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Abstract

This papers provides clear cut evidence that recessionary and �nancial distressed con-
ditions, as well as banning foreclosure laws, often introduced by governments to mitigate the
e¤ects of the economic and/or �nancial distressed conditions on mortgage loans, have adverse
e¤ects on the loan default probability. We argue that this may be attributed to long-term
persistency of the above conditions, which can cause abrupt shifts in the probability of default
of a loan. Our estimates indicate that these policies may also raise moral hazard incentives
that borrowers will not maintain their payments in long run, even for loans with low LTV.
Under these conditions, e¤orts of banks to restructure (or re�nance) mortgage loans may not
successfully a¤ect future default probabilities. Our evidence is based on an extension of the
discrete-time survival analysis model which allows for a structural break in its hazard rate
function due to abrupt changes to exogenous events, like changes in political conditions. It
is also robust to alternative speci�cations of the binary link function between default events
and covariates. Asymmetric link functions are found to be more appropriate under �nancial
distressed conditions.
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1 Introduction

Since the subprime crisis, there is growing interest in modeling probability of default (PD) on resi-

dential mortgages (see, e.g., Gross and Souleles (2002), Elul et al (2010), Crook and Banasik (2012),

Divino et al 2013, Campbell and Cocco (2015), among others). These mortgages constitute a

large proportion of banks loan portfolios and household debt, and thus their default risk is of

primary concern for both credit institutions and households. By Basell II and/or III accords,

banks are required to hold a minimum amount of capital to absorb expected losses on mortgage

defaults.

There are two prevailing views on what can explain the default probability of residential mort-

gages referred to in the literature as the negative equity and ability-to-pay hypotheses. According

to the �rst hypothesis, a mortgage defaults if the value of the mortgaged property becomes less

than the loan value. This can happen when house (property) prices decline. This hypothesis

can be empirically examined by testing if the loan-to-value (LTV) ratio, where loan stands for the

amount of the loan and value stands for the most recently estimated market value of its underlying

collateral, is positively related to PD, especially for values of LTV bigger than unity.1

The ability-to-pay hypothesis claims that the PD of a loan depends on the ability of the obligor

(borrower) to meet his/her periodic payments (installments). This ability may depend on changes

in demographic characteristics (see, e.g., Folliant et al (1999)), liquidity constraints (see, e.g.,

Gross and Souleles (2002) and Elul et al (2010)) and changes in business cycle (macroeconomic)

conditions, which are not expected at the time that the loan was granted. Key macroeconomic vari-

ables used to capture these conditions are the unemployment and/or growth rates of an economy

(see, e.g., Bajari et al (2008), Gerardi et al 2013 and Gyourko and Tracy (2014)). In addition to

above variables, one may also include changes of in�ation and mortgage interest rates which a¤ect

obligors�real per capita income and their ability to pay interest rate and principal on their loans.

It is worthwhile to note at this point that the above hypotheses are not competitive in explain-

ing PD, but they interact with each other. For instance, changes in business conditions also a¤ect

house prices and LTV, and thus they can be also thought of as being consistent with the negative

equity hypothesis explanation of PD. Negative equity is not a su¢ cient condition for a borrower

1See Titman and Torous (1989), for a �rst empirical evaluation of this hypothesis.
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to default, as also noted by Elul et al (2010). If the ability to pay of a borrower is high or his/her

liquidity position is adequate, then she/he may prefer not to default on her/his loan, but to wait

for house prices to restore.

Apart from the above variables, we can also consider institutional factors that in�uence PD.

These can include lenders�policies (or practices) and/or government laws (or acts) helping bor-

rowers with �nancial di¢ culties to prevent them from falling behind on payments and default.

Under �nancial distressed conditions, to avoid massive losses and accommodate borrowers��nan-

cial conditions many banks tend to be actively involved in loan restructuring (or re�nancing) of

delinquent (or defaulted) loans. This is often done by extending the maturity term structure of

existing loans and/or by reducing their installments (or payment) rates. To motivate such prac-

tices on behalf of credit units and also to protect the economy from massive collaterals liquidation,

governments often introduce acts which ban foreclosures for a speci�c period of time. The ban-

ning period extends the time between foreclosure and collateral liquidation procedures. During

this period, macroeconomic conditions and borrowers�s �nancial and/or ability-to-pay conditions

may improve. Thus, defaulted loans may be cured and lenders may avoid loses from massive

property sales in auctions markets. Examples of such acts are the laws 3814/2010 and 4128/2013

of the greek government banning foreclosures on �rst residence. These laws do not allow banks

to proceed with liquidations on their residential collaterals, in case of a defaulted borrower and

given that all collections or legal actions have been exhausted. They can also raise moral hazard

incentives that borrowers with ability to pay and without liquidity problems will not pay back

their loans.

In this paper, we empirically examine how the above policies of banks and government a¤ect

PD. To our knowledge, this is the �rst paper which examines these questions. Ignoring these e¤ects

may obscure the true relationship between PD and behavioral (like the LTV), or macroeconomic,

variables which are often assumed that determine this relationship. Our analysis relies on a unique

panel data set consisting of loan-level residential data from the Greek economy. In particular, our

data set consists of 85230 Greek individual mortgage accounts (loans) on monthly frequency, cov-

ering the period from 2008:01 to 2014:10. Using panel data, instead of cross-section data sets

consisting of loan portfolios, enables us to reveal the dynamic e¤ects of behavioral and macroeco-

nomic variables on PD. Also, we can capture the qualitative e¤ects of restructuring loan decisions
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and government acts banning foreclosures on PD. The Greek economy constitutes an interesting

case to examine if the above institutional policies in�uence PD, under persistent recessionary and

�nancial distressed conditions. During our sample, the Greek economy has experienced a severe

and prolonged economic and �nancial crisis which led to a loss of its GDP by 24.6%, the unem-

ployment rate increased from 7.8% in 2008 to 26.5% in 2014, whilst the residential real estate

prices dropped cumulatively by 36.8% compared to their peak in 2008.

Our modelling approach of PD is based on a discrete-time survival analysis model, which

allows for calculating PD of a borrower in a future period conditionally on the assumption that

she/he has not been previously defaulted. Discrete-time survival models constitute reduced form

econometric panel data models which are frequently used in the literature to examine if the equity

and/or ability-to-pay hypotheses can explain mortgage defaults.2 These models can estimate time-

varying hazard rate of mortgages (re�ecting the expected number of defaults), taking into account

a number of application, behavioral and macroeconomic covariates, at a point of time, as well as

the lenders�practices and foreclosures procedures discussed above that can in�uence default rates.

These covariates or procedures control for the time variation of the baseline hazard rate function

of a mortgage during its life. They can help us in understanding behavioral and/or exogenous

sources of mortgage defaults. Discrete-time survival models can also show how long the mortgage

survives before its default in a future period. They can be employed to provide out-of-sample

probability and point forecasts of mortgage defaults for a future period of time, given current

information on behavioral, macroeconomic variables and other events.

In our analysis, we have extended the discrete-time survival model into the following directions.

