FINAL PROJECT

Scheduling system

DEGREE: BSc COMPUTER SCIENCE
DEPARTMENT: INFORMATICS
PROJECT SUPERVISOR: DR. BERNHARD REUS

CANDIDATE NO. 53742
UNIVERSITY OF SUSSEX
25th APRIL | 2009

1 INTRODUCTION 4
2 PROFESSIONAL CONSIDERATIONS 5
3 ANALYSIS 6
3.1 PROBLEM SPECIFICATION 6
3.1.1 GENERAL EXPLANATION 6
3.1.2 HARD CONSTRAINTS 7
3.1.3 SOFT CONSTRAINTS 8
3.2 FUNCTIONAL REQUIREMENTS 9
3.2.1 ADMINISTRATOR FUNCTIONALITIES 9
3.2.2 FACULTY STAFF FUNCTIONALITIES 10
3.3 EXTENDED FUNCTIONALITIES 10
3.4 NON-FUNCTIONAL REQUIREMENTS 11
3.5 USECASES 12
3.5.1 USE CASE DIAGRAM 12
3.5.2 USE CASE UC1: LOGIN INTO THE SYSTEM 12
3.5.3 USE CASE UC2: ADD PERSONAL TIME CONSTRAINTS 13
3.5.4 USE CASE UC3: DELETE PERSONAL TIME CONSTRAINTS 13
3.5.5 USE CASE UC4: ASSIGN SECOND EXAMINERS TO PROJECTS 14
3.5.6 USE CASE UC5: ASSIGN SECOND EXAMINERS TO SUPERVISORS AND VICE VERSA 14
3.5.7 USE CASE UC6: ASSIGN ROOM TO PROGRAMME 15
3.5.8 USE CASE UC7: DISPLAY PERSONAL TIMETABLE 15
3.5.9 USE CASE UC8: DISPLAY TIMETABLE 16
3.5.10 USE CASE UC9: MANUALLY EDIT TIMETABLE 16
3.5.11 USE CASE UC10: INSERT ROOM 17
3.5.12 USE CASEUC11: DELETE ROOM 17

3.5.13 USE CASE UC12: ASSIGN SECOND EXAMINERS AUTOMATICALLY&GENERATE TIMETABLE 18

4 DESIGN 19
4.1 OVERALL STRUCTURE 20
4.1.1 OVERALL DESIGN STRUCTURE DIAGRAM 21
4.2 DATABASE DESIGN 22
4.2.1 DESCRIPTION OF EXTERNAL DATABASE TABLES (OLD SYSTEM) 25
4.2.2 DESCRIPTION OF DATABASE TABLES OF THIS SYSTEM 27
4.3 BACKEND ENGINE 30
4.3.1 EXTERNAL LIBRARY “CHOCO” 30
4.3.2 CONSTRAINT MODEL OF PROBLEM 32
4.3.3 SOLVER PACKAGE 34
4.3.4 DATABASE ACCESS LAYER (DAL) PACKAGE 40
4.4 USER INTERFACE 42
4.4.1 SYMFONY PHP FRAMEWORK 42
4.4.2 MODULES AND ACTIONS 46
4.4.3 HIGH-LEVEL PROTOTYPES 47
5 IMPLEMENTATION 50
5.1 DATABASE ACCESS LAYER OF BACKEND ENGINE 51
5.2 SCHEDULER WITH CORE FUNCTIONALITIES (15T DELIVERABLE) 51
5.2.1 APPLICATION PROGRAMMING INTERFACE (API) OF “CHOCO” 51
5.2.2 GENERATING TIME SLOTS 52

5.2.3 GENERATING TIME CONSTRAINTS 53
5.2.4 GENERATING VARIABLE DOMAINS 53
5.2.5 GENERATING SECOND EXAMINER LOAD 54
5.2.6 GENERATING TIMETABLE 54
5.2.7 KEY PROBLEMS AND THEIR SOLUTIONS 54
5.3 EXTENDED FEATURES OF SCHEDULER (2" DELIVERABLE) 55
5.3.1 ASSIGNING SECOND EXAMINERS TO PROJECTS 55
5.3.2 RELOCATION TIME CONSTRAINT 56
5.3.3 POSSIBLE SWAPS FEATURE 56
5.4 GRAPHICAL USER INTERFACE (GUI) 56
5.4.1 DRAG & DROP TECHNIQUE 56
5.4.2 LOGIN 57
5.4.3 PERSONAL TIMETABLE 58
5.4.4 TIMETABLE CONTAINING ALL PRESENTATIONS 58
5.4.5 EDIT TIMETABLE 59
5.4.6 INFORMING USER ABOUT CURRENT STATUS 61
5.4.7 ADDING TIME CONSTRAINTS OF FACULTY MEMBERS 63
5.4.8 ASSIGNING SECOND EXAMINER TO SUPERVISOR AND VICE VERSA 64
5.4.9 ASSIGNING ROOM TO PROGRAMME 64
5.4.10 ADD ROOM FOR SCHEDULING 65
6 TESTING 66
6.1 CORRECTNESS OF TIMETABLE 66
6.2 OPTIMIZATION AND EFFICIENCY OF SOLVER 66
6.3 USE CASE TESTING 67
7 DEPLOYMENT 68
8 CONCLUSION 69
8.1 ASSESSMENT OF SUCCESS 69
8.2 SUGGESTIONS FOR EXTENSIONS 69
BIBLIOGRAPHY: 71
APPENDIX 73
LoG 73
SOURCE CODE 76

1 Introduction

The system to be implemented will be an extension to the already existing
system, containing all information regarding students’ final projects, a list of
supervisors, a list of students, a list of projects to choose from and the function to
enable students to propose the project. The extension will be in terms of helping
to generate a timetable (see functional requirements section) and assigning
appropriate faculty/staff as 2nd markers of students’ presentations of the final
project. The old system has different functionality from the system planned to be
implemented; only data will be shared or imported to the new system from the
old one. This means that all data regarding students, their projects and faculty
staff will be imported. The main functionality of the new system is to produce a
timetable, which meets all of the hard constraints (see explanation below).

Producing timetables or scheduling is a general problem and applies to many
real life problems in industry or other places. Scheduling is a NP-complete
problem (NP standing for Nondeterministic Polynomial time). The difficulty with
NP problems is that they cannot be solved fast. As the size of the problem or the
size of the input rises, the time required to find a solution can exceed into billions
of years using the current computation power and most efficient algorithms. At
present, to solve NP problems, many techniques are used such as approximation,
randomization, restriction and heuristic.

“Scheduling problem events must be arranged around a set of timeslots so as to
satisfy a number of hard constraints and optimize a set of objectives. Types of
scheduling problem differ in terms of the kinds of constraints and objectives
involved.” [Corne, Fang, Mellish]

2 Professional considerations

The interface created must follow regulation and be designed in such a way that
it takes on board the needs of the users along with their abilities and
consequently not discriminate against sex, ethnic origin and disability.

The key issues to take into consideration within this project are as follows:

To make sure that the needs and requirements of the user are fully understood
and agreed before starting the project.

