Gauge-Yukawa theories at large N_F

Kamila Kowalska

National Centre for Nuclear Research, Warsaw

Seminar of Theoretical Particle Physics Group, University of Sussex, 22.01.2019

- Motivation
- Large N_F expansion in a nutshell
- Calculations of the resummed Yukawa beta function
- Large N_F beta functions state of the art
- Asymptotically Safe model building with large N_F
- Conclusions

Perturbative asymptotic safety

D.F.Litim, F. Sannino, JHEP 1412, 178 (2014)

Gauge-Yukawa theory with $G = SU(N_C), N_F$ fermions and N_F^2 scalars

UV GY fixed point is perturbatively stable

Scenarios with large N_F

To employ this idea as a model building tool we need finite N_C

large N_F required	SU(3) imes SU(2)	A.Bond, G.Hiller, KK, D.Litim, JHEP 1708, 004 (2017)
	U(1)	A.Bond, G.Hiller, KK, D.Litim, PoS EPS-HEP2017 (2017) 542
	perturbative stability in question	D.Barducci, M. Fabbrichesi, C.M.Nieto, R.Percacci, V.Skrinjar, arXiv:1807.05584

Scenarios with large N_F

To employ this idea as a model building tool we need finite N_C

Large N_F expansion in a nutshell

Let us reorganize the perturbation series in $1/N_{F}\,$

QED: A. Palanques-Mestre and P. Pascual, *Commun. Math. Phys.* 95 (1984) 277 QCD: J.A.Gracey, *Phys. Lett.* B737 (1996) 178-184 *B.Holdom, Phys. Lett.* B694 (2011) 74-79

t'Hooft coupling: $K = \alpha_g N_F / \pi$

$$\beta(K) \equiv \frac{d\log K}{d\log Q} = \frac{2}{3}K\left(1 + \sum_{i=1}^{\infty} \frac{F_i(K)}{N_F^i}\right)$$

Bubble counting:

Large N_F expansion in a nutshell

Let us reorganize the perturbation series in $1/N_F$

QED: A. Palanques-Mestre and P. Pascual, Commun. Math. Phys. 95 (1984) 277 QCD: J.A.Gracey, Phys. Lett. B737 (1996) 178-184 B.Holdom, Phys. Lett. B694 (2011) 74-79

t'Hooft coupling: $K = \alpha_g N_F / \pi$

$$\beta(K) \equiv \frac{d\log K}{d\log Q} = \frac{2}{3}K\left(1 + \sum_{i=1}^{\infty} \frac{F_i(K)}{N_F^i}\right)$$

/~~~~

Bubble counting:

For large N_F $F_1(K)$ dominates

Replace gauge propagator with

 K^4/N^3

Large N_F expansion in a nutshell

- there exists a final analytical limit of the infinite series
- $F_1(K)$ has a pole (in QED)

$$K = \frac{15}{2}$$

Large N_F expansion in a nutshell

- there exists a final analytical limit of the infinite series
- $F_1(K)$ has a pole (in QED)

$$K = \frac{15}{2}$$

- $\beta(K) = \frac{2}{3}K\left(1 + \frac{F_1(K)}{N_F}\right) \begin{array}{c} \text{Holdom, 2010} \\ \text{Mann et all.} \\ \text{2017} \end{array}$
- gauge coupling develops an interacting UV fixed-point

$$\alpha_g^* = \frac{15\pi}{2N_F}$$

Large N_F expansion in a nutshell

- there exists a final analytical limit of the infinite series
- $F_1(K)$ has a pole (in QED)

$$K = \frac{15}{2}$$

K = 3 for QCD

 $\beta(K) = \frac{2}{3}K\left(1 + \frac{F_1(K)}{N_F}\right) \quad \begin{array}{l} \mbox{Mann et all.} \\ \mbox{2017} \end{array}$

Holdom, 2010

gauge coupling develops an interacting UV fixed-point

$$\alpha_g^* = \frac{15\pi}{2N_F}$$

$$\beta_y(K) \equiv \frac{d \ln \alpha_y}{d \ln \mu} = \sum_{i=1}^{\infty} \frac{Y_i(K)}{N_F^i}$$

KK, E.M. Sessolo, JHEP 1804 (2018) 027

Step 1: Resum the gauge propagator: $\Delta_{B \mu\nu} = \frac{g_{\mu\nu}}{k^2 - i\epsilon}$

