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Learning Using Privileged Information

A Unified Approach

Summary

This report revolves around the concept that we can learn better rules for classification if we have more
data. The more data we have, the better we can emulate some ground truth. However, this falls down
in the real world. When we come to make predictions we don’t always have all the data available.
Consider trying to diagnose a patient as either healthy or unwell based solely on a scan of their body.
Despite having entire patient histories available, current machine learning techniques require us to
simply learn from past scans and a label associated with them. This paper examines techniques within
the Leaning Using Privileged Information (LUPI) paradigm that take advantage of extra relevant and
useful data when training our classifier. This way we can incorporate extra information about our data
into our classifier during training, though we can still make predictions about whether the patient
is well or not based solely on their body scan. This paper shows how to implement state of the art
methods for performing LUPI and proposes a new technique. Furthermore a novel approach to the
application of LUPI is introduced and implemented.
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Preface

I feel privileged to have been introduced to LUPI. Not only has it proved to be a challenging topic,
but I have found it to be a rewarding and rich area to explore. The initial scope for this project
was to understand and write about a recent (2015) paper, with the extension of implementing the
technique described. This proved tricky as the paper was incredibly terse and contained some misleading
descriptions, which are highlighted in Appendix F. As such I have had to derive all implementations
myself. The implementations have all been built from scratch requiring a level of math beyond that
which has been required in any computer science module. Understanding how privileged information is
incorporated into classification techniques has provided me with a level of understanding about the
nature of privileged information. In chapter 4 I try to demonstrate how privileged information e↵ects
our classifiers and ‘lift the lid’ on what’s occurring in privileged space graphically. To my knowledge
this is the first time that this has been attempted.

Furthermore, the SVM�+ classifier built in this paper has been used by the SMiLe CLiNiC for an
upcoming paper, a new classifier has been invented, implemented and demonstrated (see chapter 5), and
a novel application for privileged information has been implemented which warrants further exploration
(chapter 8).

The code written for this paper has been made publicly available1 and is referenced in appendix D.

1Except where requested
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Chapter 1

Introduction

The afterword 1 to the second edition of V.Vapnik’s book “Estimation of Dependencies Based on
Empirical Data” makes reference to an advanced learning approach which Vapnik calls “Learning
Using Hidden Information”. This approach takes advantage of a multiple space input to the Support
Vector Machine (SVM) and this new SVM was christened the SVM+. In 2009 the paradigm was
renamed “Learning Using Privileged Information” (LUPI) as it was felt that this better represented
the nature of the idea. Privileged implying that the information is of benefit to us and that it will
not necessarily be available to others; as opposed to hidden which suggests some sort of hiding of
extra information. Along with this re-name came further experimentations into this area, such as the
dSVM+, a forerunner to the idea of Similarity Control investigated later in this report. This was
followed up in 2015 with the paper “Learning Using Privileged Information: Similarity Control and
Knowledge Transfer” in which two further techniques for taking advantage of privileged information
were introduced. [22]

Privileged information refers to an additional set of features that are available to the classifier at
training time, but crucially will not be available to the classifier when classifying new data (hence the
multiple input spaces). There are many reasons why this might be the case in real life, the privileged
information may be expensive, it may be sensitive in nature, or simply cannot be available at when
making predictions. However, a notable feature of LUPI is that it is ubiquitous. For almost any
Machine Learning problem there is privileged information that can be provided and as such it is
important that we investigate ways to maximise its potential. Consider any problem for which you
may wish to seek a machine learning solution. There will almost certainly exist available information
that will help with the problem that won’t necessarily be available when making predictions in the
future. An example may be classifying images as sunny or not sunny. We want to make predictions
based solely on the image, but at training time we could use meta-data about the picture to learn a
better decision rule2.

This report is an investigation into the approaches and applications of the Learning Using Privileged
Information (LUPI) paradigm. The SVM+ and Similarity Control are demonstrated along the SVMu;
an original proposal that seeks to unify the approaches of both Vapnik’s Similarity Control and the
SVM+. A further method called Knowledge Transfer is also introduced and discussed, though not
implemented.

Support Vector Machines (SVM) are one of the most widely used and powerful classifiers and
most existing LUPI methods are expansions on this technique. Therefore this report will focus on the
SVM and seeks to take the reader from a cursory overview of machine learning (specifically binary
classification and supervised learning) through to a more technical definition of LUPI. This is before
chapter 3, the background section which gives an overview and implementation of various SVMs which
will be required to realise the SVMu. The methodology for testing its performance is explained in

1Titled “Empirical Inference Science”
2Or a text-description of the picture, or even a video of an interpretive dance piece of how the picture made a viewer

feel!
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chapter 6, before a discussion of the findings in chapter 7.

1.1 Supervised Machine Learning - Binary Classification

Machine Learning is an umbrella term which encompasses many techniques but this report deals
exclusively with supervised learning, specifically investigating binary classification. Supervised learning
tries to find a function that maps from a series of training inputs to known outputs. These outputs
can be continuous (regression), or discrete (classification). Our goal is then to find the function that
generalises with minimum error to previously unseen data. This is di↵erent to unsupervised learning
where the input data is given without the class label. The goal is then to find some relationships in
the data, whether by clustering like points together or finding likely anomalies in the data.

Classification models tend to follow a similar approach to each other. We are given independent
and identically distributed (iid) pairs of data of the form (x1, y1), . . . , (x

`

, y
`

) where x

i

2 X and
y
i

2 {�1,+1}. This means that the pairs have the same probability distribution (there are no biases in
the data) and are mutually independent from each other. Additionally, it imposes that the structures
of the feature vector x and class label y are always consistent throughout. Using these iid pairs, also
referred to as training data, a function is learned (f(x)) that minimises incorrect classification. We
then use this learned function on new, unseen values of x to make our best guess at the classification it
belongs to. Broadly, this idea can assign a mapping from a set of training inputs to many di↵erent
class labels, however, we are looking into binary classification where we only consider two possible
classes. The binary nature has some useful properties. Not only is it simpler (so quicker to compute), it
can also be described using relatively simple linear algebra3. Binary classification can also be extended
to classify more than the two classes using One vs All (OvA) or One vs One (OvO) techniques. These
methods involve breaking a multiple class classification problem into multiple binary classifications,
comparing one class against another (OvO), or one class against all the other possible classes (OvA).
Whilst there has been an e↵ort to incorporate solving more than two classes in an SVM’s objective
function 4, they tend to perform no better than OvA or OvO and take much longer to train [15].

1.2 Motivation

With supervised learning, when we learn a function that maps from the input to the output we are left
with a limitation. What if we have extra, relevant information that would improve the performance of
the function? Traditional machine learning approaches cannot take advantage of this. They simply try
to find a mapping from input X to output Y. This works well when we have all relevant information,
such as trying to predict Body Mass Index from the inputs Height, Weight, Age, and Gender, because
all the required information for the underlying function is supplied in the inputs. This wouldn’t work as
well if we only supplied the Height and Weight of users to the prediction function. All the information
which is required to generate the closest approximation to the underlying rule isn’t supplied. Even
if we had this information available for our training data, with our traditional classifiers we simply
cannot incorporate this extra information when learning our mapping function. The illustration below
of inputs to outputs demonstrates that we are aiming for the same output, just with an additional set
of inputs.

Traditional Machine Learning

input: (X,Y ) =) output: f(x) =y

LUPI

input: (X,Extra Information, Y ) =) output: f(x) = y

3Multiclass classification can also be described using linear algebra, it’s just more complex.
4Weston And Watkins, Vapnik; Lee, Lin and Wahba; Crammer and Singer etc.. - [15]
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Why would we want to use privileged information when training a learning model? Surely we’re
better learning a model in the space that we’re going to be making predictions in? The answer comes
from the machine learning axiom that more data is better. If the privileged information helps to find
an approximation closer to the true function than we could learn ourselves why would we not take
advantage of it? Vapnik’s inspiration however comes from trying to improve the SVM, particularly in
regard to one aspect: the rate of convergence.

1.2.1 Rate of Convergence

The rate of convergence refers to the rate at which we tend towards a minimal generalization error
bounded by the empirical error and the functional complexity5. Let us consider an SVM where we are
trying to build a decision boundary for separable data. Suppose there exists a function f 0(x) that can
optimally separate our separable data. Vapnik-Chervonenkis theory (VC theory) states that using an
SVM, the rate of convergence to this optimal solution will have the order of magnitude 1

`

, where `
is the number of data points [22]. Simply put, the more data points available, the closer our learned
solution f(x) will get to the optimal solution for this problem f 0(x).

