
FINAL PROIECT

Scheduling system

DEGREE: BSC COMPUTER SCIENCE
DEPARTMENT: INFORMATICS
PROIECT SUPERVISOR: DR. BERNHARD REUS

CANDIDATE NO. 53742
UNIVERSITY OF SUSSEX
25rh APRIL | 2009

1

2,

INTRODUCTION +

PROFESSIONAL CONSIDEITATIONS 5

3 ANAI-YSIs 6

3.1 Pnonlnu sPEcrFrcATroN 6
3.1.1 GcNERAI, EXPLANATIoN 6
3.1.2 Henn ConsrrurNrs 7
3.1.3 Sorr consrnarnrs B
3.2 FuucrrorualRreurREMENTs g
3.2.I ADMINISTRAToRFUNCTIONALITIES 9
3.2.2 Feculry srAFF FUNcrroNALrrrES 10
3.3 ExrsNosp FuNcrroNAlrrrEs 10
3.4 Non-runcrroNALREeurREMENTs lt
3.5 UsE cAsEs lz
3.5.1 UsE cASE DTAGRAM t2
3.5.2 USE CASE UC1: LocII.I INTO THE SYSTEM L2
3.5.3 USE CASE UC2: Aoo PERSONALTIME CONSTMINTS 13
3.5.4 Usr Cese UC3: DTIETE PERSONALTIME CoNSTRAINTS 13
3.5.5 USE CASE UC4: AssIcT,I SEcoND EXAMINERS To PROJECTS L4
3.5.6 Usn Cass UC5: Asstctt sEcoND ExAMINERS To supERVrsoRS AND vrcE vERSA 14
3.5.7 Usr Cass UC6: Assrcr,r RooM To pRocRAMME 15
3.5.8 USE CASE UC7: Dlspmy PERSoNALTIMETABLE 15
3.5.9 Uss Case UCB: DrspuyrrMETABLE L6
3.5.10 UsE CAsE UC9: MaNUALLY EDITTIMETABLE L6
3.5.11 UsE CASE UC10: Ir{senr nooM L7
3.5.L2 Use Casr UC11: DELETE RooM 17
3.5.13 UsE cAsE UCIZ: ASSIGN sEcoND EXAMINERs AUToMATrcALr,y&crueRarn rrMsresls 18

5 IMPLFMENTATION 50

20
2L
22
25
27
30
30
32
34
40
42
42
46
47

51
51
51
52

2

4. NESIGN 19

4.L OvgnaLL STRUCTURE
4.L.L OvgneLL DESIGN STRUCTURE DIAGRAM
4.2 DeregASE DESIGN
4.2.L DEscntPTIoN oF EXTERNAL DATABASE TABLES [oLD sysrnM)
4.2,2 DEScnIPTIoN oF DATABASE TABLES oF THIS SYSTEM
4.3 BacTEND ENGINE
4.3.L ExtgnNAL LlnnenY "cHoco"

4.3.2 COTSIRAINT MoDEL oF PRoBLEM
4.3.3 Sot vER PACKAGE
4.3,4 DeresASE ACCESS LAvER (DAL) PacxecE
4.4 USgn INTERFACE
4.4.L SYTvTFONY PHP FRAMEWORK
4.4.2 MoouLES AND ACTI0NS
4.4.3 HIcH-I,EVELPROTOTYPES

5.1 DereeAsE AccEss LAyER oF BACKEND ENGINE
5.2 ScHEnutER wITH coRE FUNCTToNALTTTEs (1" DELTvERABLE)
5.2.L AppllcATIoN PnocnaMMrNG INTunFACE [API) oF "CHoco"
5.2.2 GeNERATING TIME SLoTS

5.2,3 GEIIERATINGTIME CoNSTRAINTS
5.2.4 GEruERATING vARIABLE DoMAINS

5.2.5 GEruERATING SECoND EXAMINER LoAD
5.2.6 GEmEnerrNG TIMETABLE

5.2.7 KEy PRoBLEMS AND THEIR SoLUTIoNS
5.3 ExruruDED FEATURES oF ScHEDULER (zND DELTvERAnTE)
5.3.L AssrcNrNG SECoND EXAMINERS To eRoIECTS
5.3.2 REIocATIoN TIME CoNSTRAINT
5.3.3 PosstelE swAPS FEATURE
5.4 GnepHrcAL usER TNTERFACE (GUI)
5.4,L Dnec & nRoP rECHNreuE
5.4,2 Loctt*t

5.4.3 PEnSoNAL TIMETABLE
5.4.4 TIUETaBLE CoNTAINING ALL PRESENTATIoNS
5.4.5 Enru TIMETABLE
5.4.6 l l, lpoRMING usER ABour CURRENT STATUS
5.4.7 AooING TIME CoNSTRAINTS oF FACULTY MEMBERS
5.4.8 AsstcNING SECoND EXAMINER To SUpERVISoR AND vrcn vERSA
5.4.9 ASSICT.IING ROOM TO PROGRAMME

5.4.10 Aon RooM FoR ScHEDULTNG

TESTING

53
53
54
54
54
55
55
56
56
56
56
57
5B
5B
59
61,
63
64
64
65

66

Z DEPLOYMENT 68

8 CONCLUSION eg

6.L COnnECTNESS oF TIMETABLE
6.2 OpTTUIZATIoN AND EFFICIENCY oF SoLVER
6.3 Uss cASE TEsrrNG

8.1 ASSESSMENT oF SUCCESS
8.2 SuccrsrroNs FoR ExrENsroNs

Loc
SOuncE CoDE

66
66
67

69
69

73
76

BIBLIOGRAPHY: 71

APPENDIX zg

3

1 Introduction
The system to be implemented will be an extension to the already existing
system, containing all information regarding students' final projects, a list of
supervisors, a list of students, a list of projects to choose from and the function to
enable students to propose the project. The extension will be in terms of helping
to generate a timetable (see functional requirements section) and assigning
appropriate faculty/staff as 2nd markers of students' presentations of the final
project. The old system has different functionality from the system planned to be
implemented; only data will be shared or imported to the new system from the
old one. This means that all data regarding students, their projects and faculty
staff will be imported. The main functionality of the new system is to produce a
timetable, which meets all of the hard constraints fsee explanation below).

Producing timetables or scheduling is a general problem and applies to many
real life problems in industry or other places. Scheduling is a NP-complete
problem [NP standing for Nondeterministic Polynomial time). The difficulty with
NP problems is that they cannot be solved fast. As the size of the problem or the
size of the input rises, the time required to find a solution can exceed into billions
of years using the current computation power and most efficient algorithms. At
present, to solve NP problems, many techniques are used such as approximation,
randomization, restriction and heuristic.

"Scheduling problem events must be arranged around a set of timeslots so as to
satisff a number of hard constraints and optimize a set of objectives. Types of
scheduling problem differ in terms of the kinds of constraints and objectives
involved." [Corne, Fang, Mellish]

4

2 Professional considerations
The interface created must follow regulation and be designed in such a way that
it takes on board the needs of the users along with their abilities and
consequently not discriminate against sex, ethnic origin and disability.

The key issues to take into consideration within this project are as follows:

To make sure that the needs and requirements of the user are fully understood
and agreed before starting the projecl

To make sure that agreement is made on the requirements so the user knows the
realistic end product before agreement.

To make sure to complete thorough research in order to find previous pitfalls in
similar work and develop my product so that it has a few errors as possible.

To make sure that requirements, building and testing are effectively carried out
in order to produce a sound finish product.

To "Produce design specifications that clearly state the objectives, scope,
features, facilities, reliability, resilience, constraints, environmen! system
functions, information flows and traffic volumes as well as identifying
requirements not met and scope for improvement. " [code&conduct]

To "Strive to achieve well-engineered products that demonstrate fitness for
purpose, reliability, efficiency, security, safety, maintainability and cost
effectiveness " [code&conduct]

5

I

3 ANALYSIS

This section describes the requirements for the scheduling system to be
implemented, generating a timetable for faculty staff and students.

The formal computing approach described here will be used to model the
currently informal process carried out to negotiate dates for project meetings
between students and project supervisors. As the process is presently informal,
the workflow currently used will be a template for the resulting computer
system, and will be largely user-driven in terms of selecting dates and input of
project data.

3.1 Problem specification

3. 1. 1 General explanation
The objective or main task is to find an optimal timetable fsee definition below),
if a solution is feasible (possible to be computed/generated) with the respect to
the given constraints. All hard and soft constraints are listed in the requirements.

Another task is to assign a faculty member as a second examiner to a student's
final project presentation. Second examiners are selected on their project loads
fsee the definition aboveJ. A special set of projects, for example music
informatics projects, are assigned second examiners only from music informatics
faculty members. The same rule applies to multimedia projects. Only music
informatics projects are conducted in a music lab.

6

The system relies on the data imported from the already existing system such as
information regarding students, their projects and faculty. This data can be
imported from the existing system and university timetable, before faculty start
inserting their own time constraints.

The format of the timetable will be calendar based and can be emailed to faculw
and students in a readable format or a URL link will be provided.

Personal timetable is a particular timetable, whose contents apply only to
particular person ffaculty or students).

3.l.ZHard Constraints
See the definition of hard constraints in the introduction of this report.

All faculty, student or room time constraints are hard constraints, among others
stated below.

List of hard constraints:

o Faculty member and second marker can only be physically involved in
one project at one particular time.

o Faculty member cannot be assigned to the project he supervises as a
second examiner.

o Second examiners are assigned to student projects on the basis of loads

fsee definition of load in the section 3.1.1)

o Faculty, student and room time constraints (see definition above)

o Timeslot is 20 minutes long.

7

3.1.3 Soft constraints
Ssjtnr-ti"u:;
SrtJ"t cr;nstrrsittLs ur"s rrstntr*!t'tts t.!tat rlts nr:t hrtvs trs lse fu$ltleC t* tartsidtr *r
y7e*erateri tinlet*hle us vr;lid.'l 'hese {.{iri!'ar#ir1lt *r'e *ptian*!, anrl lzelp ttt deturtri;tit:

an *ptimulsclirficr: ist:e d,:finiti*n *f opt.im*lsoluf.iott in the intruductir:n)

All soft constraints can be considered as parameters that can be set up by the
administrator.

List of soft constraints:

o For music and video projects, music and video facultywill be assigned as
2"d markers preferable

o Presentations will preferably be in chunks

o Time between 12to2pm is reserved for lunch

o Usually there are up to 4 days for presentations. Sometimes an extra day
(spill over day) is needed when some member of faculty is away for the
entire week. The system detects if faculty are away for the entire time
period for which the presentations are scheduled (so that one can install
an extra day).

o For Music Informatics second markers are problematic (this is because
there are not many faculty members who can mark those as second
examiners/markers). Music Informatics projects are demonstrated in the
MI Lab Arun 221. This is used as a teaching Lab in the summer so its
booking times have to be considered for the scheduling. Ideally this is
again taken from the universit5r online timetable.

I

I
I

I
I

I

I

I

t_
i

L

L
L
L
I
I "&

3.2 Functional requirements
Functional requirements determine what the system can do, as well as the input

and output of the system.

3.z.!.Ad min istrator functionalities

Administrator can interact with the system as follows:

o Insert, delete:
. Room available for a student presentation
. Time constraints (see section 3.1.2)

' Soft constrains

o Generate second examiners based on their loads (see section 3'1.1)

o Generate an optimal timetable (see section 3.1.1)

o Amend a generated timetable by using graphical user interface. An

interactive user-friendly interface will be provided with extra
functionality for swapping time slots fsee section3.2.2). This function
will be provided so that when a user double clicks on a slot, it will
highlight in green the other possible available time slots that can also be

used.

o Import or use data of old system including university timetable, all
information regarding students and faculty members

o Email or print a timetable for faculty members and students.
Administrator can email a link to the system, therefore students or faculty
members can see their personal timetable or timetable including all
presentations. As describe in the previous section, the timetable is in
calendar-based format

o Administrator inherits all faculty staffs functionalities.

9

3 .2 .2F aculty staff functionaliti e s

Faculty Staff can interact with the system as following:

Display a personal timetable.

Display a timetable including all presentations

Insert/delete their time constraints by using a graphical user interface

3.2.3 Student fu nctional ities

Students can interact with the system as following:

Display apersonal timetable.