First, we have allowed for a break in its baseline hazard rate function due to severe economic and/or

credit crunch conditions of the economy after a point of time (see Leow and Crook (2014)). Instead

of assuming this break point as known, we treat it as unknown and we estimate it from our data,

endogenously, by adopting a search estimation procedure over a grid of possible breaks during

our sample. This method can shed light on exogenous events that have played an important role

in deteriorating the �nancial conditions of the economy and, hence, have caused abrupt shifts in

the PD rate. The second extension of the model is that, apart from the logit function, we also

2See, e.g., Deng et al (2000), Calhoun and Deng (2002), Gross and Souleles (2002), Gerardi et al 2013,
Crook and Bellotti (2010), and Bellotti and Crook (2013).
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consider the cloglog function as a link function between PD and the di¤erent vectors of covariates

(explanatory variables) assumed in our analysis. As it has heavier asymmetric tails compared to

the logit, the cloglog function can better capture asymmetric responses of covariates on extreme

events (see, e.g., Koenker and Yoon (2009)).

The paper provides a number of results which have important policy implications. First, they

indicate that, during our sample, there is a clear cut structural break in the baseline hazard rate

function after the end of year 2011, which has increased this rate upwards. This may be associated

with the political uncertainty in year 2012 (double elections) and the severe deterioration of the

�nancial and economic conditions in that year. Second, banning foreclosure laws tend to increase

the future default probability. Our results also indicate that these procedures may raise moral

hazard incentives that borrowers will not maintain their payments in long run, even for loans

with lower than unity LTV. We argue that this may be attributed to the prolonged recessionary

conditions held in the greek economy, during our sample. Under these conditions and incentives,

e¤orts of banks to restructure (or re�nance) mortgage loans may not successfully a¤ect future

default probabilities. Regarding the application, behavioral and macroeconomic variables used

in our analysis, the paper �nds that these variables have the predicted by the theory e¤ects on

PD. The above results are robust to di¤erent speci�cations of the binary link functions used in

our analysis, namely the logit and cloglog functions. The paper shows that between these two

functions, the cloglog exhibits better in- and out-of-sample forecasting performance.

The paper is organized as follows. Section 2 presents the discrete-time survival model and

its extensions. Section 3 presents the estimation procedure of identifying the break point in the

baseline hazard function rate. This is done under di¤erent speci�cations of the binary link function,

as mentioned above. This section also presents the estimation results of the model and carries out

an out-of-sample forecasting exercise to evaluate the performance of alternative speci�cations of

the model considered. Section 4 concludes the paper.
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2 Model setup and extensions

2.1 Model set up

Assume discrete time, denoted as t = 0; 1; :::; T , and that at t + h a default event may happen,

where h = 0; 1; 2; :::; H are h periods (months) ahead. This default event can be captured by a

binary variable Yi;t+h, where i = 1; 2; :::; N stands for an individual loan account. Yi;t+h takes

the value 1 if a default occurs, and zero otherwise, i.e., Yi;t+h = 1 for default and Yi;t+h = 0 for

non-default. A standard discrete-time survival model assumes that the probability of default (PD)

of a loan i at time t+ h, denoted as Pi;t+h is given by the following reduced form equation:3

Pi;t+h = Pr(Yi;t+hjYi;t = 0; �i;t+h�di ; xi;t�m; zt�p) i = 1; 2; :::; N and t = 1; 2; :::; T

= �(b0 + b
0
1't+h�di + b

0
2�i;t+h�di + b

0
3xi;t�m + b

0
4zt�p), 8 h (1)

where �(:) is a function which links probability Pi;t+h to di¤erent vectors of covariates. In par-

ticular, 't+h�di = (di; d
2
i ; log(di), log(di)

2)0 is a vector of linear and nonlinear functions of the

duration time of loan i, denoted as di, which re�ects the number of periods (months) that loan

account i has opened until t + h, i.e., di = 1; 2; ::::Di months. The inner product of the vectors

of slope coe¢ cients b01 and 't+h�di, i.e., b
0
1't+h�di, gives the baseline hazard rate of default, for

di¤erent values of di. This is a smooth function of di, which captures the deterministic pattern

of PD, for all loan accounts i. �i;t+h�di denotes a vector of application variables (AV) which is

known only at the time of a loan application t + h � di, i.e., when a loan account was opened.

Finally, xi;t�m is a vector of behavioral variables (BV) collected over the life of the loan and zt�p

is a vector of macroeconomic variables (MV), which are common for all individual loan accounts,

i, in any period t of our sample. The lag structure of vectors xi;t�m and zt�p (i.e., m and p) are

appropriately chosen to provide conditional forecasts of Pi;t+h based on the current information

set It, which includes all the above explanatory variables.4

The application variables that we consider in our analysis include dummy variables capturing

(i) urban e¤ects on Pi;t+h, (ii) age e¤ects associated with the age of the borrower at the time

3See, e.g., Bellotti and Crook (2013), and Hwang and Chu (2014).
4Note that m and p can take negative values, when they stand for lead orders.
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of application (categorized by the following years of old intervals: 18-30, 30-40, 40-50), and (iii)

housing and/or repair categories of a loan, denoted as product codes. If the purpose of a loan is

for a house purchase, it is denoted as product code 1, for a house repair as product code 2 and,

�nally, for any other use as product code 0.

As behavioral variables (BV), we consider the ratio of delinquent amount to the contract

amount, denoted as DTC, and the ratio of the total balance to the most recent collateral valuation,

referred to as loan-to-value (LTV) in the literature. Since LTV may not capture, e¢ ciently, nega-

tive equity e¤ects (known also as strategic defaulters�e¤ects) on Pi;t+h for values of it close to unity,

due to transaction costs of defaulting, moving and reputation costs etc (see Bhutta et al (2010)),

we have also included a speci�cation of this variable which considers, separately, the e¤ects of LTV

values bigger or equal than 120% on Pi;t+h. This variable is denoted as LTV�120%. It equals

to LTV, if LTV is 120% or more, and zero otherwise. The 120% value of the LTV is a threshold

variable above which strategic defaulters may choose to default ( see Goodstein et al 2011).

The variable DTC, de�ned above, constitutes a measure of delinquency to the total debt of

the borrower. It is a measure of the consistency of the borrower to pay his/her loan. Another

measure of this consistency is the number of times that a delinquent obligor has a positive amount

in bucket 1 (i.e., it is past due for up to one month), in bucket 2 (past due up two months) and

in bucket 3 (past due up to three months), over the history of a loan. This variable is de�ned as

delinquency buckets (DB). This variable and DTC may be thought of as complementary variables

in measuring the e¤ects of borrower�s delinquent attitude on Pi;t+h. DTC can be thought of as

capturing the magnitude of this risk on Pi;t+h, while DB as re�ecting the strength (degree) of this

attitude per borrower.

In addition to the above behavioral variables, we also consider a dummy variable capturing the

e¤ects on Pi;t+h of restructured loans by the banks. These are currently performing loans, assigned

in new accounts, which have been defaulted before at least for one time. This dummy variable

is de�ned as redefaulted loans. It takes the value 1, if a loan i has defaulted before time t, and

zero otherwise. Including this variable into model (1) can indicate if loan restructuring practices

of banks aiming to mitigate the e¤ects of recessionary and �nancial distressed conditions on debt

servicing have any signi�cant e¤ects on Pi;t+h.