Now let us consider building an SVM for non-separable data. Suppose there is a function f 00(x)
that can separate this data. VC theory says that finding the optimal SVM solution will have a rate of
convergence with the order of magnitude 1p

`

. We need to see more training examples for our learned

solution f(x) to get closer to the optimal solution for this problem f 00(x). For the same size problem,
Vapnik and Izmailov point out [22], the separable case would require 320 training examples to find an
optimum solution. The non-separable case on the other hand would require 100,000 training examples
(see fig. 1.1). This is caused by the non-linearly separable case having to learn an extra variable per
data point called the slack, which is described in section 3.1.2. In fig. 1.1 we can see that generally,
we will always asymptotically converge on the optimal solution. However, for a fixed given number
of training samples (for example 32 in fig. 1.1), the faster converging classifier will perform better.
This gap in the rate of convergence is what Vapnik attempts to close by introducing the concept of a
teacher.

1.2.2 Intelligent Teacher

The non-separable case is a sticking point for the SVM. Generally, predictions are very fast, being O(n)
where n is the number of training data points6, but training is slow7, being O(n2) when solving the
dual form. To counter this we consider what if there were an oracle that could supply us with extra
knowledge? An oracle could tell us the distance by which the margin has been violated. This margin
violation is called the slack, or ⇠

i

, 8i = 1 . . . `. In addition to the training data points and their labels,
the oracle would make the slack available to us at training time. This changes our training data pairs
to training data triplets of the form (x1, ⇠1, y1), . . . , (x

`

, ⇠
`

, y
`

).

If we were to learn an SVM solution on non-separable data where we already knew the slack value,
the rate of convergence falls to that of an SVM solution on separable data. This is clearly a massive
improvement, but it has the drawback that no such oracle exists. Instead, the best we can do is emulate
this oracle. The problem is that getting the slacks for our input space X would involve learning a
perfect SVM solution in X , 8x 2 X, which is what we’re trying to get to. This would be akin to
using or knowledge of “the perfect function” to emulate itself - there would be no learning to be done.
Perhaps we could learn the slack value in input space X from another set of data? The selection of this
data then becomes important - if it doesn’t help us to find the slack in X , the rate of convergence can’t
be improved. What we want is data in a new space, X ⇤, that models what the slack would be in “the

5As opposed to the convergence of an optimization problem - the rate that a minima can be found by Gradient Descent
for example

6When using the ‘Kernel Trick’ in the dual form. See Appendices A and B
7This depends on if one decides to solve the primal problem or its dual. For further detail see appendix A
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Figure 1.1: Demonstration of Rate of Convergence to an optimal solution
(Linearly separable shifted to converge to same rate as Non-Linearly separable

data for illustration purposes)

optimal solution” (f(x)). The quality in the selection of this extra data, Vapnik argues, di↵erentiates
the good ‘teachers’ from the poor ones [22].

1.3 Introduction to LUPI

LUPI is di↵erent to the classical learning model. Instead of training using iid pairs, we generate a
function based on iid triplets (x1,x⇤

1, y1), . . . , (x`

,x⇤
`

, y
`

) where x

i

2 X, x

⇤
i

2 X⇤, y
i

2 {�1,+1}.
Noticeably, we have extra feature space X ⇤. This is a new feature space which is separate to X and
crucially, is only available at training time. The aim is for this extra information (X⇤) to fulfil the
role of the oracle of the previous section and provide the slack in space X . X⇤ should be drawn from
a conditional probability function P (x⇤|x). This constrains X ⇤ to be related to X . When we come
to use the classifier we have built we will not have access to this extra information, only the feature
vector x. Just as with the oracle, the actual classification function generated is still a mapping from X
to Y; it’s just helped by the privileged space X ⇤ to converge on the optimal solution faster.

Providing this extra information can be compared to the analogy of a classifier during training
being a ‘student’ and at this time the function P (x⇤|x) takes on the role of the ‘teacher’. By providing
the student with examples (X) and answers (Y ) the student has to take a brute force approach to
learning - guessing without having any idea of context beyond the feature set given. Instead, if the
teacher were to give analogy, description and reasoning as to why a decision should be made, the
student will understand much quicker. Unfortunately, as in the real world, the teacher will not always
be available to the student. Once the student has left the classroom they will have to put their learned
knowledge into practice without a teacher to guide them. The student will have to predict an answer
to an unseen problem without the context provided by the teacher. In this analogy the privileged
information is the background context to help the classifier produce better accuracy. Transferring this
analogy back to the LUPI classifier leads us to say the following. In many situations where machine
learning is used there is extra information that the classifier isn’t trained with because it won’t be
available at classification time. LUPI allows us to take advantage of this data.

For example, suppose we want to create an application that classifies images of food as either
“healthy” or “unhealthy”. Instead of training the classifier solely on example images of food and their
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class label, we also use the ingredients list that we have available for the images we have provided. This
information is only available for the images used during training and will not be available to users of
our application when they submit pictures of their food to be classified as healthy or not. Our theory
is that there is some rule in the space of the recipes that will help us to make better predictions in
classification of the user’s photograph. There are many reasons why the recipes wouldn’t be available
at prediction time, such as wanting to classify images of food sourced from Twitter, or by scraping
a particular web site. However, in general, privileged information (by definition) is specialised and
specialised data tends to be expensive.

As discussed in section 1.2.1, it’s important to note that the goal of LUPI is to converge to the
optimal decision function f(x) quicker than more traditional machine learning approaches, rather
than to find a di↵erent function. This is reflected in the bounds on the rate of convergence which is
in the order O(h/`) for linearly separable data, where h is the VC-Dimension of the set of functions
f(x) belongs to. Non-linearly separable data however has a convergence bound in the order O(

p
h/`).

As already stated, the initial motivation for LUPI came about from trying to improve the bound
on convergence in the non-linearly separable case rather than get to another result. As such, the
performance of the classifier is directly comparable to others which do not take advantage of privileged
information (see fig. 1.1).

1.3.1 Comparing LUPI to Other Learning Paradigms

LUPI can be compared to other methods that incorporate additional information. Example include

Knowledge-based learning Using domain specific facts to infer predictions

Learning with hints Where hints is an umbrella term ranging from extra examples to giving the
underlying function we’re trying to learn

Context-sensitive models Where contextual features are those that are not useful when considered
alone, but can be useful when combined with other features

Multi-view learning Where models across di↵erent spaces are co-trained and predictions can be
made in both spaces

Model distillation Where a more complicated model is learnt, then semantically replicated by a
simpler model

There have been workshops 8 to try and encourage sharing between researchers in these areas and this
is an ongoing challenge, but the primary di↵erence is the motivation. LUPI is motivated theoretically,
whereas many other approaches are motivated by finding practical solutions9. Privileged information
is unique in that we’re not simply adding additional data to the problem, we’re adding intelligently
selected data that can be used to learn the slack in the input space X . The final learnt decision
boundary is still decided in X , though is influenced by the slack generated in X ⇤. Unlike in other
paradigms, privileged information (X ⇤) must be about X . Whilst there has been research to show
that LUPI classifiers can take advantage of random data [16], this is not an example of privileged
information. Privileged information must be drawn from a conditional probability function P (x⇤|x).
This definition helps us to make further reasoning about the paradigm.

Let’s consider the example of looking for cancer cells with our input space being biopsy images
and our privileged information being a surgeon’s notes. We can notice that the biopsy image space,
X , is a series of pixels and can be described as universal. We can not only describe biopsy images in
this space, but also artwork or text. The input space X ⇤ is constrained to be a bridge between the
input space and the label, meaning the VC-Dimension of admissible rules we can learn in X ⇤ must
be smaller than those admissible in X . Note that this doesn’t mean that X ⇤ has to better describe

8
http://smileclinic.alwaysdata.net/ijcai16workshop/

9Some developing theories as time goes by

http://smileclinic.alwaysdata.net/ijcai16workshop/
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X , it can just give relevant information. Crucially though, we should be able to learn a rule in X ⇤

that emulates the margin violation in X of the optimal solution. So instead of better describing X , X ⇤

should be about describing the relevance of X to the label, Y. In this way, Privileged Information is
di↵erent to other approaches.

1.4 Project Aims

The aims of this project are to understand, implement, and explore state-of-the-art machine learning
techniques, and the e↵ect of di↵erent techniques to make use of Privileged Information. The SVM+,
Similarity Control (SVM�+ and Margin Transfer) and Knowledge Transfer are implemented from the
ground up and explored, and a unifying approach to the SVM+ and Similarity Control techniques
is introduced and implemented. A novel application for privileged information is suggested and
implemented in chapter 8 which poses an interesting area for further research. All code used has been
written from scratch, except library calls, which are explicitly cited.
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Chapter 2

Professional Considerations

This research may involve the use use of data that could potentially be of a sensitive nature. As such,
only publicly available, anonymous data sets that are compliant with the Data Protection Act 1998
(and the BCS Code of Conduct 3.a) 1 will be used if and when required. This will also give the benefit
of being able to ensure results are reproducible by any who so wish, with links to the data sets used
available in appendix D of this paper.