To make sure that agreement is made on the requirements so the user knows the
realistic end product before agreement.

To make sure to complete thorough research in order to find previous pitfalls in
similar work and develop my product so that it has a few errors as possible.

To make sure that requirements, building and testing are effectively carried out
in order to produce a sound finish product.

To “Produce design specifications that clearly state the objectives, scope,
features, facilities, reliability, resilience, constraints, environment, system
functions, information flows and traffic volumes as well as identifying
requirements not met and scope for improvement. ” [code&conduct]

To “Strive to achieve well-engineered products that demonstrate fitness for
purpose, reliability, efficiency, security, safety, maintainability and cost
effectiveness ” [code&conduct]

3 ANALYSIS

This section describes the requirements for the scheduling system to be
implemented, generating a timetable for faculty staff and students.

The formal computing approach described here will be used to model the
currently informal process carried out to negotiate dates for project meetings
between students and project supervisors. As the process is presently informal,
the workflow currently used will be a template for the resulting computer
system, and will be largely user-driven in terms of selecting dates and input of
project data.

3.1 Problem specification

3.1.1General explanation

The objective or main task is to find an optimal timetable (see definition below),
if a solution is feasible (possible to be computed/generated) with the respect to
the given constraints. All hard and soft constraints are listed in the requirements.

Another task is to assign a faculty member as a second examiner to a student’s
final project presentation. Second examiners are selected on their project loads
(see the definition above). A special set of projects, for example music
informatics projects, are assigned second examiners only from music informatics
faculty members. The same rule applies to multimedia projects. Only music
informatics projects are conducted in a music lab.

The system relies on the data imported from the already existing system such as
information regarding students, their projects and faculty. This data can be
imported from the existing system and university timetable, before faculty start
inserting their own time constraints.

The format of the timetable will be calendar based and can be emailed to faculty
and students in a readable format or a URL link will be provided.

Personal timetable is a particular timetable, whose contents apply only to
particular person (faculty or students).

3.1.2Hard Constraints

See the definition of hard constraints in the introduction of this report.

All faculty, student or room time constraints are hard constraints, among others
stated below.

List of hard constraints:

o Faculty member and second marker can only be physically involved in
one project at one particular time.

o Faculty member cannot be assigned to the project he supervises as a
second examiner.

o Second examiners are assigned to student projects on the basis of loads
(see definition of load in the section 3.1.1)

o Faculty, student and room time constraints (see definition above)

o Timeslot is 20 minutes long.

3.1.3 Soft constraints

All soft constraints can be considered as parameters that can be set up by the
administrator.

- List of soft constraints:

o For music and video projects, music and video faculty will be assigned as
— 2nd markers preferable

o Presentations will preferably be in chunks
o Time between 12 to 2pm is reserved for lunch

o o Usually there are up to 4 days for presentations. Sometimes an extra day
(spill over day) is needed when some member of faculty is away for the
entire week. The system detects if faculty are away for the entire time
period for which the presentations are scheduled (so that one can install
an extra day).

o For Music Informatics second markers are problematic (this is because
there are not many faculty members who can mark those as second
examiners/markers). Music Informatics projects are demonstrated in the
MI Lab Arun 221. This is used as a teaching Lab in the summer so its
booking times have to be considered for the scheduling. Ideally this is
again taken from the university online timetable.

3.2 Functional requirements

Functional requirements determine what the system can do, as well as the input
and output of the system.

3.2.1 Administrator functionalities

Administrator can interact with the system as follows:

o Insert, delete:
* Room available for a student presentation
e Time constraints (see section 3.1.2)
* Soft constrains

o Generate second examiners based on their loads (see section 3.1.1)
o Generate an optimal timetable (see section 3.1.1)

o Amend a generated timetable by using graphical user interface. An
interactive user-friendly interface will be provided with extra
functionality for swapping time slots (see section 3.2.2). This function
will be provided so that when a user double clicks on a slot, it will
highlight in green the other possible available time slots that can also be
used.

o Import or use data of old system including university timetable, all
information regarding students and faculty members

o Email or print a timetable for faculty members and students.
Administrator can email a link to the system, therefore students or faculty
members can see their personal timetable or timetable including all
presentations. As describe in the previous section, the timetable is in
calendar-based format

o Administrator inherits all faculty staff’s functionalities.

3.2.2Faculty staff functionalities

Faculty Staff can interact with the system as following:
o Display a personal timetable.
o Display a timetable including all presentations

o Insert/delete their time constraints by using a graphical user interface

3.2.3 Student functionalities

Students can interact with the system as following:
o Display a personal timetable.

o Display a timetable including all presentations

3.3 Extended Functionalities

In order to generate the most optimal timetable (see section 3.1.1), other extra
functionalities related to solving this constraint satisfaction problem (CSP) are
provided to the administrator. One of the extra functionalities is to limit identical
pairs of a student project’s supervisor and a second examiner marking the final
project, or vice versa. The system is extended to meet this extra requirement in
the way that this feature is only available to the system administrator who can
set up explicitly the limit of such pairs (default value of limit is 3 as discussed
with the customer). For instance, if faculty members X and Y are involved in a
project presentation as a supervisor or second marker/examiner or vice versa,
they are both involved in the same project presentation at maximum another 2
times. In the analysis phase of the developing process, this extra requirement
was not captured, but it was recognised at the early stage of the developing
process after discussion with the supervisor and the customer.

Another extended functionality of the system is to recognize faculty members
who are in some way involved in music informatics project presentation either
as a supervisor or second marker/examiner, and provide them a sufficient time
for relocation from the music lab to other places where the projects are
presented. In this particular case, the assumption of time required for the
relocation was made by the informatics department office and is equal to the
length of one time slot (20 minutes) that should be adequate.

Also the system will need to be extended by an extra feature, helping to identify

time slots which are available to swap for a particular slot. In other words, if
anything unexpected happens, as we are not living in the ideal world, two time

10

o

slots can be dynamically swapped. To make it easier and prevent the
administrator from making errors, all time slots that are safe to be swapped are

marked with a different colour.

The last extra functionality enables the administrator to assign explicitly a
second examiner to a particular project or all projects of a particular supervisor.
Also a room can be assigned to a specific programme, for instance a music lab to
music informatics projects.

3.4 Non-functional requirements

The system will be installed on the informatics department’s Apache web server
and will include a web interface to interact with users.

The timetable needs to be generated in reasonable time. The maximum time
allowed for this task is one week, but preferably should take less than a day.

The administrator will set the deadline for inserting time constraints, therefore
afterwards, inserting is disabled and no time constraint can be inserted into the
system. Only the administrator can insert time constraints after the deadline and
thus more alternatives arise on how the system would cope with this situation.
One of the alternatives will be to run the system to generate the whole timetable
again, or to just amend the timetable locally in case that generating the timetable
is not affordable due to time limitation. After discussing the issue with the
customer, the acceptable time for producing the timetable is approximately one
day, but as the process runs a few times, the minor extension to the time is

acceptable.

