Higgs ξ -inflation for the 125–126 GeV Higgs

(Based on arXiv:1306.6931)

Kyle Allison University of Oxford

Seminar, University of Sussex

November 4, 2013

Outline

- **1** Inflation from a particle physics perspective
- **\boldsymbol{\Theta}** Higgs ξ -inflation: Tree level
- Radiative corrections
- Onclusions

Part I

Inflation from a particle physics perspective

Higgs ξ -inflation: Tree level 00000

Radiative corrections

Conclusions 0

What is inflation?

- A (supposed) period of accelerating expansion of the early universe
- Before the radiation-dominated era, the scalar potential dominated the energy density of the universe
 - \hookrightarrow space grows exponentially
- Proposed to explain
 - ▷ Flatness problem

▷ Horizon problem

Produces a nearly scale-invariant spectrum of density fluctuations

Higgs ξ -inflation: Tree level

Radiative corrections

Achieving inflation

• Let scalar field ϕ be the "inflaton"

 $\phi(\vec{x},t) = \phi(t) + \delta \phi(\vec{x},t)$

- ► Need a slowly rolling field for inflation $\dot{\phi}^2 \ll V(\phi), \qquad \ddot{\phi} \ll 3H\dot{\phi}$
- ► In terms of the slow roll parameters

$$\epsilon \equiv \frac{M_{\rm Pl}^2}{2} \left(\frac{V'}{V}\right)^2, \quad \eta \equiv M_{\rm Pl}^2 \left(\frac{V''}{V}\right),$$

inflation occurs so long as

$$\epsilon < 1, \quad |\eta| < 1 \quad \Longleftrightarrow \quad {\sf Inflation}$$

► After inflation, φ oscillates about the minimum and its kinetic energy is converted into SM particles ← Reheating

Matching observations

► The amount of inflation described by N = number of times space expands by a factor of e (e-folds)

$$N = \int_{t_i}^{t_f} H dt = \frac{1}{M_{\text{Pl}}} \int_{\phi_f}^{\phi_i} \frac{d\phi}{\sqrt{2\epsilon}}$$

 Precise constraints come from measuring primordial density fluctuations via the cosmic microwave background (CMB)

Quantum fluctuations exist at all scales during inflation and produce a nearly scale-invariant spectrum

Matching observations

► The predicted temperature anisotropies from inflation are

$$\left(\frac{\delta T}{T}\right)_{\ell}^2 = \frac{16\pi}{45M_{\mathsf{Pl}}^4} \frac{V(\phi_{\ell})}{\epsilon(\phi_{\ell})}, \quad \phi_{\ell} = \begin{cases} \text{ field value when scale } \ell \text{ leaves} \\ \text{ horizon during inflation} \end{cases}$$

▶ Measurement of $\delta T/T$ for $\ell \simeq 3000$ Mpc gives

$$rac{V(\phi_*)}{\epsilon(\phi_*)} \simeq 5.6 imes 10^{-7} M_{
m Pl}^4, \quad \phi_* = \left\{ egin{array}{c} {
m field value} \ N_* \simeq 50\-60 \ {
m e-folds} \\ {
m before \ end \ of \ inflation} \end{array}
ight.$$

- Two other parameters are particularly useful for constraining inflationary models
 - $\begin{array}{ll} \textit{n}_{s} = 1 6\epsilon + 2\eta & \mbox{Spectral index, deviation from scale-invariance} \\ \textit{r} = 16\epsilon & \mbox{Tensor-to-scalar ratio, size of } \textit{g}_{\mu\nu} \mbox{ perturbations} \end{array}$

As above, $n_s(\phi)$ and $r(\phi)$ are evaluated at ϕ_*

Matching observations

Many inflationary models have been constructed

(Planck collaboration, 2013)

Candidates for the inflaton

Identity of inflaton still unknown; often assumed to be a new weakly-coupled scalar field, but ...