In accordance with the BCS Code of Conduct 2.a, the research area is one that the author can
claim some competence in having studied the Machine Learning module taught at the University of
Sussex. 2

All claims and viewpoints of relevant parties will be well documented and referenced as to avoid
injury to others or their reputation.3 4

If possible, in encouragement and support of the professional development of others, any advance-
ments in implementations will be added to appropriate libraries. 5

Some extensions of this project are regarding the use of sensitive features (such as race, sex etc) as
privileged information (meaning that these features cannot be used at “decision” time). This extension
builds upon the work done learning fair classifiers [cite] and will be in direct support of the BCS Code
of Conduct section 1.c., helping to remove discriminations based on sensitive features. 6.

1BCS Code of Conduct 3.a. “You shall carry out your professional responsibilities with due care and diligence in
accordance with the Relevant Authority’s requirements whilst exercising your professional judgement at all times.”

2BCS Code of Conduct 2.a. “You shall only undertake to do work or provide a service that is within your professional
competence.”

3BCS Code of Conduct 2.b. “You shall NOT claim any level of competence that you do not possess”
4BCS Code of Conduct 2.f. “You shall avoid injuring others, their property, reputation, or employment by false or

malicious or negligent action or inaction.”
5BCS Code of Conduct 4.f. “You shall encourage and support fellow members in their professional development”
6BCS Code of Conduct 1.c. “You shall conduct your professional activities without discrimination on the grounds of

sex, sexual orientation, marital status, nationality, colour, race, ethnic origin, religion, age or disability, or of any other
condition or requirement”
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Chapter 3

Background

For an introduction to duality with regard to finding an SVM solution, see appendix A.

3.1 Support Vector Machines

Our classification problem is defined in terms of finding f(x), a function that ‘splits’ the data sets into
two ‘classes’ in feature space X such that incorrect classifications are minimised. One approach to this
would be to generate a line (or hyperplane) between the data and amend it until the condition is met,
so our data is classified as well as possible, then stop. This would be a perceptron, a simple linear
classifier. However, this method is flawed as it doesn’t go far enough - the conditions are too relaxed
and as such it is too sensitive to fluctuations in the data. This doesn’t give the best results on the
unseen data that ultimately, we want to perform well on. We usually want a more general function to
be learned, so that when classifying we not only perform well in training, but also in practice. When
the classifier comes to be used in the future on completely unseen data points, we assume that are
going to be classifying varying perturbations of our training samples. There is a balance to be struck
between training to our sample data too well (over-fitting, or low bias, high variance) and not training
well enough (under-fitting, or high bias, low variance). This balance is known as the bias-variance
trade-o↵. To combat this, what we really need is to add an additional condition to our function, so that
instead of just minimising incorrect classifications, we also need to maximise the boundary (margin) to
the nearest point. This creates a separating plane with the least possible vulnerability to fluctuations
in the data, giving better generalization for our unseen data. A classifier that works in this way is
known as a Support Vector Machine (SVM).

Mathematically, SVMs are an optimisation problem - we seek to maximise the margin subject to
classifying our training data correctly1. The margin is described as the distance (d) from a feature
vector x to the separating hyperplane (H) and is formally described in equation 3.1.

d(x, H) =
w · x
||w|| (3.1)

Thus to compute the maximum distance to the hyperplane, we need to minimise the weight vector
w. So whilst we could make the objective function to minimise w in equation 3.1 the general case to
do this is written as in equation 3.2.

min
w

1

2
||w||2 (3.2)

The weight vector w is a vector of weights (or values) that correspond to each feature in x and can
be thought of as determining the ‘importance’ of each feature. When we train a classification model,
we learn the best approximation we can for determining the ‘importance’ weight of each feature in our
inputs. Once the margin is maximised, we treat the distance from the margin to the decision boundary

1The non-linearly separable case is considered in section 3.1.2
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Figure 3.1: Geometry of an SVM showing definitions for the decision
boundary and margins.

as 1, so 1
||w|| = 1. Although this could be any value as long as we were consistent, 1 is chosen by

convention [3]. The decision boundary as shown in fig. 3.1 is ((w · x) + b) where b is the bias (the o↵set
from the origin) and lies equidistant from the support vectors of both classes. The support vectors are
the data points that lie one margin distance away from the decision boundary in this linearly separable
case. So the support vectors for one class are where the decision (classification) function equal the
margin distance (((w · x) + b) = 1). For the other class, the support vectors are where the decision
(classification) function equals the negative margin distance (((w · x) + b) = �1). They are called
support vectors because each data point is a set of feature vectors and they define where the decision
boundary lies. They ‘support’ the decision boundary. In fact, you could remove all other data points
apart from the support vectors and you would still generate the same boundary. 2

This leads to quite an elegant solution for ensuring all data points are correctly classified. Suppose
(w · x) + b produces the scalar value 1.86. To see if this is the correct classification we can multiply it
by the classification it was given y. If the classification is correct then the answer will be positive and
in excess of the margin (1). Similarly, had the scalar value produced been �1.86, multiplying it by the
correct classification (�1) would again produce a positive value in excess of the margin. An incorrect
classification produces a negative value. This gives a neat constraint to our objective function. Whilst
minimising w we need to ensure that the decision function multiplied by the classification produces a
value greater than the margin (or equal to it for the support vectors). This gives us the constraint
y(w · x) + b � 1.

Once the SVM is trained, classification is a simple check. If the dot product of the learned weight
vector and the feature vector plus the bias is less than 0 (below the decision boundary), the new
data-point considered to be of the negative class (Class -1). If it doesn’t then it is of the positive class
(Class +1) (sign((w · x) + b)). Here the sign function returns 1 if the value is positive, else returns �1.

Solving the constrained objective function (eq. 3.3) however, is a di�cult problem to solve
computationally, particularly if the number of features ` is large. Instead, we take advantage of duality
by converting the problem from its primal form to its Lagrangian dual. Not only does this allow us to
approach the problem from another direction, but it also incorporates the constraints into the objective
function.

2That’s not to say that a specific decision boundary can only be described a unique combination of support vectors.
For some problems a reduced number of support vectors can be found (Burges 1996)
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Figure 3.2: (Left) Linearly separable data. We seek to maximise the margin between the
two classes. (Right) A Support Vector Machine, classifying the data with the maximum
margin between classes. The support vectors are located on the margin and have been

highlighted.

3.1.1 Hard Margin SVM

In the previous section we discussed looking for f(x), where the number of incorrect classifications is a
minimum and with a maximum margin between classes. To do this, let’s take the simplest scenario,
which is that our data is linearly separable as in fig. 3.2.

We construct a plane that satisfies

min
w,b

1

2
||w||2

subject to y
i

(w · x
i

+ b) � 1
(3.3)

This is the objective function, the primal form of the Hard Margin SVM. To compute the optimal
solution e�ciently we need to convert the problem to its Lagrangian Dual. Notes on this can be found
in appendix A.

• Primal Problem

min
w,b

1

2
||w||2

subject to y
i

(w · x
i

+ b) � 1
(3.4)

• Dual Problem

max
↵

mX

i=1

↵
i

� 1

2

mX

i,j=1

↵
i

↵
j

y
i

y
j

(x
i

· x
j

)

subject to ↵
i

� 0

and
mX

i=1

↵
i

y
i

= 0

(3.5)

Where ↵
i

8i = 1, . . . , ` are Lagrange multipliers. Implementation of the Hard Margin SVM is
included in appendix D.

Once we have a solution to the dual problem, we can calculate the weight and the bias.
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x

i
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1
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X
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X
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(↵

m
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m

K(x
m

,x
s

))

(3.6)

Where S is the set of support vectors, data points whose corresponding value of ↵ is greater than 0
(↵ > 0).

3.1.2 Soft Margin SVM

In theory, the Hard Margin SVM should work very nicely. However, in theory, theory and practice
are the same, in practice they are not. When it comes to real data sets, we rarely achieve linear
separability; often data overlaps as in fig. 3.3. As such, we need to consider an SVM where the
constraint about maximising the margin is maintained, whilst still allowing for misclassification. After
all there may be anomalies in the data, or the data may not be able to represent the underlying
decision function entirely. To do this, we consider a “slack” value ⇠ for each data-point that seeks to
correct misclassification, ensuring the first constraint in equation 3.7. The classification function of the
SVM (

P
`

i=1 ↵i

y
i

K(x,x
i

) + b)3 produces a scalar value. In the Hard Margin SVM we ensure that this
is always � 1 because we only consider linearly separable data. As we are now looking at data with
some overlap, we have to allow for the classification of the SVM generating a scalar value less than 1.
The maximum value of either 0 or 1 minus the scalar value produced is the slack (⇠

i

). For every ⇠
i

there are two scenarios. Either ⇠
i

= 0, because that data point is either on the appropriate margin, or
further away from the decision boundary than the margin ((

P
`

i=1 ↵i

y
i

K(x,x
i

) + b) � 1). Or, ⇠
i

> 0
which occurs when the data point lies on the incorrect side of the margin. There are two possible
reasons for this margin violation. The data point lies on the correct side of the decision function, but
lies inside the margin. Or, the data point lies on the incorrect side of the decision function. In both of
these situations (where ⇠ > 0) the beauty is that they can be incorporated into the objective function.
We can sum together the total ⇠ and add this to our function that we’re minimising. 4 Usually when
we do this we introduce a new variable C which we multiply by the sum of the slack values. This is
our ‘regularisation’ parameter and gives us control over the importance which we place on the margin
violations. If we give a high value of C, we are placing such a high value on minimising incorrect
classifications that we e↵ectively have a Hard Margin SVM. If on the other hand we give a very low
value to C we place little importance on margin violations and end up with a very soft margin indeed.
By altering the C parameter we obtain a method of a↵ecting how well our classifier fits to the data.

