved fuel efficiency as to lower fuel prices is 

weak - despite the importance of this hypothesis for empirical estimates of the direct rebound 

effect. Greene speculates that one reason for this result is that the lower running costs of fuel-

efficient cars are offset by higher vehicle purchase costs - related in the US case to the 

requirements of CAFE. But not only does this argument rely upon the questionable 

assumption that driving decisions are based upon the long-run cost per kilometre (including 

                                                           
12 The test was not applied to the seven the Type A models where fuel efficiency and / or price had been removed from their 
specifications in Stage 4. 
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discounted capital costs), it also assumes that more fuel-efficient cars are more expensive. 

The opposite may be the case in the UK, since fuel-efficient cars are commonly smaller and 

cheaper. An alternative explanation is that the consumer response to improved fuel efficiency 

systematically deviates from the orthodox economic model. If this applies more generally, it 

has important implications for the determinants and magnitude of rebound effects. 

Table 7 Statistically significant estimates of the elasticity of vehicle kilometres with respect to 
fuel prices ( )(S

EPK )  

Specification Metric Robustness score 
(%) 

Elasticity Rebound effect 
(%) 

Co-integrated Capita 90 -0.181 18.1 

Static Asymmetric Capita 83 -0.200 20.0 

Static Reduced  Capita 70 -0.155 15.5 

Co-integrated Adult 90 -0.197 19.7 

Static Asymmetric Adult 83 -0.210 21.0 

Static Reduced Adult 80 -0.173 17.3 

Static Base Adult 25 -0.222 22.2 

Co-integrated Driver 88 -0.145 14.5 

Static Reduced Driver 72 -0.138 13.8 

Static Quadratic Driver 53 -0.106 10.6 

Static Base Driver 33 -0.164 16.4 

Mean   70 -0.172 17.2 
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Table 8 Statistically significant estimates of the elasticity of vehicle kilometres with respect to 
fuel cost per kilometre ( )(S

SPK )  

Specification Metric Robustness score 
(%) 

Elasticity Rebound effect 
(%) 

Co-integrated Capita 90 -0.176 17.6 

Static Asymmetric Capita 85 -0.198 19.8 

Dynamic Asymmetric Capita 71 -0.268 26.8 

Static Reduced Capita 68 -0.154 15.4 

Static Base Capita 20 -0.146 14.6 

Dynamic Reduced Adult 95 -0.235 23.5 

Co-integrated Adult 90 -0.189 18.9 

Dynamic Asymmetric Adult 85 -0.266 26.6 

Static Asymmetric Adult 85 -0.206 20.6 

Dynamic Quadratic Adult 78 -0.230 23.0 

Static Reduced Adult 78 -0.169 16.9 

Static Base  Adult 30 -0.221 22.1 

Co-integrated Driver 88 -0.131 13.1 

Static Reduced Driver 61 -0.129 12.9 

Static Quadratic Driver 52 -0.109 10.9 

Static Asymmetric Driver 51 -0.122 12.2 

Static Base Driver 33 -0.229 22.9 

Mean  68  18.7 

Robustness tests 
We also explored the relationship between the aggregate robustness score of each model and 

the estimated size of the rebound effect. This relationship is illustrated in Figure 4 which 

includes all 28 statistically significant long-run rebound estimates. Here, open circles indicate 

robustness scores for ‘Weighting A’ and shaded circles ‘Weighting B’ (Table 2). The figure 

suggests that the estimated size of the rebound effect is not systematically related to the 

robustness of the model. Using both the ‘weighting A’ and ‘weighting B’ results, this 

relationship was found to be statistically insignificant using three different correlation 

methods.  
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Figure 4 Relationship between the estimated size of the rebound effect and the robustness 
score of the model 

 
Figure 4 shows the relationships between model robustness and the estimated magnitude of 

the other coefficients. The relationship is linear in the case of the oil price shock dummy, 

implying that as models get ‘better’ the estimated impact of the oil price shock on distance 

travelled becomes less pronounced. A saturating relationship is suggested in the case of the 

congestion proxies, with more robust models suggesting a smaller impact of congestion. No 

systematic relationship is apparent for income and the income turning point. Table 9 

summarises our statistical analysis of these relationships. 
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Figure 4 Relationship between the magnitude of estimated coefficients and the robustness of 
models: a) oil price shock dummy; b) equivalised per capita income; c) income turning point; 
and d) congestion  
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Table 9 Coefficient magnitude versus regression robustness  

Coefficient n Are coefficient magnitudes correlated with 
regression robustness?13 

