A Generalisation of Closed Unbounded and Stationary Sets

Hazel Brickhill

University of Bristol

British Logic Colloquium
8th September 2017
A very vague question

What is a large/thick subset of an ordinal?
A very vague question

What is a large/thick subset of an ordinal?
- an unbounded set
A very vague question

What is a large/thick subset of an ordinal?

- an unbounded set
- a closed unbounded (club) set
What is a large/thick subset of an ordinal?

- an unbounded set
- a closed unbounded (club) set
 uncountable cofinality \rightarrow clubs generate a filter (measure)
A very vague question

What is a large/thick subset of an ordinal?

- an unbounded set
- a closed unbounded (club) set
 uncountable cofinality \rightarrow clubs generate a filter (measure)
- a stationary set
A very vague question

What is a large/thick subset of an ordinal?

- an unbounded set
- a closed unbounded (club) set
 uncountable cofinality \rightarrow clubs generate a filter (measure)
- a stationary set
 defined at ordinals of uncountable cofinality only
A sketch

Definition

\(C \subseteq \kappa \) is stationary-closed if whenever \(\alpha < \kappa \) and \(C \cap \alpha \) is stationary in \(\alpha \) we have \(\alpha \in C \).

Definition

\(C \) is 1-club in \(\kappa \) iff \(C \) is stationary in \(\kappa \) and stationary-closed.
A sketch

Definition

$C \subseteq \kappa$ is *stationary-closed* if whenever $\alpha < \kappa$ and $C \cap \alpha$ is stationary in α we have $\alpha \in C$.
A sketch

Definition

$C \subseteq \kappa$ is *stationary-closed* if whenever $\alpha < \kappa$ and $C \cap \alpha$ is stationary in α we have $\alpha \in C$.

Definition

C is *1-club* in κ iff C is stationary in κ and stationary-closed.
Definition 1: Generalised clubs

1. $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ.

Notation $d_\gamma(A) := \{ \alpha : A \text{ is } \gamma\text{-stationary below } \alpha \}$.
Definition 1: Generalised clubs

Definition

1. $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ.

2. $C \subseteq On$ is γ-stationary closed if for any α such that C is γ-stationary in α we have $\alpha \in C$.

Notation

\[d_{\gamma}(A) := \{ \alpha : A \text{ is } \gamma \text{-stationary below } \alpha \} \]
Definition 1: Generalised clubs

Definition

1. $S \subseteq \text{On}$ is 0-stationary in κ if it is unbounded in κ.
2. $C \subseteq \text{On}$ is γ-stationary closed if for any α such that C is γ-stationary in α we have $\alpha \in C$.
3. C is γ-club in κ if C is γ-stationary closed and γ-stationary in κ.

Notation

d$_{\gamma}(A) := \{\alpha : A$ is γ-stationary below $\alpha\}$
Definition 1: Generalised clubs

Definition

1. $S \subseteq \text{On}$ is 0-stationary in κ if it is unbounded in κ.

2. $C \subseteq \text{On}$ is γ-stationary closed if for any α such that C is γ-stationary in α we have $\alpha \in C$.

3. C is γ-club in κ if C is γ-stationary closed and γ-stationary in κ.

4. κ is γ-s-reflecting if for any γ-stationary S, $T \subseteq \kappa$ there is $\alpha < \kappa$ with S and T both γ-stationary below α.

Notation

$d_{\gamma}(A) := \{ \alpha : A \text{ is } \gamma\text{-stationary below } \alpha \}$
Definition 1: Generalised clubs

Definition

1. $S \subseteq \text{On}$ is 0-stationary in κ if it is unbounded in κ.

2. $C \subseteq \text{On}$ is γ-stationary closed if for any α such that C is γ-stationary in α we have $\alpha \in C$.

3. C is γ-club in κ if C is γ-stationary closed and γ-stationary in κ.

4. κ is γ-s-reflecting if for any γ-stationary S, $T \subseteq \kappa$ there is $\alpha < \kappa$ with S and T both γ-stationary below α.