Non-functional requirements of interface:
o Easily usable by all university administrators and faculty
o Easy to insert time constraints for faculty
o Entering data to be quick

o Graphical user interface is calendar-based

11

3.5 Use cases
.
3.5.1Use case diagram
ass-gn SecoM exa™aery -
‘automatcaly and generate s - e
e {netADE o 00 o e sysiem
: el Tt o— -
T addrooms o, " dspay persona tetave
e M Facuty B
B & o depayinserideis <centendss>
Avend imetavie cons strig . - PEISONA Ure contramis
ol aloresentations L - T oo
agsy second examings fo.) PN gsdayimetave consising i print fimetaie
' o ect R ¥ S of @i presematons - T
s - L . e e CEGRIE R s
a8sgn second exam e io., E e —
L8 12 (oL o1 [£:F- T ‘ me 5 ey .
Sitper'so Orvree versa) Adma L setupsoltcontrants

‘HSS an room o D'Og'ﬁ""'*‘ﬁf'/.

Figure 1 - Use case diagram

3.5.2 Use Case UC1: Login into the system

Primary Actor: Any user
Success guarantees: User is logged into the system.

Main Success Scenario (or Basic Flow):

1. User (Faculty, Administrator or student) provides login details.
2. The user is authenticated.

3. Homepage is displayed and the message to the user that the login has been successful.
Extensions (or alternative flows):

a* At any time system fails, user is informed about the

error and the user can repeat the
action.

1. a) Login details are invalid:

1. Login details are validated and the details are detected to be invalid.
2. The user is informed that login failed.

2. a) Process of login failed:
1. An error is detected during the process
2. The user is informed that a process failed

12

3.5.3Use Case UC2: Add personal time constraints

Primary Actor: Faculty member
Preconditions: User is identified and authenticated.
Success guarantees: Personal time constraints are saved.

Main Success Scenario (or Basic Flow):

Faculty member adds a time constraint by using calendar-based GUI.

The constraints are displayed.

User submits constraints.

The constraints are saved.

The message is shown to user that constraints have been saved successfully.

uhwpe

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the action.

3. a) Constraint already exists:
1. If GUI allows, insert the same time constraint, the constraint is validated
2. System informs a user that the constraint was not inserted

4. a) Process of saving the constraints failed:
1. An error is detected during the process
2. The user is informed that a process failed
3. The constraints are displayed

Special requirements

The graphic user interface is supposed to be user-friendly and easy to interact with. Adding
constraints is required to be quick and straightforward and displaying data (constraints) clear to
user.

3.5.4 Use Case UC3: Delete personal time constraints

Primary Actor: Faculty member
Preconditions: User is identified and authenticated.
Success guarantees: Personal time constraints are deleted.

Main Success Scenario (or Basic Flow):

Faculty member selects a time constraint to delete.

The constraint is marked and displayed to delete.

The user submits constraint to delete.

The constraint is deleted.

The message is shown to user that constraint has been deleted successfully.

nhwheE

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the
action.

3. a) Constraint cannot be deleted:
1. Constraints are prevented from being deleted by user
2. The user is informed that constraint is not deleted

b) Process of deleting the constraint failed:
1. An error is detected during the process
2. The user is informed that the process failed
3. The constraints are displayed

13

Special requirements

The graphic user interface is supposed to be user-friendly and easy to interact with. Deleting
constraints is required to be quick and straightforward and displaying data (constraints) clear to
the user.

3.5.5 Use Case UC4: Assign second examiners to projects

Primary Actor: Administrator
Success guarantees: Second examiner is assigned to the project.

Main Success Scenario (or Basic Flow):

Administrator selects an option to assign second examiners to projects.

GUI providing to accomplish this task is displayed to administrator.
Administrator, using the interface, assigns a second examiner to project.
Changes are automatically saved after every action/interaction.

The message is shown to user that the timetable has been saved successfully.

v Wi =

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the
action.

4. a) Process of assigning the second examiner failed:
1. An error is detected during the process
2. The user is informed that the process failed

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Assigning is
required to be quick and straightforward and displaying data is clear to the user.

3.5.6 Use Case UC5: Assign second examiners to supervisors
and vice versa

Primary Actor: Administrator
Success guarantees: Second examiner or supervisor is assigned successfully.

Main Success Scenario (or Basic Flow):
1. Administrator selects an option to assign second examiners to supervisors.
2. GUI providing to accomplish this task is displayed to administrator.
3. Administrator, by using the interface, assigns a second examiner to the supervisor or
vice versa.
4. Changes are automatically saved after every action/submit.
5. The message is shown to user that the timetable has been saved successfully.

Extensions (or alternative flows):

a* At any time system fails, user is informed about the error and the user can repeat the
action.

4. a) Process of assigning the second examiner or supervisor failed:

1. An error is detected during the process
2. The user is informed that the process failed

14

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Assigning is
required to be quick and straightforward and displaying data clear to user.

3.5.7 Use Case UC6: Assign room to programme

Primary Actor: Administrator
Success guarantees: Room is assigned successfully.

Main Success Scenario (or Basic Flow):

Administrator selects an option to assign a room to the programme.

GUI providing to accomplish this task is displayed to administrator.
Administrator, by using the interface, assigns the room to the programme.
Changes are automatically saved after every action/submit.

The message is shown to user that the timetable has been saved successfully.

uhwn =

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the
action.

4. a) Process of assigning the room failed:
1. An error is detected during the process
2. The user is informed that the process failed

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Assigning is
required to be quick and straightforward and displaying data clear to user.

3.5.8 Use Case UC7: Display personal timetable

Primary Actor: Faculty, Student, Administrator
Success guarantees: Personal timetable is displayed to user.

Main Success Scenario (or Basic Flow):
1. User (Faculty, Student or Administrator) selects an option to display the personal
timetable.
2. The appropriate calendar-based timetable is displayed.
3. User prints the print-friendly version of timetable.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the
action.

15

3.5.9 Use Case UCS8: Display timetable

Primary Actor: Faculty, Student, Administrator
Success guarantees: Timetable is displayed to user.

Main Success Scenario (or Basic Flow):
4. User (Faculty, Student or Administrator) selects an option to display the timetable.
5. The appropriate calendar-based timetable is displayed.
6. User prints the print-friendly version of timetable.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the
action.

3.5.10 Use Case UC9: Manually edit timetable

Primary Actor: Administrator
Success guarantees: Timetable is updated successfully.

Main Success Scenario (or Basic Flow):
6. Administrator selects an option to edit the timetable
7. The timetable is displayed in an edit mode.
8. User edits the calendar-based timetable by interacting with it.
9. Changes are automatically saved after every action/interaction.
10. The message is shown to user that the timetable has been saved successfully.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the
action.

4. a) Process of editing the timetable failed:
1. An error is detected during the process

2. The user is informed that the process failed

5. a) In case of a mistake caused by administrator, step back functionality is provided.

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Editing the
timetable is required to be quick and straightforward and displaying data clear to user.

16

3.5.11 Use Case UC10: Insert room

Primary Actor: Administrator
Preconditions: User is identified and authenticated.
Success guarantees: Room is inserted.