 $i\Pi^{\rho\sigma}(k) = i\left(g^{\rho\sigma}k^2 - k^{\rho}k^{\sigma}\right)\Pi(k^2)$

$$\Pi(k^2) = -2K\left(-\frac{4\pi\mu^2}{k^2}\right)^{\frac{\epsilon}{2}} \frac{\Gamma\left(\frac{\epsilon}{2}\right)\Gamma\left(2-\frac{\epsilon}{2}\right)^2}{\Gamma\left(4-\epsilon\right)}$$

$$\Delta'_{\mu\nu} = \Delta_{B\,\mu\nu} + \Delta_{B\,\mu\rho} \Pi^{\rho\sigma}(k) \Delta_{B\,\sigma\nu} + \dots$$

$$\Delta'_{\mu\nu} = \frac{g_{\mu\nu}}{(k^2 - i\epsilon) \left[1 - \Pi(k^2)\right]} = \frac{g_{\mu\nu}}{k^2} \sum_{n=0}^{\infty} \Pi^n(k^2)$$

Step 2: Calculate resummed renormalization constants

$$Z_1 - 1 = -\Lambda_Y(p, p') \Big|_{\text{poles in } \epsilon}$$

$$Z_{2L,R} - 1 = \frac{d}{dp} \Sigma_2(p)_{L,R} \Big|_{\text{poles in } \epsilon}$$

$$\sum_{q \neq 0} \sum_{q \neq 0} Z_{\phi} - 1 = \frac{d}{dp^2} S(p^2) \Big|_{\text{poles in } \epsilon}$$

Step 2: Calculate resummed renormalization constants

Step 3: Use resummation formula

$$\frac{d\Sigma_2(p)_{L,R}}{dp} = \frac{3}{4N_F} \frac{q_{L,R}^2}{q^2} \sum_{n=1}^{\infty} \left(-\frac{2}{3}K_0\right)^n \frac{1}{n\epsilon^n} H_2(n,\epsilon) \qquad \text{pole extraction}$$

$$K_0^n = Z_3^{-n} K^n = \left(1 - \frac{2}{3} \frac{K}{\epsilon}\right)^{-n} K^n = K^n \sum_{i=0}^{\infty} \binom{-n}{i} \left(-\frac{2}{3} \frac{K}{\epsilon}\right)^i$$
 renormalization of the gauge coupling

$$H_2(n,\epsilon) = \sum_{j=0}^{\infty} H_2^{(j)}(\epsilon)(n\epsilon)^j, \qquad H_2^{(0)}(\epsilon) = \sum_{i=0}^{\infty} \widetilde{H}_2^{(i)}\epsilon^i, \qquad \widetilde{H}_2^{(0)} = 1$$

$$\frac{d\Sigma_2(p)_{L,R}}{dp} = \frac{3}{4N_F} \frac{q_{L,R}^2}{q^2} \sum_{n=1}^{\infty} (-1)^n \left(\frac{2K}{3}\right)^n \sum_{j=0}^{n-1} \frac{H_2^{(j)}(\epsilon)}{\epsilon^{n-j}} \sum_{i=0}^{n-1} \binom{n-1}{i} (-1)^i (n-i)^{j-1} \begin{bmatrix} 0, \ j > 0 \\ -(-1)^n \ 1/n, \ j = 0 \end{bmatrix}$$

resummation formula (Palanques-Mestre, Pascual)