• Primal Problem

min
w,b,⇠

1

2
||w||2 + C

`X

i=1

⇠
i

subject to y
i

(w · x
i

+ b) � 1� ⇠
i

and ⇠
i

� 0

(3.7)

• Dual Problem

max
↵

`X

i=1

↵
i

� 1

2

`X

i,j=1

↵
i

↵
j

y
i

y
j

(x
i

· x
j

)

subject to 0  ↵
i

 C

and
`X

i=1

↵
i

y
i

= 0

(3.8)

3The function K(x, x) refers to the kernel trick. See appendix B.
4We add the error function ‘hinge-loss’ and seek to minimise this error. ⇠i = max(0, 1� (yi(hw, xii+ b)))
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(a) Regularisation Parameter C set to 0.01

(b) Regularisation Parameter C set to 1

(c) Regularisation Parameter C set to 100

Figure 3.3: We have overlapping, but largely linearly separable data. We seek to maximise the margin
between the two classes whilst keeping the number of margin violations to a minimum. a-c show a Soft
Margin Support Vector Machine, classifying the data with the maximum margin between classes

whilst maintaining the smallest margin violations. In these examples the e↵ect that the regularisation
parameter C has on the decision boundary is demonstrated.



14

An implementation of the Soft Margin SVM is included in appendix D.
Once we have a solution to the dual problem, we can calculate the weight and the bias.

w =
`X

i=1

↵
i

y
i

x

i

b =
1

N
S

X

s2S
(y

s

�
X

m2S
(↵

m

y
m

K(x
m

,x
s

))

(3.9)

Where S is the set of support vectors, data points whose corresponding value of ↵ is greater than 0
and less than or equal to C (0 < ↵

i

 C).
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Chapter 4

Implementation of LUPI

4.1 Current Approach

The current approach to LUPI is the SVM+ which is detailed below. Vapnik introduced two new LUPI
techniques, Similarity Control and Knowledge Transfer in 2015 [22] and are described later in this
chapter. These techniques represent the current state of the art. Later, in chapter 5, a new technique
is introduced which unifies the SVM+ and Similarity Control.

4.1.1 SVM+

The SVM+ was introduced to take advantage of additional, privileged data x

⇤ that is only available at
training time. As such instead of just optimising over w and b in the non-privileged space (x), it also
seeks to minimise w

⇤ and b⇤ in the privileged space (x⇤).

min
w,b,w⇤

,b

⇤

1

2
(||w||2 + �||w⇤||2) + C

`X

i=1

((w⇤ · x⇤
i

) + b⇤)

subject to y
i

(w · x
i

+ b) � 1� ((w⇤ · x⇤
i

) + b⇤)

and ((w⇤ · x⇤
i

) + b⇤) � 0

(4.1)

In the SVM+, � is introduced as a hyper-parameter. It is similar to C, but inverted with regard to
the ‘importance’ placed on the privileged space. A low � will place a higher weight on optimising the
margin generation function that occurs in the privileged space, X ⇤. A higher � places a greater weight
on the decision function in the non-privileged space, X .

• Dual Problem
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(4.2)

Once we have a solution to the dual problem, we can calculate the weight in both spaces.
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The bias is a little trickier. By KKT conditions,
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Then to find the bias in both spaces

b =
(b+ b⇤) + (b� b⇤)

2
=

1
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i
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However, we need to consider that we are using the ‘kernel trick’, so we replace w with the
representation found in the dual form,

P
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Where S is the set of support vectors, data points whose corresponding value of ↵ is greater than 0.
We didn’t need to calculate w⇤ and b⇤. No predictions are being made in privileged space X ⇤. However,
by doing this it allows us to visualise what’s happening in the privileged space.

In fig. 4.1 we can see that whilst the decision function in X may be of the shape we expect, X⇤ is
showing us something quite di↵erent. The key is to remember the purpose of space X ⇤. We’re not
trying to learn a decision rule, but rather a margin representation rule. The distance to the boundary
in X ⇤ should represent the margin violation in X. Technically the margin doesn’t exist in X ⇤, however
it has been drawn to show the e↵ect of �. When � is small, placing more emphasis on the space X ⇤,
the margin is smaller. This happens because the units by which we are measuring the distance from
the boundary gets smaller. Therefore, though the decision line in X ⇤ can stay in the same place, the
distance that each data point is to it increases (Though in practice, the boundary line moves to the
optimal position). The opposite is true when � increases, reducing the role of X ⇤ to represent the
margin in X.

Figure 4.1 demonstrates the e↵ect that � has on the decision boundary in X. Previously we
discussed that � emphasizes the weight of the margin function in X ⇤, but let’s look a little closer at
that. The value of � e↵ects the unit distance to the ‘boundary’ in X ⇤. A smaller � means a smaller unit
distance, so conceptually, points are ‘further away’. It’s important to remember that the margin being
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(a) � = 0.5

(b) � = 1

(c) � = 2

Figure 4.1: (Left Hand Side) The decision space, X. (Right Hand Side) Privileged Space X ⇤.
We have overlapping, but largely linearly separable data. We seek to emulate the optimal dividing

boundary in X between the two classes. a-c show SVM+ solutions with varying e↵ects of the
hyper-parameter �. In these examples the regularisation parameter C is set to 1.
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learnt in X ⇤ (the right hand side of fig. 4.1) is only for support vectors in X. If the corresponding data
point in X is not a support vector in X, the distance to the margin function boundary in X ⇤ is ignored.
In fig. 4.1(a) the decision boundary in X is a long way from the data points. This is represented by
X ⇤ having a small unit length making all points far from the margin function boundary.

This leads to the question, what makes good privileged information? Though more specifically
the question should be, what makes good privileged information for the SVM+, because as we’ll see
with the introduction of Similarity Control, there is more than one approach to privileged information.
For the SVM+ the ideal ‘shape’ of the privileged information would be with enough flexibility to
produce a unique slack for each data point in X. So that would mean the data is well spaced, with
high dimensionality, to give as much flexibility to the SVM+ as possible. Although in practicality this
is unlikely to be the case, there will be some compromise and due to the closeness of some data points
in X⇤, some slacks in X will be incorrectly approximated. In e↵ect, this is helping to regularise our
data in X, preventing over-fitting to the training data.

The follow up question, is what makes bad data for the SVM+? Crucially, the SVM+ does not pay
any regard to the class label in X ⇤. In this space we end up with all points on one side of the margin
boundary (usually1). If we had data the opposite of what the SVM+ is looking for, so densely packed,
low dimensionality, say as a perfect classification style dataset, then the SVM+ will not be able to deal
with it well at all. What we really need is a way of performing classification in the privileged space.

4.2 Similarity Control

During the next two subsections, the two methods of implementing Similarity Control will be described.
Understanding and implementing Similarity Control as a mechanism to take advantage of LUPI is one
of the principal investigations in this report. Similarity Control was an idea that Vapnik alluded to in
his 2009 paper where he introduced the dSVM+, a first attempt at treating privileged information in a
di↵erent way. In his dSVM+ Vapnik first learned an SVM solution in X ⇤. The margin violation for
each data point was then used as privileged information in the SVM+. Whilst the 2009 paper showed
that this had favourable results it wasn’t an elegant solution and showed a weakness in the SVM+,
namely an inability to take the class label into account in privileged space.

Ideally what we would like to learn is some SVM solution that maximises the margin of correct
classifications in X subject to the constraint that y(hw, xi+ b) � 1 � [y(hw⇤, x⇤i+ b⇤)]+ where [u]+
denotes the maximum of 0 or u. This problem translates to “correctly classify X so that all points are
greater than or equal to the margin minus the distance to the decision boundary of the corresponding
point inX⇤, which must be correctly classified ifX violates the margin”. The notation [y(hw⇤, x⇤i+b⇤)]+
implies that X ⇤ doesn’t require correct classification for all points, so if a point in X doesn’t fall within
the margin we don’t pay attention to the distance to the boundary in X ⇤. Because of the notation
[u]+, this is no longer a linear optimisation as the constraint is piece-wise linear. As such, we have no
way to e↵ectively solve the problem. To combat this we construct a new problem which tries to model
our idealized solution. This new problem imagines that there is a slack value in X ⇤ as well as X and
introduces a variable ⇣. This variable ⇣ connects what the slack value would be across both spaces and
can be thought of as ⇣

i

= ⇠
i

+ ⇠⇤
i

. This leads to the constraint y(hw, xi+ b) � 1� y(hw⇤, x⇤i+ b⇤)� ⇣
where y(hw⇤, x⇤i+ b⇤) + ⇣ � 0. This is the essence of Similarity Control.

