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Abstract 
 
The project compares the training of neural networks, through genetic algorithms and 
backpropagation, to be used as neural controllers for artificial agents in a simplified 
game of capture the flag.  The game involves two teams of agents, several obstacles 
and two coloured flags.  Each team must attempt to reach the oppositions flag, pick it up 
and bring it back to their own base.  The team that does this the largest number of times 
wins.  Each agent consists of a number of sensors that act as inputs to their controllers 
which produces a set of outputs to control the left and right wheel speeds allowing the 
agents to move.  One team was trained using the genetic algorithm approach, 
implementing a roulette wheel selection, and a form of subsumption architecture to split 
the tasks of collision avoidance and flag finding into separate, smaller networks.  The 
other team had a single neural network which was trained using backpropagation from 
input-output data gathered from a hand-coded agent.  It was discovered that the 
subsumption architecture being used for the first team needed some alterations in order 
for it to work properly and the causes of these problems were discussed.  The teams 
were tested against each other in 3 different environments/ maps and overall the GA 
team performed significantly better, with overall much better collision avoidance 
behaviour and less occurrences of getting stuck against obstacles.  The results also 
showed that the genetic algorithm was able to produce an overall simpler controller with 
significantly less network connections than the one produced using the backpropagation 
technique.  The discussion determined that part of the problem with the backpropagation 
approach was the need for pre-existing data in order to train the network and that the 
data came from an agent that wasn’t particularly good at collision avoidance anyway, 
highlighting the difficulty in trying to manually program an agent based simply on sensory 
input values.  Other issues are also discussed but the overall conclusion was that the 
GA technique performed a lot better, but also highlighted the importance of correctly 
setting up the fitness functions and environments in which the genetic algorithm 
performs.  Due to the potentially vast nature of possibilities of this project many 
extensions and improvements have also been proposed.
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1. Introduction 
 
1.1 Project Overview 
 
This project involved the development of a computer simulation of a Capture the Flag 
game in java, which allowed techniques such as Backpropagation and Genetic 
Algorithms (GAs) to be compared when it comes to training the agents for the task.  A 
game of capture the flag consists of two teams and two flags (one for each team) in an 
environment which consists of various obstacles.  The aim was for each team to try and 
“capture” the opposing team’s flag by finding it and bringing it back to their own base. 
 
Each team was made up of a number of virtual robots (agents) each with a series of 
input sensors, two wheels and a neural controller which converts the sensory inputs into 
motor outputs.  The neural controller consisted of a series of layered artificial neural 
networks (ANNs) implemented in a similar way to Brooks subsumption architecture [2], 
where each layer controls a different behaviour.  The simulation program allowed a 
neural controller to be trained for each team using either a genetic algorithm or 
backpropagation and a tournament environment to allow the teams to compete to see 
which method performed the best. 
 
The first goal of the project was therefore to build a fully working simulation environment 
in java which could be used to train neural controllers using genetic algorithms and 
backpropagation with a variety of parameters, and also allowed these controllers to be 
tested in the environment.  The architecture of the sensors and neurons in the neural 
controllers was another important factor that had to be carefully decided upon in order to 
get the best possible performance for each of the techniques.  The actual comparison 
between the two techniques was achieved by training and evolving the neural controllers 
for a specified number of epochs/ generations and then placing them in a tournament 
environment, where they competed against each other.  The performances of the two 
techniques was then analysed. 
 
To make the process easier each stage was broken up into several smaller stages.  The 
neural controller being evolved by a genetic algorithm was not evolved to do everything 
at once.  Instead, each behaviour was evolved one at a time, gradually building up to the 
desired overall behaviour, similar to [4, 11, 12].  Similarly the process involved training 
the agents for games of gradually increasing difficulty.  First of all the agents were 
trained to simply find the opponents flag without crashing into anything.  The next stage 
was to not only find the flag, but to also return it to their own base.  The final version, 
which was not attempted due to lack of time, was to build on the second one by 
attempting to train the agents to chase any opposition agent that was carrying a flag. 
 
This report is broken up into several sections.  The first sections talk about the 
motivations behind the project and provide an overview of the various techniques that 
were mentioned above that have been used throughout the project.  The main body of 
the report covers the design of the system, a more in-depth description of the 
environment and the agents, and the experiments, along with their results and analysis.  
The final part of the report covers what has been achieved throughout this project and 
how the project could be extended.  The project adhered to the professional 
considerations set out before starting the project (see Appendix A). 
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1.2 Project Motivation 
 
Different algorithms and techniques are best suited to different tasks.  A technique 
should be chosen based on its suitability for solving the problem at hand and often it isn’t 
obvious which technique is most appropriate.  Part of the motivation behind this project 
was therefore to determine, within the field of game playing simulated robots, whether it 
was easier to use a genetic algorithm to develop a suitable solution, or attempt to teach 
a controller how to do it by using pre-existing data. 
 
Using a game of capture the flag may appear uninteresting and rather simple; however 
this is not necessarily true, and it has proved a popular basis for a lot of research [7, 8, 
13].  Even relatively straightforward tasks, such as collision avoidance are rarely as 
straightforward as they seem.  For example it may first appear that using a simple 
cowardice1 Braitenberg vehicle setup would create the desired collision avoiding 
behaviour.  However, in the case where a wall is directly in front of the agent, it would 
accelerate directly towards the wall rather than turning away from it.  Developing a 
neural controller to do this is therefore quite complicated, and it is not until we have a 
good grounding of these more simple tasks, can we start to develop more complicated 
control systems. 
 
Producing fitness functions for a genetic algorithm is no simple task, and is made even 
more difficult if the fitness function should incorporate several different tasks, as in a 
capture the flag game.  If a poor fitness function is used then the solution produced by 
the genetic algorithm may only perform part of the desired behaviour, or not perform at 
all.  This project, as mentioned, attempts to overcome this by using a technique similar 
to subsumption architecture [2] to break down the genetic algorithm approach into 
separate layers allowing simpler fitness functions to be produced for each layer.  
Another motivation for this project was therefore to see how well this approach worked, 
and to see if it made the process of evolving behaviours any more straightforward. 
 
Genetic algorithms and supervised learning techniques like backpropagation have 
several parameters that can drastically alter their performance and outcome.  
Parameters are very much problem dependent in that a specific set of parameters will 
increase the speed for one task but not necessarily another.  Finding the right 
parameters for a task can be very time consuming and some techniques will react vastly 
differently to slight changes in the parameters.  Which technique, GAs or 
backpropagation is less susceptible to slight changes in parameters, and therefore more 
likely to find a good result? 
 
The main method for comparing different problem solving techniques is to see how they 
perform individually and then compare them.  By turning this into a simple game allowed 
to not only test the two techniques individually but also put their solutions in an 
environment at the same time, forcing the techniques to compete with each other 
directly, allowing additional comparisons to be made. 

                                                      
1 A cowardice Braitenberg vehicle setup has 2 sensors and 2 motors where the left sensor has an 
excitatory connection to the left motor and the same applies to the right sensor and motor.  This 
means that if it senses something to the left it will speed up the left motor causing the vehicle to 
turn to the right. 

 
 

7



2. Background 
 
2.1 Artificial Neural Networks 
 
Artificial Neural Networks (ANNs) borrow ideas from their biological counterparts.  
Neurons in the brain are typically composed of a cell body (soma), dendrites and an 
axon.  The dendrites provide the input to the neuron in the form of an electrical signal.  If 
this input signal goes above a certain threshold the neuron fires, sending an electrical 
signal down its axon.  Neurons communicate with each other across synapses.  This is 
where the axon from one neuron transfers its signal to dendrites of other neurons.  Each 
neuron can be connected to thousands of other neurons in this manner, producing a 
network. 
 
An artificial neuron is very similar in principle to a biological neuron.  It has a number of 
weighted inputs which are summed together producing the neurons activation.  A 
function is then applied to this activation, with the simplest being a threshold function, 
producing an output.  In essence an artificial neuron is an input-output computation box 
(black box), where given some input it produces a particular output. 
 
An artificial neural network is a group of connected neurons, most commonly organised 
into layers.  The most common network is one with 3 layers; an input layer, a hidden 
layer, and an output layer (see Figure 1).  Many papers do not consider the input layer 
as a layer in the network, so refer to this as only a 2 layer network.  For clarification 
purposes the rest of this paper will include the input layer when mentioning a neural 
network.  The input neurons are simply the input values to the network. 

 

Inputs               Hidden              Outputs 

b1a1

 
Figure 1: A Simple ANN 

 
Each layer is connected to the next layer by a series of weighted connections which can 
have their values adjusted so as to produce different outputs.  In most networks a bias 
input is added to the hidden layer and the output layer.  This is simply implemented by 
treating the bias as an extra input in the input layer with a constant value of 1, such that 
the weight effectively becomes the bias.  Similarly by adding an extra neuron to the 
hidden layer with a constant of 1 produces a bias input to the output layer.  A bias value 
forces the network to produce a valued output even if the network receives 0 on all 
inputs.  In the case of an artificial agent, if all sensors produced a 0 value, then the agent 
simply wouldn’t move unless something passed in front of the sensors.  Introducing 
these bias values to the input and hidden layers of the network means that the network 
will always (assuming the bias weight is non-zero) produce a non-zero output causing 
the agent to move. 

a2 b2

c1
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Artificial neural networks lend themselves well to control systems as, apart from being 
biologically inspired, they conveniently convert a set of inputs to a set of outputs.  In this 
case they can take a series of sensor inputs and convert them to motor outputs allowing 
the agent to move. 
 
2.2 Recurrent Neural Networks 
 
Recurrent neural networks are a slight variation on the traditional neural networks in that 
they contain connections within layers as well as connections across layers.  The hidden 
layers of a network have connections between each of the neurons, as in Figure 2.  This 
has the effect of giving the network a simple memory as each of the hidden nodes will 
have a state representing everything the network has seen so far.  This “memory” 
means the network has the potential to produce a different set of outputs given the same 
set of inputs, which in some cases can prove beneficial.  Recurrent neural networks are 
considerably more difficult to analyse as it is not always obvious what exactly is going 
on. 
 

b1a1

 
Figure 2: A Simple Recurrent Neural Network 

 
2.3 Backpropagation 
 
Backpropagation is a supervised learning technique.  It requires a training set of input 
and output data which can be used to train the network.  The process works by passing 
in each set of input values one at a time and comparing the output given by the network 
to the target outputs in the training data.  This comparison will produce an error rate of 
how wrong each output was.  The error is then propagated backwards through the 
network working out a delta weight change value for each weight in the network, 
according to a learning rate parameter, such that the error will be reduced. 
 
The process of showing the network inputs is repeated many times until the error is 
suitably low.  This is a very similar to a gradient descent method as it attempts to find 
weights that reduce the error.  In many cases a small portion of the training data is held 
back for a cross-validation check to see how well the network performs on unseen data.  
This method is not part of the training process, but to see how well the network is 
currently performing.  A network is not much good if it learns the training data so well 
that it cannot generalise to unseen cases.  This is known as over-fitting. 
 