... we have just discovered our first fundamental scalar field

- ► Can the Higgs boson be the inflaton?
 - \triangleright h⁴ chaotic inflation (Linde, 1983) \leftarrow experimentally disfavoured X
 - \triangleright Quasi-flat SM potential (Isidori et al., 2008) \leftarrow too few e-folds \bigstar
 - \triangleright False vacuum inflation (Masina & Notari, 2012) \leftarrow needs second scalar X
 - $\triangleright~$ New Higgs inflation (Germani & Kehagias, 2010) $\longleftarrow~$ new scale $M < M_{\rm Pl}$?
 - \triangleright Higgs ξ -inflation (Bezrukov & Shaposhnikov, 2008) \leftarrow unitarity issues ?

Part II

Higgs ξ -inflation: Tree level

Model definition

 Higgs ξ-inflation is based on a non-minimal coupling of the Higgs doublet to the Ricci scalar

$$\mathcal{L} = -rac{M_{\mathsf{Pl}}^2}{2}\mathcal{R} - rac{\xi H^\dagger H \mathcal{R}}{H \mathcal{R}} + \mathcal{L}_{\mathsf{SM}}$$

This is the only local, gauge-invariant interaction with dimension ≤ 4

► For computing tree-level predictions, use unitary gauge $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ h \end{pmatrix}$ \hookrightarrow Jordan frame action

$$S_J = \int d^4 x \sqrt{-g} \left[-\frac{M_{\rm Pl}^2}{2} \left(1 + \frac{\xi h^2}{M_{\rm Pl}^2} \right) \mathcal{R} + (\partial_\mu h)^2 - \frac{\lambda}{4} h^4 \right]$$

$$g_{\mu
u}
ightarrow \widetilde{g}_{\mu
u} = \Omega^2 g_{\mu
u}, \qquad \Omega^2 = 1 + rac{\xi h^2}{M_{
m Pl}^2}$$

Model definition

► The resulting Einstein frame action is

$$\Omega^2 = 1 + \xi h^2 / M_{\rm Pl}^2$$

$$S_{E} = \int d^{4}x \sqrt{-\tilde{g}} \left[-\frac{M_{\mathsf{Pl}}^{2}}{2} \tilde{\mathcal{R}} + \frac{1}{2} \left(\frac{\Omega^{2} + 6\xi^{2}h^{2}/M_{\mathsf{Pl}}^{2}}{\Omega^{4}} \right) (\partial_{\mu}h)^{2} - \frac{\lambda h^{4}}{4\Omega^{4}} \right]$$

• Define a new scalar field χ with canonical kinetic term

$$rac{d\chi}{dh} = \sqrt{rac{\Omega^2 + 6\xi^2 h^2 / M_{\mathsf{Pl}}^2}{\Omega^4}}$$

• The Einstein frame action is then

$$S_{E} = \int d^{4}x \sqrt{-\tilde{g}} \left[-\frac{M_{\mathsf{Pl}}^{2}}{2} \tilde{\mathcal{R}} + \frac{1}{2} (\partial_{\mu}\chi)^{2} - U(\chi) \right], \quad U(\chi) = \frac{\lambda [h(\chi)]^{4}}{4\Omega^{4}}$$

Model predictions

- ► Inflation ends at $h_{\rm end} \simeq 1.07 M_{\rm Pl}/\sqrt{\xi}$ (Bezrukov & Shaposhnikov, 2008) when $\epsilon \simeq 1$
- ▶ Working backwards, N=59 e-folds produced at $h_*\simeq 9.14 M_{
 m Pl}/\sqrt{\xi}$
- The spectral index and tensor-to-scalar ratio for Higgs ξ -inflation are

$$n_s(\chi_*) \simeq 0.967, \qquad r(\chi_*) \simeq 0.0031$$

Higgs ξ-inflation: Tree level 00●00 Radiative corrections

Model predictions

► Can perform slow-roll calculations with U(\chi)

$$\begin{aligned} \epsilon &= \frac{M_{\mathsf{Pl}}^2}{2} \left(\frac{U'}{U}\right)^2 \simeq \frac{4M_{\mathsf{Pl}}^4}{3\xi^2 h^4} \\ \eta &= M_{\mathsf{Pl}}^2 \frac{U''}{U} \simeq \frac{4M_{\mathsf{Pl}}^4}{3\xi^2 h^4} \left(1 - \frac{\xi h^2}{M_{\mathsf{Pl}}^2}\right) \end{aligned}$$

