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Fast methods for building accurate neuron models of individual neurons

by Daniel SASKA

The estimation of parameters for models describing single neuron dynam-
ics have been a topic of many research works in the past. With the increas-
ing computational capability, the focus of many researchers exploring the
electrophysiological properties of neurons has shifted towards increasingly
more automated processes, allowing the construction of more accurate and
complex models.

This work investigates the possibility of finding a set of distinctive volt-
age protocols which are able to isolate the effects of individual parameters
of the electrophysiological model of a neuron in order to accelerate the esti-
mation of the correct parameter values using voltage clamp and following
this process with parameter estimation on current clamp to further refine
the results. Since this method estimates model parameters using data col-
lected from a single neuron, it could be used to find parametrizations for
models of individual neurons which could prove useful in future investi-
gation of neuron-to-neuron variance of electrophysiological properties hy-
pothesized in some research works [1].

The estimation method was evaluated using performance on a model
of the squid giant axon proposed by Hodgkin and Huxley [2] with 19 pa-
rameters and a model of the LP cell in the stomatogastric ganglion of crabs,
proposed by Liu et al. [3] with 15 parameters, in which the maximum con-
ductances, reversal potentials and parameters defining calcium concentra-
tion were considered unknown. The results of this work have shown that
the performance of model parameter estimation on models with interde-
pendent unknown parameters was significantly lower than when the pa-
rameters were not as interdependent. It has also been shown that the ability
of the protocols to separate the effects of the individual parameters was not
uniform over the investigated parameter range and therefore co-evolution
of the voltage protocols along with the estimation of the parameters may
offer better results. Finally, the application of the method to the stomato-
gastric ganglion have shown that it is able to make clear distinction between
various parametrizations with vastly different parameters but similar spik-
ing rhythms.
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Chapter 1

Introduction

Increasing interest in the properties of the brain, perpetuated by the wide
application in medicine and the human desire to understand the underly-
ing causes behind behavioral and physiological processes, requires firm un-
derstanding of neurons and neural networks on a multitude of scales. This
work focuses on exploring methods helping to enhance the understand-
ing of individual neurons, concretely, it investigates a sequence of estima-
tion techniques forming an universal framework for estimating a correct
parametrization of neuron models.

Numerous works with a similar objective have been published in the
past several years, succeeding in automating some tasks which have been
otherwise done by hand, such as the model parameter estimation from the
collected data. However, most methods are unable to estimate the param-
eters from a single neuron, resorting to use of pharmacological blockers
which then requires use of multiple neurons for the data collection. Further-
more, a significant proportion of the methods requires use of a computer
cluster for an extensive period of time, which may not be always available.
Last major issue with vast majority of the methods is the requirement of
user-defined stimuli which are often not extensively justified.

1.1 Methodology overview

This work investigates new approach to estimating parameters for neuron
models by first optimizing a set of voltage waveform protocols off-line and
then applying them to a neuron in a voltage clamp setting with up to real-
time parameter estimation. The results are then carried over to estimation
in a current clamp setting which refines the model estimated using a voltage
clamp. The background and research related to the investigated methods
are discussed in Chapter 2.

1.1.1 Experimentation Environment

To verify the validity and effectiveness of the methods proposed in this
work, simulation of well established models is used, and is further dis-
cussed in Chapter 4. The reference model, which was used as the objective
for the parameter optimization, was executed on a CPU whereas the can-
didate estimate models (as introduced in the following subsection) were
executed on a range of NVIDIA graphics accelerators. The exact specifi-
cations of the accelerators are presented where required in the context of
establishing the time performance for this parameter estimation method.
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1.1.2 Estimation approach

The parameter estimation method consists of two main steps: the off-line
voltage protocol waveform generation and the on-line parameter estima-
tion. The on-line parameter estimation then further consists of estimation
of the model parameters in the voltage clamp setting followed by an es-
timation in the current clamp setting. As will be explained in Chapter 5,
the waveforms are selected in an attempt for each to highlight the effects of
varying one parameter. On the contrary, majority of the methods proposed
in the past fail to justify the used stimuli, often resorting to using a number
of simple steps or ramps or even use noise as an input.

In the past, it was left up to the neuroscientist to correctly select the
voltage protocols, relying on his creativity and correct judgement. The pa-
rameter selection introduced in this work is automated by optimization of
the information the waveforms offer about the variation of the model pa-
rameters.

The voltage protocols are then applied to the observed neuron as well as
a population of simulated model estimates in the voltage clamp setting. The
population of simulated models is then evolved using a genetic algorithm
based on the difference between current injected into the simulated and real
neurons, optimizing the ability of the estimated models to reproduce the
electrophysiological properties of the real neuron. This process is detailed
in Chapter 6 and followed by an estimation in the current clamp setting
which is described in Chapter 7. The results of the estimation are then used
to show that existence of large variance of parameter values in models with
nearly identical spiking pattern as suggested by Golowasch et. al. [1] would
be likely discovered, should these variances actually exist in real neurons.

The consecutive combination of voltage and current clamp setting were
found to perform particularly well due to the nature of the fitness landscape
of each of the settings as is described in upcoming sections.
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Chapter 2

Background and Related Work

2.1 Electrophysiological properties of neurons

The formulation of the ionic current model of a neuron as it is widely known
today has started with results published by Overton in 1902, who has no-
ticed that the frog muscle became inexcitable when immersed in solutions
of less than 10% of the usual sodium concentration [4] which lead to the first
formulation of the ionic hypothesis. This formulation was later regarded as
incomplete and updated by Hodgkin and Katz in 1949 [4] along with ex-
perimental analysis of the new hypothesis. The updated ionic hypothesis
explains the formation of action potentials through a description of electro-
physiological properties of the neuron membrane as described below.

At rest, the membrane is more permeable to potassium than sodium,
allowing easier diffusion of potassium through the membrane. Conversely,
the permeability to sodium ions of the resting membrane was found to be
very low and compensated for by active sodium pumps which expend en-
ergy to move the sodium ions against the diffusion gradient, maintaining
the intracellular sodium concentration at about 10% of that of the extracel-
lular solution.

The resting potential of the cell can be calculated using the Goldman-
Hodgkin-Katz equation:

V =
RT

F
ln

(
pK [K+]out + pNa[Na

+]out + pCl[Cl
−]in

pK [K+]in + pNa[Na+]in + pCl[Cl−]out

)
(2.1)

where V is the membrane potential in volts, pion is the membrane perme-
ability for the ion indicated by subscript in m s−1, [ion]in and [ion]out are
the intracellular and extracellular concentrations for the indicated ion in
mol m−3, respectively, andR, T andF are the ideal gas constant in J mol−1 K−1,
temperature in kelvin and Faraday constant in C mol−1, respectively.

The permeability to sodium ions, however, increases if the membrane
is sufficiently depolarized by direct current injection or through other neu-
ron processes, further depolarizing the membrane and forming the rising
phase of the action potential. As a result of this process, the voltage po-
tential of the inside of the cell briefly becomes positive with respect to the
outside, causing outflow of the potassium ions through the outward potas-
sium channels with the (now) increased permeability. With the sodium per-
meability decreasing over time (illustrated in Fig. 2.1 ), the outflow of the
positively charged potassium becomes significantly greater than influx of
the sodium, resulting in rapid repolarization, reverting the membrane to
the previous resting potential [5].
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FIGURE 2.1: Relation of the conductances to the rising and falling phase
of the action potential.
Upper plot displays the membrane potential and lower plot shows the
permeability of the membrane to the sodium and potassium ions. Taken
from The physiology of excitable cells [6], redrawn from Hodgkin and Huxley,
1952 [2].
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2.2 Hodgkin-Huxley model

The first universal and widely accepted approach to modelling of the elec-
trophysiological properties of neurons has been formulated by Hodgkin
and Huxley in 1952 [2], building on observations from their preceding re-
search focusing on the squid giant axon. Hodgkin and Huxley have sug-
gested that the electrical current can be carried over the cell membrane ei-
ther by ionic current or by charging up the membrane capacity. The ionic
current represents the current resulting from movement of charged par-
ticles over the membrane through ionic channels and pumps. The elec-
trophysiological properties of a squid giant axon have been observed to
rise up primarily from the dynamics of sodium and potassium ion current
(INa, IK), secondly then from a flow of chloride and other ions which were,
due to their low significance to the dynamics of the overall system, in the
model represented as a single ionic current (Ileak) which is commonly also
referred to as leakage current. Naturally, for cells with more complex dy-
namics and as the understanding of neurons advances, researchers are able
to distinguish more ion channels and build more complex models, but even
so, adding the leakage current to the models has become common practice
in an attempt to account for some of the neuron properties which cannot
yet be accurately described.

Based on Hodgkin and Huxley’s research, it is now widely accepted that
the current across the neuron membrane can be described as

I = C
dV

dt
+
∑

Ii, (2.2)

where I is the total membrane current, Ii is the current resulting from the
flow of ions through channel i, C is the membrane capacitance, V is the
voltage potential difference across the neuron membrane and t is time.

The individual ionic currents are then modelled based on the ionic con-
ductances and equilibrium potentials. For the squid giant axon then

INa = gNa(V − ENa)
IK = gK(V − EK)

Ileak = gleak(V − Eleak)
(2.3)

where subscripted I , g and E are ionic current, ionic conductance and equi-
librium potential, respectively, for the ionic channel indicated by the sub-
script. Equation 2.3 can be similarly applied to models for different neuron
types as noted later in this chapter. The individual conductances are then
described as

gK = n4gK
dn

dt
= αn(1− n)− βnn

(2.4)

gNa = m3hgNa
dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh

(2.5)

where gK and gNa are the maximum conductances per unit area for given
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Parameter gNa ENa ma,off ma,slope mb,off mb,slope ha,off ha,slope hb,off hb,slope

True model 120.00 55.00 3.50 0.1000 60.00 18.00 3.00 20.00 3.00 0.1000
Parameter gK EK na,off na,slope nb,off nb,slope gl El Cmem

True model 36.00 -72.00 0.500 0.01000 60.00 80.00 0.30 -50.00 1.0

TABLE 2.1: Parametrization of the squid giant axon model.

channels, n, m and h are dimension-less variables in interval [0, 1] and t is
time. α and β for the n, m and h variables are then functions of V described
as

αn =
−na,off − na,slopeV

exp(−10.0na,off − 10.0na,slopeV )− 1.0

βn = 0.125exp(
−V − nb,off
nb,slope

)

(2.6)

αm =
ma,off +ma,slopeV

1.0− exp(−ma,off −ma,slopeV
)

βm = 4.0exp(
−V −mb,off

mb,slope
)

(2.7)

αh = 0.07exp(− V

ha,slope
− ha,off )

βh =
1.0

exp(−hb,off − hb,slopeV ) + 1.0

(2.8)

where constants are obtained by fitting the collected data and presented in
Table 2.1. Note that gleak is a voltage-independent constant.

2.3 Pharmacological channel blockers

Pharmacological blockers have been an essential tool in the investigation
of the electro-physiological properties of neurons until early 21st century
because extensive computational power was not available, making estima-
tion of complex models impossible. Pharmacological blockers can greatly
simplify the task since it is possible to partially or completely block certain
ion channels, effectively reducing the complexity of the estimated model.
Multiple of such models can then be composed into the complete model
which makes blockers an attractive tool even now.