Display atimetable including all presentations

3.3 Extended Functionalities
In order to generate the most optimal timetable (see section 3.1.1), other extra

functionalities related to solving this constraint satisfaction problem (CSP) are

provided to the administrator. One of the extra functionalities is to limit identical

pairs of a student project's supervisor and a second examiner marking the final

project, or vice versa. The system is extended to meet this extra requirement in

ih.--"y that this feature is only available to the system administrator who can

set up explicitly the limit of such pairs (default value of limit is 3 as discussed

with the customer). For instance, if faculty members X and Y are involved in a

project presentation as a supervisor or second marker/examiner or vice versa,

they ar" both involved in the same project presentation at maximum another 2

times. In the analysis phase of the developing process, this extra requirement

was not captured, but it was recognised at the early stage of the developing

process after discussion with the supervisor and the customer.

Another extended functionality of the system is to recognize faculty members

who are in some way involved in music informatics project presentation either

as a supervisor or second marker/examiner, and provide them a sufficient time

for rel-ocation from the music lab to other places where the projects are

presented. In this particular case, the assumption of time required for the

relocation was made by the informatics department office and is equal to the

length of one time slot (20 minutes) that should be adequate.

Also the system will need to be extended by an extra feature, helping to identiff

time slotj which are available to swap for a particular slot. In other words, if

anything unexpected happens, as we are not living in the ideal world, two time

10

slots can be dynamically swapped. To make it easier and prevent the

administrato, r.o.-*"tini errors, all time slots that are safe to be swapped are

marked with a different colour'

The last extra functionality enables the administrator to assign explicitly a

second examiner to a particular project or all projects of a particular supervisor'

Also a room can be asiigned to a specific programme, for instance a music lab to

music informatics Projects'

3,4 N on-functional requirements
The system will be installed on the informatics department's Apache web server

anawiuincludeawebinterfacetointeractwithusers.

The timetable needs to be generated in reasonable time' The maximum time

allowed for this task is one w-eeh but preferably should take less than a day'

The administrator will set the deadline for inserting time constraints, therefore

afterwards, insertinfis iisaUted and no time constraint can be inserted into the

system. only the adirinistrator can insert time constraints after the deadline and

thus more alternatives arise on how the system would cope with this situation'

One of the alternatives will be to run the system to generate the whole timetable

again, or to just amend the timetable localiy in case that generating the timetable

is not affordable due to time limitation. After discussing the issue with the

customer, the acceptable time for producing the timetable is approximately one

day, but as the prt..r, runs a few times, the minor extension to the time is

acceptable.

Non-functional requirements of interface:

o Easily usable by all university administrators and faculty

o Easy to insert time constraints for faculty

Entering data to be quick

Graphical user interface is calendar-based

11

3,5 Use cases

3.5.1Use case diagram

t l

t - ' r ' '
I

---t-*-
| *,-..
I

Fac"r: ty

-r
I

-1-i*.':.S.

I
f

Adr* rt
sei

'p
s*{i gO'tt.a ,.rt* .

Figure L - Ilse case diagram

3.5.2 Use Case UCl: Login into the system
PrimaryActor: Any user
Success guarantees: User is logged into the system.

Main Success Scenario (or Basic FIow):
1 User [Facurty, Administrator or studentJ provides login details.2. The useris authenticated.
3' Homepage is displayed and the message to the user that the login has been successful.

Extensions (or alternative flows):

$}f,."*
ttme system fails, user is in-formed about the error and the user can repeat the

L. a) Login details are invalid:
L' Login details are validated and the details are detected to be invalid.
2. The user is informed that login failed.

2. a) Process of login failed:
1. An error is detected during the process
2. The user is informed that a process failed

L2

3.5.3Use Case UCZ= Add personal time constraints
Primary Actor: Faculty member
Preconditions: User is identified and authenticated.
Success guarantees: Personal time constraints are saved.

Main Success Scenario (or Basic Flow):
1. Faculty member adds a time constraint by using calendar-based GUI.
2. The constraints are displayed.
3. User submits constraints.
4. The constraints are saved.
5, The message is shown to user that constraints have been saved successfully.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the action.

a) Constraint already exists:
1. If GUI allows, insert the same time constraint, the constraint is validated
2. System informs a user that the constraint was not inserted

a) Process ofsavingthe constraints failed:
1. An error is detected during the process
2. The user is informed that a process failed
3. The constraints are displayed

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Adding
constraints is required to be quick and straightforward and displaying data fconstraints) clear to
user.

3.5.4 Use Case UC3: Delete personal time constraints
Primary Actor: Faculty member
Preconditions: User is identified and authenticated.
Success guarantees: Personal time constraints are deleted.

Main Success Scenario (or Basic Flow):
1, Faculty member selects a time constraint to delete.
2. The constraint is marked and displayed to delete.
3. The user submits constraint to delete.
4. The constraint is deleted.
5, The message is shown to user that constraint has been deleted successfully.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the.error and the user can repeat the

action.

3. aJ Constraint cannot be deleted:
1. Constraints are prevented from being deleted by user
2. The user is informed that constraint is not deleted

b) Process of deleting the constraint failed:
1. An error is detected during the process
2. The user is informed that the process failed
3. The constraints are displayed

3.

4.

i
i
L__

I

I

I
I
I(_

I
t

{
I

I

I
i
t__

I
I
I

L
I
L

I
I

L
13

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Deleting
constraints is required to be quick and straightforward and displaying data fconstraints) clear to
the user.

3.5.5 Use Case UC4: Assign second examiners to proiects

Primary Actor: Administrator
Success guarantees: Second examiner is assigned to the project.

Main Success Scenario (or Basic Flow):
1. Administrator selects an option to assign second examiners to proiects.
2. GUI providing to accomplish this task is displayed to administrator.
3. Administrator, using the interface, assigns a second examiner to project.
4. Changes are automatically saved after every action/interaction.
5. The message is shown to user that the timetable has been saved successfully.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the

action.

4. a) Process of assigning the second examiner failed:
1. An error is detected during the process
2. The user is informed that the process failed

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Assigning is
required to be quick and straightforward and displaying data is clear to the user.

3.5.5 Use Case UC5: Assign second examiners to supervisors
and vice versa

Primary Actor: Administrator
Success guarantees: Second examiner or supervisor is assigned successfully.

Main Success Scenario (or Basic Flow):
L. Administrator selects an option to assign second examiners to supervisors.
2. GUI providing to accomplish this task is displayed to administrator.
3. Administrator, by using the interface, assigns a second examiner to the supervisor or

vice versa.
4. Changes are automatically saved after every action/submil
5. The message is shown to user that the timetable has been saved successfully.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the

action.

4. a) Process of assigning the second examiner or supervisor failed:
1. An error is detected during the process
2. The user is informed that the process failed

L4

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Assigning is
required to be quick and straightforward and displaying data clear to user.

3.5.7 Use Case UC5: Assign room to programme

Primary Actor: Administrator
Success guarantees: Room is assigned successfully.

Main Success Scenario (or Basic Flow):
1. Administrator selects an option to assign a room to the programme.
2. GUI providing to accomplish this task is displayed to administrator.
3. Administrator, by using the interface, assigns the room to the programme.
4. Changes are automatically saved after every action/submit.
5. The message is shown to user that the timetable has been saved successfully.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the

action.

4. a) Process ofassigningthe room failed:
1. An error is detected during the process
2. The user is informed that the process failed

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Assigning is
required to be quick and straightforward and displaying data clear to user.

3.5.8 Use Case UC7: Display personal timetable
Primary Actor: Faculty, Student, Administrator
Success guarantees: Personal timetable is displayed to user.

Main Success Scenario (or Basic Flow):
L. User [Faculty, Student or Administrator) selects an option to display the personal
timetable.
2. The appropriate calendar-based timetable is displayed.
3. User prints the print-friendly version of timetable.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the
action.

15

3.5.9 Use Case UC8: Display timetable
Primary Actor: Faculty, Student Administrator
Success guarantees: Timetable is displayed to user.

Main Success Scenario (or Basic Flow):
4. User (Faculty, Student or Administrator) selects an option to display the timetable.
5. The appropriate calendar-based timetable is displayed.
6. User prints the print-friendly version of timetable.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the
action.

3.5.10 Use Case UC9: Manually edit timetable

Primary Actor: Adminisffator
Success guarantees: Timetable is updated successfully.

Main Success Scenario (or Basic Flow):
6. Administrator selects an option to edit the timetable
7. The timetable is displayed in an edit mode.
8. User edits the calendar-based timetable by interacting with it.
9. Changes are automatically saved after every action/interaction.
10. The message is shown to user that the timetable has been saved successfully.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and t}te user can repeat the

action.

4. a) Process of editing the timetable failed:
1. An error is detected during the process
2. The user is informed that the process failed

5. a) In case of a mistake caused by administrator, step back functionality is provided.

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Editing the
timetable is required to be quick and straightforward and displaying data clear to user.

16

3.5.11 Use Case UC10: Insert room

Primary Actor: Administrator
Preconditions: User is identified and authenticated.
Success guarantees: Room is inserted.

Main Success Scenario (or Basic Flow):
1. Administrator types required information and submits the data.
2. The message is shown to user that the process has been accomplished.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat
the action.

L. a) Process ofinsertingthe room failed:
1. The error is detected during the process
2. The user is informed that a process failed

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Inserting
rooms is required to be quick and straightforward and displaying data clear to user.

3.5.12 Use Case UCl1: Delete room
Primary Actor: Administrator
Preconditions: User is identified and authenticated.
Success guarantees: Room is deleted.

Main Success Scenario (or Basic Flow):
t. Administrator selects an option to delete a room.
2. The room is deleted.
3. Message is shown to the user that the process has been accomplished.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the
action.

2. a) Process of deleting data failed:
1. An error is detected during the process
2. The user is informed that a process failed

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Deleting a
room is required to be quick and straightforward and displaying data clear to user.

L7

I

L

L

3.5.13 Use Case UCl2: Assign second examiners
automatically and generate timetable

Primary Actor: Administrator
Preconditions: User is identified and authenticated.
Success guarantees: Second markers are assigned and timetable is generated.

Main Success Scenario (or Basic Flow):
1. Administrator selects an option to generate a timetable.
2. The second examiners are assigned and the timetable is generated.
3. The calendar-based timetable is displayed and alternatives if applicable.
4. The message is shown to user that the process has been accomplished.

Extensions (or alternative flows):
a* At any time, system fails: The current state (sessionsJ is deleted and the system asks for

details to login.

1. a) Process of assigning the second examiners or generating timetable failed:
1. An error is detected during t}te process
2. The user is informed that a process failed

1B

4 Design
In this section the requirements from the analysis phase of the software
development process will be used to produce a design of this system. Unified
Modelling Language (UML) will be used to describe the design in a clear and
readable form.

Section 4.1 is the Overall structure. It informs about the architecture of the
system in a high-level form and looks at the system from a general prospective.

Section 4.2 contains a database design. It describes every part of the
architecture of the database designed for this system, along with the database of
old system. Textual description of each table is also included.

Section 4.3 is written regarding "Backend engine", the application assigning
second examiners and producing a timetable. It also describes an external library
"choco" and constraint model of the CSP. Class and sequence diagrams of its
packages are provided to explain their architectures in detail.

Section 4.4 contains the User interface design. It describes the PHP framework
used to implement the interface, why it was used and its general features.

19

4.1 Overall structure
The whole structure of the system is divided in two main parts:

o "Backend engine", which its main obiective is to do all computations
related to generating a timetable based on the constraints provided. It
relies on the external library named "Choco" fsee section 4.2).

o Web-based user interface using the open source project, PHP framework
'Symfony'' (see section 4.4.1). "Servlet'', PHP and AIAX technologr are
used to build an interactive and user-friendlyinterface.

Def in i t ion of AIAX:
"Ajax, sametimes written as AJAX (shorthand frtr Asynchronous Javascript + XML),
is a group of interrelated web development techniques used to create interactive
weh applications or rich Internet applications. With Ajax, web applications can
retrieve data from the server asynchronously in the background without
interfering with the display and hehavior of the existing page. The use of Ajax has
led to an increase in interective animation on web pagestlltzl Data is retrieved
using the XMLHttpRequest object or through the use af Remote Scripting in
browsers that do not support it"" fajax defl

Definit ion of Servlet:
"Javc Servlet technolagy provirles Web developers with a simple, consistent
mechanism for extending the functionality of cs Web server and for accessing
existing business systems. A servlet can almost he thaught of as an applet that runs
on the server side--without a face. Java servlets mcke many Web applications
possible." [servlet def]

Definit ion of PHP:
"PHP is a widely-used general-purpose scripting language that is especially suiterl
for web development and can be embedded into HTMI,. It generally runs on a web
serverr taking PHP code as ifs input and creating web pages as output. lt can be
deployed on most web servers and on almost every operating system and platform
free of charge." fphp defl

20

4.L.t Overall design structure diagram
The overall structure of the system is displayed in Figure 2. As mentioned in the
previous section, it is divided into two parts, user interface and "backend engine"
application. A user makes a request to the system by using a web browser. The
request is accepted by the controller, which recognizes a module and action from
the request and invokes an appropriate action. All computations and data
processing happens in modules, which functions are called by the controller
action. The code produced in the view is returned to the user browser (more
detailed explanation of an MVC pattern and the framework provided in the
following sections). Also the user can make a request to the "Backend engine" by
using "AJAX" and "Servlets" (see definitions in previous section) to invoke a
method producing a timetable fsee section 4.3).