Another dummy variable used in our analysis to capture behavioral e¤ects on Pi;t+h is denoted
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as foreclosure moratorium (FM). This variable equals to 1 for all the loan accounts protected by

government laws (or acts) which ban foreclosures, and zero otherwise. Including this variable into

analysis can indicate if government laws which do not allow banks to proceed with liquidations on

their residential collaterals have important e¤ects on Pi;t+h. As such laws may raise moral hazard

incentives that borrowers with low LTV will not pay back their loans, we have also included a

dichotomous variable, denoted as FM�LTV � 90%, among the behavioral variables of model

(1). This variable is equal to the LTV value of the loan accounts protected by the foreclosure

moratorium law if LTV is less, or equal, to 90%, and zero otherwise. Since the value of the loan

collateral is bigger than that of the loan, this variable may capture borrowers�motivation to avoid

paying back their loans, by exploiting laws on foreclosures ban.

Finally, as macroeconomic variables, we consider the in�ation and unemployment rates, and

a weighted average of loan interest rates of the mortgage market. These variables constitute key

macroeconomic variables in many models determining PD. They are also sampled on monthly

basis, which is consistent with the frequency of our level-loan data. In our empirical analysis, we

have also considered the growth rate of Gross Domestic Product (GDP). This was interpolated

on a month to month basis, as it is given on quarterly frequency. But, this variance is not found

to be signi�cant at the 5% level, for all the alternative speci�cations of the model estimated. One

can argue that its e¤ects on Pi;t+h can be better captured by the unemployment rate, given the

monthly frequency of our data.

2.2 Extensions of model (1)

Since severe changes in economic and credit conditions may have caused abrupt shifts on PD,

model (1) is extended to di¤erent directions. First, a vector of time(year)-speci�c dummy variables,

denoted as vt, which are common across all i, are included into its intercept to capture e¤ects,

like elections, government interventions or any policy announcements, on Pi;t+h. Second, to see

if there is a point in our sample, say T0, after which a structural break type of change occurs in

baseline hazard rate function b01't+h�di, the vector of slope coe¢ cients of this function b1 is broken

into two components, denoted as b(0)1 and b(1)1 , respectively, before and after break point T0. By

splitting vector b1 in this way, we can investigate if the baseline hazard rate of the model remains

stable, or change substantially, over our sample, re�ecting changes in the credit conditions of the
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economy (see Leow and Crook (2014)). In our analysis, we will treat point T0 as unknown and we

will estimate it from the data. To this end, we will adopt a sequential maximum likelihood (ML)

estimation procedure (see, Zivot and Andrews (1992), and Andrews (1993)). According to it, the

selection of T0 is viewed as the outcome of maximizing the conditional log-likelihood function of

model (1) over a set of possible points T0 in our sample. Based on the above extensions, model

(1) can be written as follows:

Pi;t+h = Pr(Yi;t+hjYi;t = 0; �i;t+h�di ; xi;t�m; zt�p) i = 1; 2; :::; N and t = 1; 2; :::; T

= �(b0 + 

0
1vt + b

(0)0
1 't+h�di + b

(1)0
1 't+h�di + b

0
2�i;t+h�di + b

0
3xi;t�m + b

0
4zt�p), 8 h, (2)

where b(0)01 6= b(1)01 , with b(0)01 = 0 if t � T0 and b(1)01 = 0 if t < T0.

Another extension of the model concerns the link function �(:). Apart from the logit function

which is derived by the logistic distribution F (w) = ew

1+ew
, we will employ in our analysis the cloglog

function �(w) = log(� log(1 � w)), derived by the extreme value (or log-Weibull) distribution

given as F (w) = 1 � e�ew (see Lahiri and Yang (2013)). The cloglog link function has heavier

and asymmetric tails than the logit, or probit, one, and thus it can better capture asymmetric

responses of covariates on extreme events.

3 Empirical analysis

In this section, we present and discuss the results of our empirical analysis. Our analysis proceeds

as follows. First, we present the estimates of model (1), which does not consider a break in

its baseline hazard rate function. This is done for alternative speci�cations of the model which

consider logit and cloglog link functions �(:), as well as year-speci�c dummies and qualitative

dummy variables counting for redefaulted loans and foreclosure moratorium e¤ects. Then, we

estimate the above all speci�cations of the model allowing for a break in the baseline hazard

function (see model (2)). Finally, we carry out an out-of-sample forecasting exercise to evaluate

the relative performance of the above speci�cations of model (2) to forecast future average default

probabilities.
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3.1 Data

Our data set consists of a very rich set of a Greek bank individual loan accounts whose frequency

is monthly. It covers the period from 2008:01 to 2014:10 and it consists of 85230 accounts (loans).

The dummy variable capturing urban e¤ects takes 1 for the loans around Athens (Attica), and zero

otherwise. Regarding the collateral evaluation of loans, used to calculate LTV, we have recognized

some special features of the Greek economy over the recent period. To this end, we use real estate

indices provided by the bank of Greece to adjust the values of the collaterals, whose prices dropped

cumulatively by 36.8% over our sample. To cover the di¤erent categories of collaterals, we have

used �ve di¤erent real estate indices. These include: the Residential Real Estate, Warehouse

/Storage, Building ground/Construction, Field for Utilization/Animals, O¢ ces, Stores/Shops,

Industrial and Agricultural �elds.

Figure 1 graphically presents the key behavioral and macroeconomic variables employed in our

analysis, namely the consumer price index (from which in�ation is calculated), unemployment and

average mortgage rates, and the behavioral variables LTV, DTC and DB. For exposition reasons,

the behavioral variables were aggregated across all loan accounts i, at any point of time t. For the

LTV and DB variables, we present the upper and lower 5% quantiles of them and their average

value, over all i. Figure 2 presents graphs of the number of the defaulted and restructured by the

bank loans, as well as the loans protected by government law banning foreclosures. Values of the

correlation coe¢ cients among the number of defaulted, restructured and protected loans, over time,

and the above behavioral and macroeconomic explanatory variables are given in Table 1. Note

that the table gives two sets of correlation coe¢ cient values: the �rst is based on contemporaneous

values of all variables, while the second is based on three-periods (months) lagged values of the

behavioral and macroeconomic variables.
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Figure 1: Graphs of the macroeconomic and behavioral variables; Top plots,
left towards right side: CPI, unemployment and mortage interest rate) Bottom
plots, left towards righ side: LTV( 10% upper quantile, average values and
lower 10% values), DTC and DB (10% upper quantile, average and lower 10%

quantile).

Inspection of Figure 1 clearly indicates that the unemployment rate increases almost linearly,

during our sample. It reaches its peak in the begging of year 2013 and, then, it starts declining.

A similar picture appears for the consumer price index, used to calculate the in�ation rate. Fi-

nally, the mortgage rate steadily declines during our sample, with the exception of a short period

after April 7th 2011, where the ECB increased its lending rate to tighten in�ation expectations.