5. $S \subseteq \kappa$ is γ-stationary if for every $\gamma' < \gamma$ we have κ is γ'-s-reflecting and for any $C \gamma'$-club in κ we have $S \cap C \neq \emptyset$
Definition 1: Generalised clubs

1. \(S \subseteq \text{On} \) is 0-stationary in \(\kappa \) if it is unbounded in \(\kappa \).
2. \(C \subseteq \text{On} \) is \(\gamma \)-stationary closed if for any \(\alpha \) such that \(C \) is \(\gamma \)-stationary in \(\alpha \) we have \(\alpha \in C \).
3. \(C \) is \(\gamma \)-club in \(\kappa \) if \(C \) is \(\gamma \)-stationary closed and \(\gamma \)-stationary in \(\kappa \).
4. \(\kappa \) is \(\gamma \)-s-reflecting if for any \(\gamma \)-stationary \(S, T \subseteq \kappa \) there is \(\alpha < \kappa \) with \(S \) and \(T \) both \(\gamma \)-stationary below \(\alpha \).
5. \(S \subseteq \kappa \) is \(\gamma \)-stationary if for every \(\gamma' < \gamma \) we have \(\kappa \) is \(\gamma' \)-s-reflecting and for any \(C \) \(\gamma' \)-club in \(\kappa \) we have \(S \cap C \neq \emptyset \).

Notation

\(d_\gamma(A) := \{ \alpha : A \text{ is } \gamma \text{-stationary below } \alpha \} \)
Restating the Definitions in Terms of d_γ

Notation

$d_\gamma(A) := \{\alpha : A \text{ is } \gamma\text{-stationary below } \alpha\}$

Definition (restated)

1. $S \subseteq \text{On}$ is 0-stationary in κ if it is unbounded in κ.
2. $C \subseteq \text{On}$ is γ-stationary closed if $d_\gamma(C) \subseteq C$.
3. C is γ-club in κ if C is γ-stationary closed and γ-stationary below κ.
4. κ is γ-reflecting if for any γ-stationary S, $T \subseteq \kappa$,
 \[d_\gamma(S) \cap d_\gamma(T) \cap \kappa \neq \emptyset.\]
5. $S \subseteq \kappa$ is $n+1$-stationary if κ is n-reflecting and $S \cap C \neq \emptyset$ for every C n-club in κ.
how large is a subset of κ?

If κ is n-reflecting, then for a subset of κ we have these implications:

\[
\begin{align*}
n\text{-club} & \quad \implies \quad n + 1\text{-stationary} \\
\uparrow & \\
n - 1\text{-club} & \quad \implies \quad n\text{-stationary} \\
\uparrow & \\
\vdots & \\
\uparrow & \\
0\text{-club (} \equiv \text{ club)} & \quad \implies \quad \text{stationary} \\
\uparrow & \\
\text{unbounded} & \quad \downarrow
\end{align*}
\]
Origins

Definition 2: Reflection

1. $S \subseteq \text{On}$ is 0-stationary in κ if it is unbounded in κ.
Definition 2: Reflection

1. $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ.
2. $S \subseteq \kappa$ is γ-stationary if for every $\eta < \gamma$ and for any η-stationary T, $T' \subseteq \kappa$ there is $\alpha \in S$ with T and T' both γ-stationary below α.
Definition 2: Reflection

1. $S \subseteq \text{On}$ is 0-stationary in κ if it is unbounded in κ.

2. $S \subseteq \kappa$ is γ-stationary if for every $\eta < \gamma$ and for any η-stationary T, $T' \subseteq \kappa$ there is $\alpha \in S$ with T and T' both γ-stationary below α.

- Defining γ-stationary sets in this way is equivalent to defining them in terms of generalised clubs.
Definition 2: Reflection

1. $S \subseteq \text{On}$ is 0-stationary in κ if it is unbounded in κ.
2. $S \subseteq \kappa$ is γ-stationary if for every $\eta < \gamma$ and for any η-stationary T, $T' \subseteq \kappa$ there is $\alpha \in S$ with T and T' both γ-stationary below α.

- Defining γ-stationary sets in this way is equivalent to defining them in terms of generalised clubs.
- This is easy to show by induction: the key is that if κ is γ-stationary and $T \subseteq \kappa$ is η-stationary for $\eta < \gamma$, then $d_\eta(T)$ is η-club.
Definition 3: Topologies

Let Ω be an ordinal and \mathcal{T} a topology on Ω. For $A \subseteq \Omega$ we set

$$d_{\mathcal{T}}(A) = \text{the set of limit points of } A \text{ in the topology } \mathcal{T}.$$
Definition 3: Topologies

Let Ω be an ordinal and \mathcal{T} a topology on Ω. For $A \subseteq \Omega$ we set

$$d_{\mathcal{T}}(A) = \text{the set of limit points of } A \text{ in the topology } \mathcal{T}.$$

Set \mathcal{T}_0 to be the interval topology on Ω.