Clienl

Bowser

Dalahase-Serve!

Figure 2.)verall structure diagram ofthe system

Note: "dal package" - database access layer package

"Backend EfEine" Applicalion

2L

4.2 Database design
The design of database structure for this project relies on the database
implemented for the old system, used for managing final year projects. In order
to prevent duplications of data the old system database will be used as part of a
data source. The old system includes data regarding students, faculty members
and projects, which are required to produce a timetable. To see the structure of
the database the Enhanced Entity-Relationship [EER) model is provided below.
The entities marked grey colours are entities of the old system database. The
yellow entities are designed for this system database.

22

JJ
ol-(n- Z

i-o
lI
lN
IQE
too
rf) -r
E@t-o
tc)=
lo
IUrm

TI
o
n
m
F
m

tfi
c
n
z

m

I
I
I
I
I
I

-FJ

o
U'

I
E
oo

E
6-

-{
=
rn

t-{.

s=
qt ro
J-r

66 =

C
a
m
fr

G
m

@
t,r+.

r-c.
$
=
r-F

T
a
U}
=
o
7
tl

5s'
g,53

=<
{8qs

n
oo
=
'oo
cl
rn

-to
o
3
@

I

2

c
(f,
o
U'

=t
3
$

Cfi

6"
r-+
a

n
oo

l
U
m
o
f}
&
1[{
6z

?

a
o
a

-I

J

I

.J

U'
F
L-

E,g
f ; 'g

lo

T
fr
o
o
n

rn

l-s
ln
lo
lc-
Ir(]

{
.
rn

€
o
*
(t,

o=

Um
6c)
n
1l{
o
z

o-.|
n{

(t,

E
?
6'
o
o

Figure 3. EER model of database (partl)

F
J

rrnrn
z
U

(f

*
lm
(f)
{
7
--'l

c
z.(}
I

I
rnz
U

o
o
I
r

zf i
az

o
I
I
=

S,E
@='gr_

r l=
l - r O
Jr-
g '(n
F=qE

,At
/ \/ \

/ \
/ \

-cp6 Ixcn(g6 r Et j
=P : i e ' , r
-, >(q3 8\-.7 0- :>

\ /
\ . /

\ . /
\ t / v

-l

r*
(t)
{
7
J

r

rt (tt
@ C)<

m +o
T

-'T(OJ

{
=
m

Im
z
U

n
tn I

r
C
z
o
,r
U)
-l

n{

gl

I

5E
:ygl

oo)
X9. 3r-
=a otc
=. O re

-i

-
=o 50
oq o; '
{=-r t t)\-/ o- o

rF

I

5
o
a
I
iD
oo
E
iF-

JI

$
@-

J

ogla,
6e €
=E i od :
='6

j
a a I

qs g
\-" o- J

c

E,g
f i 'g

lo

m
z
U

I
o'=-
,-.+ -{od

I
a

i
t*-

T)
g.

l l -
I - toq€
t {$g?

6'
o
-l

I
I

j
L=_

n
oo

'r}o
U
m

J

2
.T
-$=-co o

f f i I f f iO

LJ -I
o5
f (t,

\r/

g)
g,

13

6(o
-tgl

3
3
o

I
L_- Eg.

l r -
. -dEE

=€
J- l

3g =L fr
o
o

'um
{t
CI
&
T
J
oz.

I
I

I
I
L._

I

I
L

Figure 4. EER model of database (part2)

4.2.L Description of external database tables (old system)
This section describes the database tables of the old existing system, their
structures and columns. The column "Name" describes the names of attributes of
database table. The type column corresponds to a type of the attribute. A
primary key of table is marked as yellow key.

This table represents faculty members and students including personal data and
data required for login.

I'iirfl'tt

F'[R_-: I l i] : i l

] 'TLi

f il t i.t't{ l i

5 i. q,
".

AliJ i

L,1,i;:t l** ,t fr.' i

t'.&filr'n't'iJ d i:

Figure 5. Table "hes-people"

This table includes extra information about students such as their registration
numbers and programmes.

1r1;11:'tr

Fit i_" I 5TR.,iT ' {: l.,j * ?,ul i, V $ l. {

t '[Fi:;: h*L {; i; ' i

F'Fif:t: q,q fb' \,1[

Figure 6. Table "student"

-trv';:'-'

b; i : , i l ' i t

' . , - .
- r -+-. . .

{L- \ L.

" r . . (, r - i \ . .1
dL. i \ L.

vi" : { f , : :

v;: r'{ :- :: r

t , a. r ' r ' - ++t . . (
t i l - - \ L{ '

L*:*r l i **c i f t r . ' l i f ! t " , i l
:

r ;Z i j

ls' l i i l
' f

* ' :ii, l.j #

25

This table includes all information regarding the projects. The attribute
"REGISTMTION_NUMBER" links the particular project to the particular student.
The attribute "PERSON_CODE" links student projects and their supervisors. The
other attributes do not apply to the project.

N.rnt*

t'Fi*.i*'I l '

R[;-.151'R",t.-f' ' i] I'i * hi t. 1'1S l. A

{*LiR5,I* i { r i i i

t'l R 3i;1 i'" *L tl ii L.

I:-iriET*tiA* i

1; n, i - -

T I i ', i- i:

T iTLI

5-,&T il5

Ll [:.;f r-{ PT Iii \.-

fi[.-_i* -.{ lL L 5

L]*cinl;r i ' f. juil

A' iTt l{}R--3fr{}, ;RAt"J}, i i r . ; :r_i- i :r

l.; l]- i!, Lr i,: l,

Figure 7. Table "susx- course-proiects"

This table includes information about loads of faculty members required to
assign second examiners correctly to student projects based on these loads.

T v:'t:

Lr r* i f i !

$r f - : r f ' : t

i , * + ' r - i * ' ' :
9r . : \ - ! .

Lr rrl, r l'rt

i . ' l r t - r^ ' ' " r
ir (- ' \- t.

i , ' ' r ' f i - ' .
dL. 'L L.

! , - . - ' r - i * - .
du \ - , L.

i , ' ' . r - i - ' - ' .
r {L. L L.

! , ' - r ' r - ; - ' ' r '
dr- ; \ . u.

Lr ir;15

' i , . i - t - i - ' ' I
dL. ' rs, Lr

v r_l

t l

{_j

l ' *
,i- t

f.]

i t

{ ' r

{ i

i..l

{1t , r

f ' r

*

*

[]r:{ ilvla. r l.,l* tl

i'

fl

fi

{i ,1

*

'/
T

T

T:

V

v

tFl

V

tr

T.

? '

T

?

:
?

v

t

I

tF

'/

'f

,/

-l
'/
t/'

I r ; r- r- ' ! J-
L!. \ . i ;

i?

_: ._1

L!-

a
L

-1

Figure B. Table "prois-sv-list"

26

4.2.2 Description of database tables of this system

This section includes the same type of information as previous, apart from the
fact that the tables of the database designed particularly for this project are
described here.

This table includes information about the availability of students, faculty
members and rooms. The attribute "TYPE" determines that either it is related to
a student, faculty member or room. These particular types are stored in the
lookup table "type-lookup" (see table "type-lookup" below). The attribute
'TARGET-ID" is an lD/primary key one of "hes-people", "student" or "room"
table. The attributes "START" and "END" determines a time when one of the
previous mentioned objects are NOT available.

f'{ ii fl'tt

L {:l l"{5T RA,*rrrT ii:

TvF'I

T.&: 'r t : iT iu

!T.,1t.T

I r'"1]

Figure 9. Table "time-constraints"

This table includes information
be presented.

F,{;rn'rt

F{i-' i:: h' * | []

R i: il 1."'* f {l [) I.

Fi il {: l"-' tl is { R ,FT ! il}
"-

Figure 10. Table "rooms"

T

T

?

{-}eci+r'r;r i Nt,,i l

{ l

i j ; " t f t i " r ' ; i .

f.c? f t i "r ' i*

regarding rooms where the student project will

I r : .*- ' r '* l*
L L' . . . t '

1l

i l

j j

i l ' i l

i t i l

i t ' ' t

i l

i l

* 'L i

s l-i

i r , t T

T

t

{- t l r*-1 ' l i - i l rc i t l t * t : ' l . iu i l

]] U

iiu Ll , f

i i* i , U ,rf

This table includes all information that is used for setting a timetable scheduler
in order to produce a valid timetable. Column "DATE-START" and "DATE-END"

specify when is the first and last day of student presentations, respectively.

l*;ln'rr'

[:A.-i [* 5T Ai{-

[:A-f [* t l.,i ii

T {h,' i*5T..\.I.lT

T{h' i* [t ; t ;

L;- . t - f l {_: . - '1{J

LL.t '_ i l {_[f i [i

5{- i :T-L['r f - r * l ' " ' '? '*: $

L {1"' '* 5A\'1t }A i ft 5

h*n' l t :

: iL ' ; ;T- i []

; t"*L,.-,T'if{frFrIFt

['R {:3.* ' ;i

Fi;i:)fi. '*L i::i l i,

5T.4tr

[]'- L]

Figure 1-2. Table "time-slots"

hj.rtr.rr

t [:

5-TAqT

[?".j[:

Figure L3. Tsble "Qll-time-slots"

Nr #
./

,f

#

.l

,f

t'

Lr

l-i
{ tl l

- i I

Ltrr" l :Tf [:orc i*r ' r ; t i l "J* i l

{' Ni
-1

Ll*c ir,t 'r ; l i fr ju i l

{ t
iJ

*- /

t i r r - r '

t i r : - , ;

i t ' r t

i r i t

Figure 11-. Table "sYstem-canfig"

This table includes information about time slots. The timetable consists of time

slots, which are used to build the whole timetable. The time slot includes
information regarding a student project fattribute "PROJ-ID"), faculty members
who mark it (attribute "2ND-MARKER"), room (attribute "ROOM-CODE") where
the project is presented and time when the time slot begin and end (attribute
"BEGIN", "END" respectivelY).

L *r- ; i i '
ia. t

T j. Iir, t

l f i l

i t ' , t

T

v

T

:1

13

i '4

.1. ' ; '

-l

-/
I { ' r

rLt

l l

?LI

1t

This table represents all time slots available to be scheduled. They are generated

on the basis of information held in "system-config" table.

{i i'.t *t i "r'it

. j ; t t l ; " r ' i f

T \r':,*

I r i r i r f : t

f , i . t f l ; " r ' : *

{ iJ . t r j t : ' r ' i t :

| ,er1* '11J*
LL;1'{ '

rF ' l i t

[:rci*: ' r .r i f- j* l l
! l
q l

ir ,lt_
,/

I
I

t_

L

This table includes pairs of project ids and person code of second examiners. The

second examiners/markers must be assigned to the projects as specified in this

table.

l',j;*nlt

FrF,. i l j , * ,3

!L, sit1,,'r3,1 e-_ l {i i l} t

5ti {}l.; [: in'i&R+l' I R--f *][

Fig ure 1-4. Tqble "pair-proi ect-marker"

This table includes pairs of project ids and person code of second examiners. The

second examiners/markersmust be assigned to the projects as specified in this

table.

Fi ui nlr T v'-: t'

5 l . i ' iq.* i i iq_; : i lL l t b i ; : ; i r - , r

5t i { i l . ;L}* f ,4Att i ' ; tF i - f {) t [b i : . . , r f ' , !

Fig ure 1- 5. Table "pair-supervisor-mnrker"

This table includes pairs of supervisor person codes and person codes of second

examiner. The second examiners/markers must be assigned to all the projects

supervised by the supervisor as specified in the table'

T v'-,t'

i r r t

Lf r : i r f i t

l - r i f ; : f r t

L r:- ; : t{- [:*c in't .-t i lr t ; i l

; l : { l

f , 77 lj ,f

* ;J t] ,l

$'

?