However, since year 2012 the ECB started lowering its interest rates to get banks to lend more

to credit-starved customers, taking also into account that in�ation expectations had been falling

since the beginning of this year. Regarding the behavioral variables, the �gure indicates that the

upper quantile of the LTV, which presents the most likely to default loans, increases steadily since

the beginning our sample, in year 2008, and it becomes stable towards the end of our sample, after

year 2013. The two other behavioral variables, graphically presented in Figure 1 (namely, DTC
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Figure 1: Figure 2: Defaulted, restructured and protected residential loans (from the left towards
the right side)

and DB), exhibit similar patterns to that of LTV.

Figure 2 reveals that the number of defaulted loans during our sample is very volatile. This

number reaches its peak in year 2012, and since then it starts declining until the end of the sample,

where its becomes stable. A similar pattern is observed for the number of restructured loans. The

number of protected loans picks up immediately after the implementation of the law on foreclosures

ban, in year 2010. A comparison between Figures 1 and 2 indicates that the above changes (rises

and falls) of the number of defaulted and restructured loans can be associated with those of the

macroeconomic and behavioral variables, presented in Figure 1. As shown in Table 1, which

presents values of the correlation coe¢ cients among the above categories of variables, changes

in the unemployment and in�ation rates, as well as in LTV and DTC are positively and highly

correlated to the number of defaulted, restructured and protected loans. This is true for both

set of values of the correlation coe¢ cients reported in the table, i.e., based on contemporaneous

values of the behavioral and macroeconomic variables and their lagged values. Another interesting

observation that can be made from the results of Table 1 is the very high positive correlation of

unemployment and in�ation rates with LTV. This may be taken as evidence that the deterioration

in the macroeconomic and credit conditions, observed during our sample are closely linked.
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Table 1: Correlation Coe¢ cients
Contemporaneous (with three-lags in parentheses)
LTV DTC DB unemployment in�ation rate mortgage rate

Defaulted loans 0.55 (0.33) 0.80 (0.82) 0.35 (0.47) 0.16 (0.009) 0.41 (0.30) -0.20 (-0.07)
Restructured loans 0.57 (0.48) 0.40 (0.44) -0.08 (-0.007) 0.37 (0.28) 0.59 (0.54) -0.21 (-0.14)
Protected loans 0.54 (0.42) 0.44 (0.51) -0.07 (-0.009) 0.29 (0.18) 0.65 (0.59) -0.16 (-0.15)
LTV 0.69 (0.62) 0.81 (0.79) -0.55 (-0.52)
DTC -0.31 (-0.40) 0.07 (-0.10) 0.23 (0.23)
DB -0.19 (-0.17) -0.56 (-0.69) 0.63 (0.73)

Notes: This table presents values of the correlation coe¢ cients of the number of defaulted, restruc-

tured and protected loans with key explanatory variables of the model, such as LTV, DTC, DB, and

unemployment, in�ation and mortgage interest rates. It presents correlation coe¢ cients based on con-

temporaneous values of the above explanatory variables and, second, based on three-periods (months)

lagged values of them (see values in parentheses).

3.2 Estimation Results

In this section, we present maximum likelihood (ML) estimates of the parameters of models (1)

and (2), denoted by vector �. These are given in Tables 2 and 3, respectively. Both of these tables

present parameter estimates of di¤erent speci�cations of the models with the logit and cloglog link

functions �(:), and for their versions considering also the qualitative dummy variables capturing

the redefaulted loans and foreclosure moratorium e¤ects on probability of default Pi;t+h. The lag

order of both the behavioral and macroeconomic variables used in the estimation of the models are

chosen to be m=p=3 months, which enables to forecast default probabilities h = 3 months ahead.

The macroeconomic variables employed to estimate the models are quarter-on-quarter di¤erences

of them, obtained at any point (month) t of our sample.

The parameter estimates of Table 2, for model (1) ignoring a structural break in the baseline

hazard function, are based on the maximization of the following likelihood function:

logL(�) =
NX
i=1

logLi;h(�);

where logLi;h(�) is the log-likelihood function which corresponds to each individual loan account
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i, i.e.,

logL
i;h
(�) =

T�hX
t=1

Yi;t+h logPi;t+h + (1� Yi;t+h) log (1� Pi;t+h) ; 8 i. (3)

This estimation procedure assumes that the error terms of model (1) are independent across all

accounts i, which constitutes the individual units of our panel data set.

Table 2: Estimates of alternative speci�cations of model (1)
(I) logit (II) cloglog (III) logit (IV) cloglog

Intercept -129.98 (1.13) -41.52 (0.82) -130.11 (3.12) -45.75 (1.16)
2009 0.12 (0.04) -0.02 (0.01) 0.28 (0.01) 0.01 (2e-3)
2010 0.18 (0.04) 0.004 (9e-3) 0.17 (0.05) 0.01 (0.09)
2011 0.40 (0.05) 0.05 (9e-3) 0.21 (0.03) 0.02 (3e-3)
2012 0.78 (0.03) 0.13 (9e-2) 0.57 (0.01) 0.09 (6e-2)
2013 0.25 (0.08) -0.005 (8e-3) 0.13 (1e-3) -0.04 (4e-3)

duration: di 2.84 (0.27) 0.94 (0.21) 2.86 (0.82) 1.04 (0.30)
d2i -0.009 (0.001) -0.003 (8e-4) -0.009 (9e-4) -0.003 (1e-4)

log(di) 97.42 (1.04) 31.30 (0.65) 97.26 (2.49) 34.64 (0.62)
log(d2i ) -24.62 (0.88) -7.98 (0.18) -24.59 (0.65) -8.84 (0.16)

Application Variables
age e¤ects: (18,30] 0.28 (0.02) 0.07 (7e-3) 0.28 (0.03) 0.06 (7e-3)

(30,40] 0.36 (0.02) 0.09 (6e-3) 0.34 (0.03) 0.07 (6e-3)
(40,50] 0.39 (0.02) 0.09 (6e-3) 0.38 (0.02) 0.08 (7e-3)

product codes: 0 0.25 (0.02) 0.08 (9e-3) 0.29 (0.03) 0.09 (5e-3)
1 0.09 (0.02) 0.04 (7e-3) 0.10 (0.01) 0.03 (4e-3)
2 0.03 (0.001) 0.002 (8e-3) 0.04 (0.01) 0.04 (1e-3)

urban e¤ects -0.04 (0.01) 0.001 (3e-3) -0.08 (0.01) -0.01 (2e-3)
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Table 2 (continued): Estimates of alternative speci�cations of model (1)
Behavioral Variables (I) logit (II) cloglog (III) logit (IV) cloglog

DTC 155.26 (1.00) 63.65 (0.33) 155.30 (0.85) 54.05 (0.32)
Deliquency buckets 0.03 (2e-3) 0.007 (1e-4) 0.02 (4e-3) 0.009 (1e-4)

LTV 0.27 (0.05) 0.004 (3e-3) 0.20 (0.01) 0.02 (0.01)
LTV> 120% 0.17 (0.02) 0.04 (0.02)

Redefaulted Loans 1.32 (0.04) 0.41 (0.01)
Foreclosure Moratorium (FM) 1.23 (0.03) 0.34 (0.08)