2.3.1 Commonly used pharmacological blockers

Tetrodotoxin (TTX), poison isolated from the Japanese puffer fish, was found
to selectively inhibit the sodium-carrying mechanisms of neurons with-
out affecting the potassium-carrying system [7]. Tetrodotoxin is reversible,
however the extent depends on how well the procedure is executed [8][9]
and the reversibility was found to be improved when high concentration
of calcium was applied along with the toxin [10]. Even so, relying on the
chance (even if higher with skill) of executing the procedure well, for the
purpose of model estimation, may be problematic because the measure-
ments collected after the reversal may be still affected by small amounts of
toxin remaining after the through, yet incomplete, removal of TTX. Rather
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than relying on washing away the pharmacological blockers when possible
(such as in the case of TTX), it has become common to use multiple cells
with different (sets of) blockers applied.

Tetraethyamonium (TEA) is a synthetically created potassium-selective
ion channel blocker usually used together with TTX in investigating the
dynamics of sodium and potassium ion channels [11]. The effects are re-
versible, however the situation is similar to TTX. Removal of potassium
from the extracellular solution has been shown to cause the TEA block-
ade to irreversibly reduce the potassium current even after the blocker is
washed away. In some cells, TEA was shown to block more than one
(potassium) current such as in the stomatogastric ganglion neurons where
it simultaneously blocks the calcium-dependent outward current and the
delayed rectifier current [12] described in the section 2.4.

Other pharmacological blockers are used for experimentation on more
complex cells, such as aforementioned stomatogastric ganglion neurons.
Examples include cadmium [12], 4-aminopyridine (4AP) [12] or charybdo-
toxin (CTX) [13]. Some methods also include the removal or replacement
of a substance in the extracellular solution in order to deprive the cell of
means to facilitate some of its function such as a replacement of calcium to
block the calcium-dependent outward current [14].

2.3.2 Problems with application

For the reversible blockers, it often takes time to wash away the toxins to
revert the cell back into its previous state which could otherwise be used
for data-collection, not to mention the issues of incomplete removal of the
blockers.

The variance in the types of ion channels also pose problem to the appli-
cation of pharmacological blockers. Different ion channel types may react
to the same blocker differently, the puffer fish itself poses prime example of
this phenomenon, having evolved sodium ion channels which are particu-
larly resistant to TTX [15].

2.4 Stomatogastric ganglion

Neurons which have complex electrophysiological dynamics, consisting
of a multitude of ion channels, have been recognized as the type of neu-
rons that participates most in the generation of complex behaviours [16].
This motivated many scientists to examine electrophysiological properties
of neurons with complex dynamics such as the stomatogastric ganglion
(STG) neurons of crab and lobster which were shown to vary their elec-
trophysiological properties over their lifetime [17] and are responsible for
motor functions of stomach muscles in those invertebrates [18]. It is only
natural that with more complex electrophysiological dynamics of the ob-
served cell, neuroscientists also have to employ new, more advanced, tech-
niques in order to model the behaviour accurately.

The stomatogastric ganglion cells in lobster and crab have been of par-
ticular research interest mainly because the ganglion comprises a rather low
number of cells. With the aim to sufficiently characterize the nature all of
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the neurons and interconnections, neuroscientists hoped to advance the un-
derstanding of how the control of stomach muscles is initiated in these ani-
mals

2.4.1 Electrophysiological properties of a stomatogastric ganglion
neuron

A number of ionic current mechanisms have been identified by many works.
These include

• Sodium Currents - Two voltage-activated inward sodium currents
are identified in the STG. First, as discussed by Hodgkin and Hux-
ley [2], fast voltage-activated transient current which drives the rising
phase of the action potential [19]. Second is the low-threshold persis-
tent current which is one of the mechanisms for plateau activation and
maintenance [19](See below). It has been suggested, however, that the
persistent sodium current could originate from sub-threshold activa-
tion of the transient current channel type, rather than from channels
of a distinct type [20].

• Calcium-Dependent Outward Current - A fast activating and inacti-
vating calcium-dependent outward current which was found to con-
tribute to the potassium outward current and thus lead to a shorter
falling phase and higher hyper-polarization after an action potential [12].
Furthermore, this outward current has been shown to play a role in
plateau termination [21].

• A-Current - A transient outward potassium channel with fast activa-
tion and moderately slow inactivation [14]. The A-Current have been
shown to delay the spike and burst activation and therefore plays a
role in the regulation of the cycle frequency, although the effects of
the current differ in each neuron. Pharmacological blockage of the
current using 4-AP resulted in increased cycle frequency of the spike
bursts and increased spike activity as well as amplitude during the
bursts in some neurons [22].

• Delayed Rectifier Current - An outward rectifier current which facil-
itates the falling phase of the action potential [2][14].

• Pacemaker Current - An inward rectifier hyper-polarization activated
current with slow activation, often also called "sag" current [14][21].
The sag current was shown to be modulated by an extracellular con-
centration of some substances such as serotonin, which has shown to
decrease the activation time of this current and thus increase its ex-
citability [21].

• Calcium-activated non-selective cation current - A slow inward non-
selective current which participates in the maintenance of the plateau
potential [23].

• Calcium Channels - Intracellular calcium plays a major role in many
processes of the neuron thorough activation of a number of the cur-
rents mentioned above [23]. Many models have included fast and
slow inward calcium current components, however the details of these
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FIGURE 2.2: Illustration of plateau activation and termination with cur-
rent stimulus published by Hartline et al. [24].

components differ between models [3][17]. The calcium channels have
shown to be activated or suppressed by extracellular agents which
causes indirect modulation of the calcium dependent currents, alter-
ing the behaviour of the cell [23].

Not every current was found in all neurons of the stomatogastric ganglion.
The currents included in the model used in this work are noted in Sec-
tion 2.4.2.

Plateau properties

A plateau potential is defined as a self-sustained depolarized state, usually
accompanied by an intense burst of spikes. The opposite is also usually true
when the neuron is not in the plateau state: the neuron is below the thresh-
old potential and does not produce action potentials, or at much lower rate
than when in the plateau state. The plateau has been shown to be initiated
by brief depolarizing current stimulus and terminated by hyperpolarizing
current stimulus (See Fig. 2.2)

Adaptation properties

Neurons display the ability to adapt to continuous stimuli and their firing
frequency decays over time. The rate of decay seems to decrease exponen-
tially over time when the cell is stimulated with constant current but seems
to be relatively current-independent for the studied range [25].

Delaying properties

Some neurons in the stomatogastric ganglion display the property of delay-
ing the response to stimulus [26].

Post-inhibitory Rebound

Some STG neurons have been observed to rapidly return to the plateau
potential with temporarily increased spiking rate after a hyper-polarization
by injection of negative current or synaptic inhibition [25].
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2.4.2 Neuron model definition

For purposes of this work, the stomatogastric ganglion neuron model used
is based on the conductance-based model introduced by Liu et. al. [3] which
follows the Hodgkin and Huxley format. The membrane current is ex-
pressed using Eq. 2.2 and the individual ionic channels follow equations
based on Eq. 2.3 with reversal potentials specified in Table 2.2. The included
currents are the fast sodium current (INa), the transient and slow calcium
current (ICaT , ICaS), the A-Current (IA), the calcium-dependent potassium
current (IKCa) and delayed potassium rectifier current (IKd).

The ionic conductances, gi of the individual ion channels then follow

gi = gim
ph

dm

dt
= (m∞ −m)/τ∞

dh

dt
= (h∞ − h)/τ∞

(2.9)

according to Eq 2.6, with m∞, h∞, τ∞ and τ∞ terms and coefficient p speci-
fied in Table 2.2, h term is omitted for channels missing associated terms in
the table.

The calcium concentration, [Ca], follows the equation modified accord-
ing to Golowasch et. al. [1]:

d[Ca]

dt
= −(Caf × (ICaT + ICaS)− [Ca] + Ca0)/Cat (2.10)

, where Caf = 14.96µM nA−1, Ca0 = 0.05µM and Cat = 200ms.

p E m∞ h∞ τm τh

INa 3 50 1

1+exp
(

V +25.5
−5.29

) 1

1+exp
(

V +48.9
5.18

) 1.32− 1.26

1+exp
(

V +120
−25.0

) 0.67

1+exp
(

V +62.9
−10.0

) ∗ (1.5 + 1

1+exp
(

V +34.9
3.6

))
ICaT 3 1

1+exp
(

V +27.1
−7.2

) 1

1+exp
(

V +32.1
5.5

) 21.7− 21.2

1+exp
(

V +68.1
−20.5

) 105− 89.8

1+exp
(

V +55
−16.9

)
ICaS 3 1

1+exp
(

V +33
−8.1

) 1

1+exp
(

V +60
6.2

) 1.4 + 7

exp
(

V +27
10

)
+exp

(
V +70
−13

) 60 + 150

exp
(

V +55
9

)
+exp

(
V +65
−16

)
IA 3 -80 1

1+exp
(

V +27.2
−8.7

) 1

1+exp
(

V +56.9
4.9

) 11.6− 10.4

1+exp
(

V +32.9
−15.2

) 38.6− 29.2

1+exp
(

V +38.9
−26.5

)
IKCa 4 -80

(
[Ca]

[Ca]+3

)(
1

1+exp
(

V +28.3
−12.6

)) 90.3− 75.1

1+exp
(

V +46
−22.7

)
IKd 4 -20 1

1+exp
(

V +70
−6

) 7.2− 6.4

1+exp
(

V +28.3
−19.2

)
TABLE 2.2: Table describing the dynamics of the STG neuron as presented
by Liu et al. [3]

2.5 Problem of using multiple neurons

It is common practice in neuroscience, and science in general, to use mul-
tiple measurements to avoid random error and to uncover any unexpected
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FIGURE 2.3: Categorization of neurons by the number of spikes per burst.
0: black, 1: blue, 2: green, 3: olive, 4: orange, 5: burgundy as presented by
Golowasch et al. [1].

circumstances or deviations that would otherwise remain hidden to a scien-
tist if only one trial was to be done. The collected data is usually averaged
under the assumption that the resulting representation will better illustrate
the overall data that was observed and thus will be a more robust solution
than any single observation on its own.

This assumption was theoretically examined using the stomatogastric
ganglion neuron model parametrization (as mentioned in the section 2.4.2)
as an example by Golowasch et al. [1]. A number of models parametrized
with a range of values for the conductances of the individual ion channels
were observed with the aim to categorize them based on their endogenous
spiking patterns into the groups of (zero), one, two, three, four and five-
bursters based on the number of spikes exhibited per one burst.

The results, shown in Figure 2.3, have indicated that the one-spike bursters
(blue in the figure) lie in a "L"-like shape where each of the data samples has
at least one of the two conductances (sodium and/or potassium) consider-
ably low. When the parameters of one-spike bursters have been averaged,
the resulting model not only did not lie in the space which was rather rare
for one-spike bursters, but also itself was a three-spike burster. This issue
is going to affect various models to different extent, mainly depending on
the stability of the model, i.e. to what extent do the properties of the model
change when parameters are altered, as well on the convexity of the param-
eter regions for which the models exhibit very similar behaviour (consider
the unconvex "L" shape for one-spike bursters in this example).

The issues affecting the averaging method would also affect methods
using chemical blockers and observing channels separately in different neu-
ron preparations which includes significant portion of the parameter esti-
mation approaches in the past.