These topologies are closely related to γ-stationarity.
Definition 3: Topologies

Let Ω be an ordinal and \mathcal{T} a topology on Ω. For $A \subseteq \Omega$ we set

$$d_{\mathcal{T}}(A) = \text{the set of limit points of } A \text{ in the topology } \mathcal{T}.$$

Set \mathcal{T}_0 to be the interval topology on Ω.

\blacksquare $d_{\mathcal{T}_0}(A) = d_0(A)$
Definition 3: Topologies

Let Ω be an ordinal and \mathcal{T} a topology on Ω. For $A \subseteq \Omega$ we set

$$d_\mathcal{T}(A) = \text{the set of limit points of } A \text{ in the topology } \mathcal{T}.$$

Set \mathcal{T}_0 to be the interval topology on Ω.

- $d_{\mathcal{T}_0}(A) = d_0(A)$
- α is non-isolated in \mathcal{T}_0 iff α is a limit ordinal.
Definition 3: Topologies

Let Ω be an ordinal and \mathcal{T} a topology on Ω. For $A \subseteq \Omega$ we set

$$d_{\mathcal{T}}(A) = \text{the set of limit points of } A \text{ in the topology } \mathcal{T}.$$

Set \mathcal{T}_0 to be the interval topology on Ω.

- $d_{\mathcal{T}_0}(A) = d_0(A)$
- α is non-isolated in \mathcal{T}_0 iff α is a limit ordinal.

Definition

If \mathcal{T} is a topology on Ω then the topology derived from \mathcal{T} is the topology generated by

$$\mathcal{T} \cup \{d_{\mathcal{T}}(A) : A \subseteq \Omega\}.$$
Definition 3: Topologies

Let Ω be an ordinal and \mathcal{T} a topology on Ω. For $A \subseteq \Omega$ we set

$$d_{\mathcal{T}}(A) = \text{the set of limit points of } A \text{ in the topology } \mathcal{T}.$$

Set \mathcal{T}_0 to be the interval topology on Ω.

- $d_{\mathcal{T}_0}(A) = d_0(A)$
- α is non-isolated in \mathcal{T}_0 iff α is a limit ordinal.

Definition

If \mathcal{T} is a topology on Ω then the toplogy derived from \mathcal{T} is the topology generated by

$$\mathcal{T} \cup \{ d_{\mathcal{T}}(A) : A \subseteq \Omega \}.$$

Set $\mathcal{T}_{\gamma+1}$ to be the topology derived from \mathcal{T}_γ and for limit λ set

$$\mathcal{T}_\lambda = \bigcup_{\gamma < \lambda} \mathcal{T}_\gamma.$$
Definition 3: Topologies

Let Ω be an ordinal and \mathcal{I} a topology on Ω. For $A \subseteq \Omega$ we set

$$d_{\mathcal{I}}(A) = \text{the set of limit points of } A \text{ in the topology } \mathcal{I}.$$

Set \mathcal{I}_0 to be the interval topology on Ω.

- $d_{\mathcal{I}_0}(A) = d_0(A)$
- α is non-isolated in \mathcal{I}_0 iff α is a limit ordinal.

Definition

If \mathcal{I} is a topology on Ω then the \textit{topology derived from } \mathcal{I} \textit{is the topology generated by}

$$\mathcal{I} \cup \{d_{\mathcal{I}}(A) : A \subseteq \Omega\}.$$

Set $\mathcal{I}_{\gamma+1}$ to be the topology derived from \mathcal{I}_γ and for limit λ set

$$\mathcal{I}_\lambda = \bigcup_{\gamma < \lambda} \mathcal{I}_\gamma.$$

- These topologies are closely related to γ-stationarity.
\mathcal{T}_γ and γ-stationarity