FM * LTV<0.90% 0.33 (0.04) 0.05 (0.01)
Macro Variables

in�ation 0.002 (2e-3) 0.002 (8e-4) 0.009 (1e-3) 3e-3 (8e-4)
mortgage rate 0.005 (0.01) 0.002 (7e-4) 1e-4 (1e-3) 3e-3 (0.001)
unemployment 0.010 (2e-3) 0.003 (2e-4) 0.013 (1e-3) 3e-3 (2e-4)

-loglik 165877.7 157128.9 163023.3 154992.9
no. parameters 23 23 27 27

R2 0.19 0.22 0.21 0.24
R2-adjusted 0.19 0.22 0.21 0.24

MAE 0.9211 0.939 0.9196 0.9188
MSE 0.8512 0.8709 0.8576 0.8524

MAE (Pr(.)>0.5) 0.007 0.003 0.0069 0.0012
MSE (Pr(.)>0.5) 0.06 0.05 0.0690 0.0252

Notes: The table presents maximum likelihood (ML) estimates of model (1), which does not assume

a break in its baseline hazard rate function. This is done for the following speci�cations of it: With

a logit and cloglog link functions (see Columns I and II, respectively), and with a logit and cloglog

link functions including also the qualitative dummy variables in the set of behavioral variables (see

Columns III and IV, respectively). The table presents values of a number of �t measures for the above

alternative speci�cations of the model, i.e., the minus log-likelihood function value (denoted as - loglik),

and Mcfaddens�coe¢ cients of determination R2 and R2-adjusted, de�ned as R2 = 1� log L(�)
log L(�0)

and R2-

adjusted=1� log L(�)-K
log L(�0)

, where � is the vector of the K-slope coe¢ cients (parameters) of the models and

�0 contains only the intercept as an explanatory variable (i.e., the remaining slope coe¢ cient are all set

to zero). It also includes the mean squared and absolute errors, denoted as MSE and MAE, respectively,

evaluating the in-sample forecasting performance of the above all speci�cations. These are calculated

based on the di¤erence between the model-forecasted default rates for one-moth ahead, averaged over for

all units i, and their corresponding observed default rates. They also include MSE and MAE errors of the

point forecast of the default event, i.e., Yi;t+1 = 1. To calculate these forecasts, we assume Pi;t+1 = 1, if

Pr(Yi;t+1 = 1jYi;t = 0; �i;t+h�di ; xi;t�m; zt�p) � 0:5. These metrics are denoted as MSE(Pr(.)>0.5) and
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MAE(Pr(.)>0.5).

The ML parameter estimates of model (2) (see Table 3) constitute conditional estimates on the

break point T0 of the baseline hazard function, implying that b
(0)0
1 6= b(1)01 . This point is found to

be at the end of year 2011, based on the sequential estimation ML procedure described before. At

this point, the ML reaches its maximum (supremum) value across all its values corresponding to

di¤erent points of our sample which are searched for a break in b1. More formally, the parameter

estimates reported in Table 3 are based on the solution of the following optimization problem:

sup
T02(1+l;T�h�l)

logL(�jT0),

where l gives the number of observations from the start and end of our sample which are trimmed

out in order to implement our sequential searching procedure for a break point in b1. For compu-

tational and economic (assumed lagged e¤ects of explanatory variables), we have set up our grid

search procedure over a period of three-months.5

To evaluate how well the alternative speci�cations of the models �t into the data, the tables

report values of the following metrics: the minus log-likelihood function value (denoted as - loglik),

and Mcfaddens�coe¢ cients of determination R2 and R2-adjusted, de�ned as follows: R2 = 1 �
log L(�)
log L(�0)

and R2-adjusted=1� log L(�)-K
log L(�0)

, where � is the vector of theK-slope coe¢ cients (parameters)

of the models and �0 is the intercept of the model (i.e., the remaining slope coe¢ cient are all set

to zero). In addition to the above, the tables also present in-sample measures of the forecasting

ability of the models. These include the mean squared error (MSE) and mean absolute error

(MAE) of the in-sample forecast errors of the probability forecasts. These errors are calculated

5For reasons of space, we do not report these results. To test more formally if there is a structural break in
vector b1, we can rely on the following likelihood ratio test statistic:

sup
T02(1+l;T�h�l)

LR(T0);

where LR(T0) = �2[logL(�jT0)� logL(�)]. Since the distribution of the above statistic under the null hypothesis
of no break in b1 is not standard, we have derived boorstrap critical values of it for di¤erent combinations of
the cross-section units N and time-series T of our panel. As the dimension N of our panel is very large, we
have kept �xed its time-dimension T and we have selected randomly di¤erent samples of cross-section units i
from our entire data set, i.e., N = f100; 500; 1000; 2000g. Then, we have derived bootstrap critical values of test
statistic sup

T02(1+l;T�h�l)
LR(T0); for the above di¤erent values of N . As N increases, these converge to a critical

value. Given this and our sample estimates of sup
T02(1+l;T�h�l)

LR(T0), we can clearly reject the null hypothesis of

no break against its alternative of a break point at point T0.
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based on the di¤erence between the model-forecasted default rates for one-moth ahead, averaged

over for all units i, and their corresponding observed default rates. They also include MSE and

MAE errors of the point forecast of the default event, i.e., Yi;t+1 = 1. To calculate these forecasts,

we transform the model-predicted probabilities of default events into point forecasts based on a

threshold value 0.5. That is, we set Pi;t+1 = 1, if Pr(Yi;t+1 = 1jYi;t = 0; �i;t+h�di ; xi;t�m; zt�p) � 0:5

(see, e.g., Lahiri and Yang (2013)). We henceforth denote these metrics as MSE(Pr(.)>0.5) and

MAE(Pr(.)>0.5).

In terms of the log-likelihood and R2 (or R2-adjusted) values of models (1) and (2) reported in

the tables, our results clearly support that the model with the break in its baseline hazard function

�ts better into the data than the other, which does not allow for a break. Note that this result

is robust across all di¤erent speci�cations of the models estimated. Figures 3A-3D graphically

present values of the baseline hazard rate function across the duration of a loan di (horizontal

line). These values are implied by the di¤erent estimates of slope coe¢ cients b(0)01 and b(1)01 , before

and after the end of year 2011, respectively. This is done for all the alternative speci�cations of

model (2) presented in Table 3.
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Figure 3A: Baseline hazard rate functions of
model (2), with logit link function (lower graph
before year 2012 and upper graph after this year)
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Figure 3B: Baseline hazard rate functions of
model (2), with loglog link function (lower graph
before year 2012 and upper graph after this year)
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Figure 3C: Baseline hazard rate functions of
model (2), with logit link function and qualitative
dummies (lower graph before year 2012 and upper

graph after this year)
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Figure 3D: Baseline hazard rate functions of
model (2), with loglog link function and

qualitative dumies (lower graph before year 2012
and upper graph after this year)

As can be seen from the above �gures, the baseline hazard rate becomes more persistent after

the break point T0, identi�ed by our data at the end of year 2011. After this point, the duration

period of a high hazard rate (and, hence, default risk) is considerably extended, for all i, and this

risk declines very slowly. This is more apparent for the cloglog link function. Although the hazard

rate function has the usual hump-shaped form, with respect to di, observed in the literature, after

point T0 it reaches its peak (maximum) quite early (at about 12 months) and it stays at this level
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for a prolonged period of time, especially for the cloglog speci�cation of link function �(:). Then,

it starts declining very slowly. This pattern of the baseline hazard rate function may be obviously

attributed to the deterioration of the credit risk conditions of the economy. These conditions

become more severe after the end of year 2011, due to political uncertainty (the double elections

in year 2012) and a possible exit of Greece from euro (referred to as GREXIT). As said before,

the cloglog link function may have captured more e¢ ciently than the logit one the responses of

the above events on the probability of default.

