# Implied Volatility of Leveraged ETF Options: Consistency and Scaling

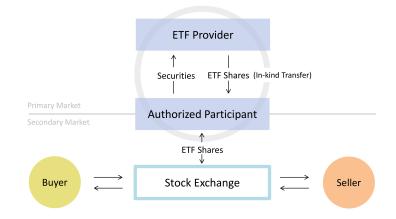
#### **Tim Leung**

Industrial Engineering & Operations Research Dept Columbia University

Finance and Stochastics (FAST) Seminar University of Sussex March 16, 2015

▲□ ▶ つへで 1 / 50

# ETF Market



# LETFs and Their Options

- Leveraged Exchange Traded Funds (LETFs) promise a fixed multiple of the returns of an index/underlying asset.
- Most typical leverage ratios are: (long) 2, 3, and (short) -2, -3.
- LETFs have also led to increased trading of options written on LETFs.
- In 2012, total daily notional on LETF options is \$40-50 bil, as compared to \$90 bil for S&P 500 index options.
- ETFs with the highest options volume: SPY (S&P 500), IWM (Russell 2000), QQQ (Nasdaq 100) and GLD (gold).

### Leveraged ETF Returns

• By design, an LETF seeks to provide a constant multiple  $\beta$  of the *daily* returns  $R_i$  of a reference index or asset:

$$L_n = L_0 \cdot \prod_{j=1}^n (1 + \beta R_j).$$

By differentiation, we get

$$\frac{d}{d\beta} \left( \log \left( \frac{L_n}{L_0} \right) \right) = \sum_{j=1}^n \frac{R_j}{1 + \beta R_j}.$$

- With a positive leverage ratio  $\beta > 0$ , if  $R_j > 0$  for all j, then  $\log\left(\frac{L_n}{L_0}\right)$ , or equivalently the value  $L_n$ , is increasing in  $\beta$ .
- That is, when the reference asset is increasing in value, a larger, positive leverage ratio is preferred.

### Example: non-directional movements

| Day | ETF   | %-change | +2x LETF | %-change | -2x LETF | %-change |
|-----|-------|----------|----------|----------|----------|----------|
| 0   | 100   |          | 100      |          | 100      |          |
| 1   | 98    | -2%      | 96       | -4%      | 104      | 4%       |
| 2   | 99.96 | 2%       | 99.84    | 4%       | 99.84    | -4%      |
| 3   | 97.96 | -2%      | 95.85    | -4%      | 103.83   | 4%       |
| 4   | 99.92 | 2%       | 99.68    | 4%       | 99.68    | -4%      |
| 5   | 97.92 | -2%      | 95.69    | -4%      | 103.67   | 4%       |
| 6   | 99.88 | 2%       | 99.52    | 4%       | 99.52    | -4%      |

- Even though the ETF records a tiny loss of 0.12% after 6 days, the +2x LETF ends up with a loss of 0.48%, which is greater (in abs. value) than 2 times the return (-0.12%) of the ETF.
- At the terminal date, *both* the long and short LETFs have recorded net losses of 0.48%.
- These can occur for over a longer/shorter period.

# **Empirical LETF Prices**

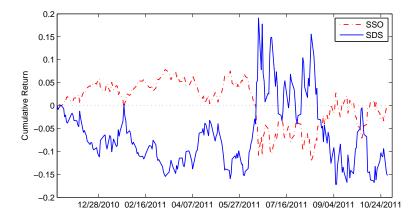


Figure: SSO (+2) and SDS (-2) cumulative returns from Dec 2010 to Nov 2011. Observe that both SSO and SDS can give negative returns simultaneously over several periods in time.

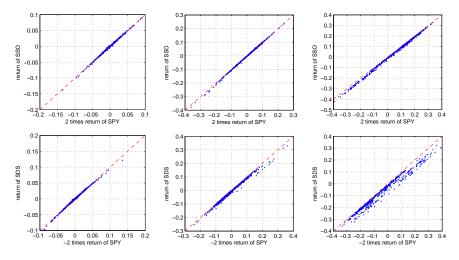


Figure: 1-day (left), 2-week (mid) and 2-month (right) returns of SPY against SSO (top) and SDS (bottom), in logarithmic scale. We considered 1-day, 2-week and 2-month rolling periods from Sept 29, 2010 to Sept 30, 2012.

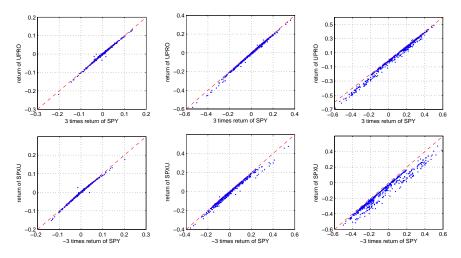


Figure: 1-day (left), 2-week (mid) and 2-month (right) returns of SPY against UPRO (top) and SPXU (bottom), in logarithmic scale. We considered 1-day, 2-week and 2-month rolling periods from Sept 29, 2010 to Sept 30, 2012.

### **LETF** Price Dynamics

• Suppose the reference asset price follows

$$\frac{dS_t}{S_t} = \mu_t \, dt + \sigma_t \, dW_t,$$

under the historical measure  $\mathbb{P}$ .

- A long LETF L on X with leverage ratio  $\beta > 1$  is constructed by
  - investing the amount  $\beta L_t$  ( $\beta$  times the fund value) in S,
  - borrowing the amount  $(\beta 1)L_t$  at the risk-free rate r,
  - charging a small expense fee at rate c.
- For a short  $(\beta \leq -1)$  LETF,  $|\beta|L_t$  is shorted on S, and  $(1 + |\beta|)L_t$  is kept in the money market account.
- The LETF price dynamics:

$$\begin{aligned} \frac{dL_t}{L_t} &= \beta \left( \frac{dS_t}{S_t} \right) - \left( (\beta - 1)r + c \right) dt \\ &= \left[ \beta \mu_t - \left( (\beta - 1)r + c \right) \right] dt + \beta \sigma_t \, dW_t \,. \end{aligned}$$

### LETF Returns and Volatility Decay

• The LETF value L can be written in terms of S:

$$\frac{L_T}{L_0} = \left(\frac{S_T}{S_0}\right)^{\beta} e^{-(r(\beta-1)+c)T - \frac{\beta(\beta-1)}{2} \int_0^T \sigma_t^2 dt},$$

or equivalently in log-returns:

$$\log\left(\frac{L_T}{L_0}\right) = \beta \log\left(\frac{S_T}{S_0}\right) - (r(\beta - 1) + c)T - \frac{\beta(\beta - 1)}{2} \int_0^T \sigma_t^2 dt.$$

• Hence, the realized volatility will lead to attrition in fund value.

• This phenomenon is called the volatility decay.

# A Static LETF Portfolio

- A well known industry strategy consists of shorting two LETFs on the same reference.
- We short  $\omega \in (0,1)$  of  $\beta_+ > 0$  LETF and  $1 \omega$  of  $\beta_- < 0$  LETF.
- At time T, the (normalized) return of the portfolio is

$$R_T = 1 - \omega \frac{L_T^+}{L_0^+} - (1 - \omega) \frac{L_T^-}{L_0^-}.$$

• If we apply 
$$\frac{L_T^\pm}{L_o^\pm} \approx \ln \frac{L_T^\pm}{L_0^\pm} + 1$$
, and set  $\omega^* = \frac{-\beta_-}{\beta_+ - \beta_-}$ , we get

$$R_T = \frac{-\beta_-\beta_+}{2}V_T - \frac{\beta_-}{\beta_+ - \beta_-}(f_+ - f_-)T + (f_- - r)T.$$

• Portfolio is long volatility since  $\frac{-\beta_{-}\beta_{+}}{2} > 0$ , and it's also  $\Delta$ -neutral.

<□> シ つ Q C 11 / 50

# **Empirical Performance**

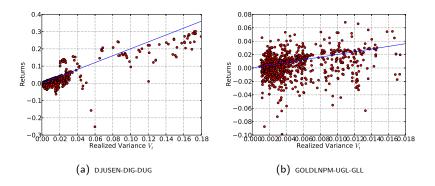


Figure: Empirical return vs realized variance for a double short strategy over 30-day holding periods. Here,  $\beta = \pm 2$  for each LETF pair. The blue line gives a predicted (not regressed) return as a linear function of the realized variance. For empirical backtesting, we set  $\omega^* = 0.5$ , and T = 30/252.

### Time Series of Empirical Performance

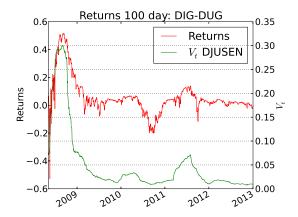


Figure: Time series of returns for a double short strategy over 100-day (rolling) holding periods. Notice how during the periods of greatest volatility our double short trading strategy had the greatest return.

### Average Returns by LETF Pairs

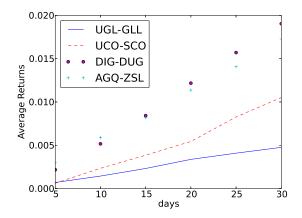


Figure: Average returns from a double short trading strategy by commodity LETF pairs over no. of days. For all pairs,  $\beta = \pm 2$ .

**Pricing LETF Options** 



# **LETF** Option Price

 If σ is <u>constant</u>, then L is lognormal, and the no-arb price a European call option on L is

$$C_{BS}^{(\beta)}(t,L;K,T) = e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}} \{ (L_T - K)^+ | L_t = L \}$$
  
=  $C_{BS}(t,L;K,T,r,c,|\beta|\sigma),$ 

where  $C_{BS}(t,L;K,T,r,c,\sigma)$  is the Black-Scholes formula for a call.

• Given the market price  $C^{obs}$  of a call on L, the implied volatility is given by

$$I^{(\beta)}(K,T) = (C_{BS}^{(\beta)})^{-1}(C^{obs}) = \frac{1}{|\beta|}C_{BS}^{-1}(C^{obs}).$$

 We normalize by the |β|<sup>-1</sup> factor in our definition of implied volatility so that they remain on the same scale.

# **LETF** Option Price

 If σ is <u>constant</u>, then L is lognormal, and the no-arb price a European call option on L is

$$C_{BS}^{(\beta)}(t,L;K,T) = e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}}\{(L_T - K)^+ | L_t = L\}$$
  
=  $C_{BS}(t,L;K,T,r,c,|\beta|\sigma),$ 

where  $C_{BS}(t, L; K, T, r, c, \sigma)$  is the Black-Scholes formula for a call.

• Given the market price  $C^{obs}$  of a call on L, the implied volatility is given by

$$I^{(\beta)}(K,T) = (C_{BS}^{(\beta)})^{-1}(C^{obs}) = \frac{1}{|\beta|} C_{BS}^{-1}(C^{obs}).$$

• We normalize by the  $|\beta|^{-1}$  factor in our definition of implied volatility so that they remain on the same scale.

# Implied Volatility (IV) of LETF Options

#### Proposition

The slope of the implied volatility curve admits the (model-free) bound:

$$-\frac{e^{-(r-c)(T-t)}}{|\beta|L\sqrt{T-t}} \frac{(1-N(d_2^{(\beta)}))}{N'(d_1^{(\beta)})} \leq \frac{\partial I^{(\beta)}(K)}{\partial K} \leq \frac{e^{-(r-c)(T-t)}}{|\beta|L\sqrt{T-t}} \frac{N(d_2^{(\beta)})}{N'(d_1^{(\beta)})},$$
  
where  $d_2^{(\beta)} = d_1^{(\beta)} - |\beta|I^{(\beta)}(K)\sqrt{T-t}$ , with  $\sigma = I^{\beta}(K)$ .

• It follows from the fact that observed and model call prices must be decreasing in *K*:

$$\frac{\partial C^{obs}}{\partial K} = \frac{\partial C_{BS}}{\partial K}(t, L; K, T, r, c, |\beta|I^{(\beta)}(K))$$
$$= \frac{\partial C_{BS}}{\partial K}(|\beta|I^{(\beta)}(K)) + |\beta|\frac{\partial C_{BS}}{\partial \sigma}(|\beta|I^{(\beta)}(K))\frac{\partial I^{(\beta)}(K)}{\partial K} \le 0.$$

• Rearranging terms gives the upper bound.

• Repeat this using put prices yields the lower bound.

<**□** > かくで 17 / 50

# Empirical Implied Volatilities – SPX, SPY (+1)

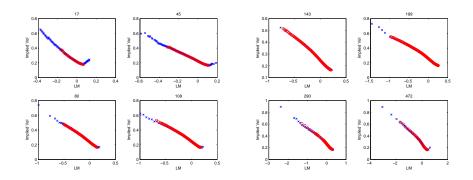


Figure: SPX (blue cross) and SPY (red circles) implied volatilities on Sept 1, 2010 for different maturities (from 17 to 472 days) plotted against log-moneyness:

$$LM = \log\left(\frac{\text{strike}}{(L)\text{ETF price}}\right)$$

# Empirical Implied Volatilities – SPY (+1), SSO (+2)

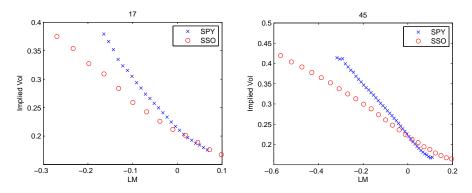


Figure: SPY (blue cross) and SSO (red circles) implied volatilities against log-moneyness.

# Empirical Implied Volatilities – SPY (+1), SSO (+2)

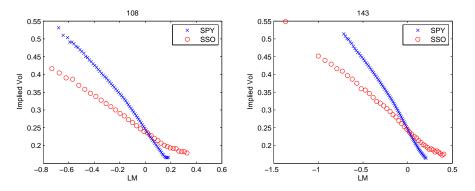


Figure: SPY (blue cross) and SSO (red circles) implied volatilities against log-moneyness.

# Empirical Implied Volatilities – SPY (+1), SDS (-2)

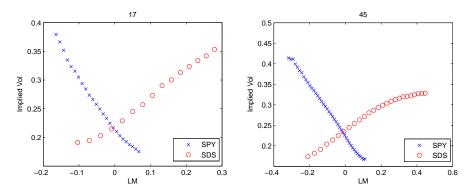


Figure: SPY (blue cross) and SDS (red circles) implied volatilities against log-moneyness (LM) for increasing maturities.

# Empirical Implied Volatilities – SPY (+1), SDS (-2)

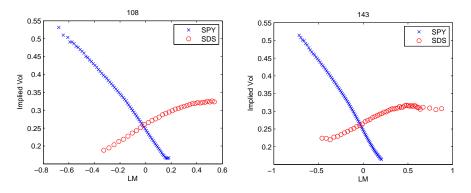


Figure: SPY (blue cross) and SDS (red circles) implied volatilities against log-moneyness (LM) for increasing maturities.

### Observations

• The most salient features of the empirical implied volatilities:

- IV skew for SSO (+2) is flatter than that for SPY,
- IV skew is downward sloping for long ETFs (e.g. SPY, SSO, UPRO),
- IV is skew is upward sloping for short ETFs (e.g. SDS, SPXU).
- Intuitively,
  - a put on a long-LETF and a call on a short-LETF are both bearish,
  - ▶ IVs should be higher for smaller (larger) LM for long (short) LETF.
- Traditionally, IV is used to compare option contracts across strikes & maturities. What about IVs *across leverage ratios*?
- Which pair of LETF options should have comparable IV?

### Observations

• The most salient features of the empirical implied volatilities:

- IV skew for SSO (+2) is flatter than that for SPY,
- IV skew is downward sloping for long ETFs (e.g. SPY, SSO, UPRO),
- IV is skew is upward sloping for short ETFs (e.g. SDS, SPXU).
- Intuitively,
  - a put on a long-LETF and a call on a short-LETF are both bearish,
  - ▶ IVs should be higher for smaller (larger) LM for long (short) LETF.
- Traditionally, IV is used to compare option contracts across strikes & maturities. What about IVs *across leverage ratios*?
- Which pair of LETF options should have comparable IV?

### Observations

- The most salient features of the empirical implied volatilities:
  - IV skew for SSO (+2) is flatter than that for SPY,
  - IV skew is downward sloping for long ETFs (e.g. SPY, SSO, UPRO),
  - IV is skew is upward sloping for short ETFs (e.g. SDS, SPXU).
- Intuitively,
  - a put on a long-LETF and a call on a short-LETF are both bearish,
  - ▶ IVs should be higher for smaller (larger) LM for long (short) LETF.
- Traditionally, IV is used to compare option contracts across strikes & maturities. What about IVs *across leverage ratios*?
- Which pair of LETF options should have comparable IV?

### Local-Stochastic Framework

- Assume zero interest rate, dividend rate, fee.
- Under the risk-neutral measure, we model the underlying index  ${\cal S}$  by the SDEs:

$$\begin{split} S_t &= \mathrm{e}^{X_t}, \\ \mathrm{d}X_t &= -\frac{1}{2}\sigma^2(t,X_t,Y_t)\mathrm{d}t + \sigma(t,X_t,Y_t)\mathrm{d}W_t^x, \\ \mathrm{d}Y_t &= c(t,X_t,Y_t)\mathrm{d}t + g(t,X_t,Y_t)\mathrm{d}W_t^y, \\ \mathrm{d}\langle W^x,W^y\rangle_t &= \rho(t,X_t,Y_t)\mathrm{d}t. \end{split}$$

• Then, the LETF price L follows

$$L_t = \mathrm{e}^{Z_t}, \qquad \mathrm{d}Z_t = -\frac{1}{2}\beta^2 \sigma^2(t, X_t, Y_t) \,\mathrm{d}t + \beta \sigma(t, X_t, Y_t) \,\mathrm{d}W_t^x.$$

▲□ ▶ かくで 24 / 50

- Stochastic Volatility: When  $\sigma$  and  $\rho$  are functions of (t, y) only, such as Heston, then options written on Z can be priced using (Y, Z) only.
- Local Volatility: if both  $\sigma$  and  $\rho$  are dependent on (t, x) only, such as CEV, then the ETF follows a local vol. model *but not* the LETF. Options on Z must be analyzed in conjunction with X.
- Local-Stochastic Volatility: If  $\sigma$  and/or  $\rho$  depend on (x, y), such as SABR, then to analyze options on Z, one must consider the triple (X, Y, Z).

# **LETF** Option Price

• With a terminal payoff  $\varphi(Z_T),$  the LETF option price is given by the risk-neutral expectation

$$u(t, x, y, z) = \mathbb{E}^{\mathbb{Q}}[\varphi(Z_T)|X_t = x, Y_t = y, Z_t = z].$$

• The price function u satisfies the Kolmogorov backward equation

$$(\partial_t + \mathcal{A}(t)) u = 0, \qquad \qquad u(T, x, y, z) = \varphi(z),$$

where the operator  $\mathcal{A}(t)$  is given by

$$\begin{split} \mathcal{A}(t) &= a(t,x,y) \left( \left( \partial_x^2 - \partial_x \right) + \beta^2 \left( \partial_z^2 - \partial_z \right) + 2\beta \, \partial_x \partial_z \right) \\ &+ b(t,x,y) \partial_y^2 + c(t,x,y) \partial_y + f(t,x,y) \left( \partial_x \partial_y + \beta \, \partial_y \partial_z \right), \end{split}$$

with coefficients

$$\begin{split} a(t,x,y) &= \frac{1}{2}\sigma^2(t,x,y), \quad b(t,x,y) = \frac{1}{2}g^2(t,x,y), \\ f(t,x,y) &= g(t,x,y)\sigma(t,x,y)\rho(t,x,y). \end{split}$$

▲□ ▶ かくや 26 / 50

• Expand the coefficients (a, b, c, f) of the operator  $\mathcal{A}(t)$  as a Taylor series. • For  $\chi \in \{a, b, c, f\}$ , we write

$$\chi(t, x, y) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \chi_{n-k,k}(t) (x - \bar{x})^{n-k} (y - \bar{y})^{k},$$
$$\chi_{n-k,k}(t) = \frac{\partial_{x}^{n-k} \partial_{y}^{k} \chi(t, \bar{x}, \bar{y})}{(n-k)!k!}.$$

• By direct substitution, the operator  $\mathcal{A}(t)$  can now be written as

$$\mathcal{A}(t) = \mathcal{A}_0(t) + \mathcal{B}_1(t), \qquad \qquad \mathcal{B}_1(t) = \sum_{n=1}^{\infty} \mathcal{A}_n(t),$$

 $\sim$ 

where

$$\begin{aligned} \mathcal{A}_n(t) &= \sum_{k=0}^n (x - \bar{x})^{n-k} (y - \bar{y})^k \mathcal{A}_{n-k,k}(t), \\ \mathcal{A}_{n-k,k}(t) &= a_{n-k,k}(t) \left( \left( \partial_x^2 - \partial_x \right) + \beta^2 \left( \partial_z^2 - \partial_z \right) + 2\beta \, \partial_x \partial_z \right) \\ &+ b_{n-k,k}(t) \partial_y^2 + c_{n-k,k}(t) \partial_y + f_{n-k,k}(t) \left( \partial_x \partial_y + \beta \, \partial_y \partial_z \right), \end{aligned}$$

The price function now satisfies the PDE

$$(\partial_t + \mathcal{A}_0(t))u(t) = -\mathcal{B}_1(t)u(t), \qquad u(T) = \varphi.$$

▲□ ▶ かくで 28 / 50

We define  $\bar{u}_N$  our Nth order approximation of u by

$$\bar{u}_N = \sum_{n=0}^N u_n.$$

The 0th order term  $u_0$  solves  $(\partial_t + \mathcal{A}_0)u_0 = 0$ , and is given by

$$u_0(t) = \int_{\mathbb{R}} \mathrm{d}\zeta \, \frac{1}{\sqrt{2\pi s^2(t,T)}} \exp\left(\frac{-(\zeta - m(t,T))^2}{2s^2(t,T)}\right) \varphi(\zeta),$$
$$m(t,T) = z - \beta^2 \int_t^T \mathrm{d}t_1 \, a_{0,0}(t_1), \quad s^2(t,T) = 2\beta^2 \int_t^T \mathrm{d}t_1 \, a_{0,0}(t_1).$$

In turn,  $u_1$  would solve  $(\partial_t + \mathcal{A}_0 + \mathcal{A}_1)u_1 = -\mathcal{A}_1u_0$ .

・コ・シュー 29 / 50

And the higher order terms are given by

$$u_n(t) = \mathcal{L}_n(t, T)u_0(t),$$

where

$$\mathcal{L}_{n}(t,T) = \sum_{k=1}^{n} \int_{t}^{T} \mathrm{d}t_{1} \int_{t_{1}}^{T} \mathrm{d}t_{2} \cdots \int_{t_{k-1}}^{T} \mathrm{d}t_{k} \sum_{i \in I_{n,k}} \mathcal{G}_{i_{1}}(t,t_{1}) \mathcal{G}_{i_{2}}(t,t_{2}) \cdots \mathcal{G}_{i_{k}}(t,t_{k}),$$

with

$$\begin{aligned} \mathcal{G}_{n}(t,t_{i}) &:= \sum_{k=0}^{n} \left( \mathcal{M}_{x}(t,t_{i}) - \bar{x} \right)^{n-k} \left( \mathcal{M}_{y}(t,t_{i}) - \bar{y} \right)^{k} \mathcal{A}_{n-k,k}(t_{i}) \\ \mathcal{M}_{x}(t,t_{i}) &:= x + \int_{t}^{t_{i}} \mathrm{d}s \Big( a_{0,0}(s) \left( 2\partial_{x} + 2\beta \partial_{z} - 1 \right) + f_{0,0}(s) \partial_{y} \Big), \\ \mathcal{M}_{y}(t,t_{i}) &:= y + \int_{t}^{t_{i}} \mathrm{d}s \Big( f_{0,0}(s) \left( \partial_{x} + \beta \partial_{z} \right) + 2b_{0,0}(s) \partial_{y} + c_{0,0}(s) \Big), \\ I_{n,k} &= \{ i = (i_{1},i_{2},\cdots,i_{k}) \in \mathbb{N}^{k} : i_{1} + i_{2} + \cdots + i_{k} = n \}. \end{aligned}$$

#### Implied Volatility Expansion

• The Black-Scholes Call price  $u^{\mathrm{BS}}:\mathbb{R}^+\to\mathbb{R}^+$  is given by

$$u^{\mathrm{BS}}(\sigma) := \mathrm{e}^{z} \mathcal{N}(d_{+}(\sigma)) - \mathrm{e}^{k} \mathcal{N}(d_{-}(\sigma)), \quad d_{\pm}(\sigma) := \frac{1}{\sigma \sqrt{\tau}} \left( z - k \pm \frac{\sigma^{2} \tau}{2} \right),$$

where  $\tau = T - t$ , and  $\mathcal{N}$  is the standard normal CDF.

 For fixed (t, T, z, k), the *implied volatility* corresponding to a call price u ∈ ((e<sup>z</sup> − e<sup>k</sup>)<sup>+</sup>, e<sup>z</sup>) is defined as the unique strictly positive real solution I of the equation

$$u^{\mathrm{BS}}(I) = u.$$

We consider an expansion of the implied volatility

$$I = \sigma_0 + \sum_{n=1}^{\infty} \sigma_n$$

▲ ■ ▶ かくや 31 / 50

### Implied Volatility Expansion

- Recall that the price expansion is of the form:  $u = u^{BS}(\sigma_0) + \sum_{n=1}^{\infty} u_n$ .
- On the other hand, one expands  $u^{\mathrm{BS}}(I)$  as a Taylor series about the point  $\sigma_0$

$$u^{\mathrm{BS}}(I) = u^{\mathrm{BS}}(\sigma_0 + \eta)$$
  
=  $u^{\mathrm{BS}}(\sigma_0) + \eta \,\partial_\sigma u^{\mathrm{BS}}(\sigma_0) + \frac{1}{2!}\eta^2 \partial_\sigma^2 u^{\mathrm{BS}}(\sigma_0) + \frac{1}{3!}\eta^3 \partial_\sigma^3 u^{\mathrm{BS}}(\sigma_0) + \dots$ 

- In turn, one can solve iteratively for every term of (σ<sub>n</sub>)<sub>n≥1</sub>. We have a general expression for the nth term.
- The first two terms are

$$\sigma_1 = \frac{u_1}{\partial_\sigma u^{\mathrm{BS}}(\sigma_0)}, \qquad \qquad \sigma_2 = \frac{u_2 - \frac{1}{2}\sigma_1^2 \partial_\sigma^2 u^{\mathrm{BS}}(\sigma_0)}{\partial_\sigma u^{\mathrm{BS}}(\sigma_0)},$$

which can be simplified using the explicit expressions of  $u^{BS}$  and  $u^{BS}_{\sigma}$ .

### Implied Volatility Expansion

 In the time-homogeneous LSV setting, we write down up to the 1st order terms:

$$\sigma_0 = |\beta| \sqrt{2a_{0,0}}, \qquad \sigma_1 = \sigma_{1,0} + \sigma_{0,1},$$

where

$$\begin{split} \sigma_{1,0} &= \left(\frac{\beta a_{1,0}}{2\sigma_0}\right) \lambda + \tau \left(\frac{1}{4}(-1+\beta)\sigma_0 a_{1,0}\right), \\ \sigma_{0,1} &= \left(\frac{\beta^3 a_{0,1} f_{0,0}}{2\sigma_0^3}\right) \lambda + \tau \left(\frac{\beta^2 a_{0,1} \left(2c_{0,0} + \beta f_{0,0}\right)}{4\sigma_0}\right), \\ \lambda &= k - z, \qquad \tau = T - t. \end{split}$$

• These expressions show explicitly the non-trivial dependence of IV on the leverage ratio  $\beta$ .

# Implied Volatility Scaling

- Let σ<sub>Z</sub>(τ, λ) (resp. σ<sub>X</sub>(τ, λ)) be the implied volatility of a call written on the LETF Z (resp. X).
- From the above IV expressions, we have

$$\begin{split} \mathsf{LETF}: \quad \sigma_Z &\approx |\pmb{\beta}| \sqrt{2a_{0,0}} + |\pmb{\beta}| \left( \frac{a_{1,0}}{2\sqrt{2a_{0,0}}} + \frac{a_{0,1}f_{0,0}}{2(2a_{0,0})^{3/2}} \right) \frac{\lambda}{\pmb{\beta}} + \mathbb{O}(\tau), \\ \mathsf{ETF}: \quad \sigma_X &\approx \sqrt{2a_{0,0}} + \left( \frac{a_{1,0}}{2\sqrt{2a_{0,0}}} + \frac{a_{0,1}f_{0,0}}{2(2a_{0,0})^{3/2}} \right) \lambda + \mathbb{O}(\tau). \end{split}$$

• Implied volatility scaling: the vertical axis of  $\sigma_Z$  is scaled by a factor of  $|\beta|$ . Second, the horizontal axis is scaled by  $1/\beta$ .

# **Empirical IV Scaling**

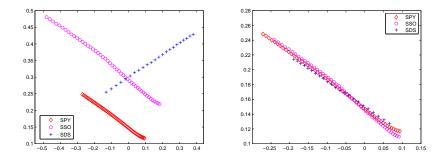


Figure: Left: Empirical IV  $\sigma_Z(\tau, \lambda)$  plotted as a function of log-moneyness  $\lambda$  for SPY (red,  $\beta = +1$ ), SSO (purple,  $\beta = +2$ ), and SDS (blue,  $\beta = -2$ ) on August 15, 2013 with  $\tau = 155$  days to maturity. Note that the implied volatility of SDS is increasing in the LETF log-moneyness. Right: Using the same data, the scaled LETF implied volatilities  $\sigma_Z^{(\beta)}(\tau, \lambda)$  nearly coincide.

### Example: Heston Model

• The Heston model (in log prices) is described by

$$\begin{split} \mathrm{d}X_t &= -\frac{1}{2} \mathrm{e}^{Y_t} \mathrm{d}t + \mathrm{e}^{\frac{1}{2}Y_t} \mathrm{d}W_t^x, \qquad X_0 = x := \log S_0, \\ \mathrm{d}Y_t &= \left( (\kappa \theta - \frac{1}{2} \delta^2) \mathrm{e}^{-Y_t} - \kappa \right) \mathrm{d}t + \delta \, \mathrm{e}^{-\frac{1}{2}Y_t} \mathrm{d}W_t^y, \quad Y_0 = y := \log V_0, \\ \mathrm{d}Z_t &= -\beta^2 \frac{1}{2} \mathrm{e}^{Y_t} \mathrm{d}t + \beta \mathrm{e}^{\frac{1}{2}Y_t} \mathrm{d}W_t^x, \qquad Z_0 = z := \log L_0, \\ \mathrm{d}\langle W^x, W^y \rangle_t &= \rho \, \mathrm{d}t. \end{split}$$

 ${\ensuremath{\, \circ }}$  The generator of (X,Y,Z) is given by

$$\begin{aligned} \mathcal{A} &= \frac{1}{2} \mathrm{e}^{y} \left( (\partial_{x}^{2} - \partial_{x}) + \beta^{2} (\partial_{z}^{2} - \partial_{z}) + 2\beta \partial_{x} \partial_{z} \right) \\ &+ \left( (\kappa \theta - \frac{1}{2} \delta^{2}) \mathrm{e}^{-y} - \kappa \right) \partial_{y} + \frac{1}{2} \delta^{2} \mathrm{e}^{-y} \partial_{y}^{2} + \rho \, \delta \left( \partial_{x} \partial_{y} + \beta \partial_{x} \partial_{z} \right), \\ a(x, y) &= \frac{1}{2} \mathrm{e}^{y}, \qquad b(x, y) = \frac{1}{2} \delta^{2} \mathrm{e}^{-y}, \\ c(x, y) &= \left( (\kappa \theta - \frac{1}{2} \delta^{2}) \mathrm{e}^{-y} - \kappa \right), \qquad f(x, y) = \rho \, \delta. \end{aligned}$$

#### Example: Heston Model

• The first two terms in the IV expansion are

$$\sigma_0 = |\beta|\sqrt{e^y},$$
  
$$\sigma_1 = \frac{\tau \left(-\beta^2 \left(\delta^2 - 2\theta\kappa\right) + \left(-2\kappa + \beta\delta\rho\right)\sigma_0^2\right)}{8\sigma_0} + \frac{\beta\delta\rho}{4\sigma_0}(k-z).$$

• Note that when X has Heston dynamics with parameters ( $\kappa$ ,  $\theta$ ,  $\delta$ ,  $\rho$ , y), then Z also admits Heston dynamics with parameters

$$(\kappa_Z, \theta_Z, \delta_Z, \rho_Z, y_Z) = (\kappa, \beta^2 \theta, |\beta| \delta, \operatorname{sign}(\beta) \rho, y + \log \beta^2).$$

• This can also be inferred from our IV expressions. Indeed, the coefficients' dependence on  $\beta$  is present only in the terms  $\beta^2 \theta$ ,  $|\beta|\delta$ ,  $\operatorname{sign}(\beta)\rho$ ,  $y + \log \beta^2$ . For instance, we can write  $\sigma_0 = \sqrt{e^{y+\log \beta^2}} = \sqrt{e^{yz}}$ , and the coeff. of (k-z) in  $\sigma_1$  is  $\beta\delta\rho/4\sigma_0 = |\beta|\delta\operatorname{sign}(\beta)\rho/4\sigma_0 = \delta_Z\rho_Z/4\sigma_0$ .

# IV comparison

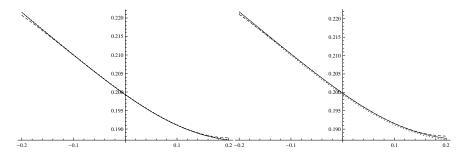


Figure: Exact (solid – computed by Fourier inversion) and approximate (dashed) scaled IV  $\sigma_Z^{(\beta)}(\tau, \lambda)$  under Heston, plotted against  $\lambda$ . For comparison, we also plot the ETF's exact Heston IV  $\sigma_X(\tau, \lambda)$  (dotted). Parameters:  $\kappa = 1.15$ ,  $\theta = 0.04$ ,  $\delta = 0.2$ ,  $\rho = -0.4$ ,  $y = \log \theta$ ,  $\tau = 0.0625$ . Left:  $\beta = +2$ . Right  $\beta = -2$ .

▲□ ▶ かくや 38 / 50

### Example: CEV Model

• The CEV model (in log prices) is described by

$$dX_t = -\frac{1}{2}\delta^2 e^{2(\gamma-1)X_t} dt + \delta e^{(\gamma-1)X_t} dW_t^x, \qquad X_0 = x := \log S_0.$$
  
$$dZ_t = -\frac{1}{2}\beta^2 \delta^2 e^{2(\gamma-1)X_t} dt + \beta \delta e^{(\gamma-1)X_t} dW_t^x, \qquad Z_0 = z := \log L_0,$$

with  $\gamma \leq 1$ .

 ${\ensuremath{\, \circ }}$  The generator of (X,Z) is given by

$$\begin{aligned} \mathcal{A} &= \frac{1}{2} \delta^2 \mathrm{e}^{2(\gamma-1)x} \left( (\partial_x^2 - \partial_x) + \beta^2 (\partial_z^2 - \partial_z) + 2\beta \partial_x \partial_z \right). \\ a(x,y) &= \frac{1}{2} \delta^2 \mathrm{e}^{2(\gamma-1)x}, \ b(x,y) = 0, \ c(x,y) = 0, \ f(x,y) = 0. \end{aligned}$$

▲□ ▶ かくや 39 / 50

# Example: CEV Model

• The first 3 terms in the IV expansion are

$$\begin{split} \sigma_0 &= |\beta| \sqrt{\mathrm{e}^{2x(\gamma-1)} \delta^2}, \\ \sigma_1 &= \frac{\tau(\beta-1)(\gamma-1)\sigma_0^3}{4\beta^2} + \frac{(\gamma-1)\sigma_0}{2\beta}(k-z), \\ \sigma_2 &= \frac{\tau(\gamma-1)^2 \sigma_0^3 \left(4\beta^2 + t(13+2\beta(-13+6\beta))\sigma_0^2\right)}{96\beta^4} \\ &+ \frac{7\tau(\beta-1)(\gamma-1)^2 \sigma_0^3}{24\beta^3}(k-z) + \frac{(\gamma-1)^2 \sigma_0}{12\beta^2}(k-z)^2, \end{split}$$

• The factor  $(\gamma - 1)$  appears in every term of these expressions.

• If  $\gamma = 1$ ,  $\sigma_0 = |\beta|\delta$  and  $\sigma_1 = \sigma_2 = \sigma_3 = 0$ . The higher order terms also vanish since  $a(x, y) = \frac{1}{2}\delta^2$  in this case. Hence, just as in the B-S case, the IV expansion becomes flat.

# **IV** Comparison

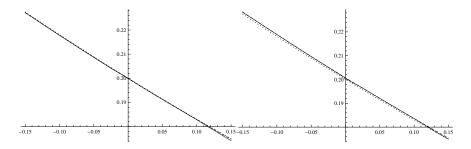


Figure: Exact (solid – computed by Fourier inversion) and approximate (dashed) scaled IV  $\sigma_Z^{(\beta)}(\tau, \lambda)$  under CEV, plotted against  $\lambda$ . For comparison, we also plot the ETF's exact CEV IV  $\sigma_X(\tau, \lambda)$  (dotted). Parameters:  $\delta = 0.2$ ,  $\gamma = -0.75$ , x = 0. Left:  $\beta = +2$ . Right:  $\beta = -2$ .

### Example: SABR Model

• The SABR model (in log prices) is described by

$$\begin{split} \mathrm{d} X_t &= -\frac{1}{2} \mathrm{e}^{2Y_t + 2(\gamma - 1)X_t} \mathrm{d} t + \mathrm{e}^{Y_t + (\gamma - 1)X_t} \mathrm{d} W_t^x, \\ \mathrm{d} Y_t &= -\frac{1}{2} \delta^2 \mathrm{d} t + \delta \, \mathrm{d} W_t^y, \\ \mathrm{d} Z_t &= -\frac{1}{2} \beta^2 \mathrm{e}^{2Y_t + 2(\gamma - 1)X_t} \mathrm{d} t + \beta \mathrm{e}^{Y_t + (\gamma - 1)X_t} \mathrm{d} W_t^x, \\ \mathrm{d} \langle W^x, W^y \rangle_t &= \rho \, \mathrm{d} t. \end{split}$$

 ${\ensuremath{\, \circ }}$  The generator of (X,Y,Z) is given by

$$\mathcal{A} = \frac{1}{2} e^{2y+2(\gamma-1)x} \left( (\partial_x^2 - \partial_x) + \beta^2 (\partial_z^2 - \partial_z) + 2\beta \partial_x \partial_y \right) - \frac{1}{2} \delta^2 \partial_y + \frac{1}{2} \delta^2 \partial_y^2 + \rho \, \delta \, \mathrm{e}^{y+(\gamma-1)x} (\partial_x \partial_y + \beta \partial_y \partial_z). a(x,y) = \frac{1}{2} e^{2y+2(\gamma-1)x}, \ b = \frac{1}{2} \delta^2, \ c = -\frac{1}{2} \delta^2, \ f(x,y) = \rho \, \delta \, \mathrm{e}^{y+(\gamma-1)x}.$$

<日、シシスペ 42 / 50

### Example: SABR Model

• The first 3 terms in the IV expansion are

$$\begin{aligned} \sigma_0 &= |\beta| \sqrt{e^{2y+2(\gamma-1)x}}, \\ \sigma_1 &= \sigma_{1,0} + \sigma_{0,1}, \\ \sigma_2 &= \sigma_{2,0} + \sigma_{1,1} + \sigma_{0,2}. \end{aligned}$$

where

$$\begin{split} \sigma_{1,0} &= \frac{\tau(-1+\beta)(\gamma-1)\sigma_0^3}{4\beta^2} + \frac{(\gamma-1)\sigma_0}{2\beta}(k-z),\\ \sigma_{0,1} &= -\frac{1}{4}\tau\delta\sigma_0\left(\delta-\rho\operatorname{sign}[\beta]\sigma_0\right) + \frac{1}{2}\delta\rho\operatorname{sign}[\beta](k-z). \end{split}$$

# Example: SABR Model

$$\begin{split} \sigma_{2,0} &= \frac{\tau(\gamma-1)^2 \sigma_0^3 \left(4\beta^2 + \tau(13+2\beta(-13+6\beta))\sigma_0^2\right)}{96\beta^4} \\ &+ \frac{7\tau(-1+\beta)(\gamma-1)^2 \sigma_0^3}{24\beta^3} (k-z) + \frac{(\gamma-1)^2 \sigma_0}{12\beta^2} (k-z)^2, \\ \sigma_{1,1} &= \frac{\tau(\gamma-1)\delta \sigma_0^2 \left(12\rho|\beta| + \tau \sigma_0 \left(-9(-1+\beta)\delta + (-11+10\beta)\rho \operatorname{sign}[\beta]\sigma_0\right)\right)}{48\beta^2} \\ &- \frac{\tau(\gamma-1)\delta \sigma_0 \left(3\delta + \frac{5(1-2\beta)\rho\sigma_0}{|\beta|}\right)}{24\beta} (k-z), \\ \sigma_{0,2} &= \frac{1}{96}\tau \delta^2 \sigma_0 \left(32 + 5\tau \delta^2 - 12\rho^2 + 2\tau \sigma_0 \left(-7\delta\rho \operatorname{sign}[\beta] + \left(-2 + 6\rho^2\right)\sigma_0\right)\right) \\ &- \frac{1}{24}\tau \delta^2 \rho \left(\delta \operatorname{sign}[\beta] - 3\rho\sigma_0\right) + \frac{\delta^2 \left(2 - 3\rho^2\right)}{12\sigma_0} (k-z)^2, \end{split}$$

▲□ ▶ かくで 44 / 50

# **IV** Comparison

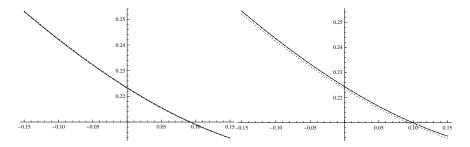


Figure: Exact (solid – computed by Fourier inversion) and approximate (dashed) scaled IV  $\sigma_Z^{(\beta)}(\tau, \lambda)$  under SABR, plotted against  $\lambda$ . For comparison, we also plot the ETF's exact SABR IV  $\sigma_X(\tau, \lambda)$  (dotted). Parameters:  $\delta = 0.5$ ,  $\gamma = -0.5$ ,  $\rho = 0.0 \ x = 0$ , y = -1.5. Left:  $\beta = +2$ . Right:  $\beta = -2$ .

### Alternative IV Scaling

In a general stochastic volatility model, the log LETF price is

$$\log\left(\frac{L_T}{L_0}\right) = \beta \log\left(\frac{X_T}{X_0}\right) - (r(\beta - 1) + c)T - \frac{\beta(\beta - 1)}{2} \int_0^T \sigma_t^2 dt.$$

- Key idea: Condition on that the *terminal* LM  $\log\left(\frac{X_T}{X_0}\right)$  equal to constant  $LM^{(1)}$ .
- Then, the best estimate of the β-LETF's LM is given by the cond'l expectation:

$$LM^{(\beta)} := \beta LM^{(1)} - (r(\beta - 1) + c)T - \frac{\beta(\beta - 1)}{2} \mathbb{E}^{\mathbb{Q}} \left\{ \int_{0}^{T} \sigma_{t}^{2} dt \mid \log\left(\frac{X_{T}}{X_{0}}\right) = LM^{(1)} \right\}$$

# Connecting Log-moneyness

• Assuming constant  $\sigma$  as in the B-S model, we have the formula:

$$LM^{(\beta)} = \beta LM^{(1)} - (r(\beta - 1) + c)T - \frac{\beta(\beta - 1)}{2}\sigma^2 T.$$
 (1)

- Hence, the  $\beta$ -LETF log-moneyness  $LM^{(\beta)}$  is expressed as an affine function of the unleveraged ETF log-moneyness  $LM^{(1)}$ , reflecting the role of  $\beta$ .
- The moneyness scaling formula can be interpreted via **Dual Delta matching**.

#### Proposition

Under the B-S model, an ETF call with log-moneyness  $LM^{(1)}$  and a  $\beta$ -LETF call with log-moneyness  $LM^{(\beta)}$  in (1) have the same Dual Delta.

Recall: Dual Delta of an LETF call is  $e^{-r(T-t)}N(d_2^{(\beta)})$ , and  $N(d_2^{(\beta)})$  represents the risk-neutral probability of the option ending up ITM.

# **Concluding Remarks**

- We have discussed a local-stochastic volatility framework to understand the inter-connectedness of LETF options.
- Explicit price and IV expansions are provided for Heston, CEV, and SABR models.
- The method of moneyness scaling enhances the comparison of IVs with different leverage ratios.
- The connection allows us to use the richer unleveraged index/ETF option data to shed light on the less liquid LETF options market.
- Our procedure can be applied to identify IV discrepancies across LETF options markets.

#### Appendix



## Predicting from SPY IVs to LETF IVs

