Novel Object & Unusual Name
(NOUN) Database
2nd Edition

Jessica S. Horst
University of Sussex

Michael C. Hout
New Mexico State University
Table of Contents

I Novel Objects
 Catalog of available images of 64 objects, including:
 familiarity scores (F)
 name-ability scores (N)
 Catalog of available images with additional exemplars
 Table 1: within- and between-category similarity scores
 Figure 1: novelty
 Figure 2: color saliency (this figure is in two parts for legibility)
 Figure 3: texture saliency
 Catalog of the 16 most similar objects
 Catalog of the 16 most distinct objects

II Unusual Names
 Names, listed alphabetically

III Acknowledgements

How to Cite The NOUN Database in APA Style

Contact Information

Dr. Jessica S. Horst
Director, Word and Object Reasoning Development (WORD) Lab
University of Sussex, School of Psychology
jessica@sussex.ac.uk
http://www.sussex.ac.uk/wordlab
Novel Objects

The following pages include images for the 64 principle novel objects and images for 20 additional exemplars of some of the principle objects. Each image beginning with “20” is available in standard resolution (300 DPI) and high resolution (600 DPI). Images beginning with “10” are only available in low resolution. Images are 4in x 4in.

In addition, familiarity scores and name-ability scores are provided for each principle image.

Familiarity scores (F) are equal to the % of adults who indicated they had seen one of these objects before. Therefore the higher the score, the more familiar, i.e., less novel and more common the object is (to adults). Depending on your study design, you may want objects that are most novel. See Figure 1 for a rank ordering by novelty.

Name-Ability scores (N) are equal to the % of adults who spontaneously came up with the same name for the object. Therefore, the higher the score, the more name-able, i.e., the more likely adults will agree on what to call it.

E indicates multiple exemplars are available for this object. See the Multiple Exemplars and Category Similarities sections for more information.
novel objects & unusual names

2001
F = 19% N = 50%

2002
F = 22% N = 83%

2003
F = 59% N = 74%

2004
F = 41% N = 70%

2005
F = 6% N = 25%

2006
F = 34% N = 64%

1007
F = 22% N = 46%

1008
F = 34% N = 25%

2009
F = 47% N = 78%

2010
F = 66% N = 52%

2011
F = 22% N = 75%

2012
F = 41% N = 50%
novel objects & unusual names

F = 6% N = 14%
F = 16% N = 71%
F = 22% N = 38%
F = 6% N = 47%
F = 19% N = 27%
F = 9% N = 43%
F = 16% N = 32%
F = 47% N = 90%
F = 9% N = 57%
F = 72% N = 39%
E; F = 13% N = 54%
F = 59% N = 70%
novel objects & unusual names

F = 34% N = 24%

E; F = 56% N = 63%

E; F = 28% N = 64%

E; F = 31% N = 64%

F = 34% N = 38%

F = 38% N = 67%

F = 66% N = 76%

E; F = 6% N = 27%

F = 25% N = 29%

F = 34% N = 67%

F = 41% N = 32%

E; F = 13% N = 47%
novel objects & unusual names

F = 19% N = 44%

F = 31% N = 68%

E; F = 53% N = 60%

E; F = 41% N = 53%

E; F = 44% N = 79%

F = 3% N = 25%

F = 13% N = 33%

F = 19% N = 59%

F = 34% N = 32%

F = 22% N = 33%

F = 75% N = 92%

F = 38% N = 32%
novel objects & unusual names

2061
F = 53% N = 53%

2062
F = 44% N = 56%

2063
F = 25% N = 38%

2064
F = 28% N = 33%
Multiple Exemplars

Category 2015

2015
2015-B
2015-C

Category 2035

2035-B
2035-C
2035-D

Category 2038

2038
2038-B
2038-C

Category 2039

2039
2039
2039

Category 2040

2040
2040-B
2040-C
novel objects & unusual names

<table>
<thead>
<tr>
<th>Category</th>
<th>2044</th>
<th>2044-B</th>
<th>2044-C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>2048</th>
<th>2048-B</th>
<th>2048-C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>2051</th>
<th>2051-B</th>
<th>2051-C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>2052</th>
<th>2052-B</th>
<th>2052-C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>2053</th>
<th>2053-B</th>
<th>2053-C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Below are the similarity ratings within each category (e.g., cell 2015/2015 indicates the mean similarity between items in category 2015) and between categories (e.g., cell 2015/2035 indicates the mean similarity between items in categories 2015 and 2035). Note: smaller numbers indicate greater similarity. When considering items for forming global-level categories, we recommend a cut-off of .87 or lower (this is \(M + .25SD \)).

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2035</th>
<th>2038</th>
<th>2039</th>
<th>2040</th>
<th>2044</th>
<th>2048</th>
<th>2051</th>
<th>2052</th>
<th>2053</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>.11</td>
<td>.87</td>
<td>1.00</td>
<td>.82</td>
<td>1.21</td>
<td>.51</td>
<td>1.13</td>
<td>.96</td>
<td>1.00</td>
<td>1.12</td>
</tr>
<tr>
<td>2035</td>
<td>.09</td>
<td>1.07</td>
<td>1.13</td>
<td>.63</td>
<td>.79</td>
<td>.97</td>
<td>.95</td>
<td>.56</td>
<td>.79</td>
<td></td>
</tr>
<tr>
<td>2038</td>
<td>.10</td>
<td>.97</td>
<td>.98</td>
<td>.73</td>
<td>.79</td>
<td>1.11</td>
<td>1.02</td>
<td>.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2039</td>
<td>.16</td>
<td>1.13</td>
<td>1.07</td>
<td>.89</td>
<td>.56</td>
<td>1.13</td>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>.19</td>
<td>1.11</td>
<td>.56</td>
<td>1.09</td>
<td>.94</td>
<td>.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2044</td>
<td>.06</td>
<td>1.11</td>
<td>1.11</td>
<td>.82</td>
<td>.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2048</td>
<td>.12</td>
<td>1.11</td>
<td>1.21</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2051</td>
<td>.13</td>
<td>.78</td>
<td>.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2052</td>
<td>.11</td>
<td>.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2053</td>
<td>.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Novelty