$$\frac{d\Sigma_2(p)_{L,R}}{dp} = -\frac{3}{4N_F} \frac{q_{L,R}^2}{q^2} \sum_{n=1}^\infty \left(\frac{2K}{3}\right)^n \frac{H_2^{(0)}(\epsilon)}{n\epsilon^n} \stackrel{\frac{1}{\epsilon}}{=} -\frac{3}{4N_F} \frac{q_{L,R}^2}{q^2} \sum_{n=1}^\infty \left(\frac{2K}{3}\right)^n \frac{\widetilde{H}_2^{(n-1)}}{n\epsilon^n} = -\frac{3}{4N_F} \frac{q_{L,R}^2}{q^2} \sum_{n=1}^\infty \left(\frac{2K}{3}\right)^n \frac{\widetilde{H}_2^{(n-1)}}{n\epsilon} = -\frac{3}{4N_F} \frac{\widetilde{H}_2^2}{q^2} \sum_{n=1}^\infty \left(\frac{2K}{3}\right)^n \frac{\widetilde{H}_2^{(n-1)}}{n\epsilon} = -\frac{3}{4N_F} \frac{\widetilde{H}_2^2}{q^2} \sum_{n=1}^\infty \left(\frac{2K}{3}\right)^n \frac{\widetilde{H}_2^{(n-1)}}{n\epsilon} = -\frac{3}{4N_F} \frac{\widetilde{H}_2^2}{q^2} \sum_{n=1}^\infty \left(\frac{2K}{3}\right)^n \frac{\widetilde{H}_2^2}{n\epsilon} = -\frac{3}{4N_F} \frac{\widetilde{H}_2^2}{q^2} \sum_{n=1}^\infty \left(\frac{2K}{3}\right)^n \frac{\widetilde{H}_2^2}{n\epsilon} = -\frac{3}{4N_F} \frac{\widetilde{H}_2^2}{q^2} \sum_{n=1}^\infty \left(\frac{2K}{3}\right)^n \frac{\widetilde{H}_2^2}{n\epsilon} = -\frac{3}{4N_F} \frac{\widetilde{H}_2^2}{q^2} \sum_{n=1}^\infty \left(\frac{2K}{3}\right)^n \frac{\widetilde{H}_$$

Step 4: Derive the beta function

$$\epsilon \frac{\partial Z_{2\,L,R}}{\partial K} = -\frac{1}{2N_F} \frac{q_{L,R}^2}{q^2} \sum_{n=0}^{\infty} \widetilde{H}_2^{(n)} \cdot \left(\frac{2K}{3}\right)^n = -\frac{1}{2N_F} \frac{q_{L,R}^2}{q^2} H_2^{(0)} \left(\frac{2K}{3}\right)$$

...and similar for other renormalization constants

$$Y_1(K)K^{-1} = -4\frac{q_L q_R}{q^2}Y_1^{(0)}\left(\frac{2}{3}K\right) - \frac{q_S^2}{q^2}Y_2^{(0)}\left(\frac{2}{3}K\right)$$
$$\frac{1}{2}\frac{q_L^2 + q_R^2}{q^2}H_2^{(0)}\left(\frac{2}{3}K\right) - \frac{q_S^2}{q^2}H_{\phi}^{(0)}\left(\frac{2}{3}K\right)$$

$$\beta_y(K) \equiv \frac{d \ln \alpha_y}{d \ln \mu} = \frac{Y_1(K)}{N_F}$$

Yukawa coupling at large N_F

Interlude - pheno applications

Scalar quartic coupling at large N_F

Pelaggi, Plasencia, Salvio, Sannino, Smirnov, Strumia, Phys.Rev. D97 (2018)

$$(\beta_{\lambda})_{1/N} = -c_1 \lambda K R_{\lambda}(K) + d_1 K^2 R_g(K)$$

Quartic coupling stays perturbative only for non-abelian gauge groups

Large N_F - state of the art

	eta_g	eta_y	eta_{λ}	
U(1)	\$ K = 7.5	[#] K = 7.5	^{&} K = 7.5	
SU(N)	% K = 3	# K = 7.5	^{&} K = 7.5	
U(1) x SU(N)	K = 7.5	K = 7.5	K = 7.5	
SU(N) x SU(M)	K = 3	K = 7.5	K = 7.5	
Yukawa	Y = 3	Y = 5		
U(1) + Yukawa	K =7.5, Y = 3	K=7.5, Y=5		

\$ Palanques-Mestre, Pascual, 1984;

% Gracey, 1996, *Holdom*, 2010;

Kowalska, Sessolo, JHEP 1804 (2018) 027;

& Pelaggi, Plasencia, Salvio, Sannino, Smirnov, Strumia, Phys.Rev. D97 (2018)

Large N_F - state of the art

	eta_g	eta_y	eta_{λ}	
U(1)	\$ K = 7.5	# K = 7.5	^{&} K = 7.5	
SU(N)	% K = 3	# K = 7.5	^{&} K = 7.5	
U(1) x SU(N)	! K = 7.5	! K = 7.5	[!] K = 7.5	
SU(N) x SU(M)	! K = 3	! K = 7.5	! K = 7.5	
Yukawa	Y = 3	Y = 5		
U(1) + Yukawa	K =7.5, Y = 3	K=7.5, Y=5		