Backpropagation is usually used to train networks for pattern finding or classification, 
where the network, when given some input information produces an output that attempts 

a2 b2

c1

Inputs               Hidden              Outputs 
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to classify the data.  In this project backpropagation will be used to train a neural 
controller by gathering training data from a hard-coded agent and see how well the 
trained neural controller can generalise to new sensory inputs when it is placed into the 
environment. 
 
2.4 Genetic Algorithms 
 
Genetic algorithms are another example of an artificial intelligence approach borrowed 
from nature.  It is a form of search that is based on the process of natural evolution of a 
species.  The genetic algorithm consists of a population of potential solutions each 
encoded by their own phenotype (characteristics) as specified by its genotype (genetic 
encoding). 
 
The algorithm works by calculating a fitness score for each member of the population 
based on how good their solution is.  When two members reproduce parts of both of 
them are combined (crossover) to produce an offspring which is a potentially new 
solution.  The idea is that over time the fitter members of the population will get picked to 
reproduce, such that the offspring keep getting fitter and fitter.  This is survival of the 
fittest, very much like it is in nature.  For example, the animals that are better at avoiding 
the predators are more likely to survive and reproduce.  Added to this method of 
crossover, each offspring has a chance of having some of its genetic information 
mutated.  This is essentially a form of random change, which may or may not improve 
the fitness of the offspring.  If crossover was the only technique used then eventually all 
possible available combinations will be used up, essentially halting the evolution 
process.  The introduction of mutation can introduce new information allowing the 
evolution process to continue to find fitter solutions. 
 
When using genetic algorithms to evolve neural networks the most obvious genotype 
setup is to represent each of the weights in the network, as changing these is was 
causes changes in the networks output.  There are many variations of the genetic 
algorithm such as the microbial algorithm [5], tournament selection, roulette-wheel 
selection, and even some that do not use crossover at all.  For the exact method that 
was used in this project see Section 3. 
 
2.5 Subsumption Architecture 
 
Subsumption architecture was first suggested by Brooks [2] as a way of creating a 
controller for a mobile robot.  It is very difficult to produce a controller with many sensors 
that should accomplish multiple tasks so this technique introduces a way of breaking 
down the task into several smaller tasks.  It involves breaking the desired task down into 
layers of simpler modules.  The idea is that each layer deals with a single behaviour, 
with the most basic behaviour coming first.  As the behaviours become more complex 
they build on each other, allowing these higher layers to incorporate and interefere with 
the lower layers (Figure 3).  The lower layers will continue to work, but will have no 
knowledge that the higher layers even exist. 
 
For example it would start off with a module for collision avoidance and once that has 
been sufficiently learned, a module would be added for wandering around the 
environment.  Each higher layer that is added can subsume the layers beneath it, 
suppressing their outputs.  This solves the complexity issue of building controllers as 
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each layer deals with an individual goal or sub-goal, and each layer only needs to have 
inputs from the sensors it requires in order to complete the goal. 
 
Brooks uses of subsumption architecture did not involve the use of neural networks for 
each layer, however these can of course be used, and it is a useful way of simplifying 
the responsibilities of an individual network.  Rather than using a single network with 
many inputs and a large number of neurons attempting to do everything, it is possible to 
create multiple smaller networks with fewer neurons, each with their own responsibilities.  
This means that there are fewer weighted connections required in the networks, thus 
speeding up computation time.  The trick here is getting these layers ordered the correct 
way such that layers are subsumed correctly creating the desired outcome. 
 

Level 3

Level 2

Level 1

Level 0Sensors 
 

Figure 3: Subsumption Architecture, with higher layers 

Actuators 

subsuming the lower layers 
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3. Methods 
 
It must be noted at this stage that all of this work was performed within a simulation 
developed specifically for this project.  Section 4 will go into more detail about the actual 
design of this system.  The simulation in no way attempts to model real world physics 
and has not been designed to allow for the resulting neural controllers to be transferred 
into physical robots.  This is because the interest lies within how the learning techniques 
perform against each other and as such a relatively simple simulation environment is all 
that is needed.  Evolving in simulation is also significantly faster than having to download 
each neural controller individually to a physical robot and then test it. 
 
3.1 The Agents 
 
Agents are represented in the simulation by a circle 25 pixels in diameter with a straight 
line showing the direction of the agent (Figure 4).  Each agent has a left and right motor, 
which aren’t visually represented, and a series of sensors.  An agent can have two types 
of sensors, an obstacle sensor and a flag sensor.  An obstacle sensor is essentially a 
proximity sensor and can detect obstacles such as walls and other agents.  A flag 
sensor is essentially a light sensor that can be tuned to detect specific colours of light, in 
this case red or blue. 
 

 
Figure 4: An agent with 6 sensors 

 
Each sensor produces a value between 0 and 1, where 1 is close to the sensor and 0 is 
when nothing is detected.  Sensors have three attributes that can be changed, offset, 
view angle and distance (Figure 5).  Offset is the offset from the “nose” of the agent in 
degrees.  View angle is angle width of the sensor in degrees.  Distance is the maximum 
distance that the sensor can detect in pixels. 
 

 
Figure 5: Sensor and it attributes 
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Sensors can be visible or invisible within the simulation.  If they are visible they appear 
as in Figure 4, and if they are triggered (producing a value > 0) they turn blue. 
 
Agents also have an additional boolean input to their controllers which is either 0, 
meaning they don’t currently have the flag, or 1, meaning they do. 
 
Agents also have a controller which is what converts the sensory inputs to motor 
outputs.  For the agents being trained through backpropagation this contains a single 
neural network, where as for the agents being evolved by a genetic algorithm this can 
contain many layers of neural networks stacked on top of each other, with the higher 
layers subsuming the lower layers. 
 
The motor speeds are values between -1 and 1, where a negative value means the 
motor is turning backwards.  The speed of the agent is worked out by (leftMotor + 
rightMotor) x 2.  So with both motors turning at full speed (value of 1) the speed of the 
agent would be (1+1) x 2 = 4 pixels/per time-step.  Moving an agent at any angle in a 2-
dimensional coordinate system with origin (0, 0) in the top left corner requires the 
following formulae. 
 
x = x + s * cos(a) 
y = y – s * sin(a) 
where, x and y are the coordinate positions of the agent, s is its speed, and a is its 
current angle in radians.  Angles in java work anticlockwise, with 0o/radians situated 
horizontally to the right. 
 
3.2 The Environment 
 
The environment is a 2-dimensional world seen from above.  The environment contains 
three main objects, the agents, the flags/bases and walls (Figure 6).  Flags/bases are 
represented by coloured squares, 20 x 20 pixels, with a simple icon representing 
whether the flag is there or not.  When an agent takes the flag this icon will appear 
“attached” to the agent as a visual representation that it is carrying the flag.  If the flag 
has been taken by an agent then no other agent of the same team will be able to collect 
the flag.  Once a flag has been taken and carried to the agents base then it will reappear 
at its original location ready to be taken again.  Walls are black in colour and are either 
long and thin, such as the walls surrounding the environment, or are box shaped with 
size 40 x 40 pixels (representing an obstacle).  When in tournament mode, when two 
teams are competing against each other, the environment is rotationally symmetrical.  
The reason behind this is to give each team an equal chance for comparison purposes, 
as it wouldn’t be fair if one flag was easier to find than the other. 
 
The environment contains simple collision detection.  If an agent collides with a wall they 
will stop and their motors will stall for 20 time-steps.  If two agents collide they will both 
bounce back a little, and again their motors will stall for 20 time-steps.  Flag sensors 
cannot detect flags the other side of a wall.  In other words if a wall intersects the line of 
sight between the sensor and the flag it will return a value of 0.  Other agents, however, 
do not block a sensors view as it is assumed that a flag is taller than an agent such that 
the sensors can detect a flag over the top of an agent.   
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A team scores a point when an agent from that team successfully finds the opponent 
teams flag and carries the flag back to its own base.  The winning team is the team that 
scores the most points within a given number of time-steps. 
 

 
Figure 6: Environment, with 2 flags, walls and agents – note that 

sensors are not visible in this example 
 

3.3 The Controllers 
 
The control systems vary slightly depending on which learning technique is being used, 
in that the one being trained through backpropagation consists of a single network, 
whereas the one being evolved consists of several networks layered on top of each 
other.  The network resulting from the backpropagation technique is a simple feed-
forward neural network where at each time-step the sensory inputs are fed into the 
network producing the motor outputs. 
 
The controller resulting from the genetic algorithm approach contains several layers of 
recurrent neural networks.  A recurrent neural network is where each hidden node is 
connected to every other hidden node including itself.  This is implemented using a copy 
hidden layer (Figure 7), where at each time-step the hidden layer values are calculated 
by the sum of all inputs plus the sum of the entire copy layer.  The copy layer then is set 
to equal the new hidden layer values.  This gives the network a short term memory and 
in the case of mobile robots can help to prevent them from getting stuck. 
 
The controller contains several layers of these networks.  The bottom (first) network has 
only 2 outputs corresponding to the left and right motor speeds.  Any subsequent 
networks have 3 outputs, the first 2 being the motor speeds and the third is fed into a 
further black-box which controls the subsumption process (Figure 8).  If this third value is 
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greater than 0.5 then this layers motor signal outputs are sent to the motors, unless a 
higher layer also has a value greater than 0.5, in which case that layers motor signal 
outputs are used.  This is a similar technique to what was used in [11] and [12]. 
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Figure 7: Implementation of a recurrent neural network 

 
 
 

 
Figure 8: Controller showing the subsumption process 

 
The activation function used within each node of the individual neural network is the tanh 
(hyperbolic tangent) function which squashes the output into the range -1 to 1.  This 
allows the outputs to be fed directly to the motors producing the forward or backward 
speed.  The output y of a node j in a network is calculated by: 
 

yj = tanh  ! (xiwij) 
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where, xi is an input value to the neuron, j, wij is the weighted connection from the input i 
to the neuron j, and n is the number of inputs to the neuron. 
 
3.4 The Genetic Algorithm 
 
The genetic algorithm works by evolving one layer at a time, and then freezing that 
layers configuration before adding the next layer on top.  Therefore the genotype only 
encodes the weights of the top layer in the controller.  The genotype is as follows: 
 
[Input to Hidden weights] [Hidden to Output weights] [Copy Hidden to Hidden weights] 
 
where all weights can have a value between -1 and 1.  The exact algorithm used for 
creating the next generation is roulette-wheel selection with elitism added in.  The idea 
of roulette-wheel selection is that each member is given a chance to be chosen as a 
parent in proportion to their fitness.  This means that members with a higher fitness 
score have more chance of being chosen for reproducing; however it doesn’t prevent 
less fit members being chosen.  The advantage of this technique is that a phenotype 
with a low fitness may actually contain some useful information, that when combined 
with another produces a fitter member of the population.  Elitism is also added which 
picks the fittest two members of each generation and automatically copies them into the 
next generation.  This is done to prevent a loss of good solutions throughout 
generations. 
 