- ► Inflation ends at $h_{\rm end} \simeq 1.07 M_{\rm Pl}/\sqrt{\xi}$ (Planck collaboration, 2013) when $\epsilon \simeq 1$
- Working backwards, N=59 e-folds produced at $h_*\simeq 9.14 M_{
 m Pl}/\sqrt{\xi}$
- The spectral index and tensor-to-scalar ratio for Higgs ξ -inflation are

$$n_s(\chi_*) \simeq 0.967, \qquad r(\chi_*) \simeq 0.0031$$

Perturbative unitarity breakdown

► Generating the observed primordial density fluctuations requires

$$rac{U(\chi_*)}{\epsilon(\chi_*)}\simeq 5.6 imes 10^{-7} M_{\mathsf{Pl}}^4 \implies \boxed{\xi\simeq 48000 \sqrt{\lambda}\simeq 17000}$$

- Such a large value $\xi \sim 10^4$ creates a problem:
 - (1) Perturbative unitarity breaks down at $M_{\rm PI}/\xi \ll M_{\rm PI}/\sqrt{\xi}$

$$\xi h^2 \mathcal{R} \longrightarrow \frac{\xi \sqrt{M_{\mathsf{Pl}}^2 + \xi h^2}}{M_{\mathsf{Pl}}^2 + \xi h^2 + 6\xi^2 h^2} \hat{h}^2 \Box \hat{g} \simeq \frac{\xi}{M_{\mathsf{Pl}}} \hat{h}^2 \Box \hat{g} \qquad \text{for } h \simeq 0$$

- (2) New physics entering at $\Lambda = M_{\rm Pl}/\xi$ is naively expected to affect the potential in an uncontrollable way
- (3) Self-consistency of Higgs ξ -inflation is questionable
- Proponents argue that the scale of perturbative unitarity breakdown depends on h (it is larger during inflation) and so does not spoil the inflationary predictions
 - \hookrightarrow Assumes scale of new physics is background field-dependent

Higgs ξ -inflation: Tree level 0000•

Radiative corrections

Conclusions 0

Perturbative unitarity breakdown

- For M_h ≃ 125–126 GeV, λ can run to very small values near the Planck scale (where inflation occurs)
- How does this affect the predictions for Higgs ξ-inflation? We expect

 $\xi \simeq 48000 \sqrt{\lambda} \ll 17000$

Can this address the perturbative unitarity breakdown problem?

- ► Actually, M_t must be about 2–3σ below its central value for Higgs ξ-inflation to be possible
 - \triangleright Glass half empty: Model disfavoured at 2–3 σ
 - \triangleright Glass half full: Special region within 2–3 σ of measurements
- Need to go beyond the tree level

(Degrassi et al., 2012)

Part III

Radiative corrections

Renormalization group equations

- \blacktriangleright The most important higher-loop effect is the running of λ
- ▶ Need the RG equations for Higgs ξ -inflation

$$\pi_{h} = \frac{\partial \mathcal{L}_{E}}{\partial \dot{h}} = \sqrt{-\tilde{g}} \left(\frac{d\chi}{dh}\right)^{2} \tilde{g}^{0\nu} \tilde{\partial}_{\nu} h \quad \xrightarrow{\text{Jordan}} \quad \Omega^{2} \sqrt{-g} \left(\frac{d\chi}{dh}\right)^{2} \dot{h}$$

Canonical commutation relation gives

$$[h, \pi_h] = i\hbar\delta^3(\vec{x} - \vec{y}) \implies [h, \dot{h}] = s(h)i\hbar\delta^3(\vec{x} - \vec{y})$$

where
$$s(h) = \frac{1 + \xi h^2 / M_{\text{Pl}}^2}{1 + (1 + 6\xi)\xi h^2 / M_{\text{Pl}}^2} \simeq \frac{1}{1 + 6\xi}$$
 for large h