2.6 Automated methods

With the increasingly sufficient computational power in the early 2000s,
automated methods for parameter estimation started to become common
trend in publications in the field of computational neuroscience. This elim-
inated some problems of the previous methods, namely the need for exten-
sive human involvement not only in the data collection but also the param-
eter estimation.
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A number of the publications indicate that genetic algorithms are suit-
able for global search of the parameter space but can be improved on by
using a localized search strategy afterwards [27][28][29]. However, meth-
ods using different approaches to estimation have been proposed as well,
including simulated annealing [28], differential evolution [28] and swarm
optimization [30][31].

The divide between experimentalists and theorists in the area of neu-
roscience proves to be an increasing problem as the scientists who focus
on experimentation and have great skill in the experimental methods often
lack the extensive knowledge needed to use or even implement the state-of-
art methods developed by computational neuroscientists. With the increas-
ing involvement of computation in (not only) the field of neuroscience, this
is becoming a problem preventing fast paradigm shift in these areas since
experimentalists prefer to use manual approaches to tasks which could oth-
erwise be automated with computation. This became a motivation for the-
orists to implement user-friendly environments for their software solutions
such as the NEUROFIT method [32].

2.7 GPU-Accelerated programming

With the increasing difference in the computational capability of CPU and
GPU, the graphics processors are being used more and more in applications
where parallelization of the computational task is possible. These areas in-
clude primarily computer science and physics but neuroscience can bene-
fit from the parallel computation as well. The ability to simulate a large
number of neurons is useful in simulations of neural networks but also in
parameter estimation and other areas.

GPU-accelerated programming can in some cases eliminate the need to
have access to large computer clusters and instead run on a single machine
with comparable performance as illustrated in a number of parameter esti-
mation methods [30][33][34], proving the potential of parallel computation
to become a new standard in parameter estimation methods.

2.8 GeNN Framework

GeNN (GPU-enhanced Neuronal Networks) framework facilitates the func-
tionality of simulating neural networks consisting of a large number of
user-defined neurons using parallel processing power of modern graph-
ics accelerators supporting NVIDIA CUDA architecture. As mentioned in
the previous section, this approach can be applied to parameter estimation
methods as well and is used to facilitate the processing of neuron popula-
tions in this work.

2.9 Genetic Algorithms

Genetic Algorithms are a family of optimization strategies based on the the-
ory of evolution. Taking inspiration in biology, genetic algorithms define a
subset of potential solutions to a problem as a population of individuals
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defined by chromosomes where genes represent the parameters of the so-
lutions. Since the full set of potential solutions is in most cases too large
(or even infinite) to be exhaustively searched, the population is in compar-
ison small in size, with random initialization of genes to cover most of the
search space. The algorithm then iterates the population through copying,
mutating and crossing-over the genes with the aim to preserve the individ-
uals in areas with higher fitness, gradually decrease the subspace searched,
transferring from global search to localized search in several areas of interest.

The approach to selecting which individuals should survive and be copied
to the following generation is of major debate of the scientist community
mainly because different problems have been shown to be best solved with
different approaches. Distinctive factor of genetic algorithms is selecting
(usually) two individuals from the population and combining their genes
to create an offspring. Other approaches then suggest copying selected in-
dividuals over other ones and altering their genes. The selection of the in-
dividuals itself can be done in multiple ways, always in the best attempt to
increase the fitness of the individuals. The most common selection schemes
include [35]:

• Tournament selection - A subset of individuals of the population is
chosen, individuals in this subset are compared against each other
and the best one is preserved. This process is then repeated.

• Truncation selection - A subset of presently fittest individuals is re-
tained and replaces the less fit individuals.

• Linear ranking selection - Then individuals are sorted and assigned
ranks from 1 to N with N being the fittest. The individuals are then
selected with probability proportional to the rank divided by the sum
of all rank values in the population.

• Exponential ranking selection - Same as above but the selection is
done according to ranks to the power 0.0 < p < 1.0 where p is con-
stant across the ranks.

• Proportional selection - Similar to linear ranking selection but the
probability of selection depends on fitness of each individual rather
than its rank.

It is also common to keep one or more individuals in the elitist population
to prevent the most likely solutions from being lost.

Termination of the algorithm is also rather rich in options, based on
what is applicable to a given problem. The main approaches include:

• Reaching a solution with satisfactory fitness

• Reaching a fixed number of generations

• Allocated computation time is depleted

• Successive iterations no longer produce individuals with improved
fitnesses or the improvement is below threshold
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Due to the large amount of options, this optimization method as of-
ten been avoided and labelled as black art. However, when used with cau-
tion, genetic algorithm can become optimization technique which does not
require careful initialization, requires no prior knowledge about the sys-
tem and is able to avoid local minima which can be problem for other ap-
proaches such as gradient descent.

2.10 Numerical methods for solving differential equa-
tions

The method of solving the differential equations of the electrophysiologi-
cal variables plays a role in how well the model will approximate the real
neuron. With a (extremely) poorly selected method, the model may become
unstable under some inputs or even in situations to which the normal neu-
ron would be commonly subjected. The two common approaches are the
Euler method and the family of Runge–Kutta methods. The Euler method
is simpler and features constant time step, Runge–Kutta methods then al-
low variable time step.

The size of the time step affects how well the solution will approximate
the differential equation, in theory smaller time steps are always better as
they better represent the gradient at the current time defined by the deriva-
tive.

In practice, however this is not necessarily the case since the floating
point number representation on modern architectures always comes with
rounding errors (depending on the architecture and size of the number rep-
resentation). The smaller time steps require a higher number of iterations
over a specific period of time resulting in proportionally more floating point
number operations being executed which then in turn increases the error.
The Runge–Kutta methods can deal with this by varying the time step as
necessary to minimize the error of approximating the gradient while being
able to decrease the step count when the error is small. These methods are,
however, less suitable for parallel acceleration on the GPU as the CUDA
architecture benefits from same set of instructions being executed on all
threads but it would be incorrect to assume that the error of the approxima-
tion is small (or large) for all of the simulated neurons at the same time as
the model may vary or spike at different times.

2.11 Pre-generated waveforms as means to achieve real-
time parameter estimation performance

The original work which inspired this project is the unpublished work on
parameter estimation using pre-generated voltage waveform protocols in
order to accelerate voltage clamp performance done by Thomas Nowotny [36].

The proposed approach consists of generating waveform protocols and
subsequently applying them to the neuron in the voltage clamp setting. It
is suggested to use genetic algorithm optimizing the fitness function de-
fined in Eq. 5.1 for a fixed number of epochs and in this way generate a
protocol for each of the observed parameters. It has been assumed that the
efficiency of the waveforms in separating the parameter effects is uniform
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FIGURE 2.4: Following the parameters of a drifting cell using the parame-
ter estimation strategy with population size of 446805 [36].

across the investigated parameter range and therefore the prototype uses
the true model as reference to estimate the optimal waveforms even though
the true model is not known yet at that point in the estimation process.

These waveforms are then applied to a real neuron as well as a pop-
ulation of potential neuron models on a voltage clamp on which expends
Chapter 6 again using genetic algorithm. Here the method is altering be-
tween the parameters but the next stimulus is used only if the parameter is
improvement beyond certain threshold in the past few generations.

This approach was successfully applied to the squid giant axon model,
able to converge with 7 unknown parameters on the voltage clamp but it
was not compared to the alternative of a simple random stimulus. The
ability of the model to produce spiking behaviour typical to that of a real
neuron was not tested.

For this simple example, this approach was shown to be able to track
parameters of a drifting cell at they change over time as shown in Figure 2.4.
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Chapter 3

Ethical Considerations

This research project only uses widely available hardware and software
with no undisclosed parts, allowing easy reproduction of results as well
as use in further research and applications. Source code and exhaustive de-
scription of platform used (both software and hardware-wise) is provided
along with this document and is referenced in appropriate sections.

This document includes results of all trials with no hand selection done
to potentially alter the results of the experiments and thus lower the credi-
bility of this research work. The results in the main body of this document
may, however, be selected from the collected data for the purposes of dis-
cussion. The data which is not suitable for discussion will be presented
in exhaustive lists of figures in appropriately referenced appendix where
possible.

This research project explores a field of theoretical computer science
which is well within domain of author’s knowledge and competence as
it directly relates to his area of education. The background reading that has
been done in relation to this project has been summarized in Chapter 2.

This work does not include practical trials of the proposed methods.
However, to increase credibility of the experiments done, Felix Kern pro-
vided voltage clamp recordings so realistic noise levels can be incorporated
into the simulated neuron models. This data was not collected exclusively
for this work, it has been pre-recorded for purposes of Felix’s own work
and then shared upon request. The provided data was collected, shared
and used in compliance to BSC Code of Conduct and this section. The data
was collected during experiment done on snails which are not protected
by Animals (Scientific Procedures) Act , higher animals or human subjects
were not be used for purposes of this work and therefore ethical clearance
is not needed. By re-purposing data collected for other work, the author
attempts to minimize the number of animals used for this project.

All work produced by third-party is well attributed with no attempt of
deceit, either through references or the Related Work chapter which con-
tains referenced research carried by other researchers in the past as well as
the original work by Thomas Nowotny used as basis for this project.

Finally, all work directly or indirectly related to this research project is
carried out in compliance with the law of the United Kingdom.
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Chapter 4

Model simulation

This section introduces the channel models and simulation environment
for testing the methods proposed in the following chapters. As mentioned
in the section 2.10, it is important to correctly select a method for numer-
ical integration of the differential equation to minimize the error caused
by the numerical approximation while maintaining computational perfor-
mance and avoiding error caused by floating point operations.

4.1 Channel Models

Two channel models are used to evaluate the parameter estimation perfor-
mance of the proposed framework. First, the Hodgkin-Huxley model for
the squid giant axon for its simplicity which allows close to full parametriza-
tion of the model with 19 parameters. The estimated parameters include the
membrane capacitance, maximum conductances, reversal potentials and
constants defining the slope and offset of the channel-defining sigmoid
functions. The true parameters along with the investigated range is indi-
cated in Table 4.1.

Estimation of correct parametrization of such a model is comparable to
state-of-the-art methods which are able to obtain sufficient results on mod-
els with 12-16 parameters. Furthermore, attempting to estimate all param-
eters of the model will allow evaluation of the performance on parameters
which are affecting the model in very different ways (e.g. consider conduc-
tances vs variables of the sigmoid defining the channel dynamics).

The second channel model used is the stomatogastric ganglion neuron
model proposed by Liu et al. [3] and modified by Golowasch et al. [1]. The
main objective of using this model is to show whether or not the parameter
estimation framework is able to reconstruct the parameter sets published

Parameter gNa ENa ma,off ma,slope mb,off mb,slope ha,off ha,slope hb,off hb,slope

Minimum 1.0 0.0 2.5 0.06 50.0 12.0 2.0 12.0 2.0 0.06
Maximum 500.0 100.0 4.50 0.14 70.0 24.0 4.0 28.0 4.0 0.14

True model 120.0 55.0 3.5 0.1 60.0 18.0 3.0 20.0 3.0 0.1
Parameter gK EK na,off na,slope nb,off nb,slope gl El Cmem

Minimum 1.0 -100.0 -0.5 0.006 50.0 48.0 0.1 -100.0 0.1
Maximum 500.0 -0.0 1.5 0.014 70.0 112.0 500.0 0.0 10.0

True model 36.0 -72.0 0.5 0.01 60.0 80.0 0.3 -50.0 1.0

TABLE 4.1: Parametrization of the squid giant axon model with the inves-
tigated range.