Table 3: Estimates of alternative speci�cations of model (2)
(I) logit (II) cloglog (III) logit (IV) cloglog

Intercept -130.33 (0.73) -48.42 (0.67) -130.55 (0.68) -53.75 (0.79)
2009 0.84 (0.05) 0.20 (0.01) 0.96 (0.06) 0.25 (0.01)
2010 1.00 (0.06) 0.23 (0.01) 0.93 (0.05) 0.24 (0.01)
2011 0.99 (0.05) 0.21 (0.01) 0.76 (0.05) 0.17 (0.01)
2012 0.72 (0.05) 0.13 (0.01) 0.54 (0.04) 0.11 (0.01)
2013 0.23 (0.04) -0.01 (0.01) 0.15 (0.04) -0.02 (8e-3)

duration: d(0)i 3.10 (0.09) 1.39 (0.03) 3.04 (0.08) 1.58 (0.04)

d
(0)2

i -0.01 (6e-4) -0.006 (2e-4) -0.01 (5e-3) -0.006 (2e-4)

log(d(0)i ) 98.53 (0.68) 37.60 (0.57) 98.19 (0.60) 41.92 (0.65)

log(d(0)
2

i ) -25.56 (0.30) -10.26 (0.18) -25.30 (0.26) -11.49 (0.20)

d
(1)
i 2.63 (0.05) 1.025 (0.02) 2.61 (0.04) 1.10 (0.02)

d
(1)2

i -0.09 (2e-4) -0.0032 (1e-4) -0.008 (4e-4) -0.004 (1e-4)

log(d(1)i ) 96.51 (0.66) 36.37 (0.51) 96.15 (0.60) 40.19 (0.60)

log(d(1)
2

i ) -23.81 (0.24) -9.08 (0.13) -23.64 (0.21) -9.93 (0.15)
Application Variables
age e¤ects: (18,30] 0.29 (0.03) 0.07 (7e-3) 0.28 (0.03) 0.07 (7e-3)

(30,40] 0.36 (0.03) 0.09 (6e-3) 0.34 (0.03) 0.08 (6e-3)
(40,50] 0.40 (0.02) 0.09 (6e-3) 0.39 (0.02) 0.09 (6e-3)

product codes: 0 0.25 (0.04) 0.08 (9e-3) 0.29 (0.04) 0.09 (9e-3)
1 0.09 (0.03) 0.03 (7e-3) 0.09 (0.03) 0.04 (7e-3)
2 0.007 (0.03) -0.002 (8e-3) 0.03 (0.03) 0.007 (8e-3)

urban e¤ects -0.05 (0.02) -0.0004 (3e-3) -0.09 (0.02) -0.01 (2e-3)
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Table 3 (continued): Estimates of alternative speci�cations of model (1)
Behavioral Variables (I) logit (II) cloglog (III) logit (IV) cloglog

DTC 156.12 (0.9) 63.52 (0.33) 156.30 (0.86) 62.78 (0.34)
Deliquency buckets 0.03 (4e-4) 0.007 (1e-4) 0.02 (4e-4) 0.007 (1e-4)

LTV 0.27 (0.01) 0.004 (3e-3) 0.20 (0.01) 0.02 (3e-3)
LTV> 120% 0.16 (0.02) 0.04 (6e-3)

Redefaulted Loans 1.27 (0.04) 0.41 (0.01)
Foreclosure Moratorium (FM) 1.23 (0.03) 0.32 (9e-3)

FM * LTV<0.90% 0.33 (0.04) 0.06 (0.01)
Macro Variables

in�ation -0.003 (3e-3) 0.0007 (8e-4) 0.005 (3e-3) 0.003 (9e-4)
mortgage rate -0.001 (3e-3) 0.002 (7e-4) 0.005 (3e-3) 0.001 (8e-4)
unemployment 0.007 (1e-3) 0.002 (2e-4) 0.009 (1e-3) 0.002 (2e-4)

-loglik 165574.21 156766.58 162768.66 154304.91
no. parameters 27 27 31 31

R2 0.18 0.23 0.20 0.25
R2-adjusted 0.18 0.23 0.20 0.25

MAE 0.9133 0.938 0.9127 0.9050
MSE 0.849 0.8657 0.8480 0.8410

MAE (Pr(.)>0.5) 0.0073 0.0038 0.0081 0.0037
MSE (Pr(.)>0.5) 0.0675 0.0495 0.0708 0.0487

Notes: The table presents maximum likelihood (ML) estimates of model (2), which assumes a break

in its baseline hazard rate function which is found to occur at the end of year 2011. This is done for

the following speci�cations of the model: With a logit and cloglog link functions (see Columns I and II,

respectively), and with a logit and cloglog link including also the qualitative dummy variables in the set

of behavioral variables (see Columns III and IV, respectively). The table presents values of a number of

�t measures of the above alternative speci�cations of the model, i.e., the minus log-likelihood function

value (denoted as - loglik), and Mcfaddens�coe¢ cients of determination R2 and R2-adjusted, de�ned

as R2 = 1 � log L(�)
log L(�0)

and R2-adjusted=1 � log L(�)-K
log L(�0)

, where � is the vector of the K-slope coe¢ cients

(parameters) of the models and �0 is the intercept of the model (i.e., the remaining slope coe¢ cient are set

to zero). It also includes the mean squared and absolute errors, denoted as MSE and MAE, respectively,

evaluating the in-sample forecasting performance of the above all speci�cations. These are calculated

based on the di¤erence between the model-forecasted default rates for one-moth ahead, averaged over for

all units i, and their corresponding observed default rates. They also include MSE and MAE errors of the
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point forecast of the default event, i.e., Yi;t+1 = 1. To calculate these forecasts, we assume Pi;t+1 = 1, if

Pr(Yi;t+1 = 1jYi;t = 0; �i;t+h�di ; xi;t�m; zt�p) � 0:5. These metrics are denoted as MSE(Pr(.)>0.5) and

MAE(Pr(.)>0.5).

Regarding the parameter estimates and the alternative speci�cations of the model considered,

the results of Table 3 reporting estimates of model (2) which �ts better into the data, leads to

a number of interesting conclusions which have important policy implications.6 First, in terms of

the -loglik and R2 (or R2-adjusted) values reported in the table, the best speci�cation of model (2)

is found to be that which assumes the cloglog link function �(:). As argued before, this function

may capture better the asymmetric responses of covariates on extreme events on PD, Pi;t+h,

compared to the logit one. This is in line with the superior performance of this function based on

the MSE(Pr(.)>.5) and MAE(Pr(.)>.5) metrics, evaluating the point forecast performance of the

model for default events. Both of these metrics take their lowest values for the cloglog speci�cation

of �(:).