Similarity Control di↵ers from the approach taken by the SVM+ in that it takes into account
the class label of the privileged data when generating the distance to the slack in X. The constraint
y(hw⇤, x⇤i+ b⇤)+ ⇣ � 0 can have the value 0 for ⇣

i

when x⇤
i

is correctly classified. ⇣ will only be greater
than 0 when y(hw⇤, x⇤i + b⇤)h0 placing x⇤ on the wrong side of the boundary in X ⇤. The value of
⇣ is the mechanism by which Similarity Control is enforced. Providing x

i

is correctly classified and
doesn’t violate the margin in X, we don’t pay any attention to privileged space or the value of ⇣. It’s
only when x

i

violates the margin in X that we consider y((w⇤, x⇤) + b⇤) + ⇣. In this case there are

1The combination of hyper-parameters C and � can allow us to force the SVM+ into some shapes it naturally doesn’t
want to be in.
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two situations. Either x⇤
i

is correctly classified in X ⇤, in which case the distance to the boundary in
X ⇤ should emulate the margin violation in X. Or, x⇤

i

is on the wrong side of the boundary. In this
case, the value of ⇣ needs to compensate for the margin violation in both X and X ⇤. A regularisation
parameter will determine how much we penalise margin violation across both spaces.

Two methods of Similarity Control were introduced in the 2015 paper. They are the SVM�+ and a
second approach which is named SVM�+: Simplified Approach. However, this is a long name and the
technique is identical in spirit to the proposed “Margin Transfer” technique of Sharmanska et al [18],
though the implementation is slightly di↵erent2. However, for the sake of brevity the terms Margin
Transfer and SVM�+: Simplified Approach are used interchangeably throughout this report, though
SVM�+: Simplified Approach is what’s implemented. It would be an interesting future project to
determine if there is any practical di↵erence between the two techniques.

The general di↵erence between Similarity Control and the SVM+ is this. If we consider that the
SVM+ was learning a regression in X ⇤, we can argue that Similarity Control learns a classifier in X ⇤.

4.2.1 SVM�+
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(4.7)

The variable ⇣ has been introduced with respect to each data point and represents margin violation
across both X and X

⇤. Another hyper-parameter, � is also introduced. C continues to control the
amount by which we punish margin violations. It controls the ‘softness’ of the margin. � is required to
control the importance of margin violations across both spaces. From a practical standpoint, optimising
over 3 hyper-parameters, C, � and �, plus considering kernels makes the problem challenging. Vapnik
suggests setting � to be “a su�ciently large value”, rather than optimising over it. Let’s look at why
this would be. In X ⇤, we’re not learning a strict SVM. Instead of a typical SVM hinge-loss error
function we’re setting ⇣ to be the error from a hinge loss where the activation begins at 0 (see the
second constraint in equation 4.7). Given this is the case it makes sense to try and make the data as
classified as can be in X ⇤. Fortunately we don’t have to consider generalization of the classification in
X ⇤, so the bias-variance trade-o↵ in X ⇤ is not a concern as long as we get good generalization in X.
Whilst Vapnik doesn’t give a value for the � in his paper, for practical purposes3 the maximum value
of the range being searched over in C should be su�cient.

• Dual Problem
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2Both learn an SVM solution in X ⇤, then learn an SVM solution in X using the slack from X ⇤. How this information
is used is where the di↵erence occurs.

3With the caveat being that the minimum value of �C � 1. If �C < 1 it can overly constrain our problem
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Once we have the solution to the dual problem, we can calculate the weight in both spaces.

w =
`X

i=1

↵
i

y
i

x

i

w⇤ =
1

�

`X

i=1

y
i

x

⇤
i

(↵+ � � C)

(4.9)

The bias in X is derived by KKT conditions.
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So b is the average position, giving
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As with the SVM+ we now to to take into account the ‘kernel trick’, by substituting w withP
`

i=1 ↵i

y
i

x

i

(see eq. 4.9)
Unfortunately there isn’t a deduction of b⇤ that has been found.
We can now depict what the spaces X and X ⇤ look like for 2-D data and show the e↵ect of the

various hyper-parameters in fig. 4.2.

4.2.2 SVM�+: Simplified Approach

Margin Transfer aims to approximate the e↵ect of the SVM�+. Whilst the SVM�+ is a new approach,
it takes a long time to compute. By approximating the value of the ⇣, we can emulate the classifier in
practice.

To construct SVM�+: Simplified Approach, we find an SVM solution in X ⇤. We then use this to
get the privileged space slack ⇠⇤

⇠⇤ = [1� y(hw⇤, x⇤i+ b⇤)]+

We then learn a modified SVM solution in X
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Where the only modification from a regular SVM is incorporating the slack value from the privileged
space into the constraints on the SVM’s dual form. This new constraint translates to: Ensure the
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(a) � = 1, � = 10. Baseline comparison. For reference, the 4 blue points outside of the margin on the right correspond to
the 4 misclassified blue points on the left. Similarly the red point at the top on the right corresponds to the furthest

misclassified red point on the left

(b) � = 0.5, � = 10. By halving � the unit length from the margin boundary of X⇤ has shrunk. Though the boundary is
in the same place, all points are now considered further away from it

(c) � = 0.5, � = 1. By reducing � the importance of classifying points in X ⇤ correctly has diminished. As such we place
less emphasis on classifying this space correctly

Figure 4.2: (Left a-c) The decision boundary in X
(Right a-c) The margin function in X ⇤. C=1 throughout.

We have overlapping, but largely linearly separable data in X, but separable privileged information.
We seek to maximise the margin between the two classes in X whilst keeping the number of margin
violations to a minimum. a-c show the SVM�+ classifying the data with the maximum margin

between classes whilst maintaining the smallest margin violations. In these examples the e↵ect that
the hyper-parameters � and � have in both spaces is demonstrated.
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sum of the slack values in X ⇤ multiplied by that point’s Lagrange multiplier 4 is less than the sum of
all the slack values in X ⇤ multiplied by the regularization hyper-parameter. When the regularization
hyper-parameter (C) is large, the loss function is ‘increased’. This heavily punishes the weights for
allowing margin violations. As such, a larger C tends to reduce the number of margin violations in
X . In general, when the value of C is increased, the number of support vectors in X falls. When
the number of support vectors in X is reduced, the number of points that can be a↵ected by Margin
Transfer are reduced. In the regular SVM, the value of the Lagrange multiplier for each point has an
upper bound of C. If this was the case in this approach the first constraint in eq.4.13 would always
hold by definition. However, ↵ has an upper bound of C +�C. So whilst in general a large C means
that few points can be a↵ected, a large � can mean that those points that are a↵ected may be a↵ected
to a greater extent.

4.3 Knowledge Transfer

Knowledge Transfer is the second LUPI method introduced by Vapnik in his 2015 paper [22]. It has
the same overall aim as Similarity Control, in that we want to use privileged information to better
classify in our decision space, X . When we implemented the SVM�+ we posited that the method
worked best when there was an underlying classification rule in X ⇤ that could be found, despite there
not necessarily being one in X . The motivation behind Knowledge Transfer comes from trying to take
advantage of there being a better separation in X ⇤ and poses the question: What if we could transform
our data in X into data in X ⇤? To make this tangible, given our example of the biopsy images being
our data in X and our surgeon’s notes being the data in X ⇤. Instead of using our doctors notes to
improve classification of the biopsy images, what if we could find a function that turned the images
into (a representation of) the surgeon’s notes? We can better classify with the surgeon’s notes, so if we
were able to learn such a function, we’d be better able to classify the image. In Vapnik’s paper he
suggests that we could use this transformed data to construct triplets (�(x

i

), x⇤
i

, y
i

) where �(x
i

) is the
transformation of X into X⇤ and train an SVM�+ on this new triplet.5

Given the radically di↵erent approach of Knowledge Transfer compared to the SVM+ or Similarity
Control methods, we should consider whether we feel comfortable classifying this approach as Learning
Using Privileged Information. To do this we have to consider what makes a LUPI technique. The
motivation behind other methods of LUPI has been to improve the rate of convergence, by using the
privileged information to determine the slack value in X . As such, the classifier is still learnt in space
X , though is influenced by X ⇤. This gives us a check-list of two points to determine if a technique
qualifies as LUPI.

1. Does the method improve the rate of convergence to the optimal solution?

2. Does the classification rule remain in non-privileged space X ?

Knowledge Transfer will improve the rate of convergence if there is a better classification rule that
can be learnt in privileged space X ⇤. The classification rule in Knowledge Transfer still takes place in
non-privileged space X . It may help to think of a Knowledge Transfer classifier ‘pre-processing’ the
data that it receives as input by projecting it into a space learnt in X ⇤. As such, the decision rule
is still found based on the non-privileged data X. Given that Knowledge Transfer satisfies our two
conditions, we can satisfactorily call it a LUPI technique.