Chapter 4. Model simulation 18

Parameter C gNa gCaT gA gKCa gKd gleak ENa EA EKCa

Minimum 0.1 0.0 0.00 0.0 0.0 0.0 0.0 0.0 -100.0 -100.0
Maximum 10.0 800.0 5.00 75.0 300.0 200.0 1.0 100.0 0.0 0.0
Parameter EKd Eleak Caf Ca0 Cat

Minimum -100 -100.0 14.0 0.010 20.0
Maximum 0.0 0.0 16.0 0.100 250.0

TABLE 4.2: Parametrization of the stomatogastric ganglion model with the
investigated range.

by Golowasch et al. and thus show if the proposed framework can avoid
the issue of averaging [1]. The maximum conductances, reversal potentials
and variables defining the calcium concentration are considered unknown
along with the ion channel conductances to increase the complexity of the
estimation problem in this setting to be comparable to the problems solved
by state-of-the-art methods. Furthermore, assuming the variables defining
the activation and deactivation dynamics to be constant may be realistic
even in real world applications since assuming that the internal dynam-
ics of the ion channels do not vary from neuron to neuron is reasonable.
Table 4.2 shows the parameter ranges used during the estimation, the refer-
ence models are specified in appropriate sections where necessary.

4.2 Model simulation

The real neuron model is simulated on CPU in order to supply data which
would otherwise be obtained from the electrode reading on a real neuron.
A population of simulated neuron models which aim to replicate the be-
haviour of the real neuron (this process is detailed in the following chap-
ters) run on the GPU in parallel. Since the simulated neurons are integrated
in parallel on the GPU, it is necessary to use a method which follows the
same execution on all threads i.e. integration method with constant time
step. The following section investigates the best possible application of Eu-
ler method with the objective to minimize the integration error.

Gaussian noise was added to the reading from the real neuron in both
clamp modes, with standard deviation of 0.23nA for the current reading
and 0.10mV for the voltage reading, based on experimental data1.

4.2.1 Methodology

Since the Euler method does not consider the possibility of decreasing the
step count when the numerical approximation error is low, it is necessary
to show that the floating point operation error does not pose significant
problem to the quality of the approximation. Considering a current clamp
setting, the neuron models are simulated on the GPU with varying time
step length. The neuron models are compared at a frequency of 32kHz.
The number of time steps between the comparisons is tested with values
of 2n, n ∈ {0..7}. The results are then evaluated according to estimate of the
approximation error defined as the area between the two estimate curves

1Kindly provided by Felix Kern. The experimental data was collected on snail neurons
for his own research and later shared to be used in this work.
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with consecutive n, i.e. based on the sum of the absolute differences of
voltage values at each of the time steps.

Since the single precision operations are significantly faster both on con-
sumer graphics cards and specialized computation graphics cards, using
the single precision if possible would make the method more accessible as
well as increase the maximum complexity of the models that can be run in
real time.

4.2.2 Results

Table 4.3 shows the differences between simulations of a stomatogastric
ganglion neuron ran with different time steps for 20 seconds with random
square wave current stimuli which range from 0nA to 5nA. For the rele-

|S32kHz − S64kHz| |S64kHz − S128kHz| |S128kHz − S256kHz| |S256kHz − S512kHz|

∑
Max

∑
Max

∑
Max

∑
Max

Single 14964mV 18.33mV 7114mV 7.44mV 3725mV 3.80mV 5019mV 34.41mV

Double 14782mV 15.75mV 7084.7mV 8.34mV 3478mV 4.22mV 1724mV 2.30mV

|S512kHz − S1024kHz| |S1024kHz − S2048kHz| |S2048kHz − S4096kHz|

∑
Max

∑
Max

∑
Max

Single 9367mV 40.32mV 20272mV 49.41mV 43341mV 60.79mV

Double 859mV 1.07mV 429mV 0.53mV 214mV 0.27mV

TABLE 4.3: Differences between numerical integrations of the STG model
with different time steps for time of 20 seconds.

vant time step settings, the time taken was measured and is presented in
Table 4.4. The values were collected over 20 measurements.

128kHz 256kHz 512kHz 1024kHz

Stomatogastric Ganglion
Single precision

1291± 17.7ms 2279± 29.4ms 4223± 19.5ms 8127± 27.2ms

Stomatogastric Ganglion
Double precision

5015± 30.9ms 11016± 83.1ms 21550± 91.1ms 42943± 152.0ms

Squid Giant Axon
Single precision

536± 13.9ms 806± 13.9ms 1320± 15.5ms 2339± 16.0ms

Squid Giant Axon
Double precision

1703± 31.8ms 2887± 35.1ms 5337± 27.9ms 10243± 39.0ms

TABLE 4.4: Execution time of one second of simulation time for neuron
simulated on a GTX 960M graphics card.
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4.2.3 Discussion

Using double precision improves the approximation error, namely for smaller
time steps. This is to be expected since the error introduced by floating
point operation is reduced, allowing the benefit of improved approximation
error due to smaller time steps. The benefit of the double precision, how-
ever, does not seem to be significant until 128kHz therefore in the lower
range it may be beneficial to use single precision for the significantly im-
proved execution time.

Rather than the sum of (or average) of the differences, the maximum dis-
crepancy between the approximations are more likely to be an issue when
applying the error function for evaluating the performance of a candidate
parametrization of a model during the estimation process. This problem
does not, however, have a simple solution since the results indicate that
the only possible solution is to use higher frequency double precision es-
timation which is not computationally feasible in real time. It is therefore
necessary to account for this during the estimation process, should this ever
become an issue.

An observation frequency of 4kHz (due to computational constraints)
and the Euler method with a step frequency of 200kHz is used for the esti-
mation process with single precision calculation since with this setting it is
possible to execute the squid giant axon in real time2 and the floating point
operation error is not prominent factor for this step frequency.

2The wall time for the GPU simulation of 1 second was ˜650ms on GTX 960M; ˜450ms
on GTX 780; and ˜750ms on Tesla K40, reflecting the core clocks of ˜1000MHz, 1200MHz,
810MHz, respectively. This suggests that consumer hardware may be better for real time
single precision computation due to higher core clock speeds if sacrificing the neuron pop-
ulation size gained by higher CUDA core count is an option.
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Chapter 5

Voltage Protocol Waveform
Generation

5.1 Methodology

A number of methods is available when selecting a voltage or current proto-
col to be applied on a clamp when estimating the model parameters. Care-
ful selection of the stimuli can help to accelerate the convergence rate of
the algorithms or even fully enable the estimation of parameters of which
effects would otherwise be hard to observe and distinguish. For example,
certain voltage protocols were found to activate both transient and persis-
tent currents while others will depress the transient currents, effectively
isolating their effects [37].

One approach used for selecting stimuli is hand selection based on the
observations made on the live cell. Such an approach proved to be effective
in the past decades, however, it is hard to determine whether such a stim-
ulus is best at distinguishing a given property and a better stimulus, which
is inconsistent with previous experiences of the neuroscientist, might exist.
The range of step and ramp stimuli which could be applied is wide and
therefore it may be necessary to have some prior knowledge or may take
long time to identify a voltage stimulus which satisfies the criteria, not to
mention the number of cells necessary for making these observations.

Some works suggest to use random or semi-random voltage waveforms
during the estimation process to bring out properties which might be oth-
erwise missed on a fixed set of hand-selected stimuli. In essence, this ap-
proach is strong because the neuron is probed under wide range of circum-
stances and the obtained model should be more robust in a wider range of
scenarios. The large stimuli variance, however, also results in application
of waveforms which may not be (extensively) helpful in distinguishing the
different dynamics of the neurons, resulting in an ineffective expenditure
of the computational estimation time.

In order to maximize the effectiveness of the voltage protocols, an off-
line process is dedicated to deciding the stimuli which will be used during
the real-time parameter estimation in the voltage clamp setting. Based on
the assumption that little to no correlation exists between the model pa-
rameters, a set of voltage waveform protocols can be generated such that
for each waveform in such set it would be possible to highlight the effect
of varying one parameter while suppressing the effects of others. Since the
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current is the observed variable, the optimization objective can be formu-
lated as

argmax
s∈stimuli

(∫ t1

t0

∣∣I(s, t, p1, .., pf + σf , ...pn)− I(s, t, p1, .., pf , ...pn)
∣∣dt−

1

n− 1

∑
i∈{1..n}\f

(∫ t1

t0

∣∣I(s, t, p1, .., pi + σi, ...pn)− I(s, t, p1, .., pi, ...pn)
∣∣dt))

(5.1)
where stimuli is the set of available stimuli from which s maximizes the
difference of the supplied current, I(...), in the model with focus parame-
ter pf deviated by σf from the supplied current of model with parameters
p1, ..., pn while the difference for the supplied current of models with the
other parameters deviated is minimized. The supplied current I(...) in this
is a function of time, t, the stimulus, s, and the parameters, p1, ..., pn.

The challenge of applying this method is that the true parameter set
p1, ..., pn is unknown at the time the voltage waveforms are being selected.
However, it may be possible, to some extent, to select the parameters ran-
domly from the range of parameter values in which the best parameter set
is to be found. This requires the effects of the parameters to be uniform over
the investigated parameter range, however same condition would have to
be satisfied even if the true parameter set was known and used since other-
wise the waveforms would separate the effects of parameters well around
the true parameter values but the ability to separate would decrease as the
parameters are deviated further from the reference p1, ..., pn parameter set.
The satisfaction of this condition largely depends on the width of range in
which the parameters are estimated but also the stability of the model. If
the model undergoes rapid changes in terms of the input-output mapping,
the waveforms will inherently vary in the ability to separate the parameter
effects as well.

As briefly mentioned above, this method works under the strong as-
sumption that this approach is able to find voltage protocols which are able
to highlight the effects of the different parameters or even that such proto-
cols exist in a first place. It is, therefore, also necessary to consider that the
generated stimuli will not be able to perfectly separate the parameters or
that there will be high coupling between two or more parameters for that
given stimulus when the stimulus is applied.

The values of σ are also unknown and need to be selected by the neu-
roscientist. The value should reflect the range of the given parameter but
more importantly the effect the parameter has on the model. In this way, us-
ing different σ value for each parameter, rather than constant value across
all parameters, helps to balance the fitness between parameters which have
low impact on the behavior of the model and parameters which, when var-
ied, fundamentally change the behaviour of the model.

The protocols are applied to the real neuron in the voltage clamp set-
ting sequentially, focusing on estimating the parameter corresponding to
the given waveform applied. The detailed description and discussion of
application of the generated stimuli can be found in Chapter 6.
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5.1.1 Optimization

Optimization problems, such as this one, have multiple well-established
algorithms which can be used for their solution. For this problem, a genetic
algorithm has been used as optimization strategy since it does not require
prior knowledge about the problem and offers means to deal with local
minima.