I r .*- ' " t i *
L!. ' { . {

-: -j

i i .

i i

[]*c if:t. l i l '* tn i l

U

fJ

i . l

lri;:*':* Tv'::*

A -iT I l{}${.-. r-q{ii RA,t"i}\i : .,,;:'rt i* i: r

F{I, i } b'* l [l i r ' ' t

Fig ure 1 7. Table "pnir-prog ramme-room"

L * r- ti i- []nrc itvrir i f',jt,, il

f ' t

v t t i - r

v ; i l i

Le:*t ; :^r l i *c i t l l ; t> l ' i t . : i I

T ' dJ U

) 1 i
rF

-r. l {.t

l{;*tl 'r*

5t r ' f QVr*{ . : , * _ i { i * i

5t i {}l',i [] TuiARi'' t F{ -i*i}}[

T v'-:,-'

[, in r f r t

b ':i r f'l{

Fig ure 1 6. Table "pnir-nat-sup ervisor-marker"

This table includes pairs of project programmes and room ids. Available rooms

are assigned to prolects belonging to the particular programme' These projects

can be presented in the room assigned to them'

29

4.3 Backend Engine
All tasks related to producing a timetable and assigning second examiners to

student projects are done by the backend engine. It consists of two packages

[,,dal" and isolver" package) described in detail in the following sections' It

includes also "servlLts" fsee definition in section 4.1J to enable a user to

communicate with the backend engine by using an Internetbrowser'

Exterr*a I lilih ra n$ Cf*a co

tPh,lade i

,tt

ilPS0'n,re'

$oliver pacF€g€

$*iver

Sal pac,kage

DAL

I
I

I
I
I
I

L

I

t

Figure 18. High-Ievel backend engine package diagram

4.3.1 External LibrarY "choco"

This section describes the use of the external library named "Choco" used to

solve the Constraint Satisfaction Problem (CSP), particularly in this project a

timetabling problem. The "Solver" package relies on this library.

..choco is a java library for constraint satisfaction problems (CSPJ and constraint

programming tcfl. li it b,rilt on an event-based propagation mechanism with

tack-trackable structures. choco is open- source software, distributed under a

BSD licence and hosted by source- forge.net' choco is mainly developed by

;;;p[at Ecole des Mines de Nantes (FranceJ and is financially supported by
^nouyguut

SA and Amadeus SA." [choco white paper, p'1]

This library consists of two main parts: a problem- modeller and problem

constraint jolver. The more detailed descriptions of both parts are stated below.

30

A problem modeller is a library that models CSP. In order to solve CSP, all
variables, their constraints and domains must be specified by using the API of
this library. "Choco" provides various types of variables such as integer, set, real
and expression variable. In this project integer and expression variables are
used. Also a wide range of constraints are available to model a problem. It
provides over 70 types of constraints including logic operators, which are
sufficient to model this particular problem.

This part of the library is a constraint solver. "choco can either be used in
satisfaction mode (computing one solution, all solutions or iterating them) or in
optimization mode fmaximisation and minimisation). Search can be
parameterized using a set of pre-defined variable and value selection heuristics."
[choco white papea p.3]

"choco is a fava library that chose to provide a clear separation between
modelling and solving. Figure 3 represents the overall architecture of the choco
library. There are two separate parts:

o The first part (from the user's point of view) is devoted to expressing the
problem. The idea is to manipulate variables and relations to be verified
for these variables (constraints) disregarding their potential
implementation (either from the variable point of view or the constraint
point of view). A complete API is provided to be able to state a problem in
a way as user- friendly as possible.

o The second part is devoted to actually solve the problem. In Figure 1, only
CP related information is provided. Solving includes specific memory
management for tree-based search (as in CP)." [choco white paper, p.4]

ChoGo ,

Solver API
v

How to make a
Model

{1) gener ic model of a constraint

{2j generic model of a variable
<

t3]APl for crealing variables
and constraints

Solver

[1) constraints data stnrclures.

{2i variables data structnres

[3i data structr.rres relaled to
the search algorithnr

problem?

CP-Model

inrplenrentation of a Model in
ihe CP paradigm

CP-Solver

t1) dala structure rmplementation

12] parser from CP-hlodel to
CP-Solver

How to solve a problem?

Memory

{1} t ra i f ing

i2i recomputatrion

13] cnpying

Figure L9."choco's general architecture. The separate parts are clearly identified:
a modeling partfor stating the problem and a solving part (here only the CP
related information is described) for actually solving the modeled problem."[choco
white paperl

31

4.3.2 Constraint model of problem

In this section the logic of the constraint model is discussed in more detail.

Two sets of variables are used to model the CSP.

List of variables of the model:

o Variable "project slot'' represents a time slot assigned to a student
project. Project ids are values of domains of these variables

o Variable "room" represents a room where a student project is presented.
Room codes are values of domains of these variables.

Domains of variables are sets of values, which fulfil all constraints.

List of domains of the particular variable:

o Domains of variables "project slot" are sets of all time slots determining
time frames when students, their supervisors and second markers are
available.

o Domains of variables "room" are sets of all rooms that are available for
projects presentations.

List of all constraints of the model:

o Informal:
The same time slot cannot be assigned to the different project where
their supervisor is an identical faculty member.

Formal:
project slot [i] * project slot fil AND
supervisor (project slot[i]) = supervisorfproject slot[j])
where 0 < i < tr,0 < j. n, i

-
j, n is equalto the numberof projects

(see descriptions of indexes j and j at the end of this section)

o Informal:
The same time slot cannot be assigned to the different project where
their second marker is an identical faculty member.

Formal:
project slot[i] * project slot[j] AND

32

second examinerlproject slot[i)] = second examiner [project slot$)]
where 0 < i < D,0 < j. n, i + j, n is equal to thenumber of projects

o Informal:
The same time slot cannot be assigned to the different project where
supervisor of one project is a second marker of another project or vice
versa.

Formal:
project slot [i] * project slot[j] AND
supervisor (project slot[i]) = second examiner [project slot fi)]
where 0 < i < tr,0 < j < n, i + j, n is equal to the numberof projects

o Informal:
The same time slot can be assigned to the different projects if different
rooms are assigned to them, otherwise different time slots are
assigned to the projects.

Formal:
project slot [i] - project slot [j] AND room [i] * room [il OR
project slot [i] 'c project slot [j]
where 0 < i < tr,0 < j. n, i

-
j, n is equal to the numberof projects

o Informal:
Another extended requirement is to provide a sufficient time for
relocation of faculty members involved in marking of music projects.
As time slots are represented as integer numbers in ascending order
(earlier time, lower number), it is easy to recognise which time slot is
before and after a particular time slot.

Formal fpseudo code]:
For each music project

Get its supervisor and second examiner
Set the constraints that slots with id less or more by one,
these cannot be assigned to the project which the
supervisor and second marker are involved in.

List of constraints required during assigning second examiners to student
projects:

o Informal:
Faculty members can mark projects as second markers/examiners.
The limited times will be derived from their loads and number of
projects they supervise. The loads for second examiners are computed
before they are assigned to the student projects.

33

Formal:
maxoccurence(second examiner [project slot fi)) = computed value
based on loads
where 0 < i < n, n is equalto the number ofprojects

o Informal:
One of the extended requirements is to limit the same pair of faculty
members involved in marking as a supervisor and second examiner or
vice versa (see section extended requirements)

Formal:
maxoccurencefpair [i]) = value specified by administrator
where 0 < i < n, n is equal to the number of pairs containing of one
supervisor and second examiner

The indexes i and j of project slots are indexes of an array of size n (number of
projects). The mapping table is used to assign one index to one particular project
id.
For example:

Index Project id
0 5L2
1 564
2 600
3 614
4 654
5 678
6 723

4.3.3 Solver Package

The main objective of this package is to model the CSP problem by using the
external "choco" library. Another important function is to assign second
examiners to student projects.

34

+++++
q (o q (o {oo(Do='
FFFFFFF'.<

t r | rna(tr)d
==ddih

+*o
P;€OAPlHdt a
3r6'F3
5 9 6 ' to
.-96(netr
o<
o-- 9. a

o-a
:f(o
o
f
o-

(]U
$0)
f.+ f-.+

oo
oa
?ET
L4 -tFF

J
3
ocn
I

o
F}

tr,
g,
F}

o
o
Eo
-g,
F}o
-o

rnx
d
-TJgL
I

I '

E
il
a
c)
rF

-o
oo

o
T
ao
(D
-l

i i i

==== <r+ r..+ ,+ tdF

o CI o coF+, A = or- i l * i l i lH H
EEEE=3e33;33==****a4=dgg3gg++
EEEEX5Tbo*,odqq
6'6 '6 '6 'F tTt - l n n X n n a a

uocF;q = 55Xf 5= =ggggE v s, .gg a.g.gE.g6 6 6 6g = s-eF i lE-es-Eqp .i^- S !E i Y <g- s a-o = q 3 S S V s s s= = <- '7, 'd ; H' i+ - o o otT l<-

' r ro- q@-b33i l l ; , i
=-. = o__r -

j=5e q 6i .ag ga'6
gaDtq u, '
b' t1 i6 { q aE
aoTci VqV6 =Vg v-, v

A
'

=

-

FF-

TA4 i lE;
= x E. *=a
Ysi- Avq
g 3 YE g
4; Hdd
o a q
a6
Ei l '
P=*
J@r+
a

I
3g
!,g
o
o
o=
o
F}

-g.
=
=
o
CL
!P.

a
o
o
-t

o
o)
o
>i
0)(o
o

='=' a o
JJ--qqaa
ooEr+
ESEH
o o a=
FF+E
g Sqq
P=='E

au--qg{u
6' o = ' i l
o-*d d

" ts"#ss
=== =
of o)

-e\-

oe
Fr Cf
dg
f f io

+
__o
lq)
lo '
'C)o

:f,

1O
l=
ta

,-ts

f
o-To-

l0)
l .+lo

:
U-r0)

| ,-F

lo
I

-T
I

I

o
6
o)
.+
CI

(t
I

I

r.t o
t

I

rt

o
d
q)
F}

o

c)
6
ID
t-ts
o

; ; ; ; (o(o $ ' ,
o o o o o o q=
=:J = f : f = o-3
q q q q q q a6
EEEEEEqd
OOOoOo6crg Fe- d 6e'q h
1qg=qgs,7,
='J ib '9gdF
H='='=g-g-=P
inCIo$336-=
Xclc:s 's.s.+<
= o oO= r tp o

*d7l- toooAgi lE'EEE55
*==o---e
OAJq

o<
^ 'O

O
o- o-

++++
(o (o (o fD (o (o
o o o @ o o
.+ FF rFt- U)_

= =

s 6 6€ q q
-r

-
a --

g) O)
nN)Tfn++
Ra669R,= == = = a
=*5AbF
, f r :g?*d
Ei l* i*B
$(9 H X 0)

i l 9 s #-*
F e'-E ;-r-=

t *(t

sEe@r-
, -F : .

na
Jf
3='
(D'4
9n
o
FF

V

r+
)
D

rj
l3
lo

D
l

rJ
l .grq

t
T_

t>r i
i

_i'
IT
l r

Dn
t-5"

I r-.F

lv
I

r
I

I
I

o
cn
T
cn
g
o
-

o
T

o
o-
q

3

++
l<
=to
<

d()-ss\r o-
oo
(o Tt
o<
dg
oto
do
J
3
or+
fI)u
tt

u,
o
F}

o
3
a
F}

!)r+
C
o

++
a(o
oo
66ss
FF Fts

cc
99
o-
.+
-t='u
t6 rI)
ad
0)
li'.

C

I

9.
C)-

ffil * l r3- l
l3 i lT l
l r t td I
lE i tFl
l ; I lu. l
l i l l * |

FisM

- r
q,

GI
tftrI-level class di

+++++
q (() E (o -loooo='
FFF?FFFF<

rnmaai
==trdi1: -==o
R;OO A
i lqs; t
;6 ' (D b
X &rBt ld(. / }€3
o<

A

o-
di l

F
CN
r"+=.
f(o
o
=g

t fU
$0)
d6'
ocn
?ET
14 -tFF

I
3
o
o
o=o|.|.
-g.
=
F}

A.

3
p_
o
3

,o
3
o)
6'
:J
v

c,
d
o)
o

ackage

This diagram shows how the objects within solver package interact from a time
prospective. "CSPSolver" object created by "servlet" method, creates the
"TimetableCostraintModel" object. This object invokes its methods to generate
time slots, time constraints, domains of variables, second examiners and other
constraints (see section 4.3.2.3). During this process "TimeConstraint" and
"TimeSlot" objects are created and stored in the "TimetableConstraintModel"
object. A result of every action is set as a status of the system by the
"SystemStatus" class.