4Ensuring that we only consider slacks that correspond to support vectors in X
5To make things complicated, Vapnik describes that it is possible to learn an SVM solution on pairs

(�(x1), y1), . . . , (�(x`), y`) rather than an SVM�+ solution on the triplets mentioned above. However, this is only
the case when step three of the implementation (“Find the functions”) produces almost 0 error. As such, the more general
approach is to use an SVM�+ classifier.
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4.3.1 Implementing Knowledge Transfer

An implementation of Knowledge Transfer is linked to in appendix D. The sections below are named
following Vapnik’s naming conventions.

Three Steps to Knowledge Transfer

• Find the fundamental elements of knowledge u⇤1, u
⇤
2, . . . , u

⇤
m

in space X ⇤.

• Find the “frames of knowledge” K⇤(u⇤1,x
⇤),K⇤(u⇤2,x

⇤), . . . ,K⇤(u⇤
m

,x⇤)) in X ⇤.

• Find the functions �1(xi),�2(xi), . . . ,�m

(x
i

) in space X such that �
k

(x
i

) ⇡ K⇤(u⇤
k

, x⇤
i

) holds
true for almost all pairs (x

i

, x⇤
i

)

Finding the fundamental elements of knowledge

This means to find the support vectors in X ⇤. Although as we are after the “fundamental” elements,
we strictly want to find the reduced number of support vectors, which is beyond the scope of this paper.
To find the support vectors in X ⇤ requires simply learning an SVM solution in X ⇤.

Find the frames of knowledge

For each data point in X⇤, get the kernel distance between each data point and the support vectors in
privileged space. This projects the problem to a di↵erent space. Imagine we have two dimensional data
in both X and X ⇤. If we have learnt an SVM solution in X ⇤ we may have three support vectors in
privileged space. We obtain our ‘frames of knowledge’ by comparing each data-point in X ⇤ to each of
the three support vectors, resulting in a 3⇥N matrix where each column represents a feature vector,
each feature being the distance from a data-point to one of the support vectors. These new feature
vectors are the ‘frames of knowledge’.

Find the functions

This leaves us with a regression problem. Given pairs (x
i

,K⇤(u⇤1, x
⇤
i

)), . . . , (x
i

,K⇤(u⇤
m

, x⇤
i

)), find the
function �
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) for each s = 1 . . .m such that �(x
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) ⇡ K(u⇤
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, x⇤
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). We want to find mappings that
project X to each of the ‘frames of knowledge’.

We then find an SVM�+ solution using triplets (�(x
i

), x⇤
i

, y
i

), 8i 2 1, . . . , `. When we come to
make predictions we ‘transform’ X to the new space using �(x

i

).
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Chapter 5

Unifying Approaches

When we introduced LUPI, we argued that the ability to generate the slack (⇠) in x is determined by
the quality of the selection of X⇤. This supposes that there is an intelligence in the selection of X⇤.
That we have some pre-existing knowledge of the conditional probability function from which X⇤ is
drawn. What if we don’t know what we’re being provided with in X⇤? We know that it’s related to X,
but we’re not sure if it is best suited to the SVM+ classifier, or the SVM�+ classifier from Similarity
Control. In this situation we would have to try both and their performance may lead us to di↵erent
reasoning about the X⇤. A strong performance by the SVM+ implies that the data in X⇤ is correlated
with high variance (though not necessarily separable), giving us the ability to learn a function that
describes the slack in X. A strong performance by the SVM�+ classifier indicates that the data in X⇤

is separable and that the distance to the margin in X should accommodate the distance to the margin
in X⇤.

There is a problem though. If both the SVM+ and the SVM�+ perform well, we learn that
the data is correlated, with high variance, but also separable. We don’t have a mechanism to take
advantage of this.

We need a unified approach that considers the two approaches simultaneously. Which is why this
paper introduces the SVMu (with the u standing for unified).

5.1 SVMu

We want to learn a classifier where the margin in X is a↵ected by the primal objective of the SVM+
and the primal objective of the SVM�+. However, these are in opposition to each other. The
SVM+ has the constraint that hw⇤, x⇤i+ b⇤ � 0, whilst in the SVM�+ we have the constraint that
y(hw⇤, x⇤i+ b⇤) + ⇣ � 0. Here we have a problem. The SVM+ doesn’t care about the class of the data,
it just wants to learn a margin such that all values are on the positive side of it, hence the line it wants
to learn will be similar to a regression line in that has a similar correlation to the data. The SVM�+
on the other hand wants the data to be correctly classified. The constraints of the SVM�+ will place
its margin boundary between the two classes in X⇤. Because of this, whilst they can operate in the
same space (X⇤), they can’t both a↵ect w⇤.

The choice of how to continue falls down to a choice between two approaches.

1. Operate in X⇤. but learn two weights, w⇤ and w⇤⇤. Or

2. Increase the input space to X⇤ and X⇤⇤, but with the same data in both spaces. In this situation
we still learn w⇤ and w⇤⇤, but we have the flexibility to learn di↵erent kernel methods in both
X⇤ and X⇤⇤, which might be more suitable to to each task.

It seems clear that the best approach is to increase the input space to X⇤ and X⇤⇤. 1

1This may look like an opportunity to learn with di↵erent data in X

⇤ and X

⇤⇤, but that wouldn’t be appropriate.
The privileged information should be replicated so that it is both spaces. To use an additional set of privileged would
require increasing the input space again to X

⇤⇤⇤ and X

⇤⇤⇤⇤, repeating for more input spaces.
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This gives the primal objective function
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Where � and � are hyper-parameters that control the influence on their respective classifiers (�
the SVM+ and � the SVM�+). In the case that the SVMu can’t outperform either the SVM+ or
SVM�+, the relationship between � and � will be inverse. As one increases, the other decreases. The
reason � isn’t replaced with simply 1

�

is that we should consider the case that we want to use both
techniques on the privileged data.

Transforming this objective function to its dual gives us

max
↵,�,⌘,µ

� 1

2

`X

i,j=1

y
i

y
j

K(x
i

, x
j

)(↵
i

+ ⌘
i

)(↵
j

+ ⌘
j

)

� 1

2�

`X

i,j=1

K⇤(x⇤
i

x⇤
j

)(↵
i

+ �
i

� C)(↵
j

+ �
j

� C)

� 1

2�

`X

i,j=1

y
i

y
j

K⇤⇤(x⇤⇤
i

x⇤⇤
j

)(⌘
i

+ µ
i

� C)(⌘
j

+ µ
j

� C)

+
`X

i=1

↵
i

+ ⌘
i

subject to
`X

i=1

y(↵
i

� ⌘
i

) = 0

and
`X

i=1

(�↵� � + C) = 0

and
`X

i=1

y(�⌘
i

� µ
i

+ C) = 0

and ↵ � 0

and � � 0

and 0  ⌘  �µ+ C +�C

and µ � 0

The steps for deriving the dual for the SVMu can be found in appendix E.
There is a problem though. Tuning 2 kernels and 2 hyper-parameters in the SVM+ and 2 kernels

and 3 hyper-parameters in the SVM�+ is expensive, but tuning 3 kernels and 4 hyper-parameters
increases the complexity by an order of magnitude. A selection of 3 kernels, and a grid search over
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7 values (0.001, 0.01, 0.1, 1, 10, 100, 1000) for each hyper-parameter leads to training 441 di↵erent
solutions for the SVM+, 3,087 di↵erent solutions for the SVM�+ and 64,827 di↵erent solutions for
the SVMu. Whilst the nature of tuning hyper-parameters by grid search is embarrassingly parallel,
meaning that there is almost no e↵ort required in separating the problem into parallel tasks2, it still
requires a lot of computational power. We can also take advantage of ‘fixing’ the value of the Delta as
we did with the SVM�+.

However, hyper-parameter tuning is an active area of research[19]. It would be an interesting
extension to find more optimizations for the SVMu if it proves to be a useful technique.

2Experiments conducted in this paper have taken advantage of multi-core architectures
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Chapter 6

Methodology

This report looks at the performance of 6 classifiers on a publicly available dataset for text classification
known as TechTC (http://techtc.cs.technion.ac.il/).

6.1 The Classifiers

The classifiers that are being looked at are below. Each has been implemented from scratch by the
author.

1. SVM The Support Vector Machine is the basis from which the other classifiers are built on. It
is a widely used classifier and the benchmark that we will be judging the performance of the
other classifiers against.

2. SVM+ As described by Vapnik in 2009.

3. SVM�+ As described in Similarity Control [Vapnik 2015].

4. Margin Transfer aka SVM�+: Simplified Approach. An SVM solution is found in X⇤. From
then a modified SVM solution is found in X such that the margin violation (if any occur) in X⇤

is taken into account in X.

5. SVMu The classifier introduced in this paper.

6. Knowledge Transfer A näıve implementation of this classifier has been implemented for
comparison purposes. The only hyper-parameter tuned was C. It is possible to tune this classifier
further.