Main Success Scenario (or Basic Flow):
1. Administrator types required information and submits the data.
2. The message is shown to user that the process has been accomplished.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat
the action.

1. a) Process of inserting the room failed:
1. The error is detected during the process
2. The user is informed that a process failed

Special requirements
The graphic user interface is supposed to be user-friendly and easy to interact with. Inserting
rooms is required to be quick and straightforward and displaying data clear to user.

3.5.12 Use Case UC11: Delete room

Primary Actor: Administrator
Preconditions: User is identified and authenticated.
Success guarantees: Room is deleted.

Main Success Scenario (or Basic Flow):
1. Administrator selects an option to delete a room.
2. Theroom is deleted.
3. Message is shown to the user that the process has been accomplished.

Extensions (or alternative flows):
a* At any time system fails, user is informed about the error and the user can repeat the
action.

2. a) Process of deleting data failed:
1. An error is detected during the process
2. The user is informed that a process failed

Special requirements

The graphic user interface is supposed to be user-friendly and easy to interact with. Deleting a
room is required to be quick and straightforward and displaying data clear to user.

17

3.5.13 Use Case UC12: Assign second examiners
automatically and generate timetable

Primary Actor: Administrator
Preconditions: User is identified and authenticated.
Success guarantees: Second markers are assigned and timetable is generated.

Main Success Scenario (or Basic Flow):
1. Administrator selects an option to generate a timetable.
2. The second examiners are assigned and the timetable is generated.
3. The calendar-based timetable is displayed and alternatives if applicable.
4. The message is shown to user that the process has been accomplished.

Extensions (or alternative flows):
a* At any time, system fails: The current state (sessions) is deleted and the system asks for
details to login.

1. a) Process of assigning the second examiners or generating timetable failed:

1. An error is detected during the process
2. The user is informed that a process failed

18

4 Design

In this section the requirements from the analysis phase of the software
development process will be used to produce a design of this system. Unified
Modelling Language (UML) will be used to describe the design in a clear and
readable form.

Section 4.1 is the Overall structure. It informs about the architecture of the
system in a high-level form and looks at the system from a general prospective.

Section 4.2 contains a database design. It describes every part of the
architecture of the database designed for this system, along with the database of
old system. Textual description of each table is also included.

Section 4.3 is written regarding “Backend engine”, the application assigning
second examiners and producing a timetable. It also describes an external library
“choco” and constraint model of the CSP. Class and sequence diagrams of its
packages are provided to explain their architectures in detail.

Section 4.4 contains the User interface design. It describes the PHP framework
used to implement the interface, why it was used and its general features.

19

4.1 Overall structure
The whole structure of the system is divided in two main parts:
o “Backend engine”, which its main objective is to do all computations

related to generating a timetable based on the constraints provided. It
relies on the external library named “Choco” (see section 4.2).

o Web-based user interface using the open source project, PHP framework

“Symfony” (see section 4.4.1). “Servlet”, PHP and AJAX technology are
used to build an interactive and user-friendly interface.

20

4.1.1 Overall design structure diagram

The overall structure of the system is displayed in Figure 2. As mentioned in the
previous section, it is divided into two parts, user interface and “backend engine”
application. A user makes a request to the system by using a web browser. The
request is accepted by the controller, which recognizes a module and action from
the request and invokes an appropriate action. All computations and data
processing happens in modules, which functions are called by the controller
action. The code produced in the view is returned to the user browser (more
detailed explanation of an MVC pattern and the framework provided in the
following sections). Also the user can make a request to the “Backend engine” by
using “AJAX” and “Servlets” (see definitions in previous section) to invoke a

method producing a timetable (see section 4.3).

Web-Server

Browser

V"-ﬁ;

User Inferface Application

Datavase-Server

-y Controller |._
. 2
3 Wode
¥ e o
View
"Backend Engine” Application o
dal package
7y
< Serviels

) 4

lelis

patag, ¥

Figure 2. Overall structure diagram of the system

Note: “dal package” - database access layer package

21

—

4.2 Database design

The design of database structure for this project relies on the database
implemented for the old system, used for managing final year projects. In order
to prevent duplications of data the old system database will be used as part of a
data source. The old system includes data regarding students, faculty members
and projects, which are required to produce a timetable. To see the structure of
the database the Enhanced Entity-Relationship (EER) model is provided below.
The entities marked grey colours are entities of the old system database. The
yellow entities are designed for this system database.

22

START END ROOM_CODE

ROOM_ID
TYPE
CONSTRAINT ROOM_DESCRIPTION
1:N D N:1
time _con
has - e has rooms
straints
1:N uses
TITLE
USERNAME START SLOT_ID
END
FORENAME
PASSWORD 1N
involved as .
SURNAME ~ ——— hes_people time_slots ——— uses PROGRAMME
— 2nd marker -
11
person PROJ_ID
1:N
) susx_course_
supervises .
projects TITLE
PERSIOON_CODE
DESCRIPTION

REGISTRATION N / 11
student

works on

Figure 3. EER model of database (part1)

TIME_START
TIME_END
DATE_END
. LUNCH_START
DATE_START
system_
config ™~ LUNCH_END
SLOT_LENGTH_MI
NS
LIMIT_SAME_PAIRS
11
has
(supervisor)
pair_not_super
visor_marker 1:1
has(second
examiner)

ROOM_CODE

ROOM_ID
END
START . /\ ROOM_DESCRIPTION
rooms
all_time_sl _
ots 1:N
has(room)
pair_program
_room
11 —
11
pair_project_ h susx_course has(progra
as .
marker projects mme)
11
has(second 11
examiner)
has
(supervisor)
hes_people » pair_supervisor
' _marker

has(second

examiner)

Figure 4. EER model of database (part2)

4.2.1 Description of external database tables (old system)

This section describes the database tables of the old existing system, their
structures and columns. The column “Name” describes the names of attributes of
database table. The type column corresponds to a type of the attribute. A
primary key of table is marked as yellow key.

This table represents faculty members and students including personal data and

data required for login.

Name

PLRATA_LODD

TITLE
[ORINANE
SLANANED
USIarART

A E e
PASSWORD

Figure 5. Table “hes_people”

biint

-
cok ~
-
.
.
=

Levzid

[y

lv g4

Cecima s Null

0

0 V4
! v

{

0

{ 1 J

This table includes extra information about students such as their registration

numbers and programmes.

Name

RECISTRATIGN _WLMBRIR

PLRICH_LODD

PEOCRARN L

Figure 6. Table “student”

Lot M

25

Cecima s Null

0
0 v
0 v

This table includes all information regarding the projects. The attribute
"REGISTRATION_NUMBER” links the particular project to the particular student.
The attribute “PERSON_CODE” links student projects and their supervisors. The
other attributes do not apply to the project.