What is T_1?
\mathcal{T}_γ and γ-stationarity

What is T_1?
We have the following equivalences:

$$\alpha \in d_{\mathcal{T}_1}(A)$$

$$\iff \forall X, Y \subseteq \Omega \; \alpha \in d_0(X) \cap d_0(Y) \to d_0(X) \cap d_0(Y) \cap \alpha \cap A \neq \emptyset$$

$$\iff \forall C, D \text{ club in } \alpha \text{ we have } C \cap D \cap A \neq \emptyset$$

$$\iff A \text{ is stationary in } \alpha, \text{ i.e. } \alpha \in d_1(A)$$
What is T_1?
We have the following equivalences:

\[
\begin{align*}
\alpha \in d_{T_1}(A) & \iff \forall X, Y \subseteq \Omega \ \alpha \in d_0(X) \cap d_0(Y) \to d_0(X) \cap d_0(Y) \cap \alpha \cap A \neq \emptyset \\
& \iff \forall C, D \text{ club in } \alpha \text{ we have } C \cap D \cap A \neq \emptyset \\
& \iff A \text{ is stationary in } \alpha, \ i.e. \ \alpha \in d_1(A)
\end{align*}
\]

Thus:

\[
d_{T_1}(A) = d_1(A) = \{\alpha : A \text{ is stationary in } \alpha\}
\]
\mathcal{T}_γ and γ-stationarity

What is T_1?
We have the following equivalences:

$$\alpha \in d_{T_1}(A)$$

$$\iff \forall X, Y \subseteq \Omega \alpha \in d_0(X) \cap d_0(Y) \rightarrow d_0(X) \cap d_0(Y) \cap \alpha \cap A \neq \emptyset$$

$$\iff \forall C, D \text{ club in } \alpha \text{ we have } C \cap D \cap A \neq \emptyset$$

$$\iff A \text{ is stationary in } \alpha, \text{ i.e. } \alpha \in d_1(A)$$

Thus:

$$d_{T_1}(A) = d_1(A) = \{\alpha : A \text{ is stationary in } \alpha\}$$

In fact we can show that for any γ, $d_{T_\gamma} = d_{\gamma}$.
\mathcal{I}_γ and γ-stationarity

What is T_1?
We have the following equivalences:

$$\alpha \in d_{T_1}(A) \iff \forall X, Y \subseteq \Omega \ \alpha \in d_0(X) \cap d_0(Y) \rightarrow d_0(X) \cap d_0(Y) \cap \alpha \cap A \neq \emptyset$$

$$\iff \forall C, D \text{ club in } \alpha \text{ we have } C \cap D \cap A \neq \emptyset$$

$$\iff A \text{ is stationary in } \alpha, \text{ i.e. } \alpha \in d_1(A)$$

Thus:

$$d_{T_1}(A) = d_1(A) = \{\alpha : A \text{ is stationary in } \alpha\}$$

In fact we can show that for any γ, $d_{T_\gamma} = d_\gamma$. Thus a point α is non-isolated in \mathcal{I}_γ iff for every $\gamma' < \gamma$, α is γ'-s-reflecting (i.e. α is γ-stationary), and \mathcal{I}_γ is non-discrete iff there is an ordinal $\alpha < \Omega$ that is γ stationary.
Consistency Strength?

Upper bound:

- An easy argument shows that Π^1_n-indescribable cardinals are n-stationary reflecting.
Consistency Strength?

Upper bound:

- An easy argument shows that Π^1_n-indescribable cardinals are n-stationary reflecting.

- We can define a notion of Π^1_γ-indescribability for ordinals γ such that Π^1_γ-indescribable cardinals are γ-stationary reflecting.
Consistency Strength?

Upper bound:

- An easy argument show that Π^1_n-indescribable cardinals are n-stationary reflecting.
- We can define a notion of Π^1_γ-indescribability for ordinals γ such that Π^1_γ-indescribable cardinals are γ-stationary reflecting.

Under $V = L$:

Theorem (Jensen)
In L a regular cardinal reflects stationary sets iff it is Π^1_1-indescribable (=weakly compact).
Consistency Strength?

Upper bound:

- An easy argument show that Π_1^n-indescribable cardinals are n-stationary reflecting.
- We can define a notion of Π_1^γ-indescribability for ordinals γ such that Π_1^γ-indescribable cardinals are γ-stationary reflecting.

Under $V = L$:

Theorem (Jensen)

In L a regular cardinal reflects stationary sets iff it is Π_1^1-indescribable (=weakly compact).

Theorem (Bagaria, Magidor, Sakai) (1 < n < ω)

In L a regular cardinal reflects n-stationary sets iff it is Π_1^n-indescribable.
Consistency Strength?

Upper bound:

- An easy argument shows that Π^1_n-indescribable cardinals are n-stationary reflecting.
- We can define a notion of Π^1_γ-indescribability for ordinals γ such that Π^1_γ-indescribable cardinals are γ-stationary reflecting.

Under $V = L$:

Theorem (Jensen)

In L a regular cardinal reflects stationary sets iff it is Π^1_1-indescribable (=weakly compact).

Theorem (Bagaria, Magidor, Sakai) ($1 < n < \omega$)

In L a regular cardinal reflects n-stationary sets iff it is Π^1_n-indescribable.

Theorem (B., Bagaria)

In L a regular cardinal reflects γ-stationary sets iff it is Π^1_γ-indescribable.
Consistency Strength?

Lower bound?

Theorem (Magidor)
A regular cardinal that is 1-s-reflecting is Π^1_1-indescribable in L. Thus the existence of a 1-s-reflecting cardinal is equiconsistent with the existence of a Π^1_1-indescribable.

Conjecture:
For $\gamma > 1$ the consistency strength of a γ-s-reflecting cardinal is below that of a Π^1_γ-indescribable.
Consistency Strength?

Lower bound?

Theorem (Magidor)
A regular cardinal that is 1-s-reflecting is Π_1^1-indescribable in L. Thus the existence of a 1-s-reflecting cardinal is equiconsistent with the existence of a Π_1^1-indescribable.

Theorem (B.)
Let κ be a regular cardinal that is γ-s-reflecting such that the γ-club filter on κ is normal, and for “many” cardinals λ below κ we have λ is η-s-reflecting implies the η-club filter on λ is normal. Then κ is Π_1^γ-indescribable in L.
Consistency Strength?

Lower bound?

Theorem (Magidor)
A regular cardinal that is 1-s-reflecting is Π_1^1-indescribable in L. Thus the existence of a 1-s-reflecting cardinal is equiconsistent with the existence of a Π_1^1-indescribable.

Theorem (B.)
Let κ be a regular cardinal that is γ-s-reflecting such that the γ-club filter on κ is normal, and for “many” cardinals λ below κ we have λ is η-s-reflecting implies the η-club filter on λ is normal. Then κ is Π_{γ}^1-indescribable in L.

Conjecture:
For $\gamma > 1$ the consistency strength of a γ-s-reflecting cardinal is below that of a Π_{γ}^1-indescribable.
Generalised □ sequences

Definition

A □γ sequence on κ is a sequence \(\langle C_\alpha : \alpha \in d_\gamma (\kappa) \rangle \) such that for each \(\alpha \):

1. \(C_\alpha \) is an \(\gamma \)-club subset of \(\alpha \)
2. (Coherence) for every \(\beta \in d_\gamma (C_\alpha) \) we have \(C_\beta = C_\alpha \cap \beta \)
Generalised □ sequences

Definition

A □γ sequence on κ is a sequence ⟨Cα : α ∈ dγ(κ)⟩ such that for each α:

1. Cα is an γ-club subset of α
2. (Coherence) for every β ∈ dγ(Cα) we have Cβ = Cα ∩ β

- We need to add an extra condition for □ sequences to be non-trivial (and useful)
- There are many ways to do this for the standard case
- Standard □ sequences are useful for a variety of constructions
Definition

A \square^γ sequence on κ is a sequence $\langle C_\alpha : \alpha \in d_\gamma(\kappa) \rangle$ such that for each α:

1. C_α is an γ-club subset of α
2. (Coherence) for every $\beta \in d_\gamma(C_\alpha)$ we have $C_\beta = C_\alpha \cap \beta$

- We need to add an extra condition for \square sequences to be non-trivial (and useful)
- There are many ways to do this for the standard case
- Standard \square sequences are useful for a variety of constructions

Theorem (B.)($V = L$)

If κ is Π^1_γ- but not $\Pi^1_{\gamma+1}$-indescribable then there is an $\gamma + 1$-stationary set $E \subseteq \kappa$ and \square^γ sequence avoiding E. Thus κ is not $\gamma + 1$-reflecting.