  Approach A Approach B 

Rebound 28 

   r = 0.157, P = 0.426 

tau = 0.170, P = 0.212 

rho = 0.222, P = 0.257 

  r  = 0.132, P = 0.503 

tau = 0.211, P = 0.122 

rho = 0.248, P = 0.202 

Oil price dummy 23 

   r = 0.551,  P = 0.006 

tau = 0.420, P = 0.006 

rho = 0.633, P = 0.001 

r = 0.568, P = 0.005 

tau = 0.472, P = 0.002 

rho = 0.650, P = 0.001 

Income 39 

   r = -0.251, P = 0.124 

tau = -0.060, P = 0.594 

rho = -0.100, P = 0.544 

    r = -0.278, P = 0.086 

tau = -0.064, P = 0.569 

rho = -0.107, P = 0.518 

Income TP  33 

    r = -0.032, P = 0.861 

tau = 0.006, P = 0.963 

rho = 0.009, P = 0.960 

   r = 0.014,  P = 0.937 

tau = 0.031, P = 0.803 

rho = 0.060, P = 0.739 

Congestion 18 

tau = 0.412, P = 0.020 

rho = 0.508, P = 0.031 

  R2 = 0.272,  P = 0.092 

tau = 0.407, P = 0.022 

rho = 0.520, P = 0.027 

  R2  =  0.234, P = 0.136 

5. Conclusions 
This study has sought to quantify the long-run direct rebound effect for personal automotive 

transport in Great Britain over the last 40 years. By estimating a range of models we are able 

to compare estimates of the rebound effect using different elasticities, different normalisations 

of the explained variable and different specifications. There are three conclusions.  

First, our data do not support the hypothesis that consumers respond in the same manner to 

improvements in fuel efficiency as they do to reductions in fuel prices. If changes in fuel 

efficiency are taken as the appropriate explanatory variable, we find no evidence of a long-

run direct rebound effect in GB over the last 40 years. However, if changes in either the fuel 

cost of driving or fuel prices are taken as the appropriate explanatory variable we find good 

evidence of a direct rebound effect, with most estimates lying in the range 10% to 27% with 

a mean of 18%. These estimates are consistent with those obtained by most studies of this 

topic - although these primarily relate to the US.  

                                                           
13 Two-tailed tests are used in all cases. The lack of previous studies on the relationship between robustness and model predictions prevents 
making the directional hypotheses which are necessary for one-tailed tests. For congestion, Pearson’s r is excluded and R2 values from curvi-
linear (quadratic) regressions are included because the data are non-linear. 
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Second, we find good evidence that estimates of rebound effects are larger when distance 

travelled is normalised to population or the number of adults rather than to the number of 

drivers. This may be because lower driving costs encourage more people to gain licenses and 

purchase cars - but to test this properly would require a full structural model. Earlier studies 

of this topic have not been consistent in their normalisation of distance travelled which can 

complicate the comparison of results.  

Third, we found some evidence that the elasticity of distance travelled with respect to fuel 

cost per mile was greater than the elasticity of distance travelled with respect to fuel prices. 

This is consistent with theoretical expectations (Equation 2) and demonstrates how the choice 

of measure for the direct rebound effect can influence the results obtained. If, as Frondel and 

Vance (2013) argue, the elasticity with respect to fuel prices is preferred, then many of the 

estimates in the literature may overestimate the direct rebound effect.  

Since this is the first study of this type for Great Britain, there is considerable scope for 

improving the analysis. Specific issues to investigate include: improving the treatment of 

congestion; investigating the effect of company car taxation and the shift to diesel cars; and 

exploring whether and how the direct rebound effect has changed over time. The last issue is 

particularly important, since the growing evidence for ‘peak car’ implies that improvements 

in vehicle fuel efficiency may have much less impact on distance travelled than in the past. 

This phenomenon is partly captured by our quadratic specifications which associate increases 

in income with reductions in distance travelled once income exceeds a certain level. 

However, the underlying reasons for this trend are unclear and it is possible that a future 

period of economic stability and lower fuel prices will stimulate renewed traffic growth. Also, 

we expect larger and more rapid improvements in on-road fuel efficiency over the next 

decade, following the adoption of mandatory standards by the EU. Such changes could 

potentially stimulate more driving. 

Finally we observe that no previous study has explored the relationship between the multi-

dimensional diagnostic performance of models and the estimated magnitude of coefficients. 

Although we find little evidence that less robust models produce systematically biased results, 

this issue is worthy of further investigation.   
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