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Abstract 

Insects play a key role in the regulation and dynamics of many ecosystem services (ES). 

However, this role is often assumed, with limited or no experimental quantification of its real 

value. We examined publication trends in the research on ES provided by insects, ascertaining 

which ES and taxa have been more intensively investigated, and which methodologies have 

been used, with particular emphasis on experimental approaches. We first performed a 

systematic literature search to identify which ES have been attributed to insects. Then we 

classified the references retrieved according to the ES, taxonomic group and ecosystem 

studied, as well as to the method applied to quantify each ES (in four categories: no 

quantification, proxies, direct quantification and experiments). Pollination, biological control, 

food provisioning, and recycling organic matter are the most studied ES. However, the 

majority of papers do not specify the ES under consideration, and from those that do, most do 

not quantify the ES provided. From the rest, a large number of publications use proxies as 

indicators for ES, assuming or inferring their provision through indirect measurements such as 

species abundances, species density, species richness, diversity indices, or the number of 

functional groups. Pollinators, predators, parasitoids, herbivores, and decomposers are the 

most commonly studied functional groups, while Hymenoptera, Coleoptera, and Diptera are 

the most studied taxa. Experimental studies are relatively scarce and they mainly focus on 

biological control, pollination, and decomposition performed in agroecosystems. These results 

suggest that our current knowledge on the ES provided by insects is relatively scarce and 

biased, and show gaps in the least-studied functional and taxonomic groups. An ambitious 

research agenda to improve the empirical and experimental evidence of the role played by 

insects in ES provision is essential to fully assess synergies between functional ecology, 

community ecology, and biodiversity conservation under current global changes. 
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Introduction 

Understanding, valuing, quantifying, and ensuring the provision of ecosystem services 

(ES) under current global changes have become increasingly important during the last two 

decades (Turner et al. 2007, Seppelt et al. 2011, Díaz et al. 2013). Ecosystem services can be 

defined as the beneficial functions and goods that humans obtain from ecosystems, that 

support directly or indirectly their quality of life (Harrington et al. 2010, Díaz et al. 2015). 

These services are critical for human welfare (Daily et al. 2000), since they include, amongst 

others, the provision of food, fiber, and water, the regulation of floods, diseases and climate, 

the control of organic matter decomposition and nutrient cycling, the suppression of pests, and 

the cultural services associated with recreation or education (Millennium Ecosystem 

Assessment 2003, Díaz et al. 2015). The definition and interpretation of ES has varied 

considerably in the literature over the years (De Groot et al. 2002, Harrington et al. 2010, 

Spangenberg et al. 2014), and this concept is often confounded with related terms such as 

“ecosystem functions” and “ecosystem goods” (Millennium Ecosystem Assessment 2003, 

Díaz et al. 2015). Ecosystem functions refer to all biogeochemical characteristics of 

ecosystems (including the structures and processes that may arise as emergent properties), 

regardless of whether they have a value, or benefit, for humans (Spangenberg et al. 2014). 

While ecosystem goods correspond to the products of ecosystem services that can be traded 

by humans through either perception, expectations, experience, utilitarian use, or consumption 

(Díaz et al. 2015). 
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Insects (Arthropoda: Insecta) are the largest and most diverse group within the animal 

kingdom. They are key components in the provision, regulation, and dynamics of many 

ecosystem services (referred to as insect ES herein; Weisser & Siemann 2004, Schowalter 

2013). Insects are potentially involved in the four broad types of services defined by the 

Millennium Ecosystem Assessment (2003): (i) provisioning services, that correspond to 

material or energy outputs from the ecosystems; (ii) supporting services, that allow the 

maintenance of other ES; (iii) regulating services, that regulate the magnitude and 

directionality of ecosystem processes; and (iv) cultural services, that do not provide material 

benefits but have an educational, spiritual and/or aesthetic value (GEO4 2007, Prather et al. 

2013). Previous efforts to assign monetary values to several ES provided by insects usually 

underestimated the value of these animals to our economies and quality of life (Beynon et al. 

2015). Nevertheless, insects provide ES worth at least $57 billion per year in the United States 

alone (Losey & Vaughan 2006), and insect pollination may have an economic value of $235 

to 577 billion per year worldwide (IPBES 2016). 

A realistic assessment of the contribution of natural resources and biodiversity for the 

delivery and maintenance of ES depends on having accurate information and a clear 

understanding of the processes involved in the provision of those services (Haines-Young & 

Potschin 2010). There is a general lack of knowledge on the functional roles played by most 

species in nature (i.e. the so-called Raunkiaeran Shortfall; Hortal et al. 2015). This is 

particularly important when assessing the value of insect ES. Despite their enormous 

diversity, insects are often under-represented in ecosystem studies, so their contribution to 

ecosystem functioning has been comparatively less investigated than other organisms such as 

plants (Schowalter 2016). As a consequence, we often lack a comprehensive understanding of 

the role of insects in many ecosystem processes that underlie ES. Although many efforts to 
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quantify insect ES have been developed in the last decade (e.g. Prather et al. 2013, Boerema et 

al. 2017), their main focus is on a subset of either functional or iconic taxonomic groups, such 

as pollinating bees or dung beetles. 