\$ Palanques-Mestre, Pascual, 1984;

% Gracey, 1996, Holdom, 2010;

Kowalska, Sessolo, JHEP 1804 (2018) 027; & & Pelaggi, Plasencia, Salvio, Sannino, Smirnov, Strumia, Phys.Rev. D97 (2018)

! Antipin, Dondi, Sannino, Thomsen, Wang, Phys.Rev. D98 (2018);

Large N_F - state of the art

	β_g	eta_y	eta_{λ}	
U(1)	\$ K = 7.5	[#] K = 7.5	^{&} K = 7.5	
SU(N)	% K = 3	# K = 7.5	^{&} K = 7.5	
U(1) x SU(N)	! K = 7.5	[!] K = 7.5	! K = 7.5	
SU(N) x SU(M)	! K = 3	! K = 7.5	! K = 7.5	
Yukawa	+ Y = 3	@ Y = 5		
U(1) + Yukawa	+ K =7.5, Y = 3	+ K=7.5, Y=5		

\$ Palanques-Mestre, Pascual, 1984;

% Gracey, 1996, Holdom, 2010;

Kowalska, Sessolo, JHEP 1804 (2018) 027;

& Pelaggi, Plasencia, Salvio, Sannino, Smirnov, Strumia, Phys.Rev. D97 (2018)

! Antipin, Dondi, Sannino, Thomsen, Wang, Phys.Rev. D98 (2018);

@ Alanne, Blasi, 1806.06954;

+ Alanne, Blasi, 1808.03252;

AS Standard Model (gauge)

	eta_g	eta_y	eta_{λ}	
U(1)	K = 7.5	K = 7.5	K = 7.5	X
SU(N)	K = 3	K = 7.5	K = 7.5	
U(1) x SU(N)	K = 7.5	K = 7.5	K = 7.5	X
SU(N) x SU(M)	K = 3	K = 7.5	K = 7.5	
Yukawa	Y = 3	Y = 5		
U(1) + Yukawa	K =7.5, Y = 3	K=7.5, Y=5		

No!

AS GUT extensions of the SM

	eta_g	eta_y	eta_{λ}	
U(1)	K = 7.5	K = 7.5	K = 7.5	X
SU(N)	K = 3	K = 7.5	K = 7.5	V
U(1) x SU(N)	K = 7.5	K = 7.5	K = 7.5	X
SU(N) x SU(M)	K = 3	K = 7.5	K = 7.5	v
Yukawa	Y = 3	Y = 5		
U(1) + Yukawa	K =7.5, Y = 3	K=7.5, Y=5		

For example:

Pati-Salam: *SU(4) x SU(2) x SU(2)*

Molinaro, Sannino, Wang arXiv: 1807.03669

Trinification: $SU(3)_{c} \times SU(3)_{R} \times SU(3)_{L}$

Wang, Al Balushi, Mann, Jiang arXiv: 1812.11085

AS Standard Model (Yukawa)?

	eta_g	eta_y	eta_λ	
U(1)	K = 7.5	K = 7.5	K = 7.5	X
SU(N)	K = 3	K = 7.5	K = 7.5	v
U(1) x SU(N)	K = 7.5	K = 7.5	K = 7.5	X
SU(N) x SU(M)	K = 3	K = 7.5	K = 7.5	V
Yukawa	Y = 3	Y = 5		
U(1) + Yukawa	K =7.5, Y = 3	K=7.5, Y=5		?

1-loop Higgs quartic:

$$16\pi^2\beta(\lambda) = 24\lambda^2 + \lambda(12y_t^2 - 9g_2^2 - 3g_1^2) + \frac{3}{8}g_1^4 + \frac{9}{8}g_2^4 + \frac{3}{4}g_1^2g_2^2 - 6y_t^4$$

The first pole must has K > 7.5

- Gauge and Yukawa couplings can remain asymptotically safe/free in the large- N_F limit.
- In abelian theories the scalar quartic couplings run into a pole.
- At the moment no viable AS extension of the SM in the large- N_F limit.
- More calculations needed.