The optimization objective as defined in Eq. 5.1 requires multi-objective
optimization as focus parameter, pf , is maximized whereas the other pa-
rameters are minimized. This poses a problem with scaling of the fitnesses
as introduced above along with the σ value, which is supposed to help to
mitigate this issue. The σ value should, however, mainly reflect the overall
effect of the parameters to perturbate them in a reasonable way and is not
to be used to perfectly balance the parameter fitnesses especially since it
is estimated by the neuroscientist who may have only a approximate idea
about the parameter effects. The differences in scales will also alter based
on the exact reference set of parameters, p1, ..., pn, that has been selected.
With this being the case, the maximum change in each parameter is first
found by maximizing

argmax
s∈stimuli

(∫ t1

t0

∣∣I(s, t, p1, .., pf + σf , ...pn)− I(s, t, p1, .., pf , ...pn)
∣∣dt) (5.2)

where ∆f =
∫ t1
t0

∣∣I(s, t, p1, .., pf + σf , ...pn)− I(s, t, p1, .., pf , ...pn)
∣∣dt then in-

dicates maximum deviation for any stimulus swhen each parameter is per-
turbed on given parameter set p1, ..., pn. These maximum deviation values
are then used to balance the objectives when finding the fitness by modify-
ing Eq. 5.1:

argmax
s∈stimuli

(∫ t1

t0

∣∣I(s, t, p1, .., pf + σf , ...pn)− I(s, t, p1, .., pf , ...pn)
∣∣dt−

1

n− 1

∑
i∈{1..n}\f

(
∆f

∆i

∫ t1

t0

∣∣I(s, t, p1, .., pi + σi, ...pn)− I(s, t, p1, .., pi, ...pn)
∣∣dt))

(5.3)
which helps to avoid the optimization function focusing on only one (or
more) of parameter perturbations resulting in high deviations.

The voltage protocols consist of set number of voltage steps parame-
terized by voltage and duration. Each protocol is only observed within an
observation window with set start time and variable length.

The stopping criterion was selected to depend on the percentage im-
provement over the past 100 iterations and limited to 500 since using abso-
lute target fitness value as a stopping criterion would not be effective due
to different scales of fitnesses for different parameters.

5.2 Results

The method was tested by optimizing 5 stimuli for both ion channel mod-
els. The total length of the stimulus was 200ms for the squid giant axon and
250ms for the stomatogastric ganglion with 3 voltage steps from −100mV
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to 50mV with observation starting at 100ms and lasting from 5ms up to the
end of the stimulus. These parameters reflect the stimuli used in related
literature [27][37].

5.2.1 Uniformity of stimulus effects

For the squid giant axon in particular, the stimulus fitnesses varied greatly
based on the initial parameters used in the different trials. This can be jus-
tified by interdependence of the parameters, especially the variables defin-
ing the internal properties of each of the ion channels and the maximum
conductances: should the maximum conductance be initialized with low
value, the effects of varying the sigmoid-defining variables would also have
smaller effect on the overall model output. For the squid giant axon model,
the possibility of using multiple models to account for this by attempting to
estimate the waveforms using sum of fitnesses on multiple reference mod-
els with different parametrizations was considered as possible approach to
obtain waveform with more stable effects. To contrast fitness of the gen-
erated stimuli against stimuli that may be suboptimal to fit on, a set of de-
generate waveforms were generated by fitting for the lowest fitness possible
according to Eq. 5.1.

The obtained waveforms were then tested on differently parametrized
models in their ability to retain the fitness. Figure 5.1 and Figure 5.2 show
the comparison of the fit stimuli against the degenerate stimuli for the stom-
atogastric ganglion and squid giant axon in terms of their fitness on parametriza-
tions uniformly drawn from the investigated parameter range. The squid
giant axon histograms also show the results for parameter estimation done
using the fitness measure across 5 different parametrizations. Since lower-
ing the fitness for the degenerate waveforms can be also done by drastically
decreasing the observation window, the stimuli were manually inspected
and this was not found the case: vast majority of the stimuli were close to
the maximum observation length. This was attributed to the maximization
of the parameters other than the focus parameter which results in negative
fitness which involves increasing the observation length.

5.2.2 Optimized waveform

All observed stimuli optimizations were found to finish within 150 itera-
tions showing that the improvement of the stimulus after 50 iterations was
minimal (< 10%).

The observation window was highly dependent on the sign of the fit-
ness of given waveform when only the objective in Eq. 5.1 was used: stim-
uli with negative fitness minimized dominant effects of the non-focus pa-
rameters by shrinking the observation window to minimum (5ms) whereas
the stimuli with positive fitness maximize the observed effects of the focus
parameter by maximizing the observation window. This issue was mostly
eliminated with the normalization introduced in Eq. 5.3 as indicated in Ta-
ble 5.1 and 5.3.



Chapter 5. Voltage Protocol Waveform Generation 25

-40 -20 0 20 40
0

10000

20000

30000

40000

50000

60000

C

-40 -20 0 20 40
0

5000

10000

15000

20000

25000

30000
gNa

-40 -20 0 20 40
0

50000

100000

150000

200000

gCaT

-40 -20 0 20 40
0

10000

20000

30000

40000

gA

0 50 100 150 200
0

20000

40000

60000

80000

gKCa

-40 -20 0 20 40
0

5000

10000

15000

20000

gKd

-40 -20 0 20 40
0

10000

20000

30000

40000

gleak

-40 -20 0 20 40
0

10000

20000

30000

40000

50000

ENa

-40 -20 0 20 40
0

20000

40000

60000

80000

100000
EA

0 50 100 150 200
0

2000

4000

6000

8000

EKCa

-40 -20 0 20 40
0

20000

40000

60000

80000

100000

120000

EKd

-40 -20 0 20 40
0

10000

20000

30000

40000
Eleak

-40 -20 0 20 40
0

50000

100000

150000

200000

Caf

-40 -20 0 20 40
0

50000

100000

150000

200000

Ca0

-40 -20 0 20 40
0

20000

40000

60000

80000

100000

Cat

FIGURE 5.1: Histogram of voltage waveform fitness on models with pa-
rameters drawn uniformly from the investigated parameter range on the
stomatogastric ganglion model.
Models were parametrized with sets of parameters drawn uniformly from
the investigated parameters and the resulting fitnesses of the waveforms
according to Eq. 5.1 have been accumulated into the histograms displayed
above. The bins coloured in purple signify the results for well-optimized
stimulus generated using 1 reference model; orange-coloured bins then dis-
play the fitness of the degenerate stimulus which was obtained by mini-
mizing the fitness measure. The histograms show clear statistical difference
between the fit and degenerate waveforms in terms of their fitness distribu-
tion for all parameters except EKCa and EKd. Some of the well-optimized
stimuli displayed positive fitness on a portion of the parametrizations, how-
ever some (Calcium concentration related parameters, gCaT and EKd) dis-
play near-zero fitness for vast majority of the parametrizations, suggesting
that it may not be possible to assume retention of the positive fitness on the
reference model across the full parameter space.
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FIGURE 5.2: Histogram of voltage waveform fitness on models with pa-
rameters drawn uniformly from the investigated parameter range for the
squid giant axon model.
Models were parametrized with sets of parameters drawn uniformly from
the investigated parameters and the resulting fitnesses of the waveforms
according to Eq. 5.1 have been accumulated into the histograms displayed
above. Purple bins represent the fitness of a well-optimized stimulus gen-
erated using 1 reference model; red bins represent the stimulus generated
using 5 reference models; and orange bins represent the degenerate stim-
ulus which was obtained by minimizing the fitness measure. Most of the
well-optimized stimuli displayed a near-zero fitness for a majority of the
parametrizations which might be a direct result of small effects of some pa-
rameters compared to others on some reference parametrizations and the in-
ability to retain fitness over wider range of parameters. Histograms display
a significant statistical difference in fitness distributions between fit and de-
generate waveforms, however the difference in optimization using one and
five reference models is not significant.
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Parameter σ
Reference

model
No

normalization
With

Normalization
Reference

model (restricted)
No

normalization
gNa 0.3 32.52 −3.43 0.53 113.73 −2.73
ENa 10.0 51.01 −3.47 0.22 47.66 −2.74
ma,off 0.08 3.08 −3.48 0.148 3.32 −2.74
ma,slope 0.2 0.12 −3.36 1.69 0.09 −2.70
mb,off 2.0 65.64 −3.47 0.26 50.05 −2.74
mb,slope 0.2 23.35 −3.40 0.84 18.23 −2.74
ha,off 0.1 3.32 −3.48 0.17 3.15 −2.74
ha,slope 0.2 17.03 −3.43 0.63 19.99 −2.73
hb,off 0.3 3.63 −3.42 0.37 3.01 −2.74
hb,slope 0.1 0.13 −3.44 0.60 0.08 −2.73
gK 0.3 250.86 −0.44 99.69 234.72 −1.67
EK 10.0 −9.53 134.76 193.39 −89.28 −0.34
na,off 0.03 0.97 304.62 387.96 0.63 8.09

na,slope 0.1 0.01 1133.32 898.4 0.01 21.44

nb,off 2.0 53.42 0.24 164.58 59.96 −1.87
nb,slope 0.1 53.20 −1.73 163.25 80.24 −2.05
gleak 0.3 147.23 252.39 281.19 362.94 25.44

Eleak 10.0 −81.9 2598.09 1882.96 −47.07 835.87

C 1.0 9.67058 −3.40 1.78 4.15 −2.74

TABLE 5.1: Resulting voltage waveform fitness of optimization on exam-
ple reference model parametrization.
The reference model was obtained by random initialization from the investi-
gated parameter range. The restricted model was parametrized in the same
way, however the range of parameters for sigmoid-defining variables was
significantly decreased. When no normalization is applied, the majority of
waveforms finished their optimization with negative fitness displaying that
some parameters have dominant effects depending on the parametrization
of the reference model. When the model was selected from the restricted
parameter range for the sigmoid-defining variables, similar results were ob-
tained (in some cases) indicating that relative values of the maximum con-
ductances may define the scale of the effects of the individual parameters.
Normalization resulted in better balance between the objectives of the opti-
mization.
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Parameter σ
True

model
No

normalization
gNa 0.3 120.0 64.84

ENa 10.0 55.0 8.34

ma,off 0.08 3.5 −0.02
ma,slope 0.2 0.1 202.43

mb,off 2.0 60.0 16.87

mb,slope 0.2 18.0 67.41

ha,off 0.1 3.0 −0.03
ha,slope 0.2 20.0 44.15

hb,off 0.3 3.0 13.18

hb,slope 0.1 0.1 25.15

gK 0.3 1.0 64.62

EK 10.0 −72.0 84.87

na,off 0.03 0.5 53.64

na,slope 0.1 0.01 75.05

nb,off 2.0 60.0 5.96

nb,slope 0.1 80.0 59.59

gleak 0.3 0.3 3.36

Eleak 10.0 −50.0 7.32

C 1.0 0.2 0.508

TABLE 5.2: Resulting voltage waveform fitness of optimization on refer-
ence model parametrized with the true values for the squid giant axon
model.
Using the true model as a reference results in optimized stimuli with posi-
tive fitness for most parameters unlike for some randomly selected reference
models as shown in Table 5.1.
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Parameter σ
Reference

model
No

normalization
With

normalization
True

model
No

normalization
C 0.1 6.10281 171.847 225.326 0.628 0.142872

gNa 3.0 608.076 968.167 904.399 283 50231.5

gCaT 0.1 4.83367 −0.0606872 4.72971 3.45 1.32408

gA 1.0 33.3832 54.0249 111.413 26.2 72.1271

gKCa 3.0 181.023 3685.81 3017.11 146 4391.861

gKd 2.0 188.072 529.518 558.725 38 373.638

gleak 0.05 0.861413 7.85163 8.76193 0.01 0.0410717

ENa 5.0 6.15789 375.411 303.88 50 808.212

EA 5.0 −79.8164 −0.0606937 10.203 −80 2.56664

EKCa 5.0 −94.269 57.3923 193.586 −80 63.0151

EKd 5.0 −60.0191 −0.0604241 58.2874 −80 0.0270905

Eleak 5.0 −41.9202 15.3604 204.954 −50 0.170588

Caf 0.04 14.868 −0.0605603 2.55979 14.96 0.0257502

Ca0 0.005 0.0747391 −0.0602724 0.0280663 0.05 0.0289093

Cat 2.0 39.6531 47.3668 430.085 200 0.303139

TABLE 5.3: Resulting voltage waveform fitness of optimization on exam-
ple and true reference model parametrization for the stomatogastric gan-
glion model.
Reference model was obtained by random initialization from the investi-
gated parameter range. When no normalization is applied, some wave-
forms finished their optimization with negative fitness unlike the case of
true model, displaying that some parameters may have dominant effects de-
pending on the parametrization of the reference model however this prob-
lem is not as significant as shown in Table 5.1 perhaps because of the lower
interdependence of the parameters. Normalization again resulted in better
balance between the objectives of the optimization.
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5.3 Discussion

Figures 5.1 and 5.2 display clear differences between the fit and degenerate
stimuli, showing that stimuli with inherently different effects on the scale
of the full parameter range exist. However, these effects varied on different
parameters, e.g. for most squid giant axon parameters the fit stimulus pro-
duces rather narrow range of fitnesses which is not true for na,off ,Eleak and
gleak.