6.2 The Data

Five datasets from the TechTC collection of data were chosen to test the classifiers on. The TechTC
data consists of data points (X) and labels (Y ). Each data point consists of approximately 1500
features. As we want to test the performance of privileged information classifiers, we will generate
our own ‘privileged information’ as suggested by Taylor et al (LUFe) [21]. We perform recursive
feature elimination on the Tech TC data to determine the 300 most informative features and make
this our input space X for the above classifiers. The remaining 1200 features will form the ‘privileged
information’ X⇤. This is valid privileged information. The conditional probability function P (x⇤|x)
returns the unselected features for a data point given the 300 selected features. The class labels will be
as in the TechTC dataset.
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6.3 Parameter Selection

To be fair to each classifier we want to consider each one performing at its best. It wouldn’t be fair
to compare classifiers that aren’t tuned to their optimum with each other. However, to do this for a
full range of parameters would be beyond the computational power available to the author. As such
we conduct a grid search of 3 kernels in each input space (Linear, Quadratic and Gaussian) and a
range of 3 logarithmically spaced values for each hyper-parameter (C, � and � as appropriate for each
classifier), so 10�1, 100, 101. The value of � is fixed as discussed in section 4.2.1, so 10 in this case.

As the range 10�1, 100, 101 is rather small to give a fair representation of the performance of our
classifiers, we make the following optimisation steps. Once the reduced hyper-parameter search for
each classifier has been completed, we see which combination of kernels performed the best on average
across the five datasets. We then run another search fixing the value of the kernels in each space. Say
for example that we performed the initial, reduced hyper-parameter search with the SVM+ classifier.
If this gave results that the classifier performed best when a Gaussian kernel was used in X space and
a Linear kernel was used in X⇤ space, then we save this information. We then start another search
over a wider range of values, but fix the kernels to be the ones that performed best in the initial search.
The new range we tune our hyper-parameter over is [0.001, 0.1, 10, 1000], setting � = 1000. Whilst this
approach will be quicker, di↵erent kernel combinations may work better for di↵erent datasets. Using
one combination of kernels per classifier on each dataset may not give the best results possible for each
individual dataset.

To test the e↵ectiveness of our classifiers we use cross-validation. We take our dataset of selected
features (X), unselected features (X⇤) and class-labels (Y ) and create 10 equally sized sets of data
(folds). Each classifier will be judged on the average performance after being trained on the data from
9 of the ten folds, then ‘tested’ on the 10th, repeated 10 times so that each fold becomes the ‘test’ data
exactly once. The classifiers will be judged based on their accuracy and their F-Score. However, this
leaves a problem. As discussed, each classifier has a number of hyper-parameters to choose from (C, �
etc.). Which is the best combination of hyper-parameters to use for each classifier? That question goes
even deeper. The hyper-parameter selection isn’t decided by the classifier choice, but chosen by the
data. To select the hyper-parameters we have to cross-validate each set of training folds (see fig. 4.1).

An inner fold is formed by splitting the outer fold’s training data (the 9 non-testing folds) into
5 equally sized sets of data. Each possible combination of kernels and hyper-parameters is trained
on these inner folds. There are 5 inner folds and they can be viewed as in fig.4 so that they have 1
inner testing set, which is just one of the inner folds, and an inner training set, which consists of the
remaining inner 4 folds. This is repeated so that each inner fold becomes the testing set exactly once.
Once each possible kernel/hyper-parameter combination has been trained and tested on the inner folds,
the average performance across he inner folds is taken. The best performing combination on average
across all inner folds is then selected to be the parameters selected for training the classifier on the
outer fold. Best performing is a slightly ambiguous term. It’s hard to say which result is necessarily
better in given situations. though in this experiment we consider accuracy and F-Score, which are
described below. Results for accuracy and F-Score are saved. The highest accuracy is chosen as the
best performing combination. In the event of a tie, the highest F-Score within the tied group is selected.
Again, in the event of a tie, the combination returned is randomly selected by numpy’s max function.
The results for best combination based on F-Score similarly select the best combination based on
F-Score from the inner folds (with the case of a tie being as above, but with Accuracy being the tie
breaker).

6.3.1 Accuracy and F-Score

Given the confusion matrix in fig. 6.2 accuracy is the True Positive (TP) and True Negative (TN)
divided by the total number of predictions.

Accuracy =
TP + TN

TP + FP + FN + TN
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Figure 6.1: Relationship between inner folds (right) to outer folds (middle) to
dataset (left).
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Figure 6.2

However, this can sometime lead to misunderstanding about the data. If the data isn’t perfectly split,
so you have an uneven number of actual positives and actual negatives, your accuracy result will be
a↵ected.

The F-Score considers both the precision (number of selected items that are correct) and recall
(number of correct items that were selected) to give.

2⇥
TP

TP+FP

⇥ TP

TP+FN

TP

TP+FP

+ TP

TP+FN

Whilst this is a more robust measurement than the accuracy, it is less intuitive to understand. A higher
F-Score means that we have a high precision and high recall for a given class.
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Chapter 7

Results and Discussion

In the following charts, the following key is used to describe the classifiers tested.

SVM Regular SVM as implemented in this paper

SVM+ SVM+ as implemented in this paper

MT SVM�+: Simplified Approach aka Margin Transfer as implemented in this paper

SVMd+ SVM�+ as implemented in this paper

SVMu SVMu as introduced and implemented in this paper

KT Knowledge Transfer as implemented in this paper

7.1 Predictions Given The Data

As discussed in previous sections, the ‘shape’ of the privileged data becomes important in determining
which classifier will perform the best. Based on our knowledge of the conditional probability function
from which the privileged information is being drawn (the unselected features), we can make a prediction
that the SVM+ will be the best performing classifier. This is because we are removing the features
which give us the best guide for classification. As such, we can imagine that our privileged information
is the ‘noise’ associated with the data. If either Similarity Control method (and in turn Knowledge
Transfer) perform better than the SVM+, then that can only be because there is an underlying
classification that can still occur in the unselected features. Such a case would imply that we could
have selected more useful features.

In general we anticipate that LUPI should perform better than the non-LUPI method of the
regular SVM. The exception to the rule is the Knowledge Transfer method. Given that Knowledge
Transfer works by ‘transforming’ the data from X to X ⇤ we are presented with a problem given the
dataset. Knowledge Transfer in this situation will ‘transform’ the 300 most informative features into a
representation of the 1,200 least informative features. It will then try to learn a solution in this space.
Even in the case where the unselected features are still informative, classifying without the 300 most
informative features is still going to give poor results.

7.2 Initial search

The first step considered a full search over all kernels and a limited hyper-parameter range of [0.1, 1,
10] for all hyper-parameters, except � which is fixed to 10. These were then used to select the best
kernel combination for each classifier on average across all the datasets.
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Classifier X Kernel X ⇤
Kernel X ⇤⇤

Kernel

SVM Linear n/a n/a
SVM+ Linear Quadratic n/a
MT Linear Linear n/a

SVMd+ Linear Linear n/a
SVMu Linear Quadratic Gaussian
KT Linear Linear n/a

Table 7.1: Best kernel combination for each classifier in the initial search.

7.3 Selecting Kernels

The consistently best performing kernel combination across the five datasets are shown in table 7.1.
These are the combination of kernels that are used whilst searching a wider range of hyper-parameters.

7.4 Full Results

Results are shown in table 7.2, with the best results highlighted in bold. The results are broadly in line
with the predictions. Generally, the SVM+ is the best classifier across the datasets. As anticipated,
Knowledge Transfer performed poorly. Because of this it is not shown in fig. 7.1 which charts the
contents of table table 7.2.

Dataset 137 (fig. 7.1 a) behaves almost as we would expect. The performance of the SVM+ suggests
that the unselected features aren’t particularly separable. This is corroborated by the performance of
the SVM�+, which appears to fall back on an SVM solution rather than make use of the unselected
features. Given this, the SVMu can only try and match the performance of the SVM+, which we see
that it gets close to doing.

There are a number of surprises. In chapter 4 we theorised that the SVMu would perform best
when both SVM+ and SVM�+ performed well compared to the SVM. However, we see that this
hasn’t always happened. In dataset 174 (fig. 7.1 b) both SVM+ and SVM�+ perform better than the
SVM, but the SVMu falls short of the SVM for accuracy (though surpasses it by F-Score) and is less
e↵ective than both SVM+ and SVM�+ individually. This is surprising as it is designed to perform at
least as well as one of them. Similarly dataset 197 (fig. 7.1 c) shows neither the SVM+ or the SVM�+
surpassing the SVM solution. However, in this case, the SVMu performs extraordinarily well.

Across the five datasets SVM�+: Simplified Approach (Margin Transfer) appears to perform
poorly. Just as with Knowledge Transfer, this classifier is not best suited to this kind of data. Whereas
the SVM�+ has a mechanism to ‘ignore’ the privileged information, by changing the value of �, the
SVM�+: Simplified Approach (Margin Transfer) does not. As such, it is being forced to take into
account data that is not useful to it.