Figure 1. This figure plots the objects in order of most novel (2054) to least novel (2024). The novelty scores are $1-F$ (familiar scores in the main catalog). Dotted lines are included to facilitate readability.
Figure 2, Part 1. This figure plots the percentage of adults who spontaneously referred to the objects’ color(s) when answering the question “what would you call this object?” Dotted lines are included to facilitate readability. Note, frequency of color qualifiers is correlated with object novelty (the more novel something is the more likely people will mention color when asked what to call it), $r = .42$, $p = .0006$, CI = .189 -.599.
Figure 2, Part 2. This figure plots the percentage of adults who spontaneously referred to the objects’ color(s) when answering the question “what would you call this object?”
Texture Saliency

Figure 3. This figure plots the percentage of adults who spontaneously referred to the objects’ textures or materials (e.g., spikey, soft) when answering the question “what would you call this object?” Dotted lines are included to facilitate readability.
Similar Objects

We calculated the mean distance scores for every object in the database against every other object. These 16 objects had the lowest mean distances (i.e., greatest similarity). For all 64 objects, $M = .8566$, $SD = .0367$, range = .7546-.9348. For additional comparisons, please use the Supplementary Electronic Table.
Distinct Objects

We calculated the mean distance scores for every object in the database against every other object. These 16 objects had the highest mean distances (i.e., greatest dissimilarity). For all 64 objects, $M = .8566$, $SD = .0367$, range = .7546-.9348. For additional comparisons, please use the Supplementary Electronic Table.
The unusual names (AKA pseudo-names, non-names & novel names) are listed alphabetically on the next page. These names have been compiled from NOUN user suggestions and the studies listed below.

If you are interested in determining the phoneme length, neighborhood density and other features of the unusual names, we highly recommend using the Storkel and Hoover (2010) online calculator: http://www.bncdnet.ku.edu/cgi-bin/DEEC/out_ccc.vi

A
- adet
- agen
- akar
- aned
- ange
- aque

B
- beag
- bem
- bink
- biss
- blap
- blick
- blicket
- bosa
- boskot
- brend
- brisp
- broost

C
- chatten
- cheem
- Ciop
- colat
- cuddle
- culp
- cusk
- cvack

D
- dage
- dand
- darg
- dax
- deld
- derd
- dite
- doff
- doud
- dunch
- dupe

E
- eder
- eget
- erag

F
- fapt
- feag
- fiffin
- fimp
- fis
- fode
- fode
- foom
- fote
- fupp

G
- gade
- gake
- gasser
- gaz
- gazzer
- geag
- geap
- gip
- glark
- gloop
- goke
- gree

H
- hage
- hane
- heab
- heach
- hach
- husp
- hux

I
- ipis iree
- isol

J
- jang
- jate
- jefa
- jick
- judge
- juff
- juss

K
- kaki
- kern
- kinch
- kita
- kiv
- koba
- koob
- krat

L
- leam
- lep
- loche
- lorp
- lort

M
- manu
- mel
- modi
- mense

N–O
- nare
- nega
- nilt
- noop
- osip

P
- pabe
- pafe
- pank
- pentants
- pisk

Q–R
- quan
- ratch
- reda
- regli
- reng
- roak
- roke

S
- sarl
- sarn
- shed
- shil
- sibu
- slint
- sme
- smope
- sois
- soit
- sob
- sount
- spoov
- sprock
- stad

T
- tand
- tannin
- tanzer
- teebu
- terb
- tever
- tife
- toma
- trag
- tream
- tri
- tulver
- tunk
- tust

U–V
- upos
- vab
- virdex

W
- whis
- wilp
- wiot
- wiso
- wolp
- wost
- wupt

Y–Z
- yok
- yosp
- zav
- zeb
- zios
- zorch
Acknowledgements

Thank you.

Jessica created the first NOUN Database in 2009 and shared it with other researchers like you. As requests have come in for various images we have been able to learn more about what other kinds of studies are currently ongoing—many using new, exciting methods. It has been rewarding that we can encourage each other, and support each other in creating well-designed studies. We truly enjoy being a member of this research community and we hope this way of giving back is helpful for others.

Research is a team effort and we could not have created this database alone. We would like to thank Emilly J. Scott and Katie Twomey who helped me find most of these objects. We would also like to thank Ryan Kavlie for taking the photographs of the stimuli.

Next, we would like to thank first edition NOUN users and fans who have provided encouragement and helpful feedback, which we hope you will agree have made this second edition even better (in alphabetical order): Evin Aktar, Bozena Pajak, Amber Harris, Susanne Grassmann, Caitie Hilliard, Julian Jara-Ettinger, Matthew Hilton, Derek Houston, Sarah Kucker, Emily Mather, Fabien Mathy, Julien Mayor, Lisa Oakes, Alexa Romberg, Jessie Schwab, Haley Vlach, Hanako Yoshida and Jennifer Zosh.

The creation of this second edition was made possible by a British Academy/Leverhulme Trust Senior Research Fellowship to J.S.H.

Are you still reading? There is a new study to design and plan! What are you waiting for?!

Contact and citation information can be found on the table of contents page.