Even though the figures identify clear differences between fit and de-
generate stimuli, the ability to retain fitness on the squid giant axon is not
completely clear. Note that the fitnesses for vast majority of the examined
parametrizations lie very close (and more often below) zero which poorly
reflects the fitness on the reference parametrization used during the esti-
mation process. The fitness varied greatly even on the reference stimulus
depending on the reference model used for the waveform optimization as
well as from parameter to parameter. This issue was more apparent for the
squid giant axon likely due to higher interdependence of the parameters.
When the parameter normalization introduced in Eqs. 5.2 and 5.3 was dis-
abled, it was common for the optimization to follow the trend of majority of
fitnesses being negative as indicated in Figure 5.1. On the other hand, when
the true model was used for the estimation, most of the fitnesses of the
waveforms reached positive values, as indicated in Table 5.2 and 5.3, which
further suggests that the waveforms cannot be assumed to be uniform over
the full range. It is arguable whether the relaxed parameter range might the
cause of the problem in this case - when the range of the sigmoid slope and
offset parameters was significantly decreased (to ±0.25 when applicable),
some reference models still produce negative fitness waveforms for some
parameters as shown in Table 5.1 for "restricted". This may indicate that the
relative values of the reversal potentials and the maximum conductances
may be the main factors in determining the impact of the other parameters.

These issues encourage the use of co-evolution of the stimuli along with
the evolving parameter set on the voltage clamp as this approach may result
in better distinctive ability of the stimuli due to higher relevancy to the
current parametrization rather than attempting to obtain universal stimuli
beforehand. The observation of fast convergence of the fitness suggest that
stimuli might be evolved fast enough for co-evolution to be applicable.
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Chapter 6

Voltage Clamp Parameter
Estimation

6.1 Methodology

The approach applying pre-generated waveform stimuli is in this section
further investigated, continuing the work done by Thomas Nowotny. Re-
flecting on the results from the previous chapter on waveform generation,
the possibility of co-evolving the stimuli with the estimated parameter set
is investigated in this chapter as an alternative method to generating a set
of universal stimuli beforehand.

6.1.1 Parameter update rule

A population of neuron models are uniformly drawn from the parameter
range and updated using a genetic algorithm. The primary objective is to
minimize the difference in the current injected into the real neuron and into
the simulated model in order to maintain the membrane potential differ-
ence specified by the waveform and therefore the objective is to minimize
the area between the curves defined by the supplied currents. Upon update,
a third of a population with the highest fitness is preserved. The other two
thirds are replaced by the fit individuals mutated by offsetting the parame-
ter by a random value drawn from a Gaussian distribution with a standard
deviation of σ introduced in Chapter 5 which was found to be more ef-
fective than selecting parameter uniformly from the parameter range [27].
Two parameter perturbation schemes were investigated. First mutates the
parameters by adding value from Gaussian distribution of standard devia-
tion, σ, which is different for each parameter but constant throughout the
time of the estimation. Second mutates the parameters in similar way, how-
ever the standard deviation, σ, is exponentially decreasing over the time of
the estimation which introduces more variance at the beginning of the esti-
mation and allows more stable solutions at the end.

The state of the real neuron at the time of initialization is unknown
which means that the real neuron and initialized models are likely to be
desynchronized at the time of initialization. This issue mostly affects pace-
maker neurons such as the investigated stomatogastric neuron model which
produce periodical spiking behaviour even without stimulus meaning that
there is constant change in opening and closing ion channels. Other neu-
rons are affected to lesser extent since they rest at their resting potential af-
ter long enough time with no stimulus. However, this issue was not found
to affect the estimation process on a voltage clamp since the internal state
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of the neuron and models synchronized within tens of milliseconds after
clamping them to a set voltage level. As long as the measurements are
taken directly one after the other, the neuron does not a have time to desyn-
chronize. The models were set to retain their state across generations and
similarly the parent’s state was copied when a mutation was produced.

The original approach suggested to sequentially cycle trough the pa-
rameters and their associated pre-generated waveforms fitting strictly one
at a time under the strong assumption that the stimuli perfectly decouple
the effects of the individual parameters. This effectively results in the de-
crease of dimensionality of the problem (provided that the parameters can
be decoupled). This strong assumption was shown to not hold in all cases
and therefore the non-focus parameters were allowed a chance of small mu-
tations even when estimation was carried out using a voltage waveform
protocol optimized for different parameter.

Furthermore, the original approach switched estimating different pa-
rameter if the present error was less than 80% of the running average over
the past 10 iterations on that specific parameter. This would mean that
any of the parameters is expected to improve the model quite rapidly at
any given time and parametrization. However, this assumption does not
hold when the number of the free parameters and their interdependence is
increased. Limiting the number of epochs that can be spend on one param-
eter does resolve this issue but cycling through the parameters one at a time
significantly reduces the variability of the output caused by over-fitting re-
sulting from repetitive estimation of one parameter on a single stimulus.
Eliminating the dependence of stimuli on the current state of the estimation
removes the necessity to run the process in real time which can be consid-
ered advantage to this approach since not all models can be simulated in
real time on present hardware.

This approach of applying stimuli has also been used in the case of es-
timation using co-evolved stimuli; however, in that case real-time applica-
tion is still necessary as the stimuli which need to be applied to the real
neuron depend on the current state of the estimation, particularly the cur-
rently most fit parametrization of the model.

6.1.2 Pre-generated waveforms

This estimation approach uses voltage waveform protocols generated off-
line using the methodology presented in the previous chapter. The advan-
tage of this approach is minimal overhead of processing power during the
simulation with equal performance under the assumption that the wave-
forms are globally optimal and do not need to be readjusted throughout
the estimation process.

As previously mentioned, this approach can be also executed off-line
since stimulus application does not depend on the state of the optimization.

6.1.3 Co-evolved waveforms

Generating the waveform protocols reactively to the current state of the
estimation process allows for more localized stimuli which could prove to
be better than global performance of the pre-generated waveforms. The
elimination of the possibly long waveform optimization process prior to
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the parameter estimation may also prove to be beneficial when hypothesis
about the neuron needs to be quickly confirmed and iterated upon.

A population of voltage waveform protocols is randomly initialized
separately for each of the parameters. The protocols are updated accord-
ing to the rule specified in Chapter 5 using the most fit individual in the
population of candidate neuron models as the reference. The neuron pa-
rameter estimation in turn uses the most fit and recent voltage protocol
from its dedicated population.

Estimation of the next waveform based on the most recent parametriza-
tion of the model would require to alternatively run the waveform opti-
mization and parameter estimation in sequence. This approach would con-
sume a valuable time of the cell life and the internal state of the observed
cell would desynchronize each time the waveforms would be optimized.
The waveform optimization is therefore done in parallel to the parameter
estimation on a second GPU with the minor disadvantage of using the sec-
ond most recent parameter set as its reference. This has, however, only a mi-
nor impact since the local performance of the protocols is significantly more
consistent than the global performance and the parameter change from one
epoch to the next decreases with advancing time of the estimation.

6.2 Results

Table 6.1 shows the results for different stimuli application approaches in
the form Average ± Standard deviation for the squid giant axon. For the
estimation approach using random stimuli, a new stimulus was generated
each epoch. The generated waveforms lasted 200ms with observation win-
dow beginning at 100ms and lasting 50− 100ms with 3 voltage steps which
range from −100mV to 50mV. Same values were used for generation of
both the pre-generated and the co-evolved waveforms with the exception
of minimum observation length being 5ms.

Similarly, Table 6.2 shows the results for the stomatogastric ganglion
model with generated waveforms being 250ms long with 3 steps within the
range of −100mV to 50mV and observation window starting at 100ms of
minimum length of 5ms for pre-generated waveform protocols, 50ms for
random protocols and maximum length of 150ms for both.

The estimation was executed within the range and with ’true model’ as
indicated in the tables. The population of the candidate model was initial-
ized randomly from the indicated range and in all of these experiments had
size of 4000 (maximum that was found to run fully in parallel, larger sizes
resulted in increased computation time on NVIDIA GTX 780). For both the
squid giant axon and stomatogastric ganglion, 60 trials were executed with
distinct initial populations and with varying waveforms for each of the ob-
served stimuli application approaches. The initializations were consistent
across the stimuli approaches. Each of the trials was executed with total
observation time of 15minutes.

The standard deviations of the parameter perturbations, σ, are indicated
in Tables 5.1 and 5.3 for the trials with parameter perturbations using con-
stant standard deviation. For the trials with decreasing parameter pertur-
bations, the standard deviation of the perturbation at time t was computed
with exponential falloff as σt = 8× 0.99940.005σ resulting in starting values
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SGA: gNa

FIGURE 6.1: Progress of voltage clamp estimation for all estimation
schemes on the squid giant axon model.
Multiple trials with randomly initialized populations have been executed
with each optimization strategy ran for 15 minutes each. The displayed
plots show the value of gNa for a best candidate in each epoch with dif-
ferent colours for each run. Using decreasing σ improves the convergence
for all of the estimation strategies. Some runs of estimation with co-evolved
stimulus diverge in their value which is characteristic for this method. Re-
sults for estimation with static stimulus show improvement, however the
time to converge is higher.

of 800% and finishing value (at 15 minutes) of 53.7% of those indicated in
the appropriate table for the σ constants. The trials using random stimuli to
estimate parameters for the stomatogastric ganglion neuron were observed
to produce unstable candidate models even in trials with constant σ, as can
be seen in Figure 6.2, and therefore the falloff for those trials was defined as
σt = 1× 0.99940.005σ.
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STG: gNa