Name Tyoe Levzts Decimas Null
PROY_ D bt .« 2 0

RECISTRAT ON_NLMEIR bt v 2 0 v
COURED_L0DE TRt « 12]
PLRIZH_LODC birirt « iz 0 Vi
START DATL vavchar v 7 0 v
ToPEL L 0

varero

Torlz v 3l 0 Vi

Varara

TITLE woecine v b6 a
Vi ot
STATUS wove e - B 0
DISCR PTION . . 0 0
e R T 17 .
RLZ_SKILLE oo 100 0 v
A OOy R ARANAT . (]
?'(_A.Tl iC)R__‘ ’(,C).-_ !’{l&;-:.\;, .‘J:“.‘:.A o - el 1] “f

hNOTES

L bhing ' 0 0

~

Figure 7. Table “susx_course_projects”

This table includes information about loads of faculty members required to
assign second examiners correctly to student projects based on these loads.

Mame Tyuwe Lergry Decima s Null
COLRSE_CODT i v 12 .
CONTALT TvoL ot . 3D o
PLRICH_CODT bt vz 0
PROJ_LOAD i .oz o v
TAL_STUDLNTS . . 3 0

Figure 8. Table “projs_sv_list”

26

4.2.2 Description of database tables of this system

This section includes the same type of information as previous, apart from the
fact that the tables of the database designed particularly for this project are
described here.

This table includes information about the availability of students, faculty
members and rooms. The attribute “TYPE” determines that either it is related to
a student, faculty member or room. These particular types are stored in the
lookup table “type_lookup” (see table “type_lookup” below). The attribute
“TARGET_ID” is an ID/primary key one of “hes_people”, “student” or “room”
table. The attributes “START” and “END” determines a time when one of the

previous mentioned objects are NOT available.

Nam¢ Tyvoe Lergte Decimas Nuill
CONSTRART_D it . 11 o
TVPL it .« 11 o
TARCIT D i v 1] 0
START gotetiome . o o
e gatetiong 0 u

Figure 9. Table “time_constraints”

This table includes information regarding rooms where the student project will
be presented.

Nate Ty Levzre Decima s Null
ROOM_ID ir « 11 0

ROOK CODL vavela « ol 8] v
ROOM _DLSTR PTION . 100 0 ¢

Figure 10. Table “rooms”

This table includes all information that is used for setting a timetable scheduler
in order to produce a valid timetable. Column “DATE_START” and “DATE_END”
specify when is the first and last day of student presentations, respectively.

MName Ty Loy Decimas Nedl
DATL_START dote « 0 0 ¢
CATL_IND ity . 0 o v
TIMI_START in s « 0 o v
TIME_IND tinee ~ 0 o v
LLRCH_3TART tine e « 0 0 v
LLACH IND fin e « 0 o v
SLOT LINGT M NS int « 11 0 v
LIk ~_SAML_PA RS int v 1l 0 v

Figure 11. Table “system_config”

This table includes information about time slots. The timetable consists of time
slots, which are used to build the whole timetable. The time slot includes
information regarding a student project (attribute “PROJ_ID"), faculty members
who mark it (attribute “2ND_MARKER”), room (attribute “ROOM_CODE") where
the project is presented and time when the time slot begin and end (attribute
“BEGIN”, “END” respectively).

Name Ty Lergztt Decimas Null
SLUTID i - 11 0

PND MARKIR int « 11 0 v
PROJ_D it v 1] o v
RUON_LOBT aveh S ¢ o v
START catetime AR u

NG gatetime - o o

Figure 12. Table “time_slots”

This table represents all time slots available to be scheduled. They are generated
on the basis of information held in “system_config” table.

Name Ty Lergre Decimas Null
i Lot hd &t 0

START Srtetir « 0 0 Vi
e gatetime v oo a v

Figure 13. Table “all_time_slots”

This table includes pairs of project ids and person code of second examiners. The
second examiners/markers must be assigned to the projects as specified in this

table.
bame Ty
PRC_ D irt
SLPIRVICR_CODE bt
SLLOND MARKIR_CODL bt

Figure 14. Table “pair_project_marker”

Decima s

0

0

{

Nuil

v
v

This table includes pairs of project ids and person code of second examiners. The
second examiners/markers must be assigned to the projects as specified in this

table.
Mame Tyoe
SLPIRVIACR_TODL binirt
SECOND WARKIE_CODL bt

Figure 15. Table “pair_supervisor_marker”

—

r

N
“t

[SNEE,

[

a

|

Cecima 5

]

Mt

This table includes pairs of supervisor person codes and person codes of second
examiner. The second examiners/markers must be assigned to all the projects

supervised by the supervisor as specified in the table.

Name Ty
SLPIRY AR TODL birrt
SLCOND WARKIR_CODL bt

Figure 16. Table “pair_not_supervisor_marker”

i

Cecima s

O

Nuil

This table includes pairs of project programmes and room ids. Available rooms
are assigned to projects belonging to the particular programme. These projects

can be presented in the room assigned to them.

Namie Tyt
AJTHOR_FROCRANMME wavck o
NS) A

ROOM D irt

Figure 17. Table “pair_programme_room”

29

Decima s

]

8]

Mt

4.3 Backend Engine

All tasks related to producing a timetable and assigning second examiners to
student projects are done by the backend engine. It consists of two packages
(“dal” and “solver” package) described in detail in the following sections. It
includes also “servlets“ (see definition in section 4.1) to enable a user to
communicate with the backend engine by using an Internet browser.

External library Choco

CPMode! CPSover
’/f‘ ./"_ 7
Solver package Dal package
Soiver - DAL

Figure 18. High-level backend engine package diagram

4.3.1 External Library “choco”

This section describes the use of the external library named “Choco” used to
solve the Constraint Satisfaction Problem (CSP), particularly in this project a
timetabling problem. The “Solver” package relies on this library.

“choco is a java library for constraint satisfaction problems (CSP) and constraint
programming (CP). It is built on an event-based propagation mechanism with
back-trackable structures. choco is open- source software, distributed under a
BSD licence and hosted by source- forge.net. choco is mainly developed by
people at Ecole des Mines de Nantes (France) and is financially supported by
Bouygues SA and Amadeus SA.” [choco white paper, p.1]

This library consists of two main parts: a problem modeller and problem
constraint solver. The more detailed descriptions of both parts are stated below.

30

A problem modeller is a library that models CSP. In order to solve CSP, all
variables, their constraints and domains must be specified by using the API of
this library. “Choco” provides various types of variables such as integer, set, real
and expression variable. In this project, integer and expression variables are
used. Also a wide range of constraints are available to model a problem. It
provides over 70 types of constraints including logic operators, which are
sufficient to model this particular problem.

This part of the library is a constraint solver. “choco can either be used in
satisfaction mode (computing one solution, all solutions or iterating them) or in
optimization mode (maximisation and minimisation). Search can be
parameterized using a set of pre-defined variable and value selection heuristics.”
[choco white paper, p.3]

“choco is a Java library that chose to provide a clear separation between
modelling and solving. Figure 3 represents the overall architecture of the choco
library. There are two separate parts:

o The first part (from the user’s point of view) is devoted to expressing the
problem. The idea is to manipulate variables and relations to be verified
for these wvariables (constraints) disregarding their potential
implementation (either from the variable point of view or the constraint
point of view). A complete API is provided to be able to state a problem in
a way as user- friendly as possible.

o The second part is devoted to actually solve the problem. In Figure 1, only
CP related information is provided. Solving includes specific memory
management for tree-based search (as in CP).” [choco white paper, p.4]

How to make a problem?
Model

: CP-Model
(1) generic model of a constraint
(2) generic model of a variable implementation of a Model in

. the CP paradigm
(3) API for creating variables

and constraints

Choco -
Solver AP ¥
Solver Memory
: CP-Solver
(1) constraints data structures « o (1) trailing
(1) data structure implementation)

2) variables data structures (2) tati
@ (2) parser from CP-Model to (2} recomputation
(3) data structures related to CP-Solver (3) capying

the search algorithm

How to solve a problem?