Current knowledge on the ES provided by insects has usually been obtained from a 

variety of methodological approaches, ranging from field observations to manipulative 

controlled experiments, even though such relationships are often simply assumed (e.g. 

Philpott & Armbrecht 2006, Allsopp et al. 2008). Thus, assessment of insect ES includes a 

wide variety of approaches such as field observations, expert opinions or estimates, 

assumptions or inferences made from proxies of several aspects of biodiversity (e.g. species 

richness, total abundance, morphological traits), estimates inferred from trait values, and 

empirical data obtained from field and/or microcosm experiments that may or may not have 

been specifically designed to quantify the real ES provision in the first place. These 

approaches also differ widely in their replicability, accuracy, and applicability of their outputs, 

direct relevance to the ES itself, as well as in their costs in terms of time and resources. 

Further, while they may allow inferring which insects provide which ES, proxies might not be 

approriate to reveal the mechanisms linking specific traits to particular ecosystem functions or 

services. A better quantification of the specific relationship between ES and specific traits 

provides a potentially useful link to the wide-scale prediction of ES (de Bello et al. 2010), 

although this information is limited to a few groups and ecosystems (see Hortal et al. 2015). 

This contrasts with greenhouse and cage experiments performed on individual species or 

simple communities, which enable either maintaining a tighter control of the environmental 

conditions or subjecting the object of study to well-defined treatments, or both (Lähteenmäki 

et al. 2015). This allows establishing –and measuring– direct links between given ES and 

particular individual(s), trait values, and functional compontents of biodiversity (e.g. Dias et 
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al. 2013, Bílá et al. 2014), while revealing mechanisms behind the relationship between 

biodiversity and ES. However, these types of studies present several disadvantages, as they 

can be expensive and laborious. Further, synergies and/or antagonistic effects are difficult to 

control, and their findings might not be relevant or realistic when up-scaling to real-world 

conditions and/or when they are extrapolated to different taxa from the model species. 

We examine the general trends in published research on ES provided by insects, to 

provide an overview of the overall quality and extent of the current state of the art on this 

topic. To do this, we conduct a systematic literature search, identifying which specific ES 

have been attributed to insects, which methodological approaches have been applied to 

describe and quantify these ES over time, and whether there are any important gaps in current 

knowledge. In particular, we seek to answer the following questions: (i) Which insect ES have 

been studied? (ii) Which methodological approaches have been used to study these ES? (iii) 

Which functional and taxonomic groups of insects have been investigated in this context? (iv) 

Which ecosystems have been monitored experimentally for examining insect ES? 

 

Materials and methods 

We performed a literature search using different online platforms to identify articles 

dealing with insect ES published during the last six decades (1956–2016, time interval 

preselected by default by many of the online platforms). Firstly, we conducted bibliographic 

queries in the ISI Web of Knowledge (WOK) and Scopus using the keyword string 

“(ecosystem* service* OR ecosystem* function* AND insect*)”, looking for matches in the 

title, abstract and/or keywords. In addition, we used the same keywords to retrieve articles 

from the group associated with “ecosystem services and insects” in ResearchGate 

(www.researchgate.net, one group: ecosystem service insects) and ACADEMIA 

http://www.researchgate.net/
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(www.academia.edu, three groups: ecosystem services, ecosystem service and ecosystem 

functions). Since the terms “ecosystem services” and “ecosystem functions” are often used 

very loosely in the literature, we widened our search by using both terms separately and 

thereafter discarded those references that were not clearly related to any insect ES. Therefore, 

from the initial search (updated on 30th December 2016) we retrieved 8,424 records (WOK: 

2,348, Scopus: 2,859, ResearchGate: 200, Academia: 3,017). We then eliminated conference 

papers, articles in press, duplicate records (i.e. articles that appeared more than once in the 

different search engines, or in the same platform due to typographical errors) and finally, all 

those references not related to any ES or insect group. The finally selected records included 

913 papers that provided ES estimates. 

The following information was collected from each selected publication: author(s); 

year of publication; journal; method used for quantifying each ES according to four 

categories: not quantified, proxies, directly quantified, and experiments (Table 1); trophic 

group(s); taxonomic group(s) (order and superfamily or family); ES studied (specific ES or 

ES in general); and any relevant additional observation as notes. To keep consistency with the 

literature, we used the term ‘biological control’ to refer to the most-adequate term “pest and 

pathogen suppression” (that includes both human-controlled and ‘natural’ regulation of pest 

populations). In addition, the type of ecosystem investigated and the location of the study 

were recorded for the experimental studies.  