FIGURE 6.2: Progress of voltage clamp estimation for estimation schemes
using the pre-generated and random on the stomatogastric ganglion
model
Multiple trials with randomly initialized populations have been executed
with each of the optimization strategies ran for 15 minutes each. The dis-
played plots show the value of gNa for a best candidate in each epoch with
different colours for each run. Pre-generated stimulus shows clear conver-
gence both with constant and decreasing σ although decreasing σ allows for
a slight improvement and on random stimulus enables convergence alto-
gether.
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Constant σ
Parameter Min Max True Random Co-Evolved Pre-generated

gNa 1.0 500.0 120.0 114.0± 11.4 224.8± 154.2 139.3± 80.9
ENa 0.0 100.0 55.0 57.0± 4.8 60.1± 14.1 57.2± 21.4
maoff 2.5 4.5 3.5 3.47± 0.38 3.9± 0.5 3.9± 0.41
maslope 0.06 0.14 0.1 0.0967± 0.0103 0.0790± 0.0206 0.0834± 0.0226
mboff 50.0 70.0 60.0 58.0± 2.3 64.6± 6.0 59.5± 6.4
mbslope 12.0 24.0 18.0 16.5± 2.1 20.7± 3.7 18.3± 4.5
haoff 2.0 4.0 3.0 3.40± 0.38 2.76± 0.70 2.86± 0.73
haslope 12.0 28.0 20.0 18.5± 2.9 17.7± 3.7 18.4± 4.4
hboff 2.0 4.0 3.0 3.03± 0.41 3.65± 0.46 3.25± 0.76
hbslope 0.06 0.14 0.1 0.102± 0.010 0.083± 0.024 0.097± 0.026
gK 1.0 500.0 36.0 37.8± 2.3 152.1± 137.4 160.8± 124.9
EK −100.0 0.0 −72.0 −72.0± 0.7 −60.5± 22.7 −49.0± 27.5
naoff −0.5 1.5 0.5 0.492± 0.016 0.129± 0.348 0.104± 0.317
naslope 0.006 0.014 0.01 0.00985± 0.00035 0.00975± 0.00234 0.00844± 0.00261
nboff 50.0 70.0 60.0 58.2± 2.8 54.4± 4.2 56.0± 5.4
nbslope 48.0 112.0 80.0 88.4± 9.2 95.7± 20.7 96.8± 22.2
gleak 0.1 500.0 0.3 0.300± 0.006 8.424± 8.443 6.763± 7.426
Eleak −100.0 0.0 −50.0 −49.8± 1.2 −73.4± 21.3 −78.4± 21.5
C 0.1 10.0 1.0 0.96± 0.43 1.13± 0.42 0.77± 0.45

Decreasing σ
Parameter Min Max True Random Co-Evolved Pre-generated

gNa 1.0 500.0 120.0 106.9± 9.6 143.0± 77.1 138.9± 92.2
ENa 0.0 100.0 55.0 61.2± 4.3 55.0± 1.8 62.3± 18.7
maoff 2.5 4.5 3.5 3.1± 0.3 3.6± 0.5 3.9± 0.5
maslope 0.06 0.14 0.1 0.0858± 0.0078 0.0994± 0.0159 0.0973± 0.0174
mboff 50.0 70.0 60.0 56.2± 1.7 60.7± 3.4 54.7± 4.7
mbslope 12.0 24.0 18.0 15.4± 1.1 18.8± 2.8 18.7± 3.0
haoff 2.0 4.0 3.0 3.47± 0.18 3.01± 0.67 3.10± 0.56
haslope 12.0 28.0 20.0 16.6± 1.2 20.4± 4.1 20.8± 4.1
hboff 2.0 4.0 3.0 2.77± 0.20 3.2± 0.45 3.42± 0.55
hbslope 0.06 0.14 0.1 0.094± 0.005 0.100± 0.013 0.103± 0.015
gK 1.0 500.0 36.0 37.0± 0.6 45.4± 39.3 128.3± 91.7
EK −100.0 0.0 −72.0 −72.1± 0.5 −69.5± 12.9 −64.0± 16.9
naoff −0.5 1.5 0.5 0.493± 0.007 0.459± 0.177 0.227± 0.244
naslope 0.006 0.014 0.01 0.00990± 0.00014 0.01017± 0.00042 0.00716± 0.00186
nboff 50.0 70.0 60.0 59.4± 1.0 57.6± 5.1 60.6± 4.6
nbslope 48.0 112.0 80.0 86.5± 3.6 79.4± 13.4 102.4± 18.6
gleak 0.1 500.0 0.3 0.299± 0.004 1.50± 4.59 0.35± 0.20
Eleak −100.0 0.0 −50.0 −49.9± 0.75 −53.0± 11.5 −53.1316± 8.90409
C 0.1 10.0 1.0 0.59± 0.29 1.10± 0.35 0.90± 0.46

TABLE 6.1: Voltage clamp estimation results for co-evolved, pre-generated
and random stimuli with constant and decreasing σ values for the squid
giant axon.
Estimation with constant σ values allows the random stimulus to perform
better than the schemes using pre-generated and co-evolved stimuli. Val-
ues in bold indicate best fit for given parameter. With decreasing σ the co-
evolved stimuli perform better on some parameters, suggesting that higher
variance in the population promoted by higher σ values at the beginning of
the estimation beneficial.
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Parameter Min Max True Random Pre-generated
Random

Decreasing σ
Pre-generated
Decreasing σ

C 0.100 10.000 0.628 0.889± 0.139 0.911± 0.151 0.882± 0.134 0.698± 0.058
gNa 0.0 800.0 283.0 296.3± 69.0 305.6± 21.0 283.7± 26.3 291.1± 17.1
gCaT 0.00 5.00 3.45 3.16± 0.53 2.95± 0.49 3.09± 0.51 3.29± 0.22
gA 0.0 75.0 26.2 25.5± 8.8 28.8± 2.3 26.4± 9.1 25.6± 4.9
gKCa 0.0 300.0 146.0 145.2± 7.57 147.0± 2.8 147.2± 5.3 146.8± 0.6
gKd 0.0 200.0 38.0 45.8± 20.0 41.0± 4.1 45.6± 17.2 38.1± 2.5
gleak 0.000 1.000 0.010 0.010± 0.001 0.016± 0.009 0.010± 0.009 0.010± 0.000
ENa 0.0 100.0 50.0 50.7± 3.0 49.0± 0.7 50.2± 1.3 49.8± 0.6
EA −100.0 0.0 −80.0 −73.8± 17.0 −72.2± 5.8 −73.0± 14.6 −77.0± 10.8
EKCa −100.0 0.0 −80.0 −79.9± 0.6 −79.9± 0.2 −80.0± 0.4 −79.9± 0.2
EKd −100.0 0.0 −80.0 −73.4± 9.6 −75.7± 7.7 −67.4± 17.8 −79.8± 1.8
Eleak −100.0 0.0 −50.0 −49.5± 1.3 −59.4± 11.6 −48.9± 5.2 −49.7± 0.9
Caf 14.00 16.00 14.96 15.08± 0.54 15.39± 0.58 15.06± 0.68 14.39± 0.38
Ca0 0.010 0.100 0.050 0.056± 0.025 0.051± 0.026 0.053± 0.030 0.049± 0.026
Cat 20.0 250.0 200.0 196.6± 51.6 162.2± 37.0 200.6± 19.4 177.2± 25.6

TABLE 6.2: Voltage clamp estimation results for pre-generated and ran-
dom stimuli with constant and decreasing σ values for the stomatogastric
ganglion.
Values in bold indicate best fit for given parameter. With constant σ values,
the strategy using pre-generated stimuli outperforms strategy with random
stimuli on some parameters and the performance is further improved with
decreasing σ.
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6.3 Discussion

The results on the squid giant axon clearly suggest against the theory that
pre-generated waveforms are uniformly applicable over the inspected range
of the parameters. Upon close inspection, the generation of the waveforms
was dominated by several parameters that seemed to have large effect on
the output whereas the rest of the parameters had negligible effects result-
ing in waveforms that were not able to sufficiently decouple the focused
parameter even with normalization as indicated in the previous chapter.
The resulting observations may have offered very little information about
the performance of the model. Throughout the estimation, the waveforms
which were found to impact the model in very limited way during the
waveform optimization displayed error ratings significantly closer to the
noise level than those that were found to produce large changes which fur-
ther suggests low contribution to the estimation process. This may be one
of the contributing factors of low performance of the pre-generated stimuli
on the squid giant axon model both with constant and decreasing σ values.

Allowing for higher initial σ values and exponentially decreasing them
throughout the time of the estimation appears to have a positive effect on
the ability to converge to the correct solution. This may indicate that the
used optimization method with fairly homogeneous population resulting
from replication of the elite population with small sigma values is not suf-
ficient for traversing the error landscape likely due to presence of large lo-
cal minima which the algorithm fails to escape. These may be a direct re-
sult of correlation between the parameters, mainly of the sigmoid-defining
variables of the individual ion channels. The improvement seen with de-
creasing σ is then natural since the algorithm is forced to more generalized
search at the beginning of the estimation. The improvement seen in using
random stimuli compared to the pre-generated stimuli may also partly be
a product of this problem since the variance of the best candidate over time
of the estimation was higher than for pre-generated stimulus which also in-
dicates less homogeneous elite population resulting in less localized search,
as seen in Figure 6.1.

Co-evolved stimuli appear to outperform the random stimulus on some
parameters with decreasing σ, however variances of results on some pa-
rameters such as the conductances and reversal potentials seem to be high.
The stimuli generated along with the estimation of the parameters seemed
to be better at retaining their positive fitness, mostly eliminating the is-
sues tied to generating universal stimuli based on a randomly parametrized
model discussed in the previous chapter. Taking into account that the co-
evolution method is likely to still be affected by the issue of a too homo-
geneous population, it is likely to be the best performing method if these
problems are resolved. It, however, seems to be the case that repeated stim-
ulation of a cell greatly reduces its life time1 which may render this method
physiologically unfeasible or to some extent limited. The extent of this is-
sue still remains to be found and may be of interest if this method is subject
to future investigation.

The parameter estimation of the stomatogastric ganglion model with
pre-generated stimuli have shown to be more consistent and accurate on

1Information provided casually by Felix Kern based on observations during his ongoing
unpublished research.
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some parameters than when random stimuli are used in cases of both the
constant and decreasing σ approach. This may be because of the higher
quality of the stimuli as seen in the previous chapter. As opposed to the
stimuli for the squid giant axon model, which are mostly very near zero fit-
ness when uniformly tested across the parameter range, the stimuli for the
stomatogastric ganglion model have often shown to extend into the posi-
tive fitness values as well, indicating higher ability to separate the effects
of individual parameters which likely contributes to the improved perfor-
mance.

Due to a likely smaller correlation between the parameters in the stom-
atogastric ganglion model, the localized search of the pre-generated stimuli
does not appear to be as problematic in this case because of apparent lack
of un-escapable local minima. Since the estimation method have shown an
ability to converge toward a single (correct) solution for most of the param-
eters in the case of the stomatogastric ganglion, the improvement posed by
using decreasing σ as opposed to constant ones may be result of the sped-
up convergence at the beginning (by higher σ values) and decreased best
model candidate variance (caused by lower σ values) towards the end as
seen in Figure 6.2.

The original prototype proposed by Thomas Nowotny, which uses same
optimization strategy, have displayed an ability to rapidly converge for all
of the estimated parameters and then track small changes over time. The
results found here are consistent with the original results; however, in the
original work, the complexity of the problem was significantly lower and
the problem was slightly idealized (see Section 2.11) which allows the orig-
inal method to rapidly converge using the diversity of the randomly ini-
tialized population before the elite population becomes uniform and then
continue to track small changes in the variables with the very uniform pop-
ulation. Due to the aforementioned issues and higher combinatorial com-
plexity of the above explored settings, the results presented here are sig-
nificantly different form the original work, indicating that the assumptions
which held in that simpler, idealized scenario may be still true for more
complex settings but not to the full extent.
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Chapter 7

Current Clamp Parameter
Estimation

The addition of current clamp introduces the ability to refine the parame-
ters obtained on a voltage clamp which obtains only approximate param-
eter sets but is unable to find the best settings due to the shallow fitness
landscape and noisy readings. Current clamp complements these features
with a fitness landscape which is not nearly as shallow but contains signif-
icantly more local minima as indicated in Figure 7.1.