Children are produced by randomly splitting both parents at the same point in their 
phenotype.  Two children are then produced, where the first child is a combination of the 
first part of the first parent and the second part of the second parent, and vice-versa for 
the second child (Figure 9).  Each gene in a child has a chance of being mutated 
whereby its value is randomly changed.  This is repeated as many times as necessary 
taking a new random split each time, thus producing different children. 
 

Parent 1 Child 1 

Parent 2 

Child 2 

 
Figure 9: The crossover process 

Random split 

 
The process of producing a new generation is therefore as follows: 
 

- The fittest two members are copied into the next generation (Elitism) 
- Two other members are chosen as parents using roulette-wheel selection 

(Selection) 
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- Both parents are copied into the next generation, unless they happen to be either 
of the two fittest members, in which case they are not (as they are already there) 

- All remaining members are replaced by the children of the parents (Crossover) 
- Each gene in a child will have a chance of being mutated (Mutation). 

 
3.5 The Backpropagation Approach 
 
This approach requires some training data in order for the neural network to learn.  This 
is achieved by creating an agent with 4 obstacle sensors and 4 flag sensors, where 2 of 
the flag sensors can detect the red flag and the other 2, the blue flag.  This agent doesn’t 
have a neural network inside, but rather a series of “if” statements, which based on the 
sensory inputs, produces different motor outputs. 
 
This agent is then put into an environment with a randomly placed set of obstacles and 
two flags (one red, one blue) and allowed to move around for a number of time-steps.  At 
each time-step the current sensor values and motor values are recorded producing the 
training data.  A neural network is then created with the same number of input and 
output nodes, and a number of hidden nodes.  The connection weights are randomly 
initialised to between -1 and 1 and the network is trained for a number of epochs.  10% 
of the training data is held back as test data to see how well the network can generalise 
to new inputs.  This 10% is chosen at random from the training data.  The training of the 
network is performed outside of the agent as it is only getting passed already known 
inputs and calculating the outputs.  It is also faster if the network is trained outside of the 
agent, so it saves time. 

 
 

17



4. Requirements Analysis 
 
As this project is a research project their will not be many end users, however there is 
still a need to perform a full user requirements analysis for the interface.  The main user 
will be the author as the developed simulation will be used to compare the two 
approaches mentioned earlier in the introduction.  There is however a possibility that the 
system may be used by others for similar research, so the interface must be easy to use 
and intuitive. 
 
4.1 Requirements Specification 
 
Requirements Specification of the System -  
“The system will be used as a simple research tool for comparing different techniques for 
producing desired behaviour in some artificial robots (agents) when playing a game of 
capture the flag.  Each robot will have a series of sensors for detecting opponents, team-
mates, flags and bases, as well as two motors attached to wheels (one on each side of 
the robot), similar to a Khepera robot or Braitenberg vehicle.  Each robot will have a 
neural controller (Artificial Neural Network) which will be connected to the sensors and to 
the output motors.  The user interface will have an arena in which the simulations can be 
run.  The simulation will be a 2-dimensional birds-eye view of the world, and will not 
need to incorporate real-world physics as the main purpose of the system is for 
comparing the two training techniques.  There will also be a series of options for editing 
the settings of the two learning techniques; back-propagation and the genetic algorithm.  
There must also be the ability to save the progress of both techniques so that the user 
can carry on from where the program left off last time.” 
 
Requirements of the Research -  
“Use the developed system to compare the techniques of back-propagation and genetic 
algorithms when training a team of robots to compete in a simple game of capture the 
flag.  One team will be trained using back-propagation and the other team will be 
evolved using a genetic algorithm.  The genetic algorithm will have a population of 
genotypes with each gene representing a weight in the neural network.  These will be 
evolved by testing each ANN in the arena and comparing which one performs the best.  
Whichever one performs the best will be evolved to produce new offspring.  The back-
propagation method will be a form of hard-coding as it is required that the expected 
outputs for a particular set of inputs be known.  This will involve deciding what the robot 
should do when it receives certain inputs.  Both techniques will be compared by pitting 
the teams against each other using the best controller from each technique to see how 
they perform against each other.  The results of these experiments will then be graphed 
and analysed to see how they change over time.” 
 
4.2 Determining Classes and their Relationships 
 
On performing a grammatical parse of the requirements specification in section 3.1 and 
a little bit of common sense we can determine the following classes: 
- Robot 
- Sensor 
- Motor 
- Flag 
- Base 

- ANN 
- UserInterface 
- Arena 
- BackPropagation 
- GA
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If the classes are then grouped together according to their behaviours and how they 
interact with the rest of the system then it produces three main groups of classes.  The 
first is the robots architecture, made up of the Robot, Sensor, Motor and ANN classes.  
The second group is the classes for the interface; the UserInterface, Arena, Base and 
Flag classes.  The last group is the algorithms themselves; the BackPropagation and GA 
classes.  Although these two classes are only loosely related they will be working on the 
same classes and so have therefore been put together. 
 
CRC (Class-Responsibility-Collaborator) cards were produced (see Appendix C) to find 
relationships between the above mentioned classes.  When this was performed it was 
decided that the Motor class was not needed.  This was because the Robot class was in 
charge of updating its position based on both motors speeds.  The outputs of the ANN 
would be the motor speeds, so the Motor class would simply be storing a single speed 
variable.  It is easier to implement this within the Robot class itself, so then the ANN 
simply passes the output variables to the Robot class which then uses them to update its 
position on the screen. 
 
The CRC cards do not show all of the responsibilities of each class as these will be 
further improved on throughout the Design phase of the project, they are simply there as 
a guide to give a basic overview of what the system will be structured like.  Figure 10 is a 
class diagram showing the classes and their relationships between one another.  As can 
be seen there is a two directed association between the Robot class and the Sensor 
class.  This is because although the Sensor class doesn’t need to explicitly know about 
the Robot to which it is attached, it does need to know about other Robot objects in the 
arena in order to detect them, and to generate a sensor value. 
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4.3 Implementation 
 
Figure 11 (on the following page) is a more detailed class diagram including some of the 
basic fields and methods of each class.  Several things must be mentioned here to help 
explain some of the decisions made about the fields and methods.  Firstly the ANN class 
contains several fields which are double arrays.  The first 3 arrays will hold the values of 
the input, hidden and output layers respectively.  The size of these arrays would be 
determined upon construction of an ANN object.  The bias values which will be added at 
the input layer and hidden layer will simply be treated as an extra input or hidden node 
with a constant value of 1 and will be added into the arrays upon creation of the object.  
The other two arrays are for holding the weight values for the connections between the 
layers and these will be the values that can be changed by either of the two training 
methods.  Although a method has been mentioned in this class for calculating the 
sigmoid of a value, it may be decided during the research process that a different 
function such as tanh of a value is required instead to help towards the desired output. 
 
Both the GA class and the BackPropagation class have several fields which allow for the 
different variables in the algorithms.  For example in the GA class there is a field for the 
mutation rate, which will be able to be altered, so changing the behaviour of the 
algorithm to produce different (and hopefully better) results.  The GA class has a fitness 
method which will be used to calculate the fitness of a particular genotype so that they 
can be compared easily.  It also has an evolve method which will be used to produce 
new genotypes based on the crossover rate and the mutation rate as well as the type of 
evolution chosen.  The BackPropagation class has two fields which are double arrays.  
These are to hold the delta error values for the hidden and output layers, which will then 
be used to adjust the weight values of the network in the right direction so as to improve 
the output it gives. 
 
The Robot class will hold an array of Sensor objects allowing it to have as many as the 
designer requires.  It also has two fields for the output (motor) values and a field for the 
angle (facing direction, in degrees) of the Robot.  It is worth mentioning that the x and y 
fields are set as doubles simply because when calculating the updated position of the 
robot based on its speed and current direction it will involve working with decimal values, 
however when it comes to drawing the Robot on the screen these values will be cast to 
integers as obviously you can’t have portions of pixels.  Similarly the Sensor class has 
its x and y coordinates as doubles so that this gives a more precise position on the robot 
body.  The offset variable holds the angle (in degrees) of the position of the sensor from 
the nose of the robot.  The angle field holds the viewing angle of the sensor and the 
length field holds the maximum distance the sensor can detect something.  Finally the 
value field holds the current input value of the sensor.
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Figure 11: Class Diagram with basic fields and methods 

 
The Flag and Base classes are very similar in that they have a colour field and an x and 
y position.  The main difference is that the Flag class has methods for determining if it is 
currently being carried or not, and one for updating its position if it gets dropped by a 
robot. 
 
The Arena class has a Vector which will hold all objects which will be in the arena, such 
as flags, robots and bases.  It is clear here that a super class like ArenaObject will be 
necessary with classes Flag, Base and Robot extending this class but this will be 
implemented in the Design stage.  The paint method will call each object in the Vector in 
turn and call its drawSelf method to redraw it in the correct position on the screen.  It 
also has a start and stop method for controlling the simulation.  The UserInterface class 
has several methods for loading and saving the status of the training processes and also 
for running the simulation and each of the training processes. 
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5. Design 
 
Figure 12 on the following page shows a much more detailed class diagram.  A 
dedicated loading and saving class has been created which takes some of the tasks 
away from the UserInterface class.  The reason for the double directed link between the 
UserInterface and the LoadSave class is that the UserInterface needs to know about the 
LoadSave class in order to call its methods, and the LoadSave class needs to have 
access to the UserInterface to save the correct options that are displayed on the user 
interface. 
 
The Arena class extends a Canvas and so has additional variables for holding a 
BufferedImage and its Graphics object.  This allows the draw methods to draw 
everything to the image buffer first using its Graphics object, and then calling a single 
draw method to draw this buffered image onto the Arena.  This technique is known as 
double buffering and prevents a flickering image as the entire screen is redrawn at once, 
rather than individual objects. 
 
There is now an abstract superclass ArenaObject which is extended by the Flag, 
ArenaWall and Robot classes.  The main reason for this is it simplifies adding objects to 
the arena.  This class contains two abstract methods, drawSelf() and boundBox().  The 
drawSelf() method specifies how an object appears on the screen and will be different 
for each class.  The boundBox() method creates a simple bounding box around the 
object which is then used for collision detection.  If two bounding boxes intersect then a 
collision has occurred and the colliding objects should be moved apart. 
 
The Flag and Base classes have been combined into a single Flag class.  This decision 
came after noticing that the two classes were very similar.  If a flag is dropped it is 
automatically returned to the base, so the variable for whether the flag is being carried or 
not is irrelevant.  Instead the single class will either draw the flag as present at the base 
or not depending on whether the flag has been taken or not. 
 