Second, the versions of model (2) which include the qualitative dummy variables, capturing the

redefaulted loan and foreclosure moratorium e¤ects on PD, Pi;t+h, (see the estimates of columns

III and IV of Table 3, respectively) perform better than those that they do not (see columns I

and II). This can be clearly justi�ed by the values of -loglik and R2 (or R2-adjusted), as well as

all the forecasting performance metrics reported in the table. The e¤ects of the above dummy

variables on Pi;t+h are positive and signi�cant at 5%, or 1%, level. Note that these e¤ects are also

positive and signi�cant for model (1), which does not allow for a break in its baseline hazard rate

function (see Columns II and III of this table). The positive sign e¤ects of the above variables on

Pi;t+h mean that a restructured loan, which had redefaulted before, or a loan which is protected

by the foreclose moratorium law has higher probability to default in the future than a loan which

is not subject to the above categories. These e¤ects can be attributed to the persistency of the

recessionary and �nancial distressed conditions held in the Greek economy, over our sample. These

conditions may have a¤ected the ability of borrowers to pay in long term, even for borrowers whose

loans have been restructured. The above policies may be thus more successful under temporary

6Note that, with exception of the estimates of the slope coe¢ cients of the baseline hazard rate function, most
of the results of Table 3 are qualitatively consitent with those of Table 2, which provides estimates of the model
without the break.
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�nancial depressed conditions. The positive and signi�cant e¤ects of variable FM�LTV<90%,

which captures foreclosure moratorium e¤ects of loans with LTV<90%, on Pi;t+h indicate that

these policies may raise moral hazard incentives that borrowers will not maintain their payments

in long run, even for loans with lower than one LTV values (i.e., LTV<0.90%).

Turning to the discussion about the e¤ects of the other behavioral variables considered in our

analysis on Pi;t+h, namely DTC, DB, LTV and LTV�120%, the results of Table 3 indicate that the

sign of the slope coe¢ cients of these variables are consistent with the theory and their estimates are

signi�cant at 5%, or 1%, level. This is true for all speci�cations of model (2) considered. Moreover,

the positive sign and signi�cant e¤ects of LTV and LTV �120% on Pi;t+h are consistent with the

negative equity hypothesis which predicts that, if a loan has LTV>100%, then it will default.

The positive sign and signi�cant e¤ects of DTC and DB on Pi;t+h may capture the inability of

borrowers to pay back their loans, since they tend to delay their loan repayments.

Fourth, for the speci�cations of the model that employ the cloglog link function (see columns

II and IV of Table 3), the macroeconomic variables employed in the estimation of model (2),

i.e., in�ation, mortgage rate and unemployment rate, are all found to be signi�cant at the 5%

level. The signs of their slope coe¢ cients are also consistent with the theory. The e¤ects of a

rise in mortgage interest rate and unemployment rate tend to increase PD, since they negatively

a¤ect the ability of borrowers to pay their loans. On the other hand, the positive e¤ect of a

rise in in�ation on Pi;t+h can be attributed to a fall in real per capita income, caused by this

rise. The positive relationships between the above macroeconomic variables and Pi;t+h;as well as

those between unemployment rate and behavioral variables LTV and DTC, shown in Table 1,

can explain the fall of the number of the defaulted and restructured loans observed towards the

end of our sample, shown in Figure 2. This fall may be attributed to the slight decrease of the

unemployment rate, observed towards the end of our sample.

Fifth, regarding the application variables of the model, i.e., age, production codes and urban

variables, the results of Table 3 reveal that these variables are all signi�cant and economically

meaningful. The e¤ects of the age of a borrower at the time of application a¤ect positively

the probability of default. As was expected, our results indicate that borrowers of higher age

a¤ect more strongly Pi;t+h; compared to the younger ones. This happens because they are more

vulnerable to service their debt, as they have shorter life expectancy horizon. From the three
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categories of mortgages considered, the results of the table indicate that the residential and home

repair loans are the most risky ones. The negative sign of the slope coe¢ cient of urban variable

can be attributed to the fact that, compared to non-urban areas, most of the mortgages given to

the urban ones are for �rst residence.

3.3 Out-of-sample forecasting performance

In this section, we evaluate the out-of-sample forecasting performance of model (2), which is

found to better �t into the data. We consider both speci�cations of the model, with the logit and

cloglog link functions �(:). These speci�cations also include the dummy variables capturing the

qualitative e¤ects of the redefaulted loan and foreclosure moratorium procedures on PD, Pi;t+k.

That is, the speci�cations of the model used in our forecasting exercise correspond to those of

columns III and IV of Table 3.

Since the in-sample results suggest that there is a break in the baseline hazard rate function of

the model at the end of year 2011, in our out-of-sample exercise we forecast default probabilities

of loan data starting from 2012:06 until the end of the sample, i.e., 2014:08. For this period, we

obtain forecasts of Pi;t+h over the next 3-months, for all loan accounts i. This is done for every

time point of our out-of-sample interval.7 Based on them, we can obtain point forecasts of default

events (points), by setting Yi;t+h = 1; if Pr(Yi;t+h = 1jYi;t = 0; �i;t+h�di ; xi;t�m; zt�p) � 0:5. To

calculate the above forecasts, we rely on two di¤erent real-time recursive estimation approaches

of the model, over the out-of-sample period. The �rst is based on an expanding window of data

in which we estimate the model based on an initial sample, starting from 2008:01 until 2012:05.

Based on these estimates, we obtain default probabilities over the next 6-months. Then, we add

to our initial sample a window of 6 months observations, re-estimate the model and calculate the

subsequent set of default probability forecasts. This procedure is sequentially repeated until the

end of the sample. According to the second approach, known as rolling window, we do not use an

7Note that the expected probability of default, at time t, is calculated as follows. First, we estimate the survival
probability of a loan account i, which is given as the product of the probability of not failing at each time period,
conditional on not having failed before, i.e.,

Si (t) =

tY
s=1

(1� Pi;s)

The failure probability (probability of default) is given as 1� Si (t), for all i. See also Bellotti and Crook (2013).
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expanding window to estimate the model and provide future default probabilities, but we consider

a rolling window of six months. The �rst window starts from 2011:12 to 2012:05.

Table 4 presents the MSE and MAE metrics of the forecasting errors of the above approaches

based on the actual default rates. Our forecasts constitute average, over all individual accounts i,

estimates of default probabilities and default points. The results of the table lead to the following

conclusions. First, as for the in-sample exercise, the out-of-sample forecasting performance of the

model is very satisfactory. Our results clearly indicate that the speci�cation of (2) with the cloglog

link function outperforms that with the logit function. This is true for both the expanding and

rolling window methods of forecasts. It is also true for both the probability default and default

point forecasts. These results highlight the usefulness of the cloglog function in modelling PD.

The better performance of this link function, compared to the logit one, can be attributed to its

ability to capture asymmetric responses of covariates on the default events, as mentioned before.

Third, between the expanding and rolling window forecast methods, the second method improves

considerably the performance of the model. This can be obviously attributed to the fact that the

rolling window based forecasts can better capture the e¤ects of structural break type of changes

on model parameters, or other type of instabilities, occurring during our sample.