Voltage clamp error landscape Current clamp error landscape

FIGURE 7.1: Difference in the error landscapes of voltage and current
clamp for varying gNa and eNa parameters in the squid giant axon neu-
ron model.

7.1 Methodology

In a current clamp setting, a varying current is injected into the cell and the
voltage potential response is observed. The membrane potential response
of a real neuron is characteristic in the production of action potentials -
brief depolarizations of the membrane potential. This renders the method
of simply taking the area between the output of the reference neuron and
the estimated model as an insufficient measure of fitness since any slight
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shift in the phase of the neuron can produce massive decrease in the fitness
of that neuron model even if the response is otherwise identical. The volt-
age outputs of the observed neuron and the computer model are therefore
coupled by complementing the model output with the output observed in
the real cell:

V = (1.0− k)(V0 +
∆V

∆t
) + k(Vrecording) (7.1)

Where V is the updated membrane potential, V0 is membrane potential
at previous iteration in the candidate model and ∆V

∆t is the update in the
potential in the current time step. Vrecording is the membrane potential
recorded in the live neuron and k ∈ [0.0, 1.0] is the coupling variable which
defines the extent to which the cells are coupled. The coupling is initiated
at k = 1.0 and decreases with exponential falloff throughout the estimation
process until the cells are fully decoupled at a later time of the estimation.

Application of the coupling allows the area between the two voltage
output curves to act as a sufficient indicator of a fitness. Using sum of abso-
lute differences at observed times (L1) performed significantly better than
sum of squares (L2) error measure. L2 accounts higher importance to large
differences which happens almost exclusively in action potential intervals
and the resulting estimated models were good at reproducing the action
potentials of the exact amplitude as the reference neuron but were not as
good at reproducing the spike after-hyper-polarization. Using L1 generally
solved this issue and the spike amplitude reproduction was not noticeably
impacted. The significant maximum difference in the numerical approxi-
mations observed in Chapter 4 may have contributed to this issue as well.
Extending the observation to cover at least two spikes (or pacemaker po-
tentials in the STG) seemed to further improve the ability to accurately es-
timate the spiking frequency as it is easier to identify the correct spiking
rate.

As mentioned, the problem of the initialization is the high probability of
desynchronisation between the real neuron state and the simulated models.
The issue is resolved similar to voltage clamp: the observations are made
successively and the internal state of the candidate models is always pre-
served both on the replication and the mutation. Since the state was syn-
chronized after the voltage clamp is finished, the current clamp estimation
can be executed directly after and the internal state of the selected model
candidate in the voltage clamp setting can be used to initialize the pop-
ulation on the current clamp. The retained synchronization between the
states of the real neuron and the simulated models is also supported by
the coupling introduced above, by retaining the membrane potential at a
level similar to the live cell and thus inducing similar environment for the
voltage-dependent ion channel activation.

In case of the parameter estimation in the current clamp setting, gener-
ating a set of universal stimuli is not a viable option. First, when a set of
stimuli was generated using the model estimated in the voltage clamp set-
ting, it was found to quickly lose its separating properties even in immedi-
ate neighbourhood of the used model in the parameter space. Second, since
the parameter estimation in voltage and current clamp setting is done in
immediate succession, there is no extensive amount of time to pre-generate
the stimuli. The parameters were therefore estimated together without at-
tempt to separate their effects. Using a random current step stimuli have
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been found to be sufficient for refining the parameters from current clamp,
however co-evolving the stimuli according to the objective specified in the
Eq. 5.2 while cycling through the focus parameters yields 50% increase in
the objective fitness value compared to the random stimuli even when ac-
counting for the one epoch delay discussed in Section 6.1.3. It is, however,
arguable whether selecting stimuli in this way brings any benefit to the pa-
rameter estimation performance since no tangible difference was observed
when this technique was applied.

7.2 Results

Consistent pre-generated sets of stimuli were used to estimate parameters
in the voltage clamp setting for reference models indicated in Table 7.1.
These models were used by Golowasch et. al. to demonstrate the different
parameter sets producing very similar physiological behavior [1]. The volt-
age clamp estimation outputs were then used for current clamp estimation
with the results shown in Table 7.1 in the form AV G ± SD for 30 trials. A
sample of the estimated model for each of the reference models is shown in
Figure 7.2.

(A) (B) (C)
Parameter Min Max True Estim. True Estim. True Estim.

C 0.1 10.0 0.628 0.629± 0.005 0.628 0.628± 0.007 0.628 0.615± 0.074

gNa 0.0 800.0 400.0 452.7± 73.3 50.0 52.7± 9.7 50.0 50.1± 10.3

gCaT 0.0 5.0 4.0 3.8± 0.2 4.0 3.8± 0.2 4.0 3.9± 0.2

gA 0.0 75.0 5.0 8.3± 2.1 5.0 8.1± 3.0 5.0 6.2± 2.3

gKCa 0.0 300.0 250.0 246.4± 6.9 250.0 249.1± 10.1 250.0 250.5± 7.1

gKd 0.0 200.0 20.0 20.2± 2.3 20.0 26.7± 4.8 100.0 103.1± 13.6

gleak 0.0 1.0 0.010 0.010± 0.004 0.010 0.012± 0.005 0.010 0.012± 0.007

ENa 0.0 100.0 50.0 43.9± 9.3 50.0 46.9± 14.3 50.0 45.8± 11.4

EA −100.0 0.0 −80.0 −52.5± 13.7 −80.0 −51.2± 22.4 −80.0 −51.1± 29.1

EKCa −100.0 0.0 −80.0 −80.6± 1.0 −80.0 −80.0± 1.2 −80.0 −80.3± 0.8

EKd −100 0.0 −80.0 −80.7± 10.4 −80.0 −68.6± 15.3 −80.0 −82.5± 7.2

Eleak −100.0 0.0 −50.0 −51.5± 2.6 −50.0 −51.7± 3.1 −50.0 −50.7± 4.7

Caf 14.00 16.00 14.96 15.4± 0.5 14.96 15.64± 0.26 14.96 15.49± 0.29

Ca0 0.010 0.10 0.050 0.043± 0.024 0.050 0.038± 0.019 0.050 0.040± 0.025

Cat 20.0 250.0 200.0 194.6± 8.8 200.0 196.8± 6.3 200.0 195.8± 9.0

TABLE 7.1: Current clamp estimation results for 3 models of the stom-
atogastric ganglion with varying parameters but very similar spiking be-
haviour.
The joint procedure of using voltage clamp followed by current clamp for
parameter estimation shows clear ability to distinguish between models
with similar spiking behaviour (displayed in Fig. 7.2) but varying param-
eters (shown in bold). The data shown is based on 30 trials with distinct
parameter initializations for each of the models.
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FIGURE 7.2: Performance of the estimated model for the stomatogastric
ganglion with no current is applied. Blue shows the reference neuron and
yellow shows the estimated model. Subfigures A-C correspond to results in
Table 7.1, Subfigures D:i-iii focus on highlighted regions in Subfigures A-C,
respectively. The investigated method has shown ability to reproduce the
very similar behaviour of the 3 reference models despite the variation in
parameter values.
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7.3 Discussion

The results presented in Table 7.1 show a clear ability of the method com-
bining the voltage and current clamp to differentiate between models with
vast variance in some parameters but very similar physiological behaviour.
Since methods producing comparable or even better results has been pro-
posed in the past (such as those mentioned in Related Research), it is highly
unlikely that differences of parameters at this scale would be unnoticed if
they were, actually, present in real neurons. Averaging should, therefore,
never pose a problem at this scale since state-of-the-art parameter estima-
tion methods are accurate enough to clearly indicate the difference between
these different parametrizations, at least in the investigated case. Should a
problem with averaging on same parameters ever arise (with smaller scale
differences such as when both gKd and gNa are high, Figure 2.3), it may
indicate an instability of the proposed model rather than cell-to-cell vari-
ation. While distinct regions on large scale are desirable, indicating clear
differences resulting from varying the parameters, large differences with
small parameter changes in the model would indicate large differences in
the physiological behaviour of the neuron with small changes in the struc-
ture which is not likely to be the case.
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Chapter 8

Conclusion

The investigated method has been shown to correctly distinguish between
different parametrizations of the stomatogastric ganglion neuron model
even in cases where significantly varying parametrizations display very
similar spiking behaviour. The ability of the estimation in the voltage clamp
setting to obtain approximate solutions likely contributes to the observed
performance, however it was found that for more complex parameter esti-
mation tasks the investigated voltage clamp estimation approach was not
able to converge to the true solution. This seems to be especially the case
for tasks with multiple unknown parameters such as the squid giant axon
model with unknown conductances, reversal potentials and slopes and off-
sets of the channel-defining sigmoids. While this problem may be im-
proved upon or even be solved by more suitable optimization strategy, it
may also be valid approach to assume the internal parameters of the ion
channels to remain constant (since variance would likely mean variance in
the structure of the membrane proteins as well) and carry out the parameter
estimation on the conductances which has been shown to be significantly
less challenging. Since the parameters defining the sigmoids (and therefore
the dynamics of individual channels) are unlikely to vary between neuron
(since that would mean varying structure of the ion channels), the sigmoids
may be estimated using the strategies employing blockers to isolate the es-
timated parameters on the real neuron.

While the method was found to be able to operate in real time for sim-
ple cells (such as the squid giant axon), the complexity of the computation
increases with additional channels of cells which are of higher interest in
modern research. It has been shown, however, that repeated stimulation of
the cell in the voltage clamp setting may lead to significant decrease of the
life of the cell1 which would render approaches relying on on-line stimulus
adjustment (such as the co-evolution approach) unusable.

8.1 Further investigation

This work focuses mostly on the investigation of the process of using wave-
forms potentially able to decouple parameter to increase fitting performance
and many areas remain insufficiently explored. One major problem is the
selection of the correct optimization strategy. A very simple genetic algorithm-
like strategy which preserves elites within the population and creates off-
spring by a simple mutation operator resulted in rather homogeneous pop-
ulations which seemed to be problematic for estimation. There is a wide
range of optimization algorithms both within and outside of the family

1Felix Kern, private communication
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of genetic algorithms. The use of a better optimization strategy may im-
prove the performance as discussed in Section 6.3 and allow the estimation
method to better capitalize on the potential benefits of parameter separa-
tion in some estimation scenarios with more complex error surfaces.

It has been shown that increased variance in the population leads to
better performance in some cases. The by-product of the increase in popu-
lation variance is possible increase in the instability of the solution as seen
in Figure 6.2. It may be necessary to consider using results from estimation
using two or more waveforms to decide whether a given model candidate
should be accepted into the elite population or similar approach to obtain
more stable solution while conserving population diversity.

The problem of stopping conditions is not considered in this work since
a constant time budget is considered as a single constraint. It may be ben-
eficial to explore the possibility of more flexible stopping condition which
may benefit both estimation in real-time and off-line.

Finally, the original method has shown the ability to track drifting pa-
rameters over the time in a simple setting in the voltage clamp setting. Since
repeated voltage clamping have shown to lead to faster death of (some)
cells as previously mentioned, it may be impossible to track the cell for
longer time periods, current clamp may be more suitable for this purpose
from physiological standpoint, however computational applicability remains
to be unexplored.
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Appendix A

Stomatogastric ganglion
voltage clamp convergence

Figures in this appendix display the values for all parameters of the best
candidate model changing over the time course of the parameter estima-
tion. Multiple runs are displayed in each figure, indicated by distinct colours.
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