A Robot object now does not hold an ANN object but rather a Controller object, which in 
turn can hold many ANN objects.  This creates a more generalised approach, whereby 
when the backpropagation technique is being used the Controller object will hold a 
single ANN object, but when the GA technique is being used it can hold more.  Its 
calcOutputs() method will work out the output of each network it contains and determine 
which set of outputs will be returned to the Robot object for use as its motor speeds.  
This will be determined according to the process mentioned in section 3.3.  The ANN 
class has been extended to include a copy hidden layer array as well as the associated 
weight array connecting the copy hidden layer to the hidden layer.  There is also a 
boolean recurrent value which if true, will include the copy hidden layer in the calculation 
of the output, but ignore it otherwise. 
 
A Fitness class has been added into the design to separate this process from the GA 
class.  This class contains methods which for calculating the fitness of the passed in 
Robots controller.  It is called by the GA class and returns the fitness for that particular 
controller.  There is also a Graph class which is used by both the GA and 
BackPropagation classes.  This class will be passed some data, and plot them to the 
screen.  It will also scale the axes appropriately with the drawAxes() method and also 
add a legend with the drawLegend() method.  The data it is passed will depend on what
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class called it.  If it is called by the GA class then it will get passed the average and best 
fitness scores across all generations.  If it is called by the BackPropagation class then it 
will get passed the training and generalisation error over the set number of epochs.   
 
The GA class has had several methods added to it to separate the process of choosing 
the parents, crossing over the genes of two parents and mutating a phenotype. 
 
The UserInterface class is still simplified in Figure 12.  The class will contain many java 
swing components, so listing all of these in the class diagram would not be particularly 
useful.  It will also have several inner classes extending classes such as ActionListener 
attached to the buttons which will trigger events when these buttons are clicked.  It will 
also have an ActionListener attached to the Timer object, which will call the Arena 
objects repaint() method every time the Timer fires. 
 
5.1 GUI Design 
 

 
Figure 13: GUI Design 

 
Figure 13 shows the basic design for the user interface.  The main area on the right is an 
Arena object, which is where the simulation will be displayed.  The top left hand box 
allows the user to select which mode they wish to use by highlighting the relevant option 
button.  The panel beneath that will change depending which mode has been selected.  
Currently the GA mode is selected and so this panel displays options relevant to the 
genetic algorithm, such as population size, generations and mutation rate.  It also has a 
mode option which will change what is actually drawn in the arena depending on what 
behaviour the user currently wishes to evolve. 
 

UserInterface _ x

          Genetic Algorithm Mode 
          Backpropagation Mode 
          Tournament Mode 

Population Size 10

Generations 100

Mutation Rate 0.1

Wandering Mode 
ARENA 

Add Layer Save 

Start Pause 

Sho! w Sensors 
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The other panels that can replace the GA options panel are shown in Figure 14. 
 

 
Figure 14: The alternative option windows for different modes. 

 
The backpropagation options window has a button at the top which starts the hard-
coded agent moving around in a randomly generated arena.  It will run until it has 
gathered enough training examples, as set by the user.  The user can then specify the 
exact settings for each of the variables before training the network using the gathered 
training data.  There is also a Test Network button which will place the trained network 
into a Robot in the arena so the user can see how well it actually performs. 
 
The tournament options window allows the map to be chosen, and a load option to load 
in the relevant controller.  It has a box for changing how long the tournament will run for 
as well as a score board to keep track of what the score is. 
 
5.2 The Simulation 
 
A key part of this program is how the simulation actually works.  When the user clicks 
the Start button (or the Get Data or Test Network button in the case of the 
backpropagation panel) the timer object held in the UserInterface starts.  This timer has 
an ActionListener attached to it which calls the Arenas repaint() method every time the 
timer fires.  The Arenas paint() method loops through its objects Vector and calls the 
drawSelf() method on each object.  Figure 15 shows the sequence diagram for updating 
the position of a Robot over a single time-step. 
 

Training Examples 

Learning Rate 

Epochs 

No. Hidden Nodes 

Backpropagation Options 

1000

Get Data 

8

1000

0 01

Train Network 

Test Network 

Map Grid Map

Red Team 

Load GA Robot 

Load BP Robot 

Blue Team 

Load GA Robot 

Load BP Robot 

Time Steps 1000

Red 0 - 0 Blue

Tournament Options 

Save Network 
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:ANN 

Figure 15: Sequence Diagram for a Robot moving position 
 
 
 
 
 
 

:UserInterface :Arena :Robot :Sensor :Controller 

repaint() 
drawSelf(g, objects) calcOutputs(objects, 

sensors)
getReading(objects) 

reading 

setInputs(reading[ ]) 

calcOutputs() 

outputs 
outputs 

updatePosition() 

 
 



The drawSelf() method gets passed the Graphics object of the Arena so that it can draw 
itself onto the Arenas buffered image.  It also gets passed the entire Vector of objects 
held in the Arena.  If the object being drawn is a Robot then the Vector gets passed into 
the getReading() method for each of the sensors.  The getReading() method looks 
through this Vector and finds which objects are potentially within sensor range.  It then 
attempts to see which of these is closest, and is actually within the detectable range of 
the sensor.  Finally it works out how far away this object is and returns a distance value 
scaled between 0 and 1.  
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6. Evolution Experiments 
 
The first task was to evolve a neural controller to play the game of capture the flag using 
the genetic algorithm approach.  Throughout the evolution process each member of the 
current population was tested 4 times in different starting locations in order to get an 
average performance (fitness) score.  The reason behind this is that on some occasions 
a certain situation may cause a different behaviour to occur thus improving or worsening 
the fitness function.  Taking an average takes this into consideration. 
 
The program works by allowing every member of the population to be tested at once, 
including all four of their runs.  This means that if the population size is 10 then there will 
be 40 robots visible on the screen starting in 4 different places (Figure 16).  The reason 
for this was that it significantly sped up the evolution process as rather than test every 
member of the population individually over four tests, all these tests were performed at 
once.  Throughout the evolution process the agents were unable to see each other, as 
they were essentially being tested in separate identical environments. 
 

 
Figure 16: The start of a generation.  Each of the 4 groups 

represent each of the 4 tests runs, with each group 
containing the same 10 members of the population. 

 
Each generation was tested in the environment for 500 time-steps.  The behaviours that 
can be evolved in the genetic algorithm mode of the program are wandering, collision 
avoidance and flag retrieving. 
 
Attempting to evolve a wandering behaviour using a neural network is actually quite 
difficult.  The simplest wandering behaviour is to encourage the agent to cover the 
largest distance, however this simply causes them to evolve to run in a straight line very 
fast, which isn’t really “wandering” as you would expect.  Neural networks by their very 
nature are input – output computational machines.  If the agent only has sensors for 
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detecting obstacle and flags then in an empty environment these will always return 0.  If 
the network keeps receiving the same input it will continue to produce the same output, 
so any more complex wandering behaviour would require additional inputs that are 
changing in order to produce a good wandering behaviour.  This turned out not to be a 
problem in the end as when an agent is evolved to avoid collisions a natural wandering 
behaviour occurs as they change direction when they see an obstacle, such that over 
time they will have covered most of the arena. 
 
6.1 Collision Avoiding Experiments 
 
Collision avoiding was evolved by placing the agents in an environment with up to 20 
randomly placed obstacles2 (as in Figure 16).  For each generation these objects were 
randomly moved to new positions and the agents starting locations and angles changed.  
This was to prevent the evolutionary process exploiting the environment to achieve a 
higher fitness.  If the environment and their starting positions remained the same then it 
may be possible for them to evolve a simple behaviour, such as where they only turn left 
because from their starting positions they never encounter anything where they need to 
turn right to avoid it.  This is not a good solution as when they are placed in an arena 
that does have obstacles they need to avoid by turning right they will fail to do so. 
 
The fitness function for collision avoiding was: 
 
 f = t x a 
 
Where t was the number of time-steps where the agent wasn’t colliding with anything, 
and a was the number of places visited.  The maximum t could be was 500, as there 
were 500 time-steps per test, and was calculated by adding 1 for every time-step the 
agent successfully avoided hitting anything.  Calculating the number of places visited 
involved splitting the arena up into a grid of smaller squares, 25 x 25 pixels.  The value a 
was increased every time the agent moved into a grid square that it had not visited 
before.  This helped to prevent a circling behaviour evolving; as once they had visited a 
location they couldn’t increase their fitness by visiting it again.  These values were 
multiplied together to force both to have an affect on the fitness.  If the values were 
summed together then it could have been possible for an agent to evolve to gain fitness 
from one method but not the other.  For example an agent could have just sat still as 
they would have still gained fitness for not hitting anything, or they may have moved 
incredibly fast and covered a large distance but crashed into every obstacle in sight, 
both of which aren’t particularly good behaviours. 
 
For each of these experiments in attempting to obtain the best collision avoiding 
behaviour the population size was 10.  The number of hidden nodes tried was varied 
from 4 up to 10 in increments of 2.  There were 6 obstacle input sensors in this first set 
of tests and the layout was the same as in Figure 4.  Each test was run for 100 
generations.  Figure 17 on the following page shows the results of collision avoiding with 
4 hidden nodes.  It must be noted that although the program was capable of producing 
fitness and error graphs, all graphs in this section were produced in Matlab with the data 
gathered by the program.  This is just because they are slightly clearer. 
                                                      
2 The system will attempt to place 20 obstacles, but it cannot place two obstacles too close 
together, so if it cannot find a safe place to position an obstacle after 20 attempts, it will stop.  
Therefore the arena will not always contain 20 obstacles. 
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Figure 17: Fitness graph for collision avoiding with 

4 hidden nodes 
 

The graph shows that in the first 20 generations the fitness increased fairly rapidly, and 
then it started to level off.  At about 80 generations there was a drop in the average 
fitness, possibly where at least one of the parents picked by the roulette wheel selection 
wasn’t particularly good, and so the fitness dropped.  Then in the last 5 generations a 
rapid improvement in fitness occured.  There are several possible reasons for this.  One 
reason is that the fittest two members which were passed over from previous 
generations became the parents and produced an overall fitter population.  The other 
reason is that one of the children produced when the fitness dropped became a parent 
for the next generation and actually had some useful genetic material which caused a 
sudden increase in fitness.  Another reason is that a mutation occurred which improved 
the fitness of a particular phenotype and then that one was chosen to reproduce. 
 
Figure 18 shows the results of evolution process when using hidden nodes from 4 to 10.  
The graph shows that as the number of hidden nodes increased the fitness reached by 
the 100th generation decreased.  The best fitness decreased at a fairly gentle rate 
whereas the average fitness of the population decreased a lot more rapidly.  This implies 
that having fewer hidden nodes enabled the population to evolve towards better 
solutions faster.  Figure 19 shows the average fitness plots for each number of hidden 
nodes overlaid over the top of each other.  It can clearly be seen that after 15 
generations the version with 4 hidden nodes continued to evolve at a fairly rapid rate, 
where as the others started to slow down.  The mutation rate used in these tests was set 
to 0.1, which meant that every gene in a genotype had a 10% chance of mutation.  
Higher mutation rates were also tried but the overall fitness they produced seemed to 
vary quite a lot and in most cases was worse than when using a rate of 0.1.  A mutation 
rate of 0.1 tended to produce more consistent results over time. 
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Figure 18: Graph showing fitness reached over 100 generations 

with varying hidden nodes 
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Figure 19: Average Fitness for varying numbers of hidden nodes 

 
The collision avoidance layer of the neural controller was complete so the next stage 
was to add the next layer, the flag retrieval layer, on top.  The architecture of the neural 
controller was basically that of a single multi-layer neural network, with 6 inputs, 4 hidden 
nodes and 2 output nodes. 
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6.2 Addition of Flag Retrieval Experiments 
 
The addition of another layer to the controller was in itself straightforward.  What wasn’t 
straightforward, however, was selecting a suitable fitness function to encourage the 
controller to continue to use the previously evolved layer.  Although the bottom layers 
weights had been fixed it was possible for the evolutionary process to evolve the top 
layer such that it always subsumed the bottom layer, meaning that although the bottom 
layer was working as it should, its outputs were never getting sent to the motors. 
 
Choosing the correct fitness function was therefore critical in order to allow the balance 
to be maintained.  In this case the idea was that when the agent cannot see the flag the 
bottom layer was to work as usual such that the agent moved around and avoided 
collisions.  When the agent detected a flag, then the top layer should subsume the 
bottom layer and take control so as to steer the agent towards the flag. 
 
The environment setup was similar to that for collision avoiding except for the addition of 
two flags, one red and one blue, placed at random in the arena (Figure 20).  Again, the 
agents were placed in random starting locations each generation and the positions of the 
walls and flags also changed.  The addition of this environmental noise was to try and 
avoid the genetic algorithm exploiting part of the environment. 
 

 
Figure 20: Addition of flags to the arena 

 
 

The idea was that the controller should evolve to go to the blue flag first (collect it), and 
then it should find and go to the red flag to drop the blue flag off.  Then it should repeat 
this process.  It should be able to do this without crashing into anything. 
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The fitness function that was tested first was: 
 
f = p x t 
 
where t was the time without a collision and p was the proximity to the flag.  The bottom 
layer was the only one with obstacle sensors and such must be used if the agent was to 
successfully avoid hitting anything, so adding the value t encouraged the controller to 
continue to use the bottom layer.  The value p was a cumulative value calculated as 
follows: 
 

- For approaching the blue flag, if not already carrying a blue flag – give a value 
between 0 and 1, where 0 is not approaching, 0.5 is half way towards the flag, 
and 1 is right next to the flag. 

- For hitting the blue flag, if not carrying a blue flag – add 12. 
- For approaching the red flag, if carrying a blue flag – give a value between 0 and 

1, same as above. 
- For hitting the red flag, if carrying a blue flag – add 12. 

 

 

+12

Figure 21: Proximity scoring system 
 

So for an agent that had approached a blue flag, picked it up, and carried it half-way 
towards a red flag it would get a proximity fitness of 1 (for approaching blue flag) + 12 
(for hitting blue flag) + 0.5 (for going half way towards red flag) = 13.5.  An agent that 
moved towards, and hit the blue flag, but then never moved towards the red flag would 
end with a fitness of 13.  An agent that never moved towards the blue flag would get a 
proximity fitness of 0. 
 
The sensor setup for flag retrieval consisted of 4 sensors, 2 for detecting the opposing 
flag and 2 for detecting the same teams flag.  1 sensor for each flag was for sensing to 
the left of the agent and the other was for detecting to the right, as in Figure 22. 
 

 
Figure 22: Flag sensor setup 
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The network for the flag retrieval layer had 5 inputs, where 4 were the flag sensors, as 
stated previously and the last was the boolean input as to whether the agent was 
currently carrying the flag or not.  The test was run with 4 hidden nodes and for 100 
generations with a mutation rate of 0.1 as before.  Figure 23 shows the results of this 
test. 
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Figure 23: Fitness graph for flag retrieval with collision avoiding 

 
As the graph shows the results aren’t that good as the average fitness didn’t appear to 
increase across 100 generations.  The graph is very erratic where at one generation the 
average score is quite good, yet the next generation it suddenly drops.  Although not 
clear from the graph, the solution half worked.  What the resulting controller did was spin 
around on the spot unless it could see the blue flag, if it could then it moved towards the 
flag, avoiding walls en route and collected it.  At this point the agent simply turned 
around on the spot over the blue flag, even if it could see the red flag. 
 
The problem appeared to be that even using this fitness function which appeared to 
incorporate both layers of control the evolutionary algorithm struggled to settle down with 
one type of behaviour.  If an agent had a controller which in the previous generation 
successfully found the flag, and then failed to find it in the current generation it wouldn’t 
get a very good fitness, however it may have still been the best potential solution of the 
current generation even if the fitness function didn’t confirm this.  The genetic algorithm 
would not give it a good fitness and thus it got killed off and so the evolutionary 
advantage was lost. 
 
Other fitness functions were attempted including just using the proximity value as the 
fitness of a particular controller, and also more complicated ones such as: 
 
f = p x t x a  
 
where p was the proximity value, t was the time without a collision, and a was the 
number of places visited, as before. 
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The idea with this fitness function was by adding a value for the number of places visited 
it might encourage the evolutionary process to prefer agents which moved around as 
well as find the flag and avoid collisions. 
 
The results for just using the proximity value as the fitness are shown in Figure 24.  As 
expected this doesn’t cause any improvement as the graph clearly shows no learning 
across 100 generations.  Using this fitness function caused the top layer to evolve such 
that the third output is always greater than 0.5, so the collision avoiding layer was never 
used.  As a result, if the agent saw a flag and attempted to move towards it, then it would 
hit any walls that were in the way.  As a result of the permanent subsuming of the 
collision avoidance layer the wandering behaviour was lost too, so the agent did not 
move around the environment unless it could actually see a flag. 
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Figure 24: Fitness graph when using the agent’s proximity to the 

flags as its fitness 
 

Figure 25 shows the results of the more complex fitness function and as it shows the 
same problem has occurred where the graph is very erratic.  It shows that it is important 
to pick a suitable fitness function; however it is also important to make sure the 
environment is setup correctly.  The problem was that the environment was too noisy 
from one generation to the next so there was no consistency for the genetic algorithm to 
pick up on.  Making the environment less noisy is difficult as if there is too little noise the 
genetic algorithm will exploit the environment and find an unexpected solution.  
Therefore the challenge is to find the balance between the environment complexity and 
the fitness function. 
 
Even a relatively simple task like capture the flag is not that easy to evolve as it involves 
careful setup of the environment and the choosing of a suitable fitness function based on 
the environment.  As the results so far have shown this is not a simple task. 
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Figure 25: Fitness graph when using fitness function  

f = p x t x a 
 

6.3 A Solution 
 
The solution to this problem involved moving away from a purely genetic algorithm 
approach to a combination of a genetic algorithm with some engineering.  The idea was 
to evolve both behaviours individually and then combine them together into layers after 
they have been evolved.  This required some changes to how the subsumption process 
worked, moving away from the ideas in [11] and [12].  The solution is shown in Figure 
26. 
 

 Layer 2 

 
Figure 26: Second version of the subsumption controller 
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The solution involved passing the inputs to each layer into the black-box as well as the 
layers outputs.  The check then involved no longer checking if the 3rd output was greater 
than 0.5, but to check that the layer was actually receiving an input from a sensor.  This 
way the controller definitely uses the lower layers unless the higher layers are actually 
receiving a sensory input. 
 
Due to this change, the flag retrieval layer could be trained in a simpler environment 
where there were 2 flags, and no walls.  The blue flag remained in the centre of the 
screen from one generation to the next, while the starting positions of the agents and the 
red flag varied.  The random positions of the agents could be anywhere on the perimeter 
of a circle with centre at the blue flag, so they all started at the same distance, however 
what was varied is the angle at which they were looking.  The red flag was placed 
randomly on the screen at different positions, so as to vary the distance between itself 
and the blue flag.  Adding these random position changes added some noise to the 
environment but not too much that the algorithm couldn’t learn. 
 
The fitness function could then be just the proximity value of the agent to the flag(s).  
The test was run with 4 hidden nodes, so the network architecture was 5 inputs (4 
sensors + 1 boolean input), 4 hidden nodes and 2 outputs.  The evolutionary process 
was run for 100 generations with a mutation rate of 0.1.  Figure 27 shows the result. 
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Figure 27: Fitness graph when evolving flag retrieval in 

a simpler environment 
 

The graph shows a definite increase in fitness across the 100 generations at a constant 
rate until about 85 generations where it levels off.  This is obviously a much better result 
than before, however this was when evolving the flag retrieval layer separately.  After 5 
generations the controller was able to reach the blue flag fairly consistently and by 30 
generations it was able to take the blue flag to the red flag.  The fitness increase after 30 
generations was due to the controller learning to do this process faster and faster each 
time so by the 100th generation the controller was able to take the blue flag to the red 
flag and drop it off twice in 500 time-steps. 

 
 

38



 
The test was also performed with varying numbers of hidden nodes from 4 – 10 with 
increments of 2.  Figure 28 shows the results, and surprisingly the results are similar to 
those when evolving for collision avoidance, in that 4 hidden nodes appeared to be the 
best number.  Using 6 hidden nodes seemed to produce a very erratic graph, with large 
dips in fitness every so often.  When using 8 and 10 hidden nodes the controllers 
struggled to learn that once they had reached the blue flag, to then move on to the red 
flag as shown by the fairly flat sections of fitness.  Using 10 hidden nodes caused a lack 
of learning beyond reaching the blue flag, as the average fitness never reached above 
20, where a successful run from getting the blue flag to hitting the red flag would result in 
a fitness of over 20. 
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Figure 28: Average Fitness for different numbers of hidden nodes  
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7. Training Experiments 
 
In order to use the backpropagation approach a set of training data was required.  This 
was gathered by programming an agent to do the task of capture the flag and then 
capturing its sensor activations and motor outputs at each time-step across 5000 time-
steps.  This was then split into two groups, the first group comprising 90% of the 
captured data was used as training data and the final 10% was used as a generalisation 
set to check the performance of the network.  The generalisation set was picked at 
random from the captured data set. 
 
It turns out that programming an agent based on its sensor inputs is not an easy task as 
there is difficulty in determining what to do in the case of every possible set of sensory 
inputs.  However an agent was produced that worked well enough to gather the 5000 
sets of training data.  In theory, the backpropagation learning technique should be able 
to generalise well enough to cope with the lack of precise control initially programmed 
into the original.  The coded agent had 8 input sensors plus the boolean value for 
whether it had a flag or not.  The 8 sensors include 4 flag sensors, 2 for each colour flag, 
and 4 obstacle sensors, as opposed to the 6 used in the genetic algorithm approach.  
The main reason for this was that it was easier to program the collision avoiding 
behaviour with fewer sensors, although still producing the desired effect.  Figure 29 
shows this sensor setup. 
 