Figure 19. “choco s general architecture. The separate parts are clearly identified:
a modeling part for stating the problem and a solving part (here only the CP
related information is described) for actually solving the modeled problem.”[choco
white paper]

31

4.3.2 Constraint model of problem

In this section the logic of the constraint model is discussed in more detail.

Two sets of variables are used to model the CSP.
List of variables of the model:

o Variable “project slot” represents a time slot assigned to a student
project. Project ids are values of domains of these variables

o Variable “room” represents a room where a student project is presented.
Room codes are values of domains of these variables.

Domains of variables are sets of values, which fulfil all constraints.
List of domains of the particular variable:

o Domains of variables “project slot” are sets of all time slots determining
time frames when students, their supervisors and second markers are
available.

o Domains of variables “room” are sets of all rooms that are available for
projects presentations.

List of all constraints of the model:

o Informal:
The same time slot cannot be assigned to the different project where
their supervisor is an identical faculty member.

Formal:
project slot [i] = project slot [j] AND
supervisor (project slot[i]) = supervisor(project slot[j])
where 0 <i<n,0<j<n,i=}j, nisequal to the number of projects
(see descriptions of indexes j and j at the end of this section)

o Informal:
The same time slot cannot be assigned to the different project where
their second marker is an identical faculty member.
Formal:

project slot[i] = project slot[j] AND

32

second examiner[project slot(i)] = second examiner [project slot(j)]
where 0 <i<n,0<j<n,i=j, nisequal to the number of projects

o Informal:
The same time slot cannot be assigned to the different project where
supervisor of one project is a second marker of another project or vice
versa.

Formal:
project slot [i] = project slot[j] AND
supervisor (project slot[i]) = second examiner [project slot (j)]
where 0 <i<n,0<j<n,i=j,nisequal to the number of projects

o Informal:
The same time slot can be assigned to the different projects if different
rooms are assigned to them, otherwise different time slots are
assigned to the projects.

Formal:
project slot [i] = project slot [j] AND room [i] = room [j] OR
project slot [i] = project slot [j]
where 0 <i<n,0<j<n,i=}j,nisequal to the number of projects

o Informal:
Another extended requirement is to provide a sufficient time for
relocation of faculty members involved in marking of music projects.
As time slots are represented as integer numbers in ascending order
(earlier time, lower number), it is easy to recognise which time slot is
before and after a particular time slot.

Formal (pseudo code):
For each music project
Get its supervisor and second examiner
Set the constraints that slots with id less or more by one,
these cannot be assigned to the project which the
supervisor and second marker are involved in.

List of constraints required during assigning second examiners to student
projects:

o Informal:
Faculty members can mark projects as second markers/examiners.
The limited times will be derived from their loads and number of
projects they supervise. The loads for second examiners are computed
before they are assigned to the student projects.

33

Formal:
maxOccurence(second examiner [project slot (j)) = computed value
based on loads
where 0 <i<n,nisequal to the number of projects

o Informal:
One of the extended requirements is to limit the same pair of faculty
members involved in marking as a supervisor and second examiner or
vice versa (see section extended requirements)

Formal:

maxOccurence(pair [i]) = value specified by administrator

where 0 <i<n,nis equal to the number of pairs containing of one
supervisor and second examiner

The indexes i and j of project slots are indexes of an array of size n (number of
projects). The mapping table is used to assign one index to one particular project
id.

For example:

Index Projectid
512
564
600
614
654
678
723

ANV WN RO

4.3.3 Solver Package

The main objective of this package is to model the CSP problem by using the
external “choco” library. Another important function is to assign second
examiners to student projects.

34

Solver package

External library Choco
0.1 CSPSolver
B CPModel m
0.1 + void addCPModel()
. CPModel CPSolver & create() + Timetable generate Timetable()
0..1 0..1
0.1
create()
Y 0..1 SystemStatus
«implementation» Timetable ConstrainModel

TimeConstraint - Hashtable<Integer, Vector<integer>> projsDomains + getStatus() : Date
- Date start; - Hashtable<Integer, Vector<TimeConstraint>> projsTC onstraints + setStatus(String status) : void
- Date end; 0..1|- Hashtable<Integer,Vector<integer>> markersDomains
+ TimeConstraint(String start, String end) Hashtable<Integer,
+ getStart() : Date _ / Vector<TimeConstraint>> markersTConstraints 0.1
+ mmﬂmﬁmio.mﬁm strat) - void - Hashtable<Integer, Vector<integer>> roomsDomains -

. create() 0.1 | Hashtable<integer, Vector<TimeConstraint>> roomsTConstraints

+getEnd : Date
+ setEnd(Date end) : void

ArrayList<TimeSlot> timeSlotObjects dal _um/ar_a
Vector<Integer> markers

][] lookupProjSupervisor

TimeSlot - IntegerVariable[] varProj 0.1 | =7 DAL

- IntegerVariable[] var2ndMarker

WMM Mw% - IntegerVariable[] varRoom 0.1
* 0.1 1. IntegerVariable[] varSamePairs
+Ti tri i d - :
+ @wﬂ%mwﬁﬁhmo_mwmmﬁm; Sing end) create() + TimetableConstraintModel()
j - addConstraintsToModel() : void

+ setStart(Date strat) : void
+ getEnd : Date
+ setEnd(Date end) : void

- generateProjectDomain() : void
- generateMarkerDomain() : void -
- generateRoomDomain() : void XmiProcessing

- generateProjectTimeConstraints() : void
- generateMarker TimeConstraints() : void

+ readXmiFile() : void

Figure 20 Low-level class diggram of solver package

DateOperators 0.1 | generateRoomTimeConstraints() : void
0.1 + generate2ndMarkersLoads() : ArrayList<int[]>
- ” + generateTimeSlotsObjects : ArrayList<TimeSlot>
+ subtractDates(Date d1, Date d2) : int + assignExaminers : void
+ subtractTimes(Time t1, Time t2) : int + getVarProj() : IntegerVariable[]
+increaseDateByMins(Date date, int value) : Date + getVar2ndMarker : IntegerVariable(]
+ increaseDateByDays(Date date, int value) : Date + getVarRoom : IntegerVariable(]
+ Ammoﬁogéims:o mmﬂm, : Dwﬁm + nat man_lokln: | Eni FE Bnn_mﬁv

— ; — | !

This diagram shows how the objects within solver package interact from a time
prospective. “CSPSolver” object, created by “servlet” method, creates the
“TimetableCostraintModel” object. This object invokes its methods to generate
time slots, time constraints, domains of variables, second examiners and other

constraints (see section 4.3.2.3).