TinretableConstrai
ntModel

t
I
I
I
I
I
I
I
t
t
I
t
i

I
I
I
I
t
t
I
I

;.

r.eate ii Qglerf i fg a. j

l iri lg S:OtS

setSiair lsi i

f{y A': LrrOigCtS Al{J

I a*ir ltY r*'g'",'1;g' U

ilg!'tgrg!* t:fr*

ff i11$i f a,rJi$

c'eal*{ i

set$titl.r-qii o*i .li t1 I : r:rgf,i).i_qt tff ,,lt

*i),gtrigerteraie {l$r*fl:rt$

assg'l secoliJ exa!" 1€"$

sel Statir${}

dC h nrltr 1l ft erse trt r0n S

a qJ rlC ol *ql i a,'l tsT oh4ode

Figure 27. Low-level sequence diagram Qook at classes interactionsfrom time
perspective)

41"*'r**S;*i

CSPSolver

.€i"Jril i*r$dg,

Ee"le ' i l leT
*reial :

36

t

{'t* L}rc.ieci t* s#red.ri€l

I
iaotta irs *roje cf s ta scrrecl utsj

$e fie lAte t, *:g S,c>tS

geqe'aie (Jc,*a ' ls
*r(), €Ct$ ff ut d

. ' frS$ign

'.,. *xffr"*ilJ€ rs

se c*nd
tO L1'O,e CiS

I

t

I
I

L-

l

f i l i ry{5,

tO

i.

S#:Ve r

t'ae tfi il!.€."

store ge fi€ratecJ
t ' r .* tar* ieI

I
L-

I
I

I
L*

L
L
I
t

Dr fii):g !:1

fo irrcj I

rqfoi r': JS€ r A tlcUt t€S"t it

sctivity during generoting a timetable

RgtrgV,S , r l fgrr 'r;11

: . i ' gete*ate t irye
ffi rtst rg rr1{g f6r r}r* i€*{$

OI]S fi

se acreJ

cfl

tqe r:r

*0ntro.

Figure 22. Activity diagrsm describing

37

In this section, descriptions of classes of solver package are provided along with
explanations of their most important methods.

This class extends "cPModel" class of "choco" library and represents the
constraint model. Within this class, all variables, constraints and domains are
generated to create a constraint model of CSP. The model is used by "CSPSolver"
object to find an optimal timetable.

Key methods:

add ConstraintsToModel

Implements all constraints fsection 4.3.2.3) of the CSP. It is executed after
all variables, time constraints and domains are generated by other
methods.

generateProj ectDomain

Generates projects domains based on projects time constraints. It
compares projects' time constraints (including supervisors and students'
time constraints) against time slots available for student presentations
and only ids of time slots fulfilling the constraints are assigned to the
domain.

generateRoomDomain

The same approach is taken as in the method described above. It
compares rooms' constraints against available time slots.

generateProj ectTimeConstraints

Retrieves all the information regarding time constraints from the
database by using DAL and creates "timeConstraint" objects stored in a
vector. These object are used in generating domains.

generateRoomTimeConstraints

The same approach is used as the method described above.

generate2 ndMarkersLoads

Retrieves information about loads of faculty members by using DAL and
computes loads of second examiners.

3B

sen erateTi m eSl ots Obi ects

Generates all time slot objects based on settings made by the
administrator.

assi gnSecondExaminers

Assigns second examiners to student projects. All second examiners
selected for particular projects by administrator are assigned first.
Afterwards, all second markers selected to be assigned to particular
supervisors are processed before second markers are assigned
automatically. Within this class the method "generate2ndMarkersloads"
is invoked to get loads of second examiners in order to assign appropriate
amount of projects to them.

do D omainlntersections

Does intersections of domains related to project variables. It is invoked
after the second examiners are assigned to the projects. It compares all
values of a supervisor and second examiner domain and does an
intersection of these two sets. The intersection is a new domain for the
project variable.

This class i*ptaaunts "CPSolver" class of "choco" library. It uses the constraint
model to find a solution. Within this class, a searching strategy can be set up. To
speed up the process of searching the solution, values of project domains are
selected on a random basis. A variable with domain including the lowest number
of values is assigned the value first, and then other variables in an ascending
order.

This class represents a time constraint. It includes information when student,
faculty member or room is not available.

This class represents a time slot. It includes information such as the start and
end of a time slot.

This class stores a system status as a
generating of a timetable the status can
requests to "servlet" [see definitions in
returns the status as string.

string to a file. Therefore, during the
be displayed at user interface by AIAX
section 4,1),which reads the f i le and

39

4.3.4 Database access layer (DAL) Package
The functionality of this package is to query a database and return desired data
back to objects, which invoke the method. As stated earlier, the system relies on
the existing database and a new database designed particularly for this project.
Therefore, this package is separated in two parts independent of each other,
dealing with different databases. This approach provides an oppoftunity to have
each database located on different database servers.

40

o-
g)

ro
g)
o
x
g)
(o
o

a"#
t+ f*
-l

5' l'.i-,
(O i:.}

E i.j'l
$ i l
f / / : I ;
a;:
-

1. , i

:o
Yo
o-f

o
,-'l O
X,<xa
- t+5-t
o='g.(o
6'o
=9

f
o
C)
r"F

6':)
a
t+

-l=
gl

a
t+

-5'(o
c
o
o
-t

a
o
l-
oo==
o
c}-}'
6':'

o
Pd
rG)

a+

o
.A\/

o
a

a

.A

P
J

a

a

++++
E c cn o- o- =' =' o a a o o a cn @ o @ @ a
='E O (D O -@ -a O O O O O O O O O O O O'^ * it iD' it nt o iD' 6" 6- 6" o- tD- iD' it 6- 6- iD' it
9 + g d d a =, g g g g g g g g g g g g
E b g = = = I cn -t -{ n n ! ! ! rr E T] :n

* q { & ?, af g ?2F i = o e e s g e €
;e $ a E E a * $ A F:'o'= F g t F s q
Eq E q; i *s t ls g i3s gse *E g:- .6 3 -o E=- l E 4 i f r g R g F d E ggqqi-"=€t Ffr iH,qgEH e.== Tg== E f !E-qio 7
, i l f l i E:F: .* i ,g '66' 6Eg
s+a= s=EPHE EsB si lA
EA=gE =-qi g$P g n gi l

=.:r s) B 6 +o- o o-

i ;g .q '3 H#=fr 4 -^ d.oo

:g; '+ ag Es f l E A' 1ng ; = J 5 A
-T.{ ' 6(o

- '
.=a 3 e -1 n .E
9:

- iu

5; E a

ag ss E n g
= a,E : og sE d :

Fd E- d
e - 6 ?
=.? g =
,e ! ' 8
of
fe
o
s+-

ct
l-

' t_, ,

'?'

{"
i"''"r

y:" i* ':i"'"
ii4 :ii ir
1,. ; i" .t 4- ,j

a:T OO
:-'*" O O
cl=3
cf,=
=ooq gg
= o o
o aa
Ei3

f , : l(o (o
='o=x
E6'
-t -t
-a$d
UF
RH
b'g
J-

-J
-,

.a

96
-t 1.,+

-
-

- ! .

sq ,3

(]
l-
o
o=
-h
-aGI

o
a

I

J

I
I
i___

i
I
{

I
I

L
t

Figure 23. Class diagram of DAL package

This section explains objectives of the class located in DAL package.

This class represents a connection string a string containing all information in
order to connect to database successfully. The string includes information such
as host name, name of database, username and password.

This class makes a SQL connection to database server, and handles errors
occurred during the connection.

This class has methods containing all SQL queries. The names of methods reveal
their functionalities.

This class contains actual data used to make a connection to the database.

4.4 User interface
This section describes the user interface. There are three main groups of users:
students, faculty members and administrators. After successful authentication,
the appropriate user interface is displayed. Students can only display timetables,
either personal or one containing all slots. AIAX is used to make the interface
more interactive. The whole interface is based on the "Symfony'' pHp framework
(see section below).

4.4.L Symfony PHP framework

"A framework streamlines application development by automating many of the
patterns employed for a given purpose. A framework also adds structure to the
code, prompting the developer to write better, more readable, and more
maintainable code. Ultimately, a framework makes programming easier, since it
packages complex operations into simple statements. Symfony is a complete
framework designed to optimize the development of web applications by way of
several key features." [Potencier, p.10]

42

"Symfony is based on the classic web design pattern known as the MVC
architecture, which consists of three Ievels:

o The Model represents the information on which the application operates - its
business logic.

o The View renders the model into a web page suitable for interaction with the
user.

o The Controller responds to user actions and invokes changes on the model or
view as appropriate.

The MVC architecture separates the business logic (model) and the presentation
(view), resulting in greater maintainability. For instance, if your application
should run on both standard web browsers and handheld devices, you just need
a new view; you can keep the original controller and model. The controller helps
to hide the detail of the protocol used for the request (HTTP, console mode, mail,
and so on) from the model and the view. And the model abstracts the logic of the
data which makes the view and the action in dependent of, for instance, the type
of database used by the application." [Potenciea p.19]

{- *

"-,

t'

!

f l : r ' r ' i .

*fx-*8 :? f"l*: ' l*rr i$ le*r

ar

&;: : lr-rr,

&

{L ,i

L,l3 lr; i '

*"

?

llatx st-,:f:*xr'.;g,

*
lF

f;ol i.,,iln*:i*.'

otF- lx l r . - ; ; ;* t r t l ' ,

&

v

i] .* t ;r Sasr-

&

lt" Tu"g'-l :lrrt ::

Figure 24. Diagram showing the orrh.it"rt re of MVC pattern in Symfony
[Potencier, p.27]

43

These are the directories found at the root of a symfony project:

apps/
my application/

cache/
config/
data/

sql/
doc/
fib/

model/
loe/
plugins/
test/
web/

css/
images/
js/
uploads/

D,irecturr]' Description
i { i : i . i } , : { :on:. i : - : -con*d:rcctcr. , . ' furcar: lappl:c, lbo:r : f t icp:cjert , l t r . : : :cal j r , , f r . . : . r l .erd

.:nti L:,sr ke'rc fb: i-r* ltr:::t .r::d !.:ck i:ff:cr:j.
,-:;r.'re/ Cc(n*.:ts i.::c ri:ched \irr:lol cJ'ti.rr :c::::ig::,itlcr-, a::d iif 5r:.: ,:ct-'. 'a1t: i:i l.i:t

:at:trl \::rslgr, rf tLc u:i;cns i:C trn:pl;trs rf ti:ri prrr;cr:t. T:t cir:h* n:cr:il::!sn
icctai.l{rd r: tJ},i:p1.c: l2i uscs t}rcst :iics tr: spl'.,1 r,:p tic ansiE,r'r tr: ".."'r'b rcqulcsts.
iAt-:-f appl:Ca:.-n: l iS,r l l j : ' :Ue i 5lfr l i rar. ' r 'n: l -nrr. rrrr. t :r in:. :g pf*pfUt:CSStt l lSIt
anc .{T}1- fileis.

r.i;r'{r3/ 3ojds the gcnc:irl r:irrfiE:ra:.:rin uf t:rc prr-lcflt.

ir\d! 3c:c, 1-cu rln storc thc d:rta ilr:s nf tl:c': pru.rct, i-krr ,r ci:t:rbis* :lr:j:*:li. I SLal-
f:lc l.tat r:reatcs taiiirs, u:'c:1'c1 a S0_iic daj;b,rsc fiki.

u'.:Li' Stcres thc prc c:: Ct:r:,111311;1ir-:rj. :frtj'J*l]g:{-:!*: r_)1i,.ri dccln:trr:.s .r:rc Li,c
ilat:uiicntttion ge::cra:*d lv PIr Fi'ir-

-" r i:..' -)r:dir:i:tccl t* fo:r:gn r:lassc-c ur Lbrar:cs, Hcr*, I'ou qll ;.r.cd thc cad* thi;t nceds
tc;:c si:i::*d i::nolg vcr:r.:pphrahc::s. J'ti: rrutle'I,,. 'subdirrrr:tcrr-s1;u:cs ilc qb cci
n:odel u: thr: prc3ur:i. iric:;r:nbei i:: Chaatcr 8 j.

.';1,1;' Storcs the i:pulir:iblr iag:i1cs ge::craicd uirur:t11.'bi'sv:rfcrry. It r:;: aistl r:finti:n
ltrb s*:r'e.r lcg f.lcs, datai:asc Jcq f:lcs, o: Jog fiJes:iu:n ;::r' pa:1 cf ti:* p:cjcr:t.
Si'r:fo::,r' r:rei:tcs c'nc iag :iic pc: ai"rpj:cahu:: atjd p*r cti.::l:c!rrrtL'J:t {lcr* ::lcs lrc
d:sl:ussei ::: Chi:pter 16!

pf ,r;jr':;,, Stcrcs ihc pJ",;iy-:::s i::st,rlled::i i.ic ;ppJ.iui,:r:: ipJ'-ig-:ris l::.i l i.sc::sscd::: CLapi.*:
1 l) .

tr$'",' flani,;::rs;n:t .rrrd furr:i..o:':l tcsts it,r:t1c:t::r PHI ald t:anpai,.h,lr" r.;:ti tic
s1'r:lor.v t*sbrg :ri:ncr*trk iris.uss*d :n C:raptcr 1 1:. Iiuring l.-tc rJ:tir'{:t 'rr.tup.
s','nfu:r.v i:Lrtcnaj.:rllJ.v ar:ds srlrrc sl',rbs lt:ti a Jcrrr i:is:r tcsts.

'orr!:,,/ Thc rcirt iclr thrr xcb sc:..'tr, Ti:* t:nir'fi.lcs icr:rss:ble f:*n tirr .::tcrl,:t am i.i:c
r,nris lscatcd :rj i.his cirertcn',

Figure 25. Table describes the content of the root directories [Potencier, p.37]

44

The tree structure of all application directories is the same:

apps/
[application name]/

config/
iLBn/
fib/
modules/
templates/

layout.php

Directory Description
ronf iil,i Hcrlcis a hefty set of YA),IL configuration liles. This is \,r,:rer"e mnsi nf tl:e

appllcation conliguratio:r is, apafi fi'om tle de:ault parar:elerc thal cal be
iound in the ira$erqo:k itself. ircrte that the default p&rcmetert car still he
ovemd.de:: :lere if neecieC. Yuu'll learn n:ore ahout applcat.on confiqurut,cr:r in
lhe t)hapter 5.

iisn/ Contains f:les used ibr the intemationaiizat:on oi the application-$ost,l]-
inlerJace transirtion liies {Chapter i3 deals ruih i::terralnnaiieation}. You can
bypass tl:is d:rector.r if _vou choose t0 iise a database ,'or ,llemationaljzatior,

irlr/ Co::la::rs classes anC ltr:-aries tl:at are speciic to tire applicat:on.

rnocule-.,,/ Slores aii the n:odules :hat contain li:e lealures ol i::e appl:cation.
templatesl Lists the giobal lemplates ol the appllcailon-tl:e ores that are shared hv ail

n:adules. By defauit, ii coniains a r.ayoirt.php ljle, it-:rich is t]re n:a"l layslii in
inhich the nociuie ternplates are inserted.

Figure 26. Table describes the content of application directories fPotencier, p.37]

45

4.4.2 Modules and actions

This module contains actions and templates that can be invoked only by the
administrator. It includes most administrator functionalities such as assigning
second examiners to supervisors or projects, rooms to programmes and adding
or deleting rooms available for scheduling.

I

{
"gq ile*c,t

Figure 27. Class diagrem of admin module

.,'1.

'€$tlof'f s€

Miod;el

tr"qta acfes.s

D#gnase sD*qtrrfr# *t

Conrtroller

A ct ions

+ l';1 rl f;!, gr') va r r delie A{1 d Rc*'r i$ req J e -sl i
- fu{Ct,Or 11arul :eF*JeJ R*cm{$req.rest}

" fir{f;i;*r'r €x€fr.rteAdrJRmn{$r'eqrrest i
* fd{cl.*rt vfr r,gg1p De,eieRo*n1$r€{.€$ii
*- f.1r1ft:*t ltgfld re Dg,etgRccr{$req rj*-$t'i
* fufi ct rs{ s xsc j.lle D€ !e te Ra$i: i$ req ue'st }1 }
* fil{ci,orl €x#cirt$ ttcvrR*ons{$req"Igsii
+ fs I g1, gn \riT i i rJate As$,g I Frogl fi !r*l'rie R*on1 $re q it€ si i
* [g rT gt i #rt rt a ruJ ig ftg*r g-,] p 169 r g rr-r t:.e R.S# t*{ $r* rJ ite Sii
* f rl t et : *rt e Xe f:il i'gASS g tF rCISr Ar.r ?::g R*<:*i $ €q iJe St i

' ["r;]ct;ot viT ;,dalg De ;ele F:*grff r*eRog*li$r*ij.rest]
* fir'1 g{' gq tt fr rxJ ie De re te P'ql rg plngftosn" {$ req .r esi }
* fir:tCti*rl €XSCIieDe ele F.*grairi"l€ RAO'o{$req.rcSti
* fI t Ot,g1n ViT i i ClAte pa ir p'OSr g*r ;r*g ft#*r.'1{ $rc ql ire St i
* f u q et iCrt !t it :r<J,e FA r rpfCItl ifi !!,,r19 RC*ro { $rC e} ue S: }
+ funcl'r*fi gxgfrliePa'rprggrg'-:*eR**ll1$reqirest}
* litrt *t,on ya ;,datg De ete $<J S€rv :gorli,ia'cer i$reti.resii
* I'u :l f;{,#!'r ft A fd ie De :e {e U u Sg *,r iS*r h{a :tg r{$ teq

"r e$t}
+ f il r'1 fl! i 661 g xec.t te Fe c {e S,r *e rv is*r f,.,1 lT' {g' {$r eq rre sl }
" [u t Cl, Cl'l vA ; i ela tE ASS !$ t S i.I t)e ru ;SC r h.'1 A r ;qe I { $rg q Je St}
+ f ;1rl g{ : gr'1 il il lxJ ie As$ {l 11 S I fie .v rs*' h.l g r -<er i $ru q Je -q1 i

" fipt Ctrgrt exgCiltreASS€ tS j.l $enlr$Srh4At reoi$req.eSii
* f ;:fi rlt,*r^t gxgfr.Ile Pa ir$ "rpg rv,sorh4ar *;e ri$r€{.le-ql}
+ f u fi Ci, cin va i : ela ie ASS q] t i..1 Ar {e r {$'e q-.le Si }
, f rt rl *t i #,1,1 i? td ;g g_qg ig t1 !i...1 ar t g r{$ ne g rr e *rl i
+ filqglrgrt execltteAss g:th.{a'<e o{$'eq.rest }

" lir t ct i*rl vff ;i rJatg Re'",rsrc h{a' re :{$ req ire sl i
* lorrtctlt:t rtarut ieRg'rCIve h1a'{,e'{$req,resti
* f uil ct i *q g xe c.l tg Re tl:#v'e hl a.'qe r { $ req"r e st}
* f-tt rtion v fl i,Sglg Svn'a*S,crtsi$req {€s:i
* f :r :r^ rt ;cn r.t a :,xJ,e $v* ir * $; cls {$' eq .Ie $t }
* lu rr ct : fit B "F;*c il te Sv;a p S i o1 ${$ re q ile -*i ;:
+ fi1r1g{,9:'r eF,ef illg FA rrP'CI;e Ctfi,lar (e r{$req irest} Dsts*ase

46

Login module contains just one template and three actions "executelogin",
"executeloginSubmit" and "executelogout". The main functionality is the
authentication of users.

This module contains all templates related to displaying and editing a timetable.

4.4.3 H igh-levet prototypes

A navigation menu is based on drop down boxes. It separates clearly the content
of interface in two main options, timetable and settings. AII web pages relating to
the timetable are under the category "Timetable". Pages related to setting up the
scheduler system are under the "Setting" category. The student navigation menu
contains just options for displaying the timetable, either personal or one
containing all student presentations. Faculty members have an additional feature
to add their time constraints. Administrator have all these features and in
addition can navigate to web pages such as edit timetable, assign second
examiners to projects, assign second examiners to supervisor and vice versa, and
assign rooms to programmes. Under the main navigation is located another
menu, but this is related to the particular page.

Displaying timetable is in the calendar-based form. Each column represents one
time slot containing information such as name of student, supervisor and second
examiner, the time and place where the student's project is presented.

<<lNavigate to different datesl>>
Room I Room 2 Room 3

I Date & time I Date & time I Date & time
Student Student Student
Supervisor Supervisor Supervisor
Second examiner Second examiner Second examiner

I Date & time I Date & time I Date & time
Student Student Student
Supervisor Supervisor Supervisor
Second examiner Second examiner Second examiner

I Date & time I Date & time I Date & time
Student Student Student
Supervisor Supervisor Supervisor
Second examiner Second examiner Second examiner

I Date & time I Date & time I Date & time
Student Student Student
Supervisor Supervisor Supervisor
Second examiner Second examiner Second examiner

Figure 28. Format of timetable

I

i
I
I

a-

47

The feature "edit timetable" enables an administrator to edit a generated
timetable based on the format described above. All time slots will be draggable
objects able to be moved after clicking and holding the mouse cursor on it. After
dropping the time slot the time slots are swapped and changes are saved using
favascript and AfAX request.

To assign a second examiner to a project the object representing the project is
dragged and dropped within the area representing a list of projects to be marked
by the second examiner.

SiJ $e fV.$*' sgccryJ gxa{"rt1g'

Y

I :41.}i-?*iS ti { Sf te:,rrJ .r"yg1 :r1 ; "1; r

{1:r{ll & c.e:i;

{ . . r r }

Figure 29. High-level prototype of interface used to assign second examiners to
projects

To assign a second examiner to supervisor, select faculty members from drop
down boxes as supervisor and second examiner. and click on the single yellow
arrow. The double yellow arrow represents assigning in both ways for instance
faculty member B as second examiner is assigned to supervisor Au and faculty
member A as second marker is assigned to all project, which supervises B.

The same rules apply to red arrows apart from the fact that they represent pairs
of faculty members who cannot be assigned together. Below these components,
lists of all of the already assigned pairs will be provided.

4B

SiJt)€nV'SO' $e*Std gXA,\.,,llg I

sil pe !'v!$si $*S#nd ggffr'riiJe I

Figure 30. High-level prototype of interface used to assign second examiners to
supervisors and vice verse, or create pairs of faculty members who can be assigned
to each other.

This feature will be implemented as a simple dropdown box containing all
programmes and another dropdown box containing all the available rooms. After
selecting appropriate options, a button to submit the data will be provided. All
rooms already assigned will be displayed below the components.

#
ffi#

4g

I

i

I(

5 Implementation
This section describes the implementation phase of this project. It covers
explanation of technologies and the approach used, as well as a detailed
description of the problems arisen during the coding. The whole implementation
process is divided in 3 deliverables. The first deliverable is a scheduler system
without any extended features. The second deliverable is the scheduler system
including extended features explained in section 3.3. The last deliverable is a
graphical user interface (GUI) provided for all groups of users.

Section 5.1 contains a description about DAL package fbackend engine)
implementation.

Section 5.2 describes the scheduler system (mainly solver package) without
extended functionalities [first deliverable), problems arisen after
implementation of the first deliverable and how the problems were solved.

Section 5.3 describes an implementation of extended functionalities of the
scheduler system.

Section 5.4 is about the GUI development process.

I
i

I
t

I
t-

I

L-

50

5.1 Database access layer of backend engine
The database access layer [DAL) package is coded in]ava language version 1.6
and designed to be as maintainable as possible. To switch to a different Database
Management System, software managing databases (DBMS) compatible with SQL
queries, just one method "connect$" in the class "SQlConnection", needs to be
changed depending on what DBMS will be used. All settings information related
to a connection to DBMS is kept in one class "DALConfig" to make it maintainable
for future changes. The class containing all SQL queries "DAL" is separated into
two parts. One part contains the queries retrieving information from the old
system database (external). The latter one is related to the database design
specifically for this system (internal). Therefore, the database can be located on
different database servers if needed.

5.2 Scheduler with core functionalities (1" deliverable)
All classes of backend engine were coded in fava language version L.6by using
programming tool "Eclipse". The version of |ava on the department informatics
server where the system will be deployed will be checked before the decision
about a constraint solver is made, because of the fact that the most recent
version of fava was required by "Choco" library.

5.2.t Application Programming Interface (APl) of "Choco"
To implement the constraints described in section 4.3.2.3 the API of "choco"
librarywas required to be explored in detail. Small blocks of fava code are
written by exploring the API to be sure of the use of appropriate functions to
create a constraint model.