 
Figure 29: Coded robot sensor setup, the long 
sensors are flag sensors, and the short ones 

are obstacle sensors 
 
The approach also used a small amount of weight decay on the hidden to output 
weights, to encourage the weights to remain small.  Weight decay helps prevent the 
weights getting so big that the network starts to overfit the training data.  Weight decay 
was implemented by multiplying the old weight value by a small constant before adding 
the weight change value.  The small constant in this case was 0.9999, so the weights 
would shrink by only a tiny amount each time the weights were updated. 
 
Varying numbers of hidden nodes were tested for the neural controller, from 2 – 14 in 
increments of 2.  Figure 30 shows the generalisation performance results of these tests.  
The graph shows that generally the more hidden node there were the better the network 
performed.  With only 2 hidden nodes the generalisation performance was particularly 
bad, and actually got worse after about 25 epochs.  
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Figure 30: Generalisation error with different numbers  

of hidden nodes 
 

Using 14 hidden nodes produced the best results over 500 epochs, however 10 or 12 
also produced similarly good results.  The above test was done with a learning rate (eta) 
of 0.1.  Figure 31, on the following page, shows the results of different learning rates 
when using 14 hidden nodes.  The results are less consistent than those from figure 30, 
although what can be seen is that with a low learning rate of 0.01 the generalisation 
error curve is very smooth, but it learns quite slowly.  Using higher learning rates 
between 0.05 and 0.15 caused much quicker learning, where the minimum 
generalisation error reached with a learning rate of 0.01 in 500 epochs, was reached in 
75 epochs.  A learning rate of higher than 0.2 caused a more erratic generalisation 
curve, and higher than 0.25 produced a worse error than when using a low value of 0.01.  
A learning rate of 0.05 or 0.1 seemed to produce the minimum generalisation error and 
produce the best performance. 
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Figure 31: Results of different eta values 
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8. Solution Comparisons 
 
The neural controller produced by the genetic algorithm approach contained two 
separate recurrent neural networks organised into layers.  The bottom layer controlled 
the collision avoiding behaviour and consisted of 6 input sensors, 4 hidden nodes and 2 
output nodes.  The next layer controled the flag retrieval behaviour and consisted of 5 
inputs (4 sensors, plus boolean input), 4 hidden nodes and 2 outputs.  The controller 
produced by the backpropagation approach consisted of 9 inputs (8 sensors, plus 
boolean input), 14 hidden nodes, and 2 outputs.  Figures 32 and 33 show these 
controllers. 
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Motor 
outputs 
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Figure 32: Control system produced by genetic algorithm combined with hard coded 
subsumption process, red nodes are bias nodes. 
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Figure 33: Control system produced using backpropagation 
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8.1 Tournaments 
 
There are 3 tournament maps in the program, each one is rotationally symmetrical and 
both teams each have 5 members which start in equivalent positions.  This makes the 
tournament fair for both teams.  The 3 maps are shown in Figure 34. 
 

 
Figure 34: The rotationally symmetrical tournament maps 

 
These maps will be referred to as the “grid” map, “+” map, and “x” map respectively for 
the rest of this section.  The two techniques competed against each other in each of the 
maps for 5000 time-steps and were compared to see which performed the best overall.  
Each team had 5 agents all controlled by copies of the controllers produced, so each 
member of a team performed in the same way.  The red team used the GA approach, 
and the blue used the backpropagation approach. 
 
When tested in the “grid” map the resulting score was 4 – 2 for the red (GA) team.  
Figure 35 shows the programs graph data about how many collisions each team 
member had and how many times they captured the flag.  As the results show, on 
average the blue (backpropagation) team had more collisions than the red team, 
however this was due to robots 2 and 5 having a large number of collisions over the 
5000 time-steps, with robots 3 and 4 not having a single collision.  Every member of the 
red team on the other hand did have at least 2 collisions.  Robot 5 on the blue team was 
the only member that captured the opponent’s flag, and succeeded twice.  When this 
data is compared with the trail map (Figure 36), which shows the trails of every robot 
over the 5000 time-steps, it becomes apparent as to why these results occurred. 
 
The robots 1, 3 and 4 from the blue team had a low number of collisions as they got 
themselves stuck running around in circles.  The robots 2 and 5 are both stuck up 
against the right hand wall of the map.  The red team spent the majority of the time 
running around the edge of the map, keeping a set distance from the walls.  This means 
that they ran into both flags regardless of whether they intended to, so potentially 
captured the flag unintentionally.   
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Figure 35: Data from the “grid” map, red is the GA team, blue is the backpropagation team 

 

 
Figure 36: Trails from the “grid” map 
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When tested in the “+” map the resulting score was 7 -1 to the red (GA) team, which is a 
significant result for the genetic algorithm approach.  Figure 37 and Figure 38 shows the 
results.  The blue team had a higher average number of collisions than the red team with 
an average more than 3 times higher.  Robot 5 of the red team had the worst number of 
collisions with 41, which was less than the minimum number of collisions on the blue 
team.  The trail map shows that the red team performed in a similar way to the previous 
test in that they tended to follow the outside walls of the map, except for when they 
moved inwards towards the flag.  It also shows that robot 3 on the blue team was close 
to scoring a second point for the blue team.  Although not obvious in Figure 38, there are 
zigzag blue trails in the top left and right corners of the map, which show where a blue 
robot spent time bumping into the wall and gradually moving along it. 
 

 
Figure 37: Data from the “+” map 
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Figure 38: Trails from the “+” map 

 
The result from the “x” map was 5 – 2 to the red (GA) team.  Figure 39 and 40 show the 
results.  This time around the average number of collisions for both teams was similar, 
however what can clearly be seen is that every robot on the blue team had a similar 
number of collisions, whereas the red team’s robots varied quite a bit.  Robots 2 and 4 
on the red team had only 4 collisions each, yet the other 3 had significantly more, with 
robot 5 having a total of 51 collisions.  In the top right corner of the map there is a cluster 
of red trails showing that at least 2 robots had an altercation, where they did in fact hit 
each other several times as they tried to get around each other.  Again what is obvious 
from the trail map is that the red team tended to stick close to the outside walls except 
for when they saw the flag and moved towards it. 
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Figure 39: Data from the “x” map 

 

 
Figure 40: Trails from the “x” map 
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8.2 Results 
 
The genetic algorithm approach won all of the tournaments by a good margin in each 
case.  It is clear from the results that each technique approaches the task in different 
ways and the solutions they produce vary quite a lot. 
 
The genetic algorithm approach has a generally much better method of collision 
avoiding, getting stuck less often than the backpropagation approach.  The genetic 
algorithm approach to collision avoiding is to find the outside wall and stick a set 
distance away from it following it around.  This way it never hits the outside walls and 
only has problems when it comes to other agents or the smaller obstacles.  It only diverts 
from the wall when the flag retrieval layer takes over when the flag sensors are triggered.  
The trail maps also show that the GA approach likes to move in straight lines and makes 
quite sharp turns to put an obstacle to one of its sides so that it doesn’t hit it. 
 
The backpropagation approach is very different.  This approach seems to have more 
trouble when dealing with obstacles.  The trail maps show that generally when 
encountering a wall slightly off to one side the robot always makes a 90 degree turn in 
the opposite direction.  The best example of this is in Figure 36 where 3 of the blue 
robots got stuck in loops in the middle of the map.  This is the cause of the low scores for 
this team too as whenever the sensors detect a wall to the side the robot makes a 90 
degree turn, even if it is not actually going to hit it.  This means that when the robot is 
moving towards the flag, if it then detects a wall off to the side it will turn in an attempt to 
avoid the wall but as a result will lose sight of the flag. 
 
The genetic algorithm approach is also able to get itself unstuck when it hits a wall as the 
recurrency in the layers start to work.  It appears that if the network keeps receiving the 
same inputs this causes the network to change its outputs briefly causing a different 
movement to occur, which can lead to the robot getting unstuck.  The backpropagation 
approach does not use any recurrency and so is not able to get itself unstuck, so once it 
is stuck it could potentially be stuck that way forever as it will consistently produce the 
same outputs for the same set of inputs. 
 
The main problem with the outcome of the backpropagation approach was the difficulty 
in programming an agent to produce the training data.  Programming a controller based 
on sensory inputs is quite complicated considering the amount of variation in the inputs.  
It was hoped that the backpropagation learning technique would produce a network able 
to generalise well enough to produce a reasonably good collision avoiding behaviour.  
However it turned out that the resulting controller was only ever going to be as good as 
the programmed agent, and unlikely to be any better.  The GA approach, however 
produced much better overall general behaviour, and was especially good at collision 
avoiding.  It did tend to adopt a more wall-following approach to collision avoiding; in that 
if it made sure it was running parallel to an obstacle then it was never going to hit it.  The 
collision avoiding behaviour that was evolved turned out to be much better than the 
behaviour learned by the network trained from a programmed agent’s data.  This shows 
that genetic algorithms are useful in solving tasks such as collision avoiding, which aren’t 
as easy to solve as initially thought, and produce solutions that may not have even been 
thought of if the controller were to be designed by hand. 
 
Complexity of the resulting control systems is also important.  The backpropagation 
approach used a single network with a large number of connections due to requiring a 
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large number of hidden nodes.  Both behaviours of collision avoiding and flag retrieval 
were produced by this single network, whereas these behaviours needed to be 
separated into two networks in order for the genetic algorithm to produce a good 
solution.  As a result of this though the number of network connections was greatly 
reduced, where the network produced using the backpropagation approach had a total 
of 170 weighted connections, but the controller produced using the genetic algorithm 
approach had only 72 connections across both networks.  This makes the controller less 
complicated and slightly faster when calculating the next set of outputs. 
 
The final approach used with the genetic algorithm did break away from the original idea 
in order to achieve better results as the network seemed reluctant to learn, due to the 
overly noisy environment and a simple fitness function.  If these problems were solved 
then the results imply that a controller evolved with a genetic algorithm would produce a 
good solution to the task of capture the flag.  The backpropagation approach could 
potentially also produce good results, but require training from an already working agent, 
which seems somewhat wasteful.  If an agent has already been produced for the task, it 
is not really necessary to train a new one based on it. 
 
The biologically inspired genetic algorithm seems a more appropriate learning technique 
to use for producing controllers capable of playing capture the flag, firstly in that it 
produces better results in general, but also because of the nature of the task being 
similar to what animals have to be able to do, such as being able to avoid collisions, and 
find food (or flags). 
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9. Limitations and Extensions 
 
There are many limitations to the approach used throughout this project.  Firstly the 
engineering type method that had to be introduced in order to efficiently deal with the 
subsumption process in the GA controller did not really stick to simply using a genetic 
algorithm to solve the task.  The resulting controller therefore was not produced entirely 
by a genetic algorithm, and was also fairly predictable in that the instant the agent saw 
the flag; the controller switched its layer of control, even if it was likely to collide with a 
wall in the next couple of time-steps. 
 