Table 4: Out-of-sample forecasts

logit cloglog logit cloglog
Expanding window Rolling window

Probability default forecasts
MAE 1.5185 1.1419 1.2419 0.9675
MSE 3.3039 2.2391 2.8941 2.0212

Default event forecasts
MAE (Pr(.)>.5) 1.1187 0.9027 0.9865 0.7957
MSE (Pr(.)>.5) 1.6925 1.3634 1.5507 1.2780

Notes: This table presents the mean absolute and squared error metrics of our out-of-sample fore-

casting exercise, denoted as MAE and MSE, respectively. This forecasting exercise covers the period

from 2012:06 to 2014:08. The above metrics are calculated based on an expanding and a rolling window

estimation approaches of model (2), over the out-of-sample interval. This is done for both the logit

and cloglog speci�cation of the model. To forecast the default events (points), we set Yi;t+h = 1; if

Pr(Yi;t+h = 1jYi;t = 0; �i;t+h�di ; xi;t�m; zt�p) � 0:5. The MAE and MSE corresponding to the forecasts

of these events are denoted as MAE (Pr(.)>.5) and MSE (Pr(.)>.5), respectively.
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4 Conclusions

Based on a discrete-time survival model, this paper has modelled the probability of default (PD)

of residential mortgages using an exclusive data set of the Greek economy, over period 2008-2014.

During this period, this economy has experienced a severe economic crisis and extraordinary

�nancial distressed conditions. Our results can be thus very useful in understanding sources of

loan defaults, under the above conditions. The paper has extended the survival model to allow for

a break in its baseline hazard rate function and it has tested a number of hypotheses of interest

that may determine the default probability of a residential loan. Some of these hypotheses concern

the e¤ects of law banning foreclosures on PD. These procedures are often adopted to mitigate the

e¤ects of recessionary or �nancial distressed conditions on debt servicing and to avoid massive

collaterals liquidation. Examining their e¤ects on PD is of major interest in the literature of

credit risk.

The paper has derived a number of interesting results, which have important policy implica-

tions. First, it shows that there is a common structural break in the baseline hazard rate function

after the end of year 2011, which can be attributed to the political uncertainty and severe re-

cessionary conditions held in the economy after that year, as well as the possibility of an exit

of Greece from euro. After that year, the high levels of the baseline hazard rate function be-

came more persistent than before, and they decreased very slowly. Second, the government law

banning foreclosures introduced have signi�cantly increased the future default probability. Our

estimates indicate that such laws (or acts) may raise moral hazard incentives that borrowers will

not maintain their payments in long run. We argue that this may be attributed to the prolonged

recessionary conditions held in the economy. Under these conditions and government acts, e¤orts

of banks to restructure (or re�nance) mortgage loans may not successfully a¤ect future default

probabilities.

Third, the paper provides clear cut evidence that the probability of default also depends on

behavioral variables, like the ratios of the loan-to-value and delinquent-to-contract amount, as well

as on macroeconomic variables, like the unemployment and in�ation rates. As was expected by the

theory, the e¤ects of the above all variables on PD are positive. A positive relationship between

LTV and PD supports the negative equity hypothesis, while positive e¤ects of the macroeconomic
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and the other behavioral variables on PD are in line with the ability-to-pay hypothesis.

References

Andrews, D.W.K. (1993), Tests for parameter instability and structural change with unknown

change point, Econometrica, 61, 821 �856.

Bajari, P., C.S. Chu and M. Park (2008), An empirical model of subprime mortgage default from

2000 to 2007, NBER WP 14625.

Bellotti, T. and J. Crook (2013), Forecasting and stress testing credit card default using dynamic

models, International Journal of Forecasting, 563-574.

Bhutta, N, J.Dokko and H. Shan (2010), The depth of negative equity and mortgage default

decisions, Finance and Economics Discussion Series, Federal Reserve Board, No 2010-35.

Calhoun, A. and Y. Deng (2002), A dynamic analysis of �xed-and adjustable-rate mortgages,

Journal of Real Estate Finance & Economics, 2, 9-33.

Campbell, J.Y., and J.F. Cocco (2015), A model of mortgage default, Journal of Finance, forth-

coming.

Crook,. J. and J. Banasik (2012), Forecasting and explaining aggregate consumer delinquency

behaviour", International Journal of Forecasting�28, 145-160.

Crook, J. and T. Bellotti (2010), Time varying and dynamic models for default risk in consumer

loans, Journal of Royal Statistics Society A, 173, 283-305.

Deng, Y., J.M. Quigley and R. van Order (2000), Mortgage terminations, heterogeneity and the

exercise of mortgage options, Econometrica, 68, 275-307.

Divino, J.A., E.S. Lima and J. Orrillo (2013), Interest rates and default in unsecured loan markets,

Quantitative Finance 13-12: 1925-1934.

Elul, R. N. S. Souleles, S. Chomsisengphet, D. Glennon, and R. Hunt (2010), What �triggers�

mortgage default?, The American Economic Review, 100, 490-494.

26



Folliant, J., W-V. Huang and J. Ondrich (1999) Stay, pay or walk away: A hazard rate analysis

of FHA-insured mortgage terminations, mimeo, University of Syracuse.

Gerardi, K., K.F. herkenho¤, L.E. Ohanian and P.S. Willen (2013), Unemployment, negative

equity and strategic default, Federal Reserve Bank of Atlanda, WP 2013-04.

Goodstein, R.M., P. Hanouna, C. D. Ramirez and C. Stahel (2011), Are foreclosures contagious?,

FDIC Center for Financial Research, WP No 2011-4.

Gross, D.B., and N.S. Souleles (2002), An empirical analysis of personal bankruptcy and delin-

quency, The Review of Financial Studies, 15, 319-347.

Gyourko, J. and J. Tracy (2014), Reconciling theory and empirics on the role of unemployment in

mortgage default, Journal of Urban Economics, 80, 87-96.

Hwang, R-C and C-K Chu (2014), Forecasting forward defaults with discrete-time hazard model,

Journal of Forecasting, 33, 108-123.

Koenker, R. and J. Yoon (2009), Parametric links for binary choice models: A Fisherian-Bayesian

colloquy, Journal of Econometrics, 152, 120-130.

Lahiri, K., and L. Yang (2013), Forecasting Binary Outcomes, Handbook of Economic Forecasting

(Timmermann, A. and G. Elliott, eds), North-Holland, Vol. 2B, 1025-1106.

Leow, M. and J. Crook (2014), The stability of survival model parameter estimates for predict-

ing the probability of default: Empirical evidence over the credit crisis, European Journal of

Operational Research, 1-8.

McFadden, D. (1974), The measurement of urban travel demand, Journal of Public Economics, 3,

303-328.

Titman and Torous (1989), Valuing Commercial Mortgages: An empirical investigation of the

contingent-claims approach to pricing risky debt, Journal of Finance, 44, 345-373.

Zivot, E., and D.W.K. Andrews (1992), Further evidence on the great crash, the oil-price shock,

and the unit-root hypothesis,Journal of Business & Economic Statistics 10, 251-270.

27


	Introduction
	Model setup and extensions
	Model set up
	Extensions of model (??)

	Empirical analysis
	Data
	Estimation Results
	Out-of-sample forecasting performance

	Conclusions