List of constraint functions of "Choco" library used in the constraint model:

o allDifferent
"States that all pairs of variables have distinct values
useful for some matching problems) [v_1 t= v_2 != v_

(which is
3 != ,. . !=v_n)."

oad
"States that every constraints in arguments have to be satisfied
[c_1n c_2 n...n c_n)."

o atMostNValue
"States that the number of different values occurring in the array
of variables to be at most nvalue."

oeo
"States that the two arguments are equals (x = y)."

51

t

I
J

t_

I/
L

I
t

{
I

t_

I
L-

I
L-

I
L

t
t_
L
t
t
t
t
I
t
t

gt
"States that the first argument is greater than the second one
(x 'v)."

iffhenElse
"States that if the first constraint is satisfied, the second one should
be also verified, otherwise the third one should be verified
((c_1 n c_2) ll(!c_l n c_3)).

Can also state that if the first constraint is satisfied, it returns the
second parameter, otherwise it returns the third one."

olt

o max

o mln

o neo
-'t!

"States that the first parameter is less than the second one (x < y)."

"States that the last argument is equal to the greater value of the
other arguments (z = max(x_L,x_2,..., x_n))."

"States that the last argument is equal to the smaller value of the
other arguments (z = min(x_L,x_2,..., x_n))."

"States that the two arguments are not equals (x != y1."

occurenceMax
"States that the occurrence variable is at most equal to the number
of occurrences of the given value in the list of variables."

or
"States that one or more of the constraints in arguments have to be
satisfied (c_1 ll c_2 ll...ll c_n)." [choco constraints]

5.2.2 Generating time slots
Before any process of the scheduler starts, time slots need to be generated. For
this purpose the function "generateTimeSlotobjects" is implemented. It retrieves
all required information such as a start and end date of a schedule, start and end
time of a day in the schedule and a length fnumber of minutes) of one time slot.
After all these data are populated from database, the method iterates in two
nested loops. The outer one has a stopping condition when no more days are
available for scheduling. The inner one creates time slot objects and iterates
from the start time by adding the length of one slot to it until it reaches the end
time. The method returns an arraylist containing the generated time slots.

52

L
L

t
t

L
t
t

t
L

t
L
t
L

I
t
t
L

5.2.3 Generating time constraints
Before time constraint objects can be generated, the actual time constraints must
be inserted into the database. An XML file structure will be designed and sent to
the department informatics office in order to obtain all faculty members' time
constraints. This approach is used because there is restricted access to the
database containing the timetables of all faculty members. When the file was
provided the method "readXmlFile" of class "XmlProcessing" reads it and stores
the constraints for further processing.

Afterwards, the methods "generateProjectTimeConstraints" and "generateRoom-
TimeConstraints" are invoked. The basic principle of these two classes is
identical. They iterate through the time constraints retrieved from database and
create time constraint objects. The objects are stored in a hash table where a key
is a project id or room id and the value is a vector of time constraints objects.

XML Structure of the file:

<?xml ="1,&"?>
<constroi nts>

<foculty>
<nember>

<person_code> sompson<,/person_code>
<constroint>

<sto rt >Ziifi ? -. {i-i -,J5 14 : fi {'i : #*</sto rt >
<end>Jr:i}9 " {i}* #5 l-} : {tli : *V</ end>

</constroi nt>
</member>

</foculty>
<constroints>

5.2.4 Generating variable domains
Each variable of the "choco" constraint model must have a domain containing all
valid values. The idea of generating a project domain is that the method
"generateProjectDomain" iterates through a collection of time slots and time
constraints of supervisor and students involved in the particular project and add
to the domain just ids of slots, which are valid for both of them. To find out which
slots are valid the method "isSlotlnDomain" is used to compare a time slot and
constraint passed as parameters.

The rule is: start time of slot >= end time of constraint AND
end time of slof >= start time of constraint

t

t

t

s3

5.2.5 Generating second examiner load
one of the requirements is to generate second examiners'loads fmaximum
amount of projects they are allowed to mark).

The basic rule is: L2 = 2*L - NP

where L2 stands for load of faculty member as second examiner
L stands for load of the faculty member as supervisor
NP stands for a number of projects the faculty member supervises

Because the sum of loads generated by this rule is very rarely equal to the
number of projects to be marked, the loads must be amended. The idea of how
the loads are changed, is to decrease or increase each load by one until the sum
of loads is equal to the number of projects.

5.2.6 Generating timetable
To generate a timetable, the object of "choco" class "CPSolver" must be created
and the constraint model must be added to it. Before the method "solve", that
searches for a solution can be invoked, the optimization of solver should not be
omitted. Two key points are important to make searching more efficient: how to
prioritise selecting variables and how to select values from variables' domains.

The initial search strategy is:

Selector for variable: "DomOverDeg"

"A heuristic selecting the variable with smallest ration (domainSize /
degree), the degree of a variable is the number of constraints linked to it."
[choco search strategr]

Selector for value: "RandomlntValselector"

"Selecting randomly the value in the domain"
[choco search strategy]

5.2.7 Key problems and their solutions
Testing the first deliverable revealed that java heap space had to be extended.
After setting enough amount of memory the problem was that the time needed
to generate a solution was substantially long. The process ran for 48 hours and
no solution was found. After consideration of possible alternatives, it is decided
to divide the CSP into two separate problems; assigning second examiners to
projects and assigning time slots and rooms to projects. This decreases the level
ofconstraints and scope ofsearch space. It also enables higher control over the
process of assigning second markers (see next section).

54

t
l
L

L
L
t
I
L

I

L
t
L
t
t
L
t
t
L
L
L
t
L
t

5.3 Extended features of scheduler (zno

5.3.1 Assigning second examiners to projects

The pseudo code of assigning second examiners to projects (method
"compareDomains") is as follows:

1. Generate loads of second examiners by invoking method
"generate2 ndMarkers Loads"

2. Assign second examiners to particular projects as set up by administrator

3. Assign second markers to projects of particular supervisors as set up by
administrator

4. While there are projects without second examiners do
Find project with smallest domain
Iterate through collection of second examiners and do intersections of
project fincluding supervisor and student) and second examiner domains,
and select those who have the intersection containing the highest number
of values. Exclude second examiners who were already assigned to
projects and fully used their loads.

check whether the pair of supervisor and second examiner is not
assigned to more than the limit set up by administrator. If so, select a
different examiner and check again.

Assign the second examiner to the project and decrease the load of the
examiner by one.

If the load is less or equal to zero, mark the examiner as unavailable to be
assigned.

The extra features Iimiting same faculty members to be assigned to the
same projects, assigning second examiners to projects or supervisors are
implemented within this method.

Second examiners with the smallest domains have higher priority to be selected
first and are assigned to projects where intersections of project and second
examiner domains are largest sets. The reason is that the bigger domains are
able to obtain the higher probability that can be achieved to generate a valid
timetable. Also it supports the feature, which helps to find the maximum number
of slots to be possibly swapped.

deliverablel

55

5.3.2 Relocation time constraint
To implement extra feature that gives each faculty member a time for relocation,
the following pseudo code was used:

1. Select all music projects

2. Iterate through music project collection

For each supervisor of a music projec! set the constraint that they cannot
be assigned to a non music project one time slot before and after

5.3.3 Possible swaps feature
This feature is implemented as "servlet" method "doGef of class "Possible-
Swaps". When the user sends a request to this "servlet" with the parameter
containing a project id, the method retrieves the time slot id of the project from
the database. Afterwards it iterates through all of the project domains
fintersections of student supervisor and second examiner domains) and returns
the ids of the projects whose domains contain the slot id of the project passed as
parameter. The projects are marked with a different colour and are valid to be
swapped.

5.4 Graphical user interface (GUl)
AII parts of the GUI are implemented in PHP language by using PHP framework
"Symfony". Three modules are created within the GUI application. Module
"Login" deals with authentication containing functions to login and logout.
Module "Timetable" deals with showing a timetable either personal or
containing all presentations. Only administrators can amend the timetable.
Module "Admin" contains all administration functions.

As one of the requirements is to make the application user-friendly and easy to
use, the GUI usability is critical.

5.4.1 Drag & drop technique
To make the interface interactive and easy to use, the drag & drop technique was
used. One of the biggest advantages is that a user is not temped to type anything
in and it prevents the user from easily making an error. The second significant
advantage is that manipulation with the timeslots is quick and clear to users,
which is importantwhen managing large-scale timetables.

This technique will be coded in |avaScript using the external "Protot5rpe" library.
when a user clicks on a "draggable" object (project time slots) and holds down
the left mouse button, the object can be dropped by releasing the button on
droppable objects fcontainers for project tome slots).

56

When drop event occurs, an AfAX request to invoke an appropriate function is
made to the web server. The function executes and sends back a response to the
client. The response is processed on the client side flavaScript) and if required
the document (web page) is amended by Document Object Model and results of
the request are displayed.

During the process the user is always informed of the current status of
application, either if it is waiting for a response (loading bar), exception
occurred, the task was accomplished, or failed.

5.4.2 Login
To Iogin to the system, a simple login form is provided to fill in with required
information such as username and password. When the form is submitted, the
"submitlogin" function is invoked to authenticate the user. After successful
authentication, the timetable is displayed.

Sr.l l*d* Icr

F lt{;i5tr, fi|:j!rIi€ ':,!;Ltr l::iltn llt:'1.:rii-*.

User*arrre

Fassb?orc{

i . . t i i ln

Figure 31-. Login page

57

5.4.3 Personal timetable
When a user is authenticated and clicks on the option "Personal timetable", their
login details are read from a session and an appropriate timetable is displayed to
the user.

Figure 32, Personal timetable page

I
I
I

I
I

I
I

I
I
{

IL-
s.4.4Timetable containing all presentations

t - ,
I This option shows a timetable containing all student presentations. TheL- timetable is implemented as a component in the timetable module (path

, "actions/components.class.php"). The method "executeTimetable-Component"

I iterates through all time slots comparing them with assigned time slots to
presentations. If an empty time slot is hit, an empty column html code is

1 generated; otherwise code for the time slot representing the presentation,
I including information about studen! supervisor and second examiner is

generated.

L
L

5B

t 8" t1", ' *" '] * ; t - i

t r l { ! lv . r* ' .ao

5r*3u"q$t l I*"1-

l i tuet* f l lc cf i r r .ere* laf i** . , sr f f is t ' { l c t r rc lerr ts

j

l

r;;r.;,1,1,-'r.1.;i, ;,,,1r;, ' ;tr ;, i ;.,.,.,.1.,;r,.,,. .1i

L

t

Figure 33. Page shows a timetable containing all student presentation.

5.4.5 Edit timetable

This feature is accessible only by the administrator. The timetable can be
amended just by dragging and dropping timeslots into desired positions. This
"drag&drop" technique is implemented using |avascript (external library
"Prototype" used), AIAX and PHP. All timeslots are draggable and can be dropped
to empty containers with a fixed date and time. During the generation of these
containers the slot ids are mapped to the ids of the containers. The same rules
apply to project time slot ids and therefore they become mapped to the project
ids. \Mhen the user drags the timeslot and drops on some container, an AIAX
request with parameters project id and timeslot id is made to the web server. A
PHP function updates the data and returns a response containing information to
swap the project. It is recognized whether the project is swapped either with
another project or an empty time slot. The swap is stored and a "step back"
functionality is provided in case that the swap was made by mistake. The
processes are saved as a stack, thus there is no restriction how many steps back
can be processed. Note that the number of possible steps back is shown in the
brackets in the button. After clicking on the button "Show All" a timetable
containing all presentations is displayed.

59

5o"f :* t l l r icr"
I

IGGEEEIE@EilE@@ir ' ' : - r ; : , - i

i cf i f t i r ruetahle

l . t -

l ,

l. Ii
' ' l l

I

I

t I -

Figure 34. Edit a timetable

I IQ I r r i r , r . i r r

Schet l r r l * r -
t -&J ' l t \ t r i ! i ' \

I
|,f*f.l],;-:,1;i;1,;.;;:i:,iiiii,i,!ii::,;,-,::i.,.i,i::i:i.r,.,,ri,-...i,...,rr.f'Tif*,t**;:i.r*r*iiir*r':*iri:;ir;;r*r*:,

fdil t imctablc

i l

l r . -

txS

I

t-

I
L_

i
I

I
I

I

I

I

t_
I
I

t
L
L
t
L

Figure 35. "Dreg&Drop" technique used ta swap a time slot

60

The extended feature described in the section 3.3 fshowing timeslots valid to
swaps) can be invoked just by double clicking on a project slot. All projects valid
to be swapped by the project clicked on, are marked with a different colour to
distinguish from the timeslots not valid to be swapped.