There is, however, an advantage to this approach, in that if layers are evolved to do 
different tasks, then this gives the potential to produce agents with different behaviours 
by layering the desired behaviours together using this approach.  For example, in the 
future, if a new agent is needed for a completely different task such as producing a map 
of its environment, then the collision avoiding layer can still be utilised, and these 
previously evolved layers can be treated as plug-ins to the controller, meaning that only 
the new behaviour need be evolved. 
 
Other limitations include the lack of recurrency in the backpropagation approach and the 
need for a pre-programmed agent to provide the process with training data.  If the 
network had recurrency then a different backpropagation approach would need to be 
used as in [1], but this requires more memory in order to work, however the resulting 
controllers may be better able to get themselves unstuck in a similar way to the way the 
GA controllers could.  Backpropagation techniques also exist that don’t require prior 
knowledge of the exact outputs required, rather just an idea of whether the network 
produced the right output or not [6].  If this technique had been used then the 
requirement of a pre-programmed agent is removed. 
 
The method doesn’t use team-work at all.  In fact each agent has no idea of the 
existence of any other agents in the environment, as it simply treats them as obstacles.  
A competitive co-evolution method, as used in [7, 8], may have been better as team 
approaches to solutions may have been developed.  This would require separate 
controllers for each member of each team in order to produce the best overall output.  If 
the agents were given an idea of, if not their own team, at least the opposition then 
attempts could have been made to allow for the agents to attempt to block there flag 
from being taken by moving in front of an approaching opponent. 
 
There are many extensions that could be implemented, and the problem was lack of 
time, rather than lack of potential methods and approaches.  Apart from the extensions 
mentioned previously in order to improve the limitations, there are many other 
extensions.  For example, all obstacles in the environment are the same shape and size; 
would varying these produce different results, and different behaviours to become 
apparent?  Comparisons between these approaches and other techniques could have 
been performed, as well as comparisons between two different methods of the same 
technique, with each method using different parameters.  Only one set of sensor layouts 
was used for each approach, and would varying these have improved behaviour?  With 
a random set of sensor layouts where the sensors aren’t symmetrical on each side of the 
agent, could the approach still produce an agent that performs well enough? 
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There are also many extensions to the actual task at hand.  For example the agent could 
not only try and find the flag but also build a map so that once it has been found the 
agent knows where it is, and could leave a trail that other agents could follow, similar to 
ants with their pheromone trails.  If the environment was more realistic in terms of 
physics then the resulting controllers could be downloaded onto physical robots and 
tested in the real world to see how well they perform.  The program itself could also be 
extended in order to include a wider number of techniques and tasks that could be 
explored and compared. 
 
There are potentially hundreds of extensions that could be explored, but the approaches 
should always attempt to build on what has already been done, and possibly try other 
comparisons between genetic algorithms and backpropagation. 
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10. Conclusions 
 
The aim of the project was to compare the two techniques, backpropagation and genetic 
algorithms when it comes to the task of producing an agent capable of playing capture 
the flag.  The system built for this task, although relatively simple, worked really well and 
allowed the training and comparison of these two methods.  The results showed that the 
overall best controller was that produced by the genetic algorithm, which implies that this 
approach is better suited to this task.  That is not to say that the backpropagation 
technique is a bad approach, it is just better suited to other tasks, and is possibly not 
best suited for producing networks running in real-time. 
 
The project shows that there is a large advantage in using genetic algorithms over 
techniques such as backpropagation if the task to be solved is known, but how to go 
about solving it is less obvious.  The backpropagation approach used in the project 
required a knowledge of how the task should be achieved by passing in input-output 
data, whereas the genetic algorithm approach used the fitness functions to determine 
how well an agent was doing, without specifying how it should be doing it, which gives 
more flexibility and allows solutions to be produced that may not have previously been 
considered. 
 
Although the genetic algorithm is only loosely based on its biological counterpart, it can 
be seen that evolution is a good way of producing a solution to a task and evolving 
behaviours such as the ability not to crash into anything or find a flag/ food/ water.  The 
backpropagation approach struggled to generalise to new data very well and this is 
probably due to the complexity of the task itself, with potentially millions of different 
sensory input combinations, and a training set needs to be huge in order to allow the 
network to produce good generalisation ability. 
 
The project demonstrated that while only attempting to produce relatively simple 
behaviours, this in itself is not as straightforward as first imagined, as many different 
variables and other information (such as environment complexity), can easily cause a 
negative effect on the approach being used.  Producing more complex behaviours 
therefore requires an understanding of these simpler tasks first before trying to advance.  
The project also demonstrated that when the behaviours were produced, they used 
really quite simple networks, showing that these behaviours can be produced with only 
simple networks/ “brains”.  This is a blessing, as simpler networks are easier to analyse 
and are also much more efficient, especially when there are many agents contained 
within the simulation all trying to calculate their outputs at once.  This implies that the 
way in which simple animals perform tasks such as collision avoiding may not be as 
complicated as first imagined, it may just be a reaction to something close by rather than 
a complicated calculation of how far away the object is and how fast they are moving. 
 
The project also showed that the subsumption approach had to be modified in order to 
get good results out of the system.  It showed that getting the balance right between 
environment noise and fitness function complexity is somewhat of a black-art, and that if 
implemented incorrectly can produce very poor results where the agents do not learn at 
all. 
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Appendix A – Professional Considerations (identified before starting the 
project) 
 
This section lists the guidelines and regulations set out by the British Computer Society 
(BCS) in their Code of Conduct and Code of Good Practice that are relevant to this 
project.  Due to the research nature of the topic few of the Code of Conduct guidelines 
apply. 
 
The paragraphs from the Code of Conduct affecting this project are: 
 
- “You shall seek to upgrade your professional knowledge and skill, and shall maintain 
awareness of technological developments, procedures and standards which are relevant 
to your field.” 
 
Throughout this project I will read many papers relating to the topics of artificial life, 
neural networks, and genetic algorithms to help aid my understanding of the area.  I will 
also try and keep up to date with any recent advances or research in the field. 
 
- “You shall not claim any level of competence that you do not possess. You shall only 
offer to do work or provide a service that is within your professional competence.” 
 
Although I haven’t previously completed a task involving evolving of artificial agents, I 
have completed assignments relating to the areas involved in this project.  I have 
produced programs that use genetic algorithms, neural networks and back-propagation.  
I have also used Java for 2 years, and have had experience at creating GUIs using 
Java.  I therefore believe that I have the ability to complete this project by combining all 
of these skills. 
 
- “You shall accept professional responsibility for your work.” 
 
All of the work produced during this project will be of my own doing unless stated 
otherwise, and anything that isn’t mine will be properly referenced. 
 
- “You shall observe the relevant BCS Codes of Practice and all other standards which, 
in your judgement, are relevant.” 
 
I will follow any relevant guidelines in the Code of Practice including: 
 
- Producing well structured code and following any programming guidelines and 
structures specific to the Java language. 
 
- Produce code that is easy to understand. 
 
- Honestly summarising mistakes, good fortune and lessons learned. 
 
- Recommending changes that will benefit extensions to the project. 
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Appendix B – Project Log 
 
Week 1, Autumn Term, 2006 
 
Spent this week thinking about what area I wanted to work in and decided on focusing in 
on artificial evolution, neural networks and A-Life.  Spoke with several potential 
supervisors and my academic adviser about what exactly to focus in on and what advice 
they could give. 
 
Week 2, Autumn Term, 2006 
 
Decided on developing a simple capture the flag simulation to compare a genetic 
algorithm with a training method such as back-propagation and read several papers 
related to the topic.  Looked at java and Matlab to determine which would be the best 
language to create the simulation in, and decided on java as I have more experience of 
this language.  Registered with supervisor and met up to discuss my proposal. 
 
Week 3, Autumn Term, 2006 
 
Wrote up the aims and objectives of the project and how it relates to my degree 
programme.  Handed project proposal to supervisor and discussed the project further.  It 
was suggested that I take an existing simulation and use it to do the research. 
 
Spent the rest of the week playing with java’s graphics packages to see how easy it was 
to create simple moving shapes and how the double buffering technique works to stop 
animation flicker.  After figuring this out it was decided that I would build the simulation 
environment myself. 
 
Week 4, Autumn Term, 2006 
 
Spent the week creating a simple two-dimensional Braitenberg vehicle simulation in java.  
This involved figuring out how to translate left and right wheel speeds into turning and 
forward motion on a 2-d coordinate system of a computer monitor and how to implement 
simple sensors.  Finished off with a simple vehicle that would chase another one around 
the screen. 
 
Week 5, Autumn Term, 2006 
 
Met with supervisor to discuss what exactly could be put in the analysis phase of the 
interim report for a research based project.  Spent the week reading more papers and 
optimising the Braitenberg vehicle program so that the classes can be used in the actual 
project without having to change them much. 
 
 
Week 6, Autumn Term, 2006 
 
Started to think about what classes would be necessary for the simulation, however due 
to other coursework deadlines didn’t do much this week. 
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Week 7, Autumn Term, 2006 
 
Wrote the introduction to the field, as well as the aims and objectives of the project.  Also 
did a bit of research into what kinds of neural networks are suitable for the control 
systems of each robot.  Decided this would be determined once the simulation was 
working as I can then build several network architectures and plug them in as necessary. 
 
Week 8, Autumn Term, 2006 
 
Read the BCS Code of Conduct and Code of Good Practise and decided which rules 
and regulations apply to the project and wrote how I plan to stick to them.  Focussed in 
more on the basic classes that would be necessary and what main fields and methods 
each class would require as well as how they collaborated.  Wrote up all of this as the 
analysis phase of the interim report. 
 
Week 9, Autumn Term, 2006 
 
Properly wrote up the project plan into a neater format using a PERT chart ready for the 
interim report.  Met with supervisor for half an hour to discuss the interim report to see if 
any improvements were necessary as well as to discuss progress so far and the object 
representation based technique I am intending to use for the simulation.  The intention is 
to write the program over Christmas and have it working ready to do the research over 
the spring term. 
 
Week 10, Autumn Term, 2006 
 
Finished the interim report and handed it in.  Started on the design, which involved 
breaking down what was discovered in the analysis phase into more depth, so that 
coding can begin as soon as possible over Christmas. 
 
Week 1, Spring Term, 2007 
 
Spoke to supervisor to inform them of progress over christmas break, and to continue 
building on the basic program developed over the christmas period. 
 
Week 2 – 5, Spring Term, 2007 
 
Lots of time spent trying to resolve the interference issue within the subsumption 
architecture when using the genetic algorithm approach.  Numerous meetings with 
supervisor to discuss the cause and potential solutions.  Eventually produced a 
successful controller after making a change to how the subsumption architecture 
worked. 
 
Week 6, Spring Term, 2007 
 
Developed the backpropagation side of the program and got a working solution.  Noticed 
that the hand-coded agent used in the backpropagation approach wasn’t very good so 
improvements were made to rectify this.  Started to build the tournament side of the 
program complete with data capturing and scoring information. 
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Week 7 - 8, Spring Term, 2007 
 
Finished a working version of the program and performed the research necessary to 
write the report.  Saw supervisor to discuss requirements of the report and what should 
be included.  Wrote up the introduction and background sections of the report. 
 