During this process “TimeConstraint“ and

“TimeSlot” objects are created and stored in the “TimetableConstraintModel”
object. A result of every action is set as a status of the system by the

“SystemStatus” class.

CSPSolver

il

TimetableConstrai
niModel

SystemStatus

TimeConsiraint

TimeSlot

create(}

refurn mode
generateTimelable

-]

generale a
tme sols

<
4

L

seStatus)

for a orojects and
facdty mempers
generale vme
onsira nis

»)
X

seiStatus!}

I
generate domans

]
PR

seiSatusy

doDoma nlntersectons
- |

addConstra nisToMode

-

ety TimeConstra nt

assgn second exam ners

X

X

createl}

on ect

rglum tmeS ot

|
|
e
|
|
|

obect

i
»

Figure 21. Low-level sequence diagram (look at classes interactions from time

perspective)

36

l Retrev e nformaton
anout proects

ino oroject (o scheduie]

jcontaing proects o schedue]

1

{ generate tme sots |

generate {™e
 constrants for projects |

~and faciv memnarg.

‘ generate domans for (
projects and

/ assign second '
L examners 1o proects

@0 iersectong of .
{ oroects and second |

generaie a’ consta s
¢ and add them to 1
S _constrant mode: -

/" pass mode 10 soiver ih'.
wand generate t metanie,”
- ‘ -’

K

store generaled 5L

telade Asouton found)

oy
[nfeaseave provem™,
no souton fousd]
1

Contro Flow

4 nfor™ user about resdlt K — —

f

.

Figure 22. Activity diagram describing t-i»ié“.activig/ during generating a timetable

37

In this section, descriptions of classes of solver package are provided along with
explanations of their most important methods.

This class extends “CPModel” class of “choco“ library and represents the
constraint model. Within this class, all variables, constraints and domains are
generated to create a constraint model of CSP. The model is used by “CSPSolver”
object to find an optimal timetable.

Key methods:
addConstraintsToModel

Implements all constraints (section 4.3.2.3) of the CSP. It is executed after
all variables, time constraints and domains are generated by other
methods.

generateProjectDomain

Generates projects domains based on projects time constraints. It
compares projects’ time constraints (including supervisors and students’
time constraints) against time slots available for student presentations
and only ids of time slots fulfilling the constraints are assigned to the
domain.

generateRoomDomain

The same approach is taken as in the method described above. It
compares rooms’ constraints against available time slots.

generateProjectTimeConstraints
Retrieves all the information regarding time constraints from the
database by using DAL and creates “timeConstraint” objects stored in a

vector. These object are used in generating domains.

generateRoomTimeConstraints

The same approach is used as the method described above.

generate2ndMarkersLoads

Retrieves information about loads of faculty members by using DAL and
computes loads of second examiners.

38

generateTimeSlotsObjects

Generates all time slot objects based on settings made by the
administrator.

assignSecondExaminers

Assigns second examiners to student projects. All second examiners
selected for particular projects by administrator are assigned first.
Afterwards, all second markers selected to be assigned to particular
supervisors are processed before second markers are assigned
automatically. Within this class the method “generate2ndMarkersLoads”
is invoked to get loads of second examiners in order to assign appropriate
amount of projects to them.

doDomainlntersections

Does intersections of domains related to project variables. It is invoked
after the second examiners are assigned to the projects. It compares all
values of a supervisor and second examiner domain and does an
intersection of these two sets. The intersection is a new domain for the
project variable.

This class implements “CPSolver” class of “choco” library. It uses the constraint
model to find a solution. Within this class, a searching strategy can be set up. To
speed up the process of searching the solution, values of project domains are
selected on a random basis. A variable with domain including the lowest number
of values is assigned the value first, and then other variables in an ascending
order.

This class represents a time constraint. It includes information when student,
faculty member or room is not available.

This class represents a time slot. It includes information such as the start and
end of a time slot.

This class stores a system status as a string to a file. Therefore, during the
generating of a timetable the status can be displayed at user interface by AJAX
requests to “servlet” (see definitions in section 4.1), which reads the file and
returns the status as string.

39

4.3.4 Database access layer (DAL) Package

The functionality of this package is to query a database and return desired data
back to objects, which invoke the method. As stated earlier, the system relies on
the existing database and a new database designed particularly for this project.
Therefore, this package is separated in two parts independent of each other,
dealing with different databases. This approach provides an opportunity to have
each database located on different database servers.

40

dal package

ConnectionString

- String DBuser,

- String BDpassword;
- String DBname;

- String DBserver;

+ ConnectionString(String DBserver, String
DBname, String DBuser, String DBpassword);
- getDBuser() : String;

- setDBuser(String buser) : vcic
+ getBDpassword() : String;
setBDpassword(String dpassword) : v
+ getDBname() : String;

+ setDBname(String bname) : -
+ getDBserver() : String;

+ setDBserver(String bserver) : v«

b

.

£

create()

0..1 0.1

SQLConnection

DAL

0..1

selectFacultyMembers() : ResultSet
selectPersonCodeByFacultyMmeberSurname(String surname) : ResultSet;
selectProjectLoads() : ResultSet;

selectProject() : ResultSet,

selectProjectByTopic(String topic) : ResultSet;

selectProjectCount() : ResultSet;
selectProjID_PersonCode_RegistrationNumber() : ResultSet;
selectRooms() : ResultSet;

selectRoomCodeByld(int roomid) : ResultSet;
selectTimeConstraintStartEndByldAndTypeld(int id, int type) : ResultSet;
selectTimeSlotOrderByDate() : ResultSet;

selectSystemConfig() : ResultSet;

insertTimeConstraints(int type, int target_id, String start, String end) : int;
insertTimeSlots(int projld, int var2ndMarker, int roomId, String start, String end) : void;
delete TimeSlots() : void,;

deleteTimeConstraintBy Type(int type) : void;

selectQuery(String sql, ConnectionString connString) : ResultSet;
updateQuery(String sql, ConnectionString connString) : int;
printQueryResults(ResultSet) : String;

04
V.. 1

0..1

DALConfig

i ConnectionString exteralDBConnString;
ConnectionString internalDBConnString;
e int currentYear,

Figure 23. Class diagram of DAL package

This section explains objectives of the class located in DAL package.

This class represents a connection string, a string containing all information in
order to connect to database successfully. The string includes information such
as host name, name of database, username and password.

This class makes a SQL connection to database server, and handles errors
occurred during the connection.

This class has methods containing all SQL queries. The names of methods reveal
their functionalities.

This class contains actual data used to make a connection to the database.

4.4 User interface

This section describes the user interface. There are three main groups of users:
students, faculty members and administrators. After successful authentication,
the appropriate user interface is displayed. Students can only display timetables,
either personal or one containing all slots. AJAX is used to make the interface
more interactive. The whole interface is based on the “Symfony” PHP framework
(see section below).