In general we can see that at least one of the LUPI classifiers performs better than the regular
SVM. In the case where the SVM+ didn’t perform best, the SVMu performed better. In fact, both the
SVM+ and SVMu performed better than the regular SVM in across all datasets in terms of F-Score,
and all but one dataset in terms of accuracy. The SVM�+ performs relatively well. However, the
privileged information in these datasets is not well suited to the classifier.
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Dataset 137
Classifier Accuracy (%) F-Score

SVM 95.549 0.951
SVM+ 97.219 0.972

MT 92.800 0.930
SVMd+ 95.022 0.952
SVMu 96.692 0.966
KT 81.581 0.819

(a)

Dataset 174
Classifier Accuracy (%) F-Score

SVM 86.274 0.838
SVM+ 91.290 0.898

MT 87.042 0.853
SVMd+ 89.479 0.881
SVMu 85.125 0.874
KT 73.607 0.738

(b)

Dataset 197
Classifier Accuracy (%) F-Score

SVM 90.611 0.899
SVM+ 90.167 0.900
MT 90.167 0.889

SVMd+ 88.611 0.871
SVMu 93.889 0.939

KT 78.444 0.695

(c)

Dataset 219
Classifier Accuracy (%) F-Score

SVM 90.146 0.904
SVM+ 92.895 0.932

MT 92.339 0.928
SVMd+ 91.342 0.917
SVMu 92.339 0.927
KT 78.822 0.692

(d)

Dataset 254
Classifier Accuracy (%) F-Score

SVM 87.225 0.860
SVM+ 88.751 0.880

MT 84.058 0.819
SVMd+ 87.307 0.836
SVMu 88.444 0.867
KT 73.336 0.651

(e)

Table 7.2: Full results across all datasets.
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(a) (b)

(c) (d)

(e)

Figure 7.1: Full results across all datasets. Vertical axis shows the range 80% to 100%.
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Chapter 8

Applications

This report looks at the performance of six classifiers on a publicly available dataset for text classification
(http://techtc.cs.technion.ac.il/). However, the most salient point about privileged information is that
it’s ubiquitous. For (almost) any machine learning problem, privileged information exists. So let’s
consider a more practical use, applying privileged information to ethical machine learning.

8.1 Fairness

Fairness in machine learning is the idea that we don’t want to build biases into our classifiers or other
techniques. As more decisions are being made by algorithms, we want to ensure that the notion of
fairness is ingrained into their models. However we should begin by describing our notion of fairness.
To do this we will use two definitions of unfairness used in a recent paper on this subject [26], disparate
treatment and disparate impact.

Disparate Treatment This is where decisions are (at least partly) made on the features of an
individual which are deemed to be sensitive in nature. Examples of sensitive features include
gender, race, religion etc. Disparate treatment is faced by an individual. For example, the
interviewer immediately decided the candidate was unsuitable for the job is they had a specific
sensitive attribute.

Disparate Impact This is where certain groups are disproportionally hurt (or promoted) based on
their sensitive features. This is disparate treatment a↵ecting a group a whole. For example, on
average less females are senior managers in large companies than you would expect based on the
proportions of men and women as a whole.

There is a conflict between making predictions ‘fairly’ and making predictions ‘accurately’. To
make prediction accurately means to emulate the decision procedure that we have observed from the
training data. Making predictions using our notion of fairness involves learning a rule that minimises
disparate impact and treatment based on ‘unfair’ or ‘sensitive’ features. This ‘fair’ prediction is often
inaccurate. This is because the underlying rule may be based on on the sensitive features. If the
underlying decision rule is influenced by a feature we have determined is unfair or sensitive in nature,
then the accuracy of the classifier will be impacted. A näıve approach may be simply removing the
sensitive features from our data. We can ensure that we’re not taking into account the feature directly,
but we may learn that other features represent similar information.

For example, we want to hire a graduates from a diverse range of backgrounds. However, the ‘clever’
students from a majority group have been disproportionately encouraged to study finance. Similarly
‘clever’ students from a minority group may have been disproportionately encouraged to study Physics.
To ensure that we are hiring from both groups, let’s assume we have decided to simply not include
membership of either group as a feature. It should be clear that our classifier will learn a correlation
between finance students and ‘cleverness’ and simply select those students who study finance. Despite
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removing the sensitive feature, we still have disparate impact to the minority group. Simply removing
the sensitive features isn’t enough. We need an approach that is not only ‘aware’, taking into account
all features, but ensures fairness and also is able to balance the trade-o↵ between fairness and accuracy.

We want to include a trade-o↵ measure, to maintain predicted behaviour, but also to improve
fairness. Such an approach isn’t about creating the ‘fairest’ classifier, but rather a ‘fairer’ classifier. To
implement this, a proposal for amending classifiers to include a “percentage fairness” constraint has
been suggested by Zafar et al [26].

The downside is that we have to train our classifier using the sensitive features. As such, we have
to make predictions based on data that includes them, directly contradicting discrimination laws.

Given that a significant portion of this thesis has been implementing the LUPI techniques such as
the SVM�+, is it possible to incorporate Zafar’s ‘percentage fairness’ constraint into a LUPI classifier?

8.2 Sensitive Features as Privileged Information

The benefit of using sensitive features as privileged information is that the privileged information is
not needed at prediction time. We are able to train using the sensitive features, so are able to mitigate
unfairness and we can remain compliant by not considering sensitive features when we come to make
decisions.

8.3 Implementation

Zafar’s fairness constraints are
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We incorporate the extra constraints into the SVM�+. This gives.
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8.3.2 Dual Form
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In fig. 8.1 we can see various SVM�+ classifiers with di↵erent fairness constraints being learnt
across spaces X and X ⇤. Whilst the data used is synthetic, we can imagine that the classifier in X is
deciding if a candidate should be hired, or not hired and that the data in X ⇤ represents a candidate’s
gender. The features in X may correspond to x1 being the amount of experience and x2 being education
levels. We can see that our hiring policy has been quite biased. The blue data-points correspond to
those who were hired, and red are those who weren’t. Our previous hiring policy was to hire the blue
gender.

The images of classifiers on the left in fig. 8.1 show the boundary and margin that the SVM�+
learns in non-privileged space X . The right side of fig. 8.1 shows the margin function learned in X ⇤. In
(a) Zafar’s ‘fairness percentage’ makes the classifier act fairly. We are taking into account the gender
of the applicant and are trying to ensure that both groups are treated equally, so that we hire with
minimal disparate impact or treatment the red and the blue gender.

In (b) and (c) the fairness constraint is relaxed and the decision boundary in X can be seen ‘rotating’
towards the position shown in (d). As the decision boundary in X rotates, the mechanism by which X ⇤

influences the outcome is shown. As the fairness constraint is lessened, the margin in X ⇤ comes closer
to the data-points. We know from chapter 4 that the margin represents one unit distance from the
boundary. By bringing the margin closer to the boundary, the influence of the privileged information
is greater and we learn a more accurate decision rule in X .
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(a) 99% Fair

(b) 70% Fair

(c) 30% Fair

(d) 0.001% Fair

Figure 8.1: The e↵ect of the ‘Fairness Percentage’ on classifying data.
(Left) The decision boundary in X

(Right) The margin distance function in X ⇤, where margin lines show one unit distance to the margin
as in fig. 4.2
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Chapter 9

Conclusion

This has been an interesting area to research. As privileged information is ubiquitous it is important
that we learn techniques to best improve its performance. Initial signs from the classifier introduced in
this paper, the SVMu are encouraging. Clearly there needs to be further experimentation on a wider
range of datasets and this may form the basis of further work. Irrespective of its performance, the
process of creating a new classifier was one that was rewarding and informative. The aim of creating
a highly generalisable LUPI classifier such as the SVMu warrants further exploration. It may be
possible to incorporate further methods into this ‘all-in-one’ approach, but balancing extra spaces and
hyper-parameters against the curse of dimensionality is a di�cult challenge. This paper introduced an
initial structure for such a classifier and it would be and interesting further project to maximise its
potential.

In terms of further work there is a lot more to be done. This is a rich vein of research and one that is
fascinating to explore. Though only alluded to in this paper, there appears to be an intrinsic connection
between LUPI and Machine Teaching[28]. Further exploration into this connection, particularly with
regard to the conditional probability function P (x⇤|x). Throughout this paper, knowledge of the
conditional probability function, Vapnik’s ‘Intelligent Teacher’ has allowed us to reason about the
performance of various LUPI techniques. Formalising this relationship, and putting it in terms of
‘what makes good privileged information is another challenge.

Other papers have shown Knowledge Transfer to be useful as a model distillation method [10].
Given that Knowledge Transfer is a radically di↵erent approach, further research with regard to novel
applications seems just. With regard to application, applying LUPI techniques to ethical machine
learning is a fascinating one. The implications for this research are far reaching and it is imperative
that the ideas developed in chapter 8 are developed further.
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