 The *physical* Higgs propagators are suppressed during inflation, but not those of the Nambu-Goldstone bosons

Renormalization group equations

- Two slightly different ways of dealing with the suppressed Higgs propagators
 - Insert a factor s for each off-shell Higgs in the RG equations of the SM (De Simone, Hertzberg & Wilczek, 2009)
 - (2) View the effect as a suppression of the Higgs coupling to SM fields. For $\xi \gg 1$, use the RG equations from the chiral electroweak theory (Bezrukov & Shaposhnikov, 2009)
- ► Have tried to reconcile the differences, but have been unable to reproduce the results from method (2) using Feynman diagrams
- For this analysis, use the two-loop RG equations derived using method (1) with leading three-loop corrections to λ, y_t and γ
- Note the running of ξ is given by

$$eta_{\xi}=\left(\xi+rac{1}{6}
ight)rac{eta_{m^2}}{m^2},\qquad \xi(M_{\mathsf{Pl}}/\xi_0)=\xi_0$$

Effective potential

► The SM effective potential must also be modified by the suppressed Higgs propagators ← result seems to be frame-dependent

Renormalization prescription II (Jordan frame)

► Perturb the tree-level SM potential about the background value, compute the masses of the perturbations, then transform to the Einstein frame

$$M_h^2 = 3s\lambda h^2$$
, $M_G^2 = \lambda h^2$, $M_W^2 = \frac{g^2 h^2}{4}$, $M_Z^2 = \frac{(g^2 + g'^2)h^2}{4}$, ...

The higher-loop corrections take the usual Coleman-Weinberg form with these modified particle masses

$$U(\chi) = \frac{\lambda h^4}{4\Omega^4} + \frac{1}{16\pi^2} \left[\frac{M_h^4}{4\Omega^4} \left(\ln \frac{M_h^2}{\mu^2} - \frac{3}{2} \right) + \frac{3M_G^4}{4\Omega^4} \left(\ln \frac{M_G^2}{\mu^2} - \frac{3}{2} \right) + \dots \right]$$

• Choose the renormalization scale $\mu = h$ to minimize the log terms

Effective potential

The Einstein frame prescription is similar but we perform the conformal transformation before computing the particle masses

Renormalization prescription I (Einstein frame)

 Transform the tree-level SM potential to the Einstein frame, perturb it about the background value, and compute the masses of the perturbations

$$U_0 = \frac{\lambda h^4}{4\Omega^4} \implies M_h^2 = \frac{3s\lambda h^2}{\Omega^4} \left(\frac{1 - \frac{\xi h^2}{M_{\text{Pl}}^2}}{1 + \frac{\xi h^2}{M_{\text{Pl}}^2}} \right), \quad M_G^2 = \frac{\lambda h^2}{\Omega^4}, \quad M_W^2 = \frac{g^2 h^2}{4\Omega^2}, \dots$$

$$U(\chi) = \frac{\lambda h^4}{4\Omega^4} + \frac{1}{16\pi^2} \left[\frac{M_h^4}{4} \left(\ln \frac{M_h^2}{\mu^2} - \frac{3}{2} \right) + \frac{3M_G^4}{4} \left(\ln \frac{M_G^2}{\mu^2} - \frac{3}{2} \right) + \dots \right]$$

- There is an additional suppression of M_h^2 and M_G^2 in this prescription
- Choose the renormalization scale $\mu = h/\Omega$ to minimize the log terms

Effective potential

- ► The additional suppression of M_h^2 and M_G^2 makes little numerical difference to the effective potential since the contributions of these masses are already small ($\lambda \ll 1$)
- ► The most important difference between the Einstein and Jordan frame renormalization prescriptions is the functional dependence µ(h)

$$\mu = \begin{cases} \frac{h}{\sqrt{1 + \xi h^2 / M_{\text{Pl}}^2}} & \text{Prescription I (Einstein frame)} \\ h & \text{Prescription II (Jordan frame)} \end{cases}$$

Can have a large impact on the effective potential during inflation!

- For this analysis, consider both prescriptions and use the two-loop effective potential with the appropriately modified particle masses
- ▶ Moreover, define the effective Higgs self-coupling $\lambda_{\text{eff}}(\mu)$ through

$$U(\chi) \equiv rac{\lambda_{
m eff}(\mu)h^4}{4\Omega^4}$$

Inflation from a particle physics perspective 000000

Two-loop inflationary predictions

- ► Use the RG equations to run the initial values of M_h , M_t , α_s , ... up to the inflationary scale and use the two-loop effective potential
- ► To explore $\lambda_{\text{eff}}(\mu) \ll 1$, replace M_t with $\lambda_{\text{eff}}^{\min} \equiv \min \{\lambda_{\text{eff}}(\mu)\}$ \hookrightarrow fine-tuning
- For a fixed M_h , $\lambda_{\text{eff}}^{\min}$ and α_s ,
 - (1) Choose ξ_0 . Adjust M_t to give the desired $\lambda_{\text{eff}}^{\min}$
 - (2) Determine U/ϵ at N = 59e-folds before the end of inflation
 - (3) Repeat the steps above until the correct U/ϵ normalization is obtained

- (4) Compute the predictions for n_s and r
- \blacktriangleright The numerical results are presented as a function of $\lambda_{\rm eff}^{\rm min}$

Results for prescription I

- Non-minimal coupling can be as small as ξ ~ 400 for λ^{min}_{eff} ~ 10^{-4.4} → still too large to address the perturbative unitarity problem
- Need larger ξ for $\lambda_{\rm eff}^{\rm min} < 10^{-4.4}$
- Eventually the effective potential develops a second minimum that spoils Higgs ξ-inflation
- Predictions for n_s and r remain within the 1σ region –

5500

5000

4500

Results for prescription II

- Two regions for prescription II: large and small λ_{off}^{min} regions
- The large $\lambda_{\text{eff}}^{\min}$ region behaves similarly to prescription I but the running of $\lambda_{\text{eff}}(\mu)$ more important

Can only have ξ as small as about

Non-minimal coupling ξ_0 - 124 4000 125 3500 126 127 3000 2500 $\alpha_s(M_7) = 0.1184$ 2000 10-3.5 10^{-3} $10^{-2.5}$ 10^{-2}

 M_h in GeV

Minimum effective Higgs quartic coupling λ_{aff}^{min}

 $\xi \sim 2000-4000$ before the potential develops a second minimum

• Predictions for n_s and r show more variation, still within 1σ

Results for prescription II

• The small $\lambda_{\text{eff}}^{\min}$ region is very different from the other results

 Allows ξ ~ 90 at 2–3σ with an observable level of r, but there is still a perturbative unitarity problem

Part IV

Conclusions

Conclusions

- Higgs ξ-inflation is one of the few remaining inflationary models that does not require scalar fields in addition to those in the SM
- The breakdown of perturbative unitarity at M_{PI}/ξ (below the scale of inflation) has long been a potential problem for this model
- ▶ We have investigated whether the recently measured Higgs mass, for which $\lambda_{\text{eff}}(\mu) \ll 1$ near the Planck scale, can address this problem

	μ	$\lambda_{ ext{eff}}^{\min}$	ξ	n _s	r
Prescription I	$\frac{h}{\sqrt{1+\xi h^2/M_{\text{Pl}}^2}}$	$\gtrsim 10^{-4.6}$	\gtrsim 400	0.97	$\lesssim 0.003$
Prescription II	h	$\gtrsim 10^{-3.3} \ \sim 10^{-3.9}$	$\gtrsim 2000 \ \sim 90$	0.96–0.97 0.97–1.00	$\lesssim 0.003$ 0.15–0.25

► The perturbative unitarity problem remains but small λ^{min}_{eff} allows a new region of Higgs ξ-inflation with observable tensor-to-scalar ratio

Thank you for your attention!