Figure 36. Valid project to be swapped are marked with different colour.

5.4.6 Informing user about current status
Whatever function is performed on the system by the user will have to have a
comment or notification informing the user that it has either been successful or
now, along with the progress that an action is actually taking place. The
following screenshots show how this information is displayed to the user.

61

#Y#'ryffi
4+#**.i{-F*,s,d

i . . i

FS#

t rs

Figure. 37 System is waiting for a response from server

3'1d.l#W#t$ffi
B*.+b*&.iru.,#

$iri ffi
$rffi4*+-pr?

E
!'jMi,-*&_]SS+

&*

#$.h*

er ffi W

l . ,
- : - r - - - . , - ' - : -

- .
. . t ,

:
!.,

t t , ,

, . . r ,n\ ' '

Figure 38. A request or process was successful

62

5 u. ll r-r"t t; I* r"
I , i - r iJ i ' * . , : i i fn"

t * i " \ i in*rs ' I ,

,snc4rFfil t*ffrd r+ *r j
. i

A*+lelrr q{"e rrn(f nuxrke.r I e.x*nr irr* .r [<l grrct ie< f

|
- --t

| ' :

Figure 39. A request or process failed

The interface for faculty members is provided to add their time constraints. To
add an entry, a drop down boxes to select the dates and time need to be used.
Time constraints can be deleted just by clicking on the buttons next to them.

5.4.7 Adding time constraints of faculty members

Ld.*Se* rn $x *

@
@il
@
@

Figure 40. Adding faculty member's time constraints

63

I
l*_

I

I

I

L

t_

t_
I

L

L
L
L
L
t
L
t
L
L

5.4.8 Assigning second examiner to supervisor and vice versa
This feature provides the administrator to assign particular second examiners to
projects supervised by a particular faculty member. It can also be done the other
way, so that both of them are involved in projects either as supervisors or second
examiners. The assignment can be deleted by clicking on the button just next to
it.

The administrator can also speci$z which members of faculty cannot be involved
in the same project as the supervisor and second marker.

In order to comply with usability, the feature of the drop down box is
implemented in order to minimize user error and increase efficiency.

5u"t:u:d n"l I*r"

; i r " '
1,,

IssM *H,X
: . , , . , : : : . l : t r ' , : : , i - r , : . '1,

' - l '

i

j

i
I

I

I
I

I
I

<n
{n: i

+*
t_

Figure 41. Page shows a feature of assigning faculty members to each other

5.4.9 Assigning room to programme

The feature "assigning a room to particular programme" is implemented by the
interface displayed in the screen shot below. The same idea is applied as in the
previous section.

<rr*

ro
trH

- - ._ -- : - . j i

@
@i
@i

@
E@

I
L

64

i] . *x. , 'u * ,n?1-
* * j \ ' iJr" te ' \

5u"t :*"u i t i I f ?"

i ' . . '
tP",- l

. - : : . : . . . i

Asqi$tt (()atasc f t r(lqrdstt [c f(] t (r . r i l l

<r --r ' r i . <- l

Figure 42. Assigning rooms to particular programmes

5.4.10 Add room for scheduling
The administrator is allowed to add or delete rooms where projects are
presented. The simple interface is provided for this task.

5 *: l: *r-i q I 3r-- {"

t,*glsss ;:tr as $

Figure 43. Adding or deleting rooms avoilable for scheduling

E@
@
G@'

6s

6 Testing

5.1 Correctness of timetable
A black-box testing approach was used to test the correctness of the results
produced by the scheduler. A unit test method was written specifically to test
every constraint applied during the generating a timetable. It reveals which
particular constraints are not satisfied. The test automatically runs after each
generation of timetable to minimise the fact that an invalid timetable is provided
to the informatics department office.

6.2 Optimization and efficiency of solver
Several settings of the search strates/ were tested to improve the efficiency of
the scheduler. The search strategy has the impact on a selection priority of
variables and values in domains.

The list of strategies tested:

Test stratery #1
Variable selector:

StaticVarorder [A heuristic selecting the first non instantiated
variable in the given static order)

Value selector:
MinVal (Selecting the lowest value in the domain)

Results: after 48 hours no solution

Test strategy #2
Variable selector:

StaticVarorder (A heuristic selecting the first non instantiated
variable in the given static order)

Value selector:
RandomlntValSelector (Selecting randomly the value in the
domain)

Results: after 48 hours no solution

Test stratery #3
Variable selector:

MinDomain (A heuristic selecting the variable with smallest
domain)
Value selector:

RandomlntValSelector (Selecting randomly the value in the
domain)

Results: The time was changing because of randomness, a solution
founded within approximately 3 minutes.

66

t
L

t
L

L
L
L
t
I
L

t_
I
I

L_

L
L
t
t
L
L
t
t
t
L

Test stratery #4
Variable selector:

DomoverDeg (A heuristic selecting the variable with smallest
ration (domainSize / d.egree), the degree of a variable is the
number of constraints linked to it.)

Value selector:
RandomlntValselector (selecting randomly the value in the
domain)

Results: The time was changing because of randomness, a solution
founded within approximately 5 minutes.

t20

100

80

60

Test # 1

','. Test #2

Test #3

Test #44A

20

5.3 Use case testing
All functionalities were tested by following the scenarios and instructions of the
extended functionalities section.

67

7 Deployment
The system was deployed and tested on a local machine.'WAMPJ" software was

instaied to make the machine behave like a web server. The source code must be
placed in "ww\M" directory to be able to execute.

A life-version of the system will be deployed on the informatics web server. After
discussion with the helpdesk, the server's version of PHP will be updated to the
most recent one. This is required to deploy the system based on PHP "Symfony"

version 1.2.\f any unexpected problems arise related to the compatibility with
the PHP version, the version 1.1 of the framework will be used otherwise. The
compatibility with the "Symfony" version 1.1 has already been tested by running
the compatibility test script on the server.

6B

B Conclusion
In general, no serious problems have arisen during the whole project' It was

found that during the analysis stage of the projec! only the core functionalities of

the system
-"..

discoveied. However during the design phase of the project

and ihrough further discussions with the client, there were other extra

functionalities took into consideration that would be very beneficial to be

implemented from the administrator point of view'

This project has taught the valuable importance of the analysis stage and how

this is one of the *orl difficult parts of the projec! due to the fact that truly being

able to find out what the user of the systems actually wants is not easy. This has

proved a valuable learning curve because unlike previous assignments where the

Lsk and the problem nia been given, within the proiect a more real-world

experience hai been taken into consideration, having to find out the needs of the

uslr and then develop the system accordingly'

The use of open sourced software "symfony PHP framework" and "chOCO" made

the project more challenging, because it relied on the qualities of these systems'

Consequ"ntly, if there
-it

i bug in either of these programs this would have a

direct effect
-on

the stability of the system created'

8.1 Assessment of success
All of the functionalities even the extended one have been implemented and the

success of the project has been proven by the fact that it has been used to

generate this year's final years presentation schedule'

one limitation discovered during the real life testing was that the time slots or

chunks could be dispersed. This is a feature that could be implemented into the

system with more time given'

8.2 Suggestions for extensions
Currently importing of faculty members' time constraints is done by reading

them from the **ffile provided by the informatics department office. As an

extension of the system this could be replaced by importing the data straight

from the current University timetabling system'

The other possible extension to the system is to use a thread controller, which

can be implemented in order to have greater control of other threads generating

the timet;ble. This means that more timetables can be generated at the same

time whilst being parallel. If a function is implemented that can measure the

quality of the ti.6t"bl., then one of them can be chosen as the best solution. The

iontroller can pause or suspend the thread if required'

The timetable could be exported as an "ical" file, so users can use external

software supporting this type of file and add the timetable to the other

applications zuch as google cllendar, ical, outlook express, etc. Also an ical file

69

parser can be written that would read the time constraints from the ical file

provided by user.

70

BIBTIOGRAPHY:
. [Pinedo,19957 Pinedo, M. (1995). Scheduling - Theory, Algorithms, and

Systems.

. [T'kindt, Billaut, 2006] T'kindt, V. and Billaut, J. [2006). Multicriteria
Scheduling - Theory,Models and Algorithms.

. [np-complete] Wikipedia, The free encyclopedia,2008. NP-complefe. URL:

. [Corne, Fang, Mellish] Dave Corne, D., Fang, H. and Mellish CH. Solving the
Modular Exam - Scheduling Problemwith Genetic Algorithms.

. [code&conduct] BCS, September 2404. Code of good practice. URL:

. [choco white paper] Choco Library, 2008. General description of the
Iibrary URL:

. [ajax defl Wikipedia, The free encyclopedia, 2008./.px. URL:

. [servlet defl Sun Microsystems, 2A09.Java ServletTechnology.URL:

. [php defl Wikipedia, The free encyclopedia, 2008. PHP. URL:

. [Potencier] Potencier, F. (2009). Symfony, the deftnitive guide to symfony.

. [javascript defl PCMag 2A09.Javascripf. URL:

7t

. [choco constraints] Choco manual, 2009. Cocho constraints.URL:

. [choco search strategy] Choco manual, 2009. Search strategy.URL

72

Appendix

Log

Analysis phase of a development process

t*

I
l-.

I
I
I

I
l*

t3/10/zooe I Initial meeting with supervisor

z0/r0/zooe I Interview customer to gather requirements

26/ i,0 / zooa I Analysing requirements

0+/11/zoos I Interview customer to gather non-functional requirements

r4/r1,/zooe I Generating Use Case Diagrams

1,8/i,1,/zooe I Writing scenarios

zs/1,r/zooe I Producing proiect plan

26/rr/ zooa I Backgroundresearch

73

0L/i.2/ 2008 | Study Constraint Satisfaction problem (CSp)

1.1/L2/ 2008 | Research regarding constraint solver

Design phase of a development process

r5/0r/ zoos I Design high level class diagram

1,8/01,/zoos I Design database model

2r/01/ zooo I Design high level sequence diagram

_ /01/ 2009 | Meeting with supervisor

o

zs/lr/zooe I Design low level class diagrams

coding and testing phase of a development
process

06/02/ zloe I Implement designed ERM

21./02/zooo I Meeting with supervisor

24/02/zooe I Implement Database Access tayer (DAt)

30/02/zooe I Design overall/ formal model of CSp

74

08/03/ zoag I Implement constraint model for constraint solver
o lmplemenl the solver packag* oi ' lhe sy:j lem fsee descript iop of thepaci<age) by usingiava versicn 1.0

2z /03/ zo0s I Testing database access layer (DAt)
{r '{ 'est ai l funct!cns of DAl.

2B/03/ 2009 | Testing solver package
(-) wrire a code far unit fei; ts t$ varida.te prcduceci t inreti lrrres

30/03/ 2009 | study documentation of "s5rmfony', pHp framework
c StLtciy al l parts of lhe'Pt{P lramer,vork ur*i to lmplem*nt the i l t ; l *f t ire

systel11
i) lvrite sin:Filer code tr: Jrractise the syr;tax of rhe fi-.lnrevrork

07 /04/ 2009 | Implement a graphical user interface (GUI)
c lntplement GUI fqrr al i users of the sys|em

'
Advanced techniques IA]AX] usetl ta prcrride an interactive interf i ice f 'or
users ofrhe system

L4/04/ 200e lTestingof GUI
I Fol lnw user sccnai ' ic ts to Lest f l re inrple menteei f i l rct i lnal i t ies

07 /04/ 2A09 | Meeting with supervisor and deparhrent officer
(') iJiscussion last detai ls related ra prci lucing a f inal t imetal l ie {or the ye^r

2ixlq
c i l :scussion reg;rrding creproymenr a*c prcbrerns reraterd tc i l

le /04/ 2009 | Fixing bugs of solver package
{-: lmplement {}UI for al l users of the sysfrnl
i j ACvanced lechniques |AJAX] used tt.r provide an ir i feractive interface fbl.

users ofthe sysfem

20/04/ 2009 | Producinga draftof final timetable/schedule zo09
o Set up ai l -sgl l ;ng of the sysfem arrd run rhe icheciuler to prociucc a draft o{.

fi n ;l ri me!":rLr!cf sched- ril*

2L/04/ 2009 | Write final report
' :) Put ai l d iagrams and notes taken dur ing the whole i l r$cess t* pro4uce a

final rennrt

75