This type of literature search has several limitations that we considered when 

analyzing the data and interpreting the results. First, the search may miss some relevant 

papers, simply because either the title, the abstract or the keywords did not contain the focal 

keywords. In fact, our literature search was biased towards publications specifically referring 

to insect groups (i.e. studies that included the word ‘insects’ only), which could result in 

http://www.academia.edu/
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missing some papers that focus on particular species (e.g. Apis mellifera), functional groups 

(e.g. pollinators) or larger groups of invertebrates that also include insects. Second, the 

approach we used might have overlooked publications that refer to a particular ES by its name 

(e.g. pollination) without quoting the words “ecosystem services” per se in their abstract or 

keywords. These limitations have been previously identified by other authors using similar 

search approaches (see Prather et al. 2013). Third, the term “ecosystem service” is fairly 

recent, and its use was not common prior to the 1990s, so some older publications addressing 

some kind of insect ES may not have been detected by our search. Finally, we may have failed 

to include some works that were not indexed by the platforms used here. However, and 

despite these limitations, we believe that the data retrieved gives us enough relevant 

information to examine general trends in insect ES research and to identify knowledge gaps 

on the topic that could help us to develop future research strategies to better evaluate the ES 

provided by insects. 

 

Results 

Our search retrieved 913 articles, published from 1989 to 2016, with relevant 

information on the ES provided by insects (see Appendix A). There were no papers before 

1989 with the specific keyword string used for our search. These articles show an 

exponentially increasing trend in the number of insect ES studies over time (Fig. 1). 

Pollination, biological control, food provisioning, and recycling organic matter are the most 

well studied ES (Fig. 2A), although the role of insects has been investigated for many other 

services, some of them not previously detected by former reviews on insect ES (Table 2). 

Remarkably, 20% of the publications (N=184) mention ES in general without referring to any 

specific service (Fig. 2A), and without clarifying the role that the investigated insect groups or 
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species performed to deliver these services. ES of high socio-economic relevancy, such as 

pollination and biological control in agricultural ecosystems, are the most commonly studied 

and those with the highest proportion of experimental data supporting the link between the 

studied insects and the service provided (Fig. 2B). Indeed, there is a remarkable similarity 

between the proportions of studies focused on pollination, biological control, and nutrient 

cycling, and the functional groups performing these services (i.e., pollinators, predators and 

parasitoids, and decomposers, respectively; compare Figs. 2A and 2C). 

The majority of insect ES literature does not quantify the actual level or extent of the 

ES studied: categories not quantified and proxies together comprise 69.6% of all papers 

(N=635; Fig. 3A). These studies are not restricted to those not specifying the ES under 

consideration, but rather extend to all types of services (Fig. 2B). Strikingly, almost half of the 

publications retrieved by our search used proxies as indicators for ES (46.8%, N=427; Fig. 

3A), particularly for pollination and non-specified biological control services (Fig. 2B). Less 

than a third of studies actually quantify insect ES either directly or through experiments 

(N=278, 30.4%), although the proportion of these two kinds of studies together has increased 

steadily during the last 15 years (Fig. 3B). Interestingly, most of them perform direct 

measures without any experimental manipulation (N=222, 24.3% of all papers), whereas 

experimental studies undertaken either in the laboratory or in the field represented only 6.1% 

(N=56) of the total number of publications (Fig. 3A; see Appendix B). Pollination, biological 

control and nutrient cycling were the ES most studied using experiments (Fig. 2B). 

As identified above, insect ES are most commonly studied through proxies. These 

proxies are typically species abundance, species richness and, to a lesser extent, ecological 

diversity indices such as Simpson or Shannon (sometimes referred to as alpha diversity, but 

see Magurran 2004) (Fig. 3C). However, many other proxies have been used in the literature, 
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including species density, the number of functional groups, visitation rates, network 

complexity and modularity, and some functional traits (e.g. body size/biomass, behavioral 

traits, colony density, etc.) and associated measures of functional diversity, community mean 

trait value, species composition, beta diversity, niche overlap or endemicity, amongst others. 

Very few studies corroborated the existence of a direct link between the investigated proxy 

and the functional aspect that it was intended to represent at the studied geographical scales 

and/or for a specific taxonomic or trophic group (exceptions being, e.g., Arnan et al. 2013, 

Rader et al. 2014). 

Pollinators, predators of pests, parasitoids, herbivores, and decomposers (especially 

dung beetles) were the most studied functional groups (Fig. 2C), together with some 

charismatic and/or easy to identify groups such as ground beetles or bumblebees. The order 

Hymenoptera –that includes many pollinators (particularly bees), parasitoids (commonly used 

for biological control), predators, and decomposers (such as ants)– has been the most studied 

taxonomic group, followed by Coleoptera and Diptera (Fig. 4A). In fact, hymenopterans have 

been comparatively overstudied if we take into account the total number of described species 

(Fig. 5). At a finer taxonomic level, several superfamilies or families also emerge as being 

highly studied subjects, including Apoidea (particularly Apidae), Formicidae, and Braconidae 

belonging to Hymenoptera; Carabidae, Coccinellidae, and Scarabaeidae within Coleoptera; 

Syrphidae among Diptera, and several families of termites from Blattodea (Fig. 4C). 

The most studied services using experimental approaches are biological control, 

pollination and decomposition (see Appendix B). Thus, the links with ES have been more 

often quantified in experimental studies for Hymenoptera and Coleoptera (Fig. 4B). A great 

amount of experimental evidence on insect ES comes from the USA and Europe – in 

particular Switzerland, Germany, and Sweden, although a few studies have also been 
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performed in developing countries such as Costa Rica, Mexico, Philippines, Tanzania, 

Indonesia, Kenya and Argentina (see Appendix B). The ecosystems most commonly studied 

experimentally were agroecosytems, which include a large number of different types of crops 

(e.g. almonds, cabbage, cacao, cereals, coffee, rice, potato, wheat, etc.). The services provided 

by insects in grasslands and, to a much lesser extent, forests, savannas, wetlands, or lakes 

have also received some attention (see Appendix B). 

 

Discussion 

Research interest on the ecosystem services provided by insects grew during the last 

decade (Stout & Finn 2015, and references therein). The increase in the number of papers 

published on this topic mirrors the pattern described by Hallouin et al. (2016) for ES in 

general, and reflects the expanding significance of identifying, analyzing, conserving, and 

managing ES under the global change scenarios that characterize the Anthropocene. This 

general interest has reached entomological research, resulting in a clear increase in the 

number of studies focusing on insect ES (compare our Table 2 with the list provided by GEO4 

2007 or Turner et al. 2007). Despite such recent efforts, the services provided by insects still 

remain relatively understudied compared to other groups. Insects comprise 49.9% of the 

1,656,025 accepted species currently included in the Catalogue of Life (accessed on 23rd 

December 2016; Roskov et al. 2017). However, a quick search in Scopus (using “ecosystem 

service*” AND [insect* OR coleop* OR hymenop* OR lepidop* OR dipter* OR bees OR 

beetle*], 26th January 2017) produced 1,102 documents on insect ES out of 16,476 for ES in 

general. That is, about 6.7% of the total research output on ES is devoted to these 

invertebrates making up half of known diversity, and containing species and trophic groups 

with unique roles in ES provision. This comparatively low level of knowledge arises despite 
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the fact that, in many cases, it is likely that the majority of ES are supported by a relatively 

small number of invertebrate species (e.g. for pollination, Klein et al. 2015). 

 Remarkably, the majority of the studies on insect ES published so far are merely 

descriptive, either making no quantification of the ES or using proxies to indirectly link 

species and/or groups to particular ES, even for the better-studied groups such as bees (e.g. 

Eardley 2000, Morandin et al. 2007, Kimoto et al. 2012). Experimental studies and direct ES 

quantifications have become more common in recent years, but still account for a small 

proportion of published studies. Experiments are therefore needed to ascertain in detail which 

species or functional groups provide a particular service, and which mechanisms and aspects 

of biodiversity are behind the provision of each specific ES (e.g. Slade et al. 2007, de Bello et 

al. 2010, Ibanez et al. 2013). A better understanding of the links between insect diversity, 

insect behavior, and interaction with organisms from different trophic levels in providing ES 

is also needed (Schmitz 2008, Brosi & Briggs 2013). Considering that most information on 

insect ES comes from studies using proxies rather than direct quantifications or experiments, 

it is likely that most current knowledge on these services holds a high degree of uncertainty, 

for it is based only on estimates rather than quantitative assessments (Boerema et al. 2017). 

This lack of robust quantitative data can hamper the assessment of global change effects, 

preventing us from identifying and/or quantifying the impacts of environmental changes on 

ES, and therefore making it difficult to develop adequate actions to mitigate them. 

 

From proxies to experiments 

Further analyses are required to evaluate and determine why proxies are preferred to 

direct service quantifications and/or experiments in ES research, both in general and in the 

particular case of insects. Some ES, such as nutrient cycling or soil nutrient regulation, are 
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difficult to quantify and/or require laborious, expensive and time-consuming work, making 

the use of proxies more attractive (e.g. Hoffman et al. 1996, Palin et al. 2011). In fact, there 

are no well-established standardized ways of quantifying the value for some ES, such as 

provision of nursery habitats, cultural, educational and pharmaceutical services, tourism, and 

quality of life (see Nallakumar 2003, Choosai et al. 2009). Quantifying the value of a number 

of ES, such as the spatial redistribution and accumulation of soil nutrients, seed dispersal and 

germination, or soil aeration, presents important methodological difficulties (see Folgarait 

1998, Pringle et al. 2010, Wu et al. 2010). One big challenge to ES field experimentation is 

excluding a particular taxon (i.e. the insect-exclusion treatment) to measure the effects of 

individual taxa on the ES of interest, without having unintentional effects on other organisms. 

For example, methods to experimentally exclude insects can sometimes alter microbial 

activity due to changes in microclimate. This has strained efforts to accurately quantify the 

contribution of insects to the decomposition of both litter (Kampichler & Bruckner 2009) and 

wood (Ulyshen & Wagner 2013), and to nitrogen cycling in grasslands (Risch et al. 2015). 

Some success has been, however, achieved with dung beetles (e.g. Slade et al. 2007, Beynon 

et al. 2012, Griffiths et al. 2015, Lähteenmäki et al. 2015, Slade & Roslin 2016). 

 The most commonly used proxies for insect ES are species richness and species 

abundance. However, these two metrics could only provide limited information on service 

delivery if they do not adequately capture the uneven contributions of different taxa to an ES 

(e.g. Klein et al. 2015). The relationship between taxonomic diversity and ecosystem function 

is often context-dependent (Tylianakis et al. 2008), and it is not uncommon for the effects of a 

single taxon on a particular service to eclipse those of all other species in a community (e.g. 

Straub & Snyder 2006, Klein et al. 2015). Studies addressing the importance of insects for 

wood decomposition, for example, have shown termites to consume much more wood than all 
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other insects combined (Ulyshen et al. 2014). Indeed, an increasing number of studies show 

the importance of considering functional aspects of biodiversity to improve our understanding 

of the relationships between proxies and ES (Díaz et al. 2013, Lavorel et al. 2013, Moretti et 

al. 2013, Harrison et al. 2014, Wood et al. 2015). 

Metrics related to functional diversity, functional identity or attributes (i.e. traits) that 

affect an ES (sensu Violle et al. 2007, Díaz et al. 2013) may be more informative than those 

related to total abundance or taxonomic richness and permit to investigate the interactions 

among organisms from different trophic levels as one of the potentially most important 

mechanisms behind key ES (e.g. Lavorel et al. 2013, Gagic et al. 2015). Trait-based metrics 

can take into consideration that different species (and individuals) have different effects on the 

ecosystem, and assume that there may also exist some complementarity among species’ 

functions leading to non-additive effects of the process in focus (Hoehn et al. 2008). Indeed, it 

has been argued that trait diversity at the community level is one of the key factors governing 

ecosystem properties (Hooper et al. 2005), sometimes exceeding species richness in 

importance (Hoehn et al. 2008). However, a proper use of traits to link diversity and ES 

requires good knowledge on which traits can be associated with a particular ecosystem 

function and/or service, the intraspecific variability of these traits, under what environmental 

conditions are those functional traits more important, and which component of the distribution 

of trait values within communities is most appropriate to account for service provision (i.e. 

mean or variance; e.g. Ricotta & Moretti 2011, Dias et al. 2013, Griffiths et al. 2016a). 

Unfortunately, data on traits and knowledge on how these traits translate into ES are 

limited (Hortal et al. 2015), at least at the spatial scales relevant to the study of ES. This 

shortfall is even more acute in insects and other soil invertebrates (but see e.g. Ibanez 2012 or 

Martins et al. 2015). An adequate selection of traits genuinely related to the studied service 
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can provide a mechanistic understanding of the role of insects in ES provision, and will 

ultimately have the greatest potential to infer ES delivery (e.g. Woodcock et al. 2013, 

Griffiths et al. 2016b). However, often the traits used for ES analyses are chosen based on 

either readily-available trait data, or on traits used in previous studies, rather than on 

functional hypotheses linking traits, ecosystem functions, and their associated services. This 

can result in a consistent bias towards using small subsets of traits, some of which may have 

little value for particular functions or services. Even in those few studies where the traits were 

genuinely related to the ES studied, the data was typically limited to a handful of species, and 

their measurement was often labour-intensive. Therefore, to improve the use of trait-based 

proxies for insect ES research further work is needed to provide experimental evidence on the 

relationship between trait variation and service provision. Initiatives to provide standardized 

measures of traits across terrestrial invertebrates and their effect on ecological functioning –

such as the invertebrate trait handbook proposed by Moretti et al. (2017)– are key for further 

advances on insect ES research.  

 

Functional and taxonomic biases 

The biases in insect ES research are both functional and taxonomic: Not only are some 

services studied more intensively than others, some groups are also more often investigated 

than others. The most-studied ecosystems are croplands and consequently, the focus is placed 

on those ES that have a larger impact on the goods we receive from these managed 

ecosystems, such as pollination and biological control, two services with high economic 

impacts (Losey & Vaughan 2006). These two services are also the ones that have been most 

studied using experimental approaches, together with nutrient cycling. A good example of 

why biases are often functional rather than taxonomic can be found by looking at the high 
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proportion of papers that have focused on pollination. These often analyze more than one 

insect group or the whole community of pollinators, including Hymenoptera (predominantly 

Apoidea and some additional families), Diptera (Syrphidae), and Lepidoptera (e.g. Gardiner et 

al. 2010, Lundin et al. 2013). This contrasts with the research on many ES of less obvious 

and/or indirect economic importance, such as dung removal, seed dispersal, soil aeration, pest 

control or soil water infiltration. These studies are typically constrained to a single trophic 

group and/or a single taxonomic group, hence providing very little information on the whole-

community responses and/or the interactions between organisms of different trophic levels, 

the resulting ES and functional and/or taxonomic groups. In addition, there is an evident bias 

in the literature we reviewed towards those groups that can be easily studied (e.g. towards 

above- vs. below-ground organisms), have larger body sizes (e.g. butterflies vs. flies), are 

readily identifiable (e.g. Carabidae are more often studied than the taxonomically complex 

Staphylinidae), or are more charismatic (e.g. bumblebees compared with flies). 

The publications that study multiple ES rarely focus on a single group of insects (e.g. 

Klein et al. 2006, Campbell et al. 2012; but see Slade & Roslin 2016). In fact, many recent 

articles considering several taxonomic groups have investigated how their combined 

responses to different stressors interact with service provision, such as biological control or 

pollination (e.g. Mody et al. 2011, Caballero-Lopez et al. 2012, Stanley & Stout 2013). 

However, very few studies have analyzed the possible range of interactions (from synergies to 

antagonisms or trade-offs) between two or more ES within a specific network or for the whole 

ecosystem (e.g. multitrophic relationships; see Perovic et al. 2017). A significant exception to 

this lack of knowledge are those studies investigating the interaction between different groups 

of pollinators and those describing the regulating services provided by other elements of the 

ecological network, such as pest control provided by predators and parasitoids, or the effects 
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of herbivores on the pollinated plants (e.g. Morandin et al. 2007, Hegland et al. 2010). Current 

knowledge indicates that these regulatory relationships usually affect the network dynamics 

and hence, the supporting ES provided by insects in a negative way (Badano & Vergara 

2011). 

There are few quantitative assessments of the ES provided by several functional and 

taxonomic groups, either from experiments or from indirect quantifications. Our bibliographic 

search failed to find any information for several key functional groups, such as rhyzophagous 

insects, some decomposers, and many symbionts and kleptoparasites. Similarly, very few 

studies were found concerning several small insect Orders, such as Ephemeroptera, Plecoptera 

or Neuroptera. Therefore, the design of our review, which focused on describing publication 

trends rather than assessing knowledge gaps in a conceptual map, prevents us from resolving 

whether these groups are underrepresented in ES research, or if they actually provide few ES 

of minor importance, or whether the lack of general knowledge on their ecology and 

systematics is the main cause of their misrepresentation. However, the key ecological roles 

played by some of them in freshwater ecosystems (e.g. litter decomposition) suggest that 

many of these groups are likely to have a very significant role in the provision of many ES 

(Macadam & Stockan 2015).  

Our bibliographic survey also pinpoints other biases that are common in biodiversity 

knowledge, such as the lack of data for many geographical areas and ecosystem types. 

Knowledge on all aspects of biodiversity is typically concentrated in northern temperate 

regions, particularly Europe and North America (Hortal et al. 2015). This widespread bias is 

also evident in the published work on insect ES; very little is known about the services 

provided by insects in agroecosystems outside these two regions, with the exception of some 

limited work in tropical plantations (mostly coffee and trees) or savannas. However, the sheer 
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lack of knowledge on insect ES throughout most of the world’s ecosystems makes more 

developed analyses on geographical and ecological biases premature. 

 

A cautionary note on insect disservices 

It is important to highlight that we did not include in our analysis papers studying 

disservices by insects for two main reasons. First, the goal of this paper was to characterize 

the trends in insect ES research and, in particular, how much current information comes from 

experimental evidence. Second, the study of insect disservices is a vast topic that would not 

be easy to embrace only using literature searches, and that definitively requires a separate 

analysis. However, the line that separates an ES from a disservice is sometimes very thin. In 

fact, in some cases, the same ecological function can be qualified as service or disservice 

depending on the perspective. While the effects of many foliage or root feeders might often be 

considered disservices, they do provide regulating services by controlling the populations of 

both weeds and certain pests through herbivory and/or competitive exclusion, respectively, or 

by helping to maintain populations of generalist predators and parasitoids (e.g. Martin et al. 

2010, Evans et al. 2011, Eckberg et al. 2014). Herbivores also influence nutrient cycles and 

can contribute to soil fertility and enhance primary production (Belovsky & Slade 2000). 

Similarly, bark and wood-boring insects, create suitable habitats for other insects (e.g. Zuo et 

al. 2016), and have been shown to facilitate colonization by fungi, thus indirectly accelerating 

the decomposition of woody debris (Strid et al. 2014, Ulyshen et al. 2016). It is therefore 

important to understand which ecological functions performed by herbivores can in fact result 

in regulating services, and how they interact with supporting and provisioning services.  