4.4.1 Symfony PHP framework

“A framework streamlines application development by automating many of the
patterns employed for a given purpose. A framework also adds structure to the
code, prompting the developer to write better, more readable, and more
maintainable code. Ultimately, a framework makes programming easier, since it
packages complex operations into simple statements. Symfony is a complete
framework designed to optimize the development of web applications by way of
several key features.” [Potencier, p.10] |

42

“Symfony is based on the classic web design pattern known as the MVC
architecture, which consists of three levels:

o The Model represents the information on which the application operates - its
business logic.

o The View renders the model into a web page suitable for interaction with the
user.

o The Controller responds to user actions and invokes changes on the model or
view as appropriate.

The MVC architecture separates the business logic (model) and the presentation
(view), resulting in greater maintainability. For instance, if your application
should run on both standard web browsers and handheld devices, you just need
a new view; you can keep the original controller and model. The controller helps
to hide the detail of the protocol used for the request (HTTP, console mode, mail,
and so on) from the model and the view. And the model abstracts the logic of the
data, which makes the view and the action in dependent of, for instance, the type
of database used by the application.” [Potencier, p.19]

4
v
fomr e
rs
1 By CRE
v
=rcrt e vroldier
r'S
v
Az — Lige ul
A A
Voaow mgo
».
v » Teralats
ata Anpees
-~
v
Dbt atieds
Abstrection
A
v
Datasase

ERE N |

Figure 24. Diagram showing the architecture of MVC pattern in Symfony
[Potencier, p.27]

43

These are the directories found at the root of a symfony project:

apps/
my application/
cache/
config/
data/
sql/
doc/
lib/
model/
log/
plugins/
test/
web/
css/
images/
js/
uploads/

Directory Description

SLUL/

cf the cons

5T :d’" the 3:::_"1m m\i toem

G
@
T

anc -iT\L i
cerfays Holds the general canfiguration of the project.

,*
L
—
8

Here, vou can stare the data Sles of the pro
fle that creates tabics, oo even o SQLite dotobase file.

-
.
p

o/ Steres the procct ti.r.:r.t‘.zrncr::.ctir:r._ imchadimg veur ewn decumenss and the

decumentotion generaied by FHFdae

Labs Sedicated to foreign closses or librares, Her
te be shered cmmong your appheatiens. TRe rodels subdirectory siore
medel ol the project idesenbed in Chapter &)

Lo Steres the cppliceble log 2les qenerated directly by
webk server log fies, daﬁ seleg files, or log files
Svmfony crectes ane log Jle per applcobion and por e
discussed in Cropter 16).

syfony. It oo o

plogivss Stores the plug-ns imstolied :ath
1
17

Contoins wnt and functonal t
svmfony to bm"j ’ru mewerk (ciscussed o Chapter]
mfony cutemabically adds seme siabs with a fow bosic tosts

5y

wEl The reat Zor the web server The only files cecessible from e ntornot are ih

anes jotated in iis directery,

Figure 25. Table describes the content of the root directories [Potencier, p.31]

44

COWeD Teguests,

Ike o dotabose scheme, a 801

¢, you con ocd the code ma niceds

m ooy part of the
anrent Dag 5l

Loniplugens ore discussed on Chapter

ts writien 1n FH ang campatible with the
I‘mrm inc project setup

The tree structure of all application directories is the same:

apps/

[application name]/
config/

i18n/
lib/

modules/
templates/
layout.php

Directory

cornfigs

118n/

\.5\—/‘.
mogules/

templates/

Description

Halds a hefty set of YAML configuration files. This is wnere most of the
application configuration is, apart from tne default parameters that can be
found in the framework itself, Note that the default parameters can still be
overridden nere if needed. You'll learn move about application configuration in
the Chapter 5.

Contains files used for the internationalization of the application—mostly
interface translation files (Cnapter 13 deals with internationalization). You can
bypass this directory if vou choose to use @ database for ntermationalization.
Contains classes and Ibraries that are specific to the application.

Stores all the modules that contain e features of tne application.

Lists the global templates of the application—the ones that ave shared by all
modules. By default, it contains a layout.pnp file, wnich is the main lavout in
which the module templates are inserted.

Figure 26. Table describes the content of application directories [Potencier, p.31]

45

4.4.2 Modules and actions

This module contains actions and templates that can be invoked only by the
administrator. It includes most administrator functionalities such as assigning
second examiners to supervisors or projects, rooms to programmes and adding
or deleting rooms available for scheduling.

| *
[;
request eSLONSR

|

Controller i

Front contro er

o/

Actions

View }

+ functon vaidateAddRoo™m(Srequest Lavous
« functon nand eAddRoom{Srequest ’
< functon executeAddRoom{Srequest’

~ functon va dateDe eteRoom{$request)

< functon nand'eDeleteRoo™ Srequest

< function executeDeleteRoom(Srequestity

« function execulShowRooms{$request

+ function vatidateAssignProgrammeRoom{ Srequest:
= functon nandleAss gnProgrammeRoom{ Srequest
+ function executeAssigaProgrammeRoom{Srequest) — 3 Templates
- functon vaidateDeelePrograrmeRoom{$request
« function handieDeleteProgrammeRoo™{§request)
+ function execuieDeleleProgrammeRoom{$requests

View 0gC

« functon validateParProgrammeRoom{$requests
~ function nand'ePa rProgrammeRoom{ Srequest

+ function executeParProgrammeRoomi$request)

~ functon vaidateDeeleSuperv soriarker ($request) M| Model

= functon nandieDe eteSuperyisorMarker(Srequest)

« function executeDeleteSupervisorMarker ($request) R Data access
< function vaidateAssignSupervisorMarkes{$request)

= function nandieAss gnSupervisorMarker{Srequest)
+ function executeAssgaSupervisorMarker($request
+ functon executePairSupervisorMar ke (Srequest)

« function vaidateAssigniarker(Srequest) .
« functon hand'eAssignMarker{$requests Datavase avst-acton
< function executeAssignMarxer($request) =

+ function vaidateRemoveMarker{$request} i
< function nandeRemoveMarxer{$request} ‘ }

« function executeRemoveMarker($request
~ function vaidateSwapSiots{Srequest) R
« function nand eSwapSiois{Srequest «
< function execuieSwapSiots(Srequests
« functon executeParProjectMarxer($request; Database

Figure 27. Class diagram of admin module

46

Login module contains just one template and three actions “executeLogin”,
“executeLoginSubmit” and “executeLogout”. The main functionality is the
authentication of users.

This module contains all templates related to displaying and editing a timetable.

4.4.3 High-level prototypes

A navigation menu is based on drop down boxes. It separates clearly the content
of interface in two main options, timetable and settings. All web pages relating to
the timetable are under the category “Timetable”. Pages related to setting up the
scheduler system are under the “Setting” category. The student navigation menu
contains just options for displaying the timetable, either personal or one
containing all student presentations. Faculty members have an additional feature
to add their time constraints. Administrator have all these features and in
addition can navigate to web pages such as edit timetable, assign second
examiners to projects, assign second examiners to supervisor and vice versa, and
assign rooms to programmes. Under the main navigation is located another
menu, but this is related to the particular page.

Displaying timetable is in the calendar-based form. Each column represