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The dispersal of parasites is critical for epidemiology, and the interspecific vec-
toring of parasites when species share resources may play an underappreciated
role in parasite dispersal. One of the best examples of such a situation is the
shared use of flowers by pollinators, but the importance of flowers and inter-
specific vectoring in the dispersal of pollinator parasites is poorly understood
and frequently overlooked. Here, we use an experimental approach to show
that during even short foraging periods of 3 h, three bumblebee parasites
and two honeybee parasites were dispersed effectively onto flowers by their
hosts, and then vectored readily between flowers by non-host pollinator
species. The results suggest that flowers are likely to be hotspots for the trans-
mission of pollinator parasites and that considering potential vector, as well as
host, species will be of general importance for understanding the distribution
and transmission of parasites in the environment and between pollinators.

1. Introduction

Parasites are of major ecological and evolutionary importance [1,2], and under-
standing the mechanisms of parasite dispersal is key to the epidemiology of
parasite dynamics [3]. The shared use of resources, such as water sources and
transport hubs, can play a pivotal role in the dynamics of disease spread in
humans and other animals by acting as sites of parasite dispersal [4,5]. When
parasites are transmitted between transient hosts, they can be widely dispersed
tonovel areas with the travelling host [1,6]. Consequently, sites that facilitate para-
site dispersal are frequently restricted or monitored during times of pandemic
threat or conservation concern [7,8].

Our understanding of host—parasite epidemiology comes primarily from
studies of single host—parasite systems. However, all parasites exist in an environ-
ment in which they will, in addition to their hosts, encounter very many other
species, creating significant potential for non-host species to be important in the
dispersal of the parasite [9,10]. There are many classic cases of organisms vector-
ing parasites by acting as an intermediate host in which the parasite completes
part of its life cycle [11,12]. However, the incidental dispersal of parasites on
the body surface of a vector, or following passage through the gut without infec-
tion taking place, may also be of great importance, particularly for parasites that
transmit faecal-orally or via contact.

The potential for vectoring of parasites will be especially great when multiple
closely related host species share the same resource. An extreme example of such
shared resources is exhibited by plant—pollinator mutualisms. While some plant—
pollinator systems are specific, in the vast majority of cases flowers are visited by
multiple pollinator species in a complex web of interactions [13,14]. It then follows
that vectoring of parasites by non-host species during shared flower use may be of
great importance in pollinator—parasite interactions [15,16]. There is currently
great interest in the stress factors affecting pollinators, many of which are showing
substantial population declines with knock-on effects on the plants that rely on
them for pollination [17-19]. Parasites are well established as being an important
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factor in at least some of these declines, with several bumblebee
species showing population declines that correlate with patho-
gen spillover from commercially produced bumblebees
[20-28], and honeybee colony losses in many countries being
associated with emerging parasites such as the Varroa mite
and the microsporidian Nosema ceranae [29-34]. Importantly,
there is increasing evidence of parasite transmission between
pollinator taxa being more significant than has generally been
appreciated. Several honeybee viruses and the N. ceranae micro-
sporidian parasite of honeybees have been detected infecting
bumblebees [22,35-42], and the Apicystis bombi neogregarine
parasite of bumblebees has been shown experimentally to
infect honeybees [22,43].

Remarkably, however, the epidemiology and transmission
of pollinator parasites is still very poorly understood and the
potentially profound role of shared flower use, in particular,
little investigated [15,16]. Several studies have detected the
presence of parasites in bee collected pollen [22,42,44], but it
is unclear if these parasites were on the flowers and collected
along with the pollen or if they originate from the foraging
bee [45]. The Israeli acute paralysis virus has been shown
experimentally to transmit between honeybee and bumblebee
colonies, and vice versa, in a greenhouse, but whether trans-
mission was via shared flowers, interspecific drifting or
robbing, or some other mechanism was not determined [42].
Bumblebees have been shown to avoid flowers contaminated
with high doses of parasite [46], implying that the threat is pre-
sent and sufficient for them to have evolved this capability.
However, the only direct experimental evidence of the trans-
mission of pollinator parasites via flowers comes from a
single study, in which Crithidia bombi, a trypanosome parasite
of bumblebees, was shown to infect foraging bumblebees
after it was applied to flowers [47]. Here, we investigate exper-
imentally the potential for flowers to act as dispersal platforms
for pollinator parasites, and for non-host species to vector them,
using bumblebees and honeybees as both hosts and vectors.

2. Material and methods
(a) Dispersal

The experiment used mixed groups of 80 flowers, with each
group consisting of 50 purple Campanula cochleariifolia (fairies’
thimbles) which have bell-shaped flowers, and 30 purple Viola
tricolor (pansy) which have flat, platform-like flowers. All
plants were kept in a newly built flight cage for 24 h prior to
their flowers opening in order to prevent visitation by any
non-experimental bees. The bees used in the experiment were
colonies of Apis mellifera carnica honeybees and Bombus terrestris
audax bumblebees. The honeybee colonies each consisted of
three frames of bees, brood and food, in a mini-nucleus box.
The bumblebee colonies were obtained from a commercial pro-
ducer and contained approximately 60—-80 workers at the time
of the experiment. All colonies had two-way and one-way
entrance/exit doors fitted to allow the exit and entry of bees to
be easily controlled. Three honeybee colonies and three bumble-
bee colonies were used as source of ‘parasite provider’ bees for
the experiment. These honeybee colonies had been determined
by PCR screening (see below) to be infected by the Nosema apis
and N. ceranae parasites, while the bumblebee colonies had
been determined by PCR to be infected by A. bombi, C. bombi
and Nosema bombi; the colonies of neither bee species were
infected by the parasites of the other bee species. Nosema apis is
apparently unable to infect bumblebees, and C. bombi and
N. bombi are unable to infect honeybees, whereas N. ceranae

and A. bombi are capable of infecting both hosts [15,22,40]. n

Three additional honeybee colonies and three additional bumble-
bee colonies, which had been confirmed by PCR to be free of any
of these parasite infections, were selected to provide the “vector
bees’ for the experiment. The experiment was run for 6h in
total using three infected honeybee colonies as the parasite pro-
vider species and three uninfected bumblebee colonies as the
vector species. The experiment was then repeated for another
6 h using three infected bumblebee colonies as the parasite pro-
vider species and three uninfected honeybee colonies as the
vector species. Each experimental combination was carried out
once. In each case, three colonies of the species providing the
parasites were placed in a flight cage (6 x 4 x 1.5m; L x W x
H), and left for a day to acclimatize. A first group of mixed flow-
ers (50 C. cochleariifolia and 30 V. tricolor) was then placed in the
flight cage, and the bees allowed to forage on them for 3 h. After
this period, the colonies of the parasite provider species were
excluded from the foraging area, into which a second group of
mixed flowers (50 C. cochleariifolia and 30 V. tricolor) was then
placed, and three colonies of the vector species were allowed to
forage for 3 h on both groups of flowers: the group of flowers
which had been foraged on by the parasite provider species
(shared flowers) and the group of flowers which were only avail-
able to the vector species (vector-only flowers; figure 1). The size
of colonies and flight cage used meant that both honeybees and
bumblebees foraged actively on the flowers during the exper-
iment, and did not exhibit unnatural behaviour such as
aggregating in the corners of the flight cage. Immediately prior
to the experiment, 30 flowers of each species and 10 bees from
the entrance of each colony (both parasite provider and vector
species) were collected (1 = 30). At the end of the experiment,
50 C. cochleariifolia and 30 V. tricolor flowers from each flower
patch (n = 80 per patch) and a further 10 bees from the entrance
of each colony were collected (1 = 30). All bees and flowers were
screened for parasites.

(b) Parasite screening

Parasite screening was done using sensitive PCR-based method-
ology that can reliably detect even low intensity or latent
infections. Bees were first washed and surface sterilized with
UV, and the malpighian tubules, fatbody and entire gut (includ-
ing crop) were then dissected from each bee taking great care to
ensure the sample was not contaminated by the insect integu-
ment. The tissues were homogenized with a micropestle.
Flowers were removed from their stem and vortexed in 1 ml of
100% ethanol for 2 min. A 20 pl subsample of the solution was
taken for spore (choanomastigotes in the case of Crithidia) detec-
tion by microscopy following a 1:3 dilution in ethanol. The
characteristic size and morphology of Nosema and Apicystis
spores, and choanomastigotes of Crithidia, makes them easily dis-
tinguishable from each other by eye, and the accuracy of this was
confirmed by the PCR results. The remaining wash of 980 .l
ethanol and particles from the flower (including any parasites
present) was centrifuged at 14 000g for 5 min, before the upper
800 pl of solution was discarded and the remaining 180 ul hom-
ogenized with a micropestle. The homogenized sample was then
washed by adding 800 wl of Tris-EDTA buffer, vortexed for 30 s
and centrifuged at 14 000g for 5 min, after which 800 pl of the
supernatant was discarded. This wash procedure was repeated
two further times, with 950 ul of supernatant being removed
on the final occasion to leave 30 pl of sample. The DNA from
each sample was then extracted using 5% Chelex solution and
screened for the honeybee parasites N. ceranae and N. apis, and
for the bumblebee parasites C. bombi, N. bombi and A. bombi,
by conventional PCR with parasite-specific primers (electronic
supplementary material, table S1). Presence of a parasite was
identified by the presence of a band of the correct size after gel
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Figure 1. Experimental set-up. The movement of bees (black, solid arrows) and potential movement of parasites (red, dashed arrows) during experiments in which
either honeybees provided parasites and bumblebees were the vectors (a,b), or vice versa (¢,d). Initially, the bees providing parasites were allowed to forage on a set
of flowers (a,c). The parasite provider bees were then excluded, and the vector bees allowed to forage on both sets of flowers (b,d). Flowers consisted of a mix of
the flat-formed V. tricolor flowers and bell-shaped C. cochleariifolia flowers. (Online version in colour.)

electrophoresis. Positive and negative controls were included in
all assays.

(c) Statistical analysis

The frequency of samples (bees or flowers) in which each parasite
was detected were compared between before and after the exper-
iments using generalized linear models with binomial
distribution, logit link function and the likelihood ratio x* stat-
istic. All models were checked for overdispersion and a scale
parameter included in the models where necessary to control
for this. In both the experiment with honeybees as the parasite
providers and the experiment with bumblebees as the parasite
providers, comparisons were made between before and after
the experiment in the prevalence of parasites in: (i) the parasite
provider bees, (ii) the flowers shared between parasite provider
and vector bees, (iii) the flowers visited only by the vector
bees, and (iv) the vector bees themselves. Comparisons were
made separately for each parasite in all cases. Flower type and
colony of origin were included as factors, and non-significant
interaction terms were removed stepwise in all cases to obtain
the minimum adequate models. All analyses were carried out
in PASW Sraristics 18 (IBM, Armonk, NY, USA).

3. Results

No honeybee or bumblebee parasites were found to be pre-
sent on the flowers sampled immediately prior to the
experiment, which had been exposed in the flight cage with
no bees present for 24h. No honeybee parasites were
detected in the bumblebee vectors sampled prior to exposure
in the experiment, and no bumblebee parasites were detected
in the honeybee vectors sampled prior to their exposure in

the experiment. All vector bees sampled prior to the exper-
iment were therefore negative for the parasites that were
present in the parasite provider bees. No parasites of the
(uninfected) vector species were detected on the flowers or
in the parasite provider bees in either case. During the exper-
iment, both honeybees and bumblebees were observed
to actively forage on the flowers provided to them in the
experiment. Honeybees (16-20%), which acted as parasite
providers, had N. apis and 46-53% had N. ceranae, while
33-36% of the bumblebees which acted as parasite providers
had A. bombi, 70-73% had C. bombi, and 7% had N. bombi.
Parasite provider bees never tested positive for a vector
species parasite following the experiment, and the prevalence
of parasites in the parasite provider bees did not differ
between before and after the foraging period either when
honeybees were the parasite providers or when bumblebees
were the parasite providers (p > 0.05 in all cases).

(a) Honeybees as parasite providers

The prevalence of shared flowers that were contaminated
with N. apis and N. ceranae increased significantly from
0% before the experiment to 14% and 59%, respectively,
after the experiment ()(2 =133, p<0.001, and ,\/2 =68.2,
p < 0.001, respectively; figure 2). The prevalence of N. apis
and N. ceranae on flowers visited only by the bumblebee vec-
tors increased during the experiment from 0% to 6% and 52%,
respectively (f =5.73, p=0.017, and /\/2 =58.7, p<0.001,
respectively; figure 2). Dispersal of N. apis and N. ceranae
onto flowers was equally likely regardless of the flower
species (f =0.30, p = 0.586, and XZ =2.07, p = 0.15, respect-
ively). When subsamples of flower washes were examined
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Figure 2. Bumblebees vector honeybee parasites. The prevalence of the honeybee parasites N. apis and N. ceranae within the honeybee colonies acting as the
parasite providers (a), or after the experiment on the bell-shaped C. cochleariifolia and flat-formed V. tricolor flowers (b,c, blue (left) and green (right) columns,
respectively), or within bumblebee colonies that acted as vectors (d). All flowers and bumblebees were free of the two parasites prior to the experiment. One set of
flowers (b) was initially exposed to honeybees for 3 h, while the bumblebees were excluded from the foraging arena. The honeybees were then excluded from the
arena, and the bumblebees allowed to forage freely on the same set of shared flowers, and also on a new set of clean, vector-only flowers (c). Solid black arrows
represent movement of the parasite provider, dashed black arrows represent movements of vector species between flowers and hive, and red arrows indicate possible
dispersal routes of the parasites. Error bars represent 95% Cls. (Online version in colour.)

with microscopy, Nosema spores were observed in sub-
samples from 9% of flowers shared by the honeybee
parasite providers and bumblebee vectors (with an estimated
average of 1.2 x 10* spores per flower), and on 10% of flowers
visited only by bumblebee vectors (with an average of 7.2 x
10° spores per flower). At the end of the experiment, the
prevalence of N. ceranae in the vector bumblebee colonies
had increased from 0% to 23% (x* = 10.7, p = 0.001), while
N. apis remained undetected (figure 2).

(b) Bumblebees as parasite providers

The prevalence of A. bombi, C. bombi and N. bombi on shared
flowers increased significantly during the experiment from
0% to 48%, 75% and 10%, respectively ()(2 =509, p <0.001,
,\/Z =105.0, p < 0.001, and /\/2 = 8.77, p = 0.003, respectively;
figure 3). The prevalence of A. bombi and C. bombi on honey-
bee exclusive flowers also increased significantly during the
experiment from 0% to 22% and 43%, respectively (}* =
21.1, p<0.001, and ,\/2 =45.63, p<0.001, respectively),
while the increase in the prevalence of N. bombi from 0% to
3% of flowers was non-significant (,\/2 =417, p=0.124;
figure 3). Dispersal of the A. bombi and C. bombi parasites

was more likely to occur on the bell-shaped C. cochleariifolia
flowers (y* = 11.75, p = 0.001 and =75, p = 0.006, respect-
ively), but was not affected by flower species for N. bombi
(¥ =156, p=0212; figure 3). When the subsamples of
flower washes were examined by microscopy, spores/
choanomastigotes of A. bombi, C. bombi and N. bombi were
observed on 6%, 13% and 1% of the flowers shared by bum-
blebees and honeybees (with on average 3.1 x 107, 1.3 x 10*
and 7.8 x 10 spores/choanomastigotes per flower, respect-
ively), and on 5%, 14% and 3% of the flowers visited only
by honeybee vectors (with an average of 5.6 x 10%, 1.3 x 10*
and 1.7 x 10° spores/choanomastigotes per flower, respect-
ively). The prevalence of A. bombi and C. bombi in colonies
of the honeybee vectors increased during the experiment
from 0% to 7% and 30%, respectively (y* = 2.9, p = 0.09, and
X’ =142, p <0.001, respectively), while N. bombi remained
undetected (figure 3).

4. Discussion

The results show that flowers can act as dispersal platforms
for a variety of pollinator parasites. Parasites were dispersed
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onto flowers by their host pollinators, and then vectored on to
further flowers and back to colonies by non-host pollinators,
with this being the case for both honeybee and bumblebee
parasites. Flower species affected the dispersal of some para-
sites, but the results suggest that once contaminated, flowers
can apparently become hotspots for disease dispersal via
vectoring bees. The lack of any parasites on flowers collected
immediately prior to the experiment but after 24 h in the
flight cage without bees, the lack of any parasites of the (unin-
fected) vector species on flowers after the experiments, and the
lack of any contamination of parasite provider bees with para-
sites of the (uninfected) vector species, given the sensitive
PCR-based methodology used, along with the increase follow-
ing the vectoring stage of several parasites which are not able
to infect the vector species; all confirms that the parasite
contamination detected had originated from the parasite pro-
vider bees and not from outside the experiment or from
latent infections in the vector bees.

The bumblebee parasites A. bombi, C. bombi and N. bombi,
plus the honeybee parasites N. apis and N. ceranae, were all
rapidly dispersed from infected individuals to flowers within
a 3 h foraging period. Although the two flower species require
different methods of flower handling by the bees [48], the three

Nosema species showed no evidence of a relationship between
flower species and dispersal. Apicystis bombi and C. bombi, how-
ever, dispersed onto the bell-shaped C. cochleariifolia flowers
more frequently than the flat-formed V. tricolour (with 21%
and 36% greater dispersal, respectively). This may potentially
be owing to increased physical contact and/or handling time
with the bell-shaped C. cochleariifolia flowers during foraging
or owing to foraging preference between the two flower
species. This demonstrates not only that shared flowers are
sites for the dispersal of all five of the pollinator parasites inves-
tigated, but also suggests that some flowers may provide a
more effective transmission platform for parasites than
others. The link with dispersal and physical contact between
bee and flower also suggests that some parasite dispersal
may be from spore adhesion to the bee cuticle and sub-
sequently rubbing off onto surfaces. Further work to examine
the effect of flower species and form on parasite transmission
will be worthwhile. Whether parasite dispersal in nature is
higher or lower than found in the experiment here will
depend upon the density and species composition of the
flower, and pollinator, communities. However, the very high
level of parasite dispersal within just the short 3 h time span
of the experiment makes it probable that parasite dispersal in
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the natural environment is widespread. It may also be expected
that infected bees could have increased flower handling times
and foraging demands owing to the cognitive and energetic
costs of infection which would drive parasite dispersal rate
even higher [49-53]. The propensity of a parasite to transfer
between pollinator and flower is remarkably high, with clear
vectoring between foraging sites taking place very rapidly.
After honeybees had foraged on flowers that had been
visited by bumblebees, the bumblebee parasites A. bombi and
C. bombi were detected in 6% and 30%, respectively, of honey-
bees collected from the entrances of their hives. As these bees
were screened using only internal tissues, and great care was
taken to avoid any contamination of the samples by the
insect integument, this suggests that the honeybees had
ingested the parasites during either the collection of nectar
and pollen from the contaminated flowers, or the subsequent
grooming of contaminated body surfaces by the bees. The
internal tissue sample screened for each bee included the
crop, which is most likely where the parasites were contained
given the short 3h duration of the experiment. Apicystis
bombi has been detected in honeybees previously, though its
virulence in this host is unknown [43]. In bumblebees, it
reduces the fatbody and survival of workers and over-winter-
ing queens [54,55]. Crithidia bombi does not appear able to infect
honeybees, but the parasite is able to retain viability after pas-
sage through the honeybee gut if ingested [56]. This suggests
that honeybees could act as reservoir hosts for the A. bombi
bumblebee parasite, as well as vectoring C. bombi via their
guts in addition to on their bodies. After bumblebees had
foraged on flowers that had been visited by honeybees, 23%
of bumblebees collected from the entrances of their hives had
N. ceranae within them. This again means that the bumblebees
had ingested the parasite during either foraging, food proces-
sing or grooming. Nosema ceranae is traditionally thought of
as being a honeybee parasite and has been implicated in
colony losses in some areas [31-33]. However, N. ceranae has
more recently been identified as an emerging pathogen in
several bumblebee species, causing both lethal and sublethal
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