As a consequence of this, during our bibliographic search we found some articles that 

evaluated or studied ecosystem disservices, related to three main topics: (i) damage of 
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agricultural crops by herbivores (e.g. Hiltpold et al. 2013, Dale & Frank 2014); (ii) damage to 

wood plantations by xylophagous insects (e.g. DeSantis et al. 2013, Reich et al. 2014); and 

(iii) harmful effects on human health by hematophagous insects (e.g. Sommerfeld & Kroeger 

2013, Muturi et al. 2014). Some of these studies were not discarded from our final list because 

they refer to ecological functions that can be classified either as services or disservices.  

 

Concluding remarks 

Knowledge on the ES provided by insects is relatively scarce and biased. This occurs 

despite their numerical abundance, the ecological functions they perform for the maintenance 

of ecosystem functioning, and their links to human well-being. Part of the reason behind this 

poor knowledge on insect ES is partly due to the traditional view of considering insects to be 

mainly providers of disservices to humanity, through pest and parasite outbreaks. However, 

given the sheer diversity of insects and their key ecological role in all terrestrial and 

freshwater ecosystems, it is extremely likely that the economic and non-economic benefits 

provided by this group through many ES may exceed those harmful effects and disservices 

they cause, even when considering some specific areas such as crop production. Indeed, the 

value of many ES provided by insects, such as pollination, is widely accepted in financial, 

food security, and health terms. Valuing these services can therefore be a good way to 

stimulate and promote future research on them – through increasing financial support and 

societal engagement. 

It is therefore essential to achieve a better understanding of the role played by insects 

in ES delivery. This requires combining the efforts of ES researchers (including ecologists, 

entomologists, economists, and social scientists) to identify direct links between insect species 

and the ES they provide, ideally through field observations and experiments. A good map of 
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our current knowledge could help define further needs in insect ES research. Our work 

provides an insightful review of current knowledge in the area and identifies obvious gaps in 

the less-studied functional and taxonomic groups. Moreover, we also highlight the existence 

of knowledge gaps in the research of some ES that either have a lower direct economic value, 

or their study poses important methodological challenges. However, the nature of our analyses 

prevents us from obtaining a complete overview of what is actually known and a full 

distribution of the knowledge gaps, since we have characterized publication trends rather than 

the level of completeness, accuracy, and usefulness of the knowledge on each ES, ecosystem, 

and/or insect group. 

A clear shortfall in current knowledge is the lack of high-quality quantifications of ES 

delivery (Boerema et al. 2017), either directly in the field or through experiments. Ideally, 

such information should be obtained by adopting a robust and cohesive common framework 

for insect ES research, which clearly separates ES from ecological functions, which have been 

more commonly studied for insects. Many studies use the term ES very loosely; actually, 

some consider ecological functions of non-human value as services too. A conceptual and 

methodological framework that clearly links different components of biodiversity, the study 

of functions and the traits associated with them, and the quantification of the delivery of 

services can help to increase the research impact of insect ES in general, and for many 

seldom-studied groups in particular. This framework should consider the interactions and 

trade-offs among the services provided by different insect groups, allowing us to also identify 

and measure the services provided by less diverse insect orders. A first step in the 

implementation of such framework is certainly to quantify insect ES provision in the field, but 

in the mean time, it is necessary to design and implement a combination of laboratory and 

field experiments, as well as the adoption of more mechanistic trait-based approaches that 
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allow to disentangle both the direct and indirect contribution of insect biodiversity mediated 

by traits and trait-matching between organisms of different trophic levels. While the use of 

controlled microcosms can provide accurate information, manipulative field experiments are 

more realistic since they take into account a whole range of the interacting environmental 

factors. Obtaining accurate and comprehensive information on the ES provided by insects 

therefore requires joint efforts among ES researchers in implementing such an ambitious 

research program that combines both empirical and experimental evidence.  
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FIGURES AND TABLES 

 

 
 

Fig. 1. Temporal trends in the number of published articles dealing with ecosystem services 

provided by insects across all the literature analyzed from 1956 to 2016 using two search 

engines (ISI Web of Knowledge and Scopus) and two academic social networks 

(ResearchGate and ACADEMIA). See methods section for the keyword strings used in this 

search. Note that no article published before 1989 was retrieved using these search strings. 
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Fig. 2. Percentages and numbers of articles found in the literature search on ecosystem 

services provided by insects (1956-2016), examined at three levels: (A) main ecosystem 

service categories; (B) cumulative number of articles devoted to studying each of these 

services in relation to the the four main categories of quantification (not quantified, proxies, 

directly quantified and experiments) and, (C) main functional insect groups studied (trophic 

groups). ES general refers to ecosystem services in general, with no specification of which 

type of services were investigated. See main text for more details.  
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Fig. 3. Percentages of articles retrieved in our literature review on the ecosystem services 

provided by insects (1956-2016), examined at three levels: (A) type of approach used to 

quantify the ecosystem services provided by insects; (B) cumulative percentage of articles 

over time in relation to the four main categories of quantification (not quantified, proxies, 

directly quantified and experiments) and, (C) main proxies used in the papers that do not 

quantify directly an ecosystem service. 
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Fig. 4. Percentages and numbers of articles retrieved in our literature review on ecosystem 

services provided by insects (1956-2016), examined at three levels: (A) higher-level 

taxonomic groups (i.e. orders); (B) cumulative number of articles studying these groups in 

relation to the the four main categories of quantification (not quantified, proxies, directly 

quantified and experiments); and, (C) most studied taxonomic groups at superfamily/family 

level.  

 

 

 

 

 

 

 

 

 

 

 

 

  



36 
 

 

 
 

Fig. 5. Comparison of the total number of papers on ecosystem services provided by insects 

(1956-2016) in each major insect order (grey bars) and the number of described species in 

these major orders (black dots). 
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Table 1. Categories of quantification of the ecosystem services (ES) provided by insects used 

to classify the studies retrieved by our literature review. 

Quantification category Description Example 

Not quantified Assume the relationship between 

ES and the studied taxonomic or 

functional group following the 

criteria of experts. There is no 

attempt to measure the service, 

neither directly nor indirectly. 

Philpott and Armbrecht (2006) discuss 

the costs and benefits of promoting ants 

in agroecosystems from their functional 

role as predators and the known impacts 

of intensive agriculture practices on their 

diversity. No direct or indirect 

quantification of service delivery is 

either made or inferred. 

Proxies Use of biodiversity aspects –such as 

species richness or abudance– as 

proxies for ES provision, instead of 

quantifying the relationship 

between ES and insects. 

Frank et al. (2008) assess the potential 

benefits of promoting certain native 

plants in croplands, assuming that the 

richness and abundance of natural 

enemies inhabiting these plants are a 

good proxy for their effectiveness for 

biological control. 

Direct quantification Direct quantification in the field of 

the ES provided by insects, without 

following any experimental design. 

Thies et al. (2005) quantify the increase 

in aphid mortality by parasitoids in 

different landscape conditions, as a 

direct measure of his latter group on 

biological control. 

Experiments Quantification of the ES through 

laboratory or field experiments, 

with one or more environmental 

and/or biotic factors being 

controlled. 

Brittain et al. (2010) measure pollinator 

abundance and richness, flower 

visitation rates, pollination of 

experimental potted plants and seed 

production to quantify pollination in 

their analysis of the benefits of organic 

farming in different landscape contexts. 
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Table 2. List of ecosystem services provided by insects across the literature review (1956-

2016) with selected examples of each one. 

 
Ecosystem services Selected reference 

Provisioning services  

Alternative nutrition source Dzerefos and Witkowski 2014 

Economic services Rodriguez et al. 2006 

Food chain supplementation Macadam and Stockan 2015 

Industrial production Sehnal and Sutherland 2008 

Medicine services Shi and Shofler 2014 

  

Regulating services  

Below-ground exchange Folgarait 1998 

Carbon absorption Metcalfe et al. 2014 

Climate regulation Hammer et al. 2016 

Control and suppression of pathogens Ryan et al. 2011 

Counteract climate change Premalatha et al. 2011 

Fungus control Schrader et al. 2013 

Gastrointestinal parasite control Sands and Wall 2016 

Greenhouse gas emissions Slade et al. 2016 

Habitat genetic diversity Corbet 1997 

Network services Hope et al. 2014 

Pest control Aluja et al. 2014 

Pollination Baron et al. 2014 

Population regulation Midega et al. 2015 

Soil fertility regulation Jouquet et al. 2011 

Soil nutrient regulation Shukla et al. 2013 

Soil nutrients spatial variability  Wu et al. 2010 

Soil erosion prevention Ganade and Brown 1997 

  

Supporting services  

Biodiversity protection Choosai et al. 2009 

Decomposition Mitchel et al. 2014 

Dung removal Gray et al. 2014 

Hydrological soil properties Brown et al. 2010 

Mineralization Palin et al. 2011 

Nutrient accumulation Pringle et al. 2010 

Nutrient flow Bloor et al. 2012 

Recycling of matter Ulyshen et al. 2014 

Seed dispersal Leal et al. 2014 

Soil removal Giraldo et al. 2011 

Soil structure Jouquet et al. 2014 

Soil water infiltration Evans et al. 2011 

  

Cultural services  

Bioindicators tool Maleque et al. 2009 

Conservation tool Stout and Finn 2015 

Cultural heritage Vidal et al. 2014 

Education Macadam and Stockan 2015 

Recreation services Woodger 2011 

Religion and spiritual values Ayieko and Oriaro 2008 

Tourism services Nallakumar 2003 

Urban quality life Morley et al. 2014 
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