Week 9 – 10, Spring Term, 2007 
 
Wrote up the rest of the draft report, excluding abstract, professional considerations and 
appendices.  Submitted draft report to supervisor for review. 
 
Easter Holiday, 2007 
 
Went through program code and tidied it up, including the removal of redundant sections 
of code that were no longer being used, and addition of comments to the code where 
necessary.  Received feedback from supervisor on draft report and started to make 
changes ready for the final report. 
 
Week 1, Summer Term, 2007 
 
Finished improving report and prepared it for formal submission in Week 2.  Started 
preparing presentation ready for Weeks 3 – 4. 
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Appendix C – CRC Cards (produced as part of the Requirements 
Analysis) 
 
Sensor
Responsibilities Collaborators 
Detect objects (Robots, Flags etc.) 
within its range and return a value. 

Robot 
Flag 
Base 

 
ANN
Responsibilities Collaborators 
On receiving inputs calculate outputs. 
Receives weight adjustments from 
BackPropagation. 

Robot 
BackPropagation 

 
Robot
Responsibilities Collaborators 
Requests sensor input. 
Update its position coordinates. 
Draws itself on the screen. 
Stores whether it has flag or not. 

Sensor 
ANN 
Arena 
Flag 

 
Flag
Responsibilities Collaborators 
Draws itself on the screen. 
Informs Sensor of its position. 

Arena 
Sensor 

 
Base
Responsibilities Collaborators 
Draws itself on the screen. 
Informs Sensor of its position. 

Arena 
Sensor 
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Arena
Responsibilities Collaborators 
Calls all objects methods to update 
their position and draw themselves. 

Robot 
Flag 
 

 
UserInterface
Responsibilities Collaborators 
Contains the Arena object. 
Allows user to change options for GA 
and BackPropagation. 
Tells the Arena object to run the 
program. 

Arena 
GA 
BackPropagation 

 
GA
Responsibilities Collaborators 
Contains arrays representing weight 
values. 
Creates new ANN objects using weight 
values. 
Receives input from the UserInterface 
class to set its internal properties. 

ANN 
UserInterface 

 
BackPropagation
Responsibilities Collaborators 
Calculates errors for the ANN class 
and sends weight adjustments. 
Receives input from the UserInterface 
class to set its internal properties. 

ANN 
UserInterface 
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Appendix D – System Overview and Screenshots 
 
The final system is split up into 22 classes which are as follows: 
 
UserInterface 
 
This class deals with creating the actual user interface and contains all of the inner class 
listener required for controlling the system.  The user interface has different modes 
which when selected display different controls and options on the screen (See 
Screenshot 1, 2 and 3 after class descriptions). 
 
Arena 
 
This class extends a Canvas object and deals with the drawing of the simulation on the 
screen, including holding all objects contained within the current simulation. 
 
ArenaObject 
 
This is an abstract class for objects that can be placed into the arena.  It contains basic 
methods for setting and getting the height, width and coordinates of an object and 
contains a numbre of abstract methods which must be implemented for an object to be 
placed in the arena.  Any object to be placed in the arena must extend this class. 
 
CollidableObject 
 
This is an abstract class which extends the ArenaObject class and contains a single 
abstract method for detecting collisions between this object and another.  This class 
should be extended by any objects to be placed in the arena that require collisions to be 
detected. 
 
Robot 
 
This class extends the CollidableObject class and creates a robot which is visible on 
screen in the Arena.  It contains a number of Sensor objects and a RobotController 
object which deals with the calculation of outputs.  It contains a number of variables for 
keeping track of what the Robot has done, including the number of collisions it has had, 
the number of flags it has collected, the number of times it has reversed etc.  It also 
contains methods for calculating its new speed and angle based on its current motor 
speeds, and methods for calling the RobotController to calculate its new motor speeds. 
 
ArenaWall 
 
This class extends the CollidableObject class and creates black rectangles or squares in 
the arena which act as walls.  These cannot be passed through by Robot objects. 
 
Flag 
 
This class extends the ArenaObject class as collisions do not need to be detected, rather 
the Arena checks if a Robot is in proximity of a Flag object.  This class deals with the 
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drawing of a base representation as a square with a flag icon if the flag is currently 
present at the base. 
 
Sensor 
 
This class creates a Sensor object of a certain size, angle and offset and deals with the 
detection of a specific type of class which is passed in at creation.  It has methods for 
detecting if an instance of the detectable class is within range and returning a value 
between 0 and 1 depending on how close the object is.  It also checks if there are any 
obstructions to the sensors view such as a wall in the way, causing the sensor to return 
a 0. 
 
RobotController 
 
This class has a Vector for holding a number of ANN objects and has methods for 
calculating the output of each ANN based on the sensor input values it receives.  It then 
uses the subsumption process to determine which set of outputs from which ANN it 
should return.  It also contains a method for cloning itself so that other RobotController 
objects can be produced with identical networks. 
 
ANN 
 
The neural network class which creates a 3 layer network with a user specified number 
of neurons.  It can be recurrent or not depending on the situation it is being used in.  It 
has methods for calculating the outputs given a set of inputs using the tanh function as 
the neuron activations.  It also has methods for adjusting and replacing the weights in 
each of the weight layers. 
 
GA 
 
This class controls the genetic algorithm process and contains a population of ANN 
objects in an array.  It has methods for evolving these networks based on their fitnesses 
using a roulette-wheel selection method with elitism.  It also stores the average and best 
fitnesses of each generation in two arrays which can then be passed into a 
FitnessGraph object to plot the fitness change over time. 
 
BackPropagation 
 
This class performs the backpropagation learning algorithm on an ANN object.  It gets 
passed a Vector of input-output mappings and has methods for randomly reorganising 
these and then splitting into two groups, training and generalisation sets.  It has methods 
for calculating the error on the outputs given a certain set of inputs and can propagate 
this error backwards through the network to get the weight change values.  It then calls 
the ANNs weight change methods to update the weights accordingly.  It also stores the 
training and generalisation error produced by the graph at each epoch which can then 
be passed into an ErrorGraph object to plot the error change over time. 
 
Fitness 
 
This class deals with calculating the fitness of neural networks.  It has several static 
methods for calculating the fitness for different situations including flag finding fitness, 
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collision avoiding fitness, and wandering fitness.  Each method takes a Robot object as 
a parameter and retrieves the relevant information from this Robot object.  It then 
calculates a fitness score and updates the ANN being evolved contained in the Robot 
object with its fitness score. 
 
CodedRobot 
 
This class extends the Robot class and overrides the direction method which normally 
calls the RobotController method for calculating the outputs and updates the direction of 
the agent accordingy.  The new direction method gets the sensor readings and contains 
a series of ‘if’ statements to determine what the Robot should do next.  This is the hand-
coded agent used to gather the data required for the BackPropagation class.  As a result 
this class contains a variable holding a DataCapture object. 
 
DataCapture 
 
This class contains a Vector data which is updated to contain new input-output data 
when the relevant method is called.  It also has methods for saving the contents of this 
Vector to a text file and one for loading data into the Vector from a text file.  Each of 
these methods has the relevant IOException error catching clauses. 
 
LineGraph 
 
Creates a window with a Canvas object and has methods for drawing graph axes, the 
legend and plotting data.  It also has a method which saves the data to a text file.  
Although not an abstract class it should be extended so as to allow for different types of 
lines to be plotted. 
 
FitnessGraph 
 
This class extends the LineGraph class and takes two arrays.  The first is the average 
fitness and the second is the total fitness across generations.  It has methods for 
calculating what scale the lines should be plotted on based on how many generations 
there are, the size of the window and how much the values range by.  See Screenshot 4 
for a sample graph produced by this class. 
 
ErrorGraph 
 
This class extends the LineGraph class and takes two arrays as the FitnessGraph did.  
The first array is the training error and the second is the generalisation error across 
epochs.  Similarly this works out the scale of the plots based on size and range of the 
data.  See Screenshot 5 for a sample graph produced by this class. 
 
LayerSetupUI 
 
This creates a small window which allows the user to specify exactly how many sensors, 
of what type and size they want for their GA agents.  It shows a view of an agent with the 
added sensors and allows the user to adjust the individual settings of the sensors with 
various sliders.  It also allows the user to specify how many hidden nodes they want in 
the network for that particular layer.  It also has a load button to allow the user to load in 
a previously saved layer.  See Screenshot 6 for what this window looks like. 
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LoadSaveHandler 
 
This class deals with the loading and saving of various data such as individual layers, 
entire evolved controllers, trained controllers.  Its methods also catch exceptions and 
display the relevant error messages. 
 
Quicksort 
 
This class performs the quicksort algorithm on a Vector of data.  It is called by the 
Sensor class to order objects according to distance from the Sensor object.  It has a 
method sort which takes a Vector of data and returns the sorted data in another Vector. 
 
TournamentStatistics 
 
This creates a window containing 4 bar graphs representing the number of times each 
agent on each team had a collision or captured a flag.  It has methods for drawing the 
axes of each bar graph, drawing the title and plotting the bars according to the data it 
has received.  It has an inner class BarGraph which extends a Canvas containing an 
overridden paint method.  See Screenshot 7 for what this window looks like. 
 
Screenshots 
 
Screenshot 1 – User interface in GA mode 
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Screenshot 2 – User interface in Back-Propagation Mode 
 

 
 
Screenshot 3 – User interface in Tournament Mode 
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Screenshot 4 – Fitness Graph (noting that all fitness graphs in Section 6 were produced 
in Matlab, but this is how the data was displayed in the program itself) 
 

 
 
Screenshot 5 – Error Graph (noting that all error graphs in Section 7 were produced in 
Matlab, but this is how the data was displayed in the program itself) 
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Screenshot 6 – The layer setup window, allowing network architecture and sensors to 
be set up 
 

 
 
Screenshot 7 – The tournament statistics window showing the results of the tournament 
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Appendix E – Source Code 
 
The following pages contain the source code for the program. The order of 
the classes is the same as in Appendix D. 
 
Class Contents 
 
UserInterface Class Source Code               69 
 
Arena Class Source Code                89 
 
ArenaObject Class Source Code                 100 
 
CollidableObject Class Source Code            101 
 
Robot Class Source Code              102 
 
ArenaWall Class Source Code             115 
 
Flag Class Source Code              118 
 
Sensor Class Source Code              120 
 
RobotController Class Source Code                  126 
 
ANN Class Source Code              129 
 
GA Class Source Code              135 
 
BackPropagation Class Source Code            143 
 
Fitness Class Source Code              146 
 
CodedRobot Class Source Code                  148 
 
DataCapture Class Source Code                   151 
 
LineGraph Class Source Code              154 
 
FitnessGraph Class Source Code             157 
 
ErrorGraph Class Source Code                  159 
 
LayerSetupUI Class Source Code                   160 
 
LoadSaveHandler Class Source Code            167 
 
Quicksort Class Source Code              174 
 
TournamentStatistics Class Source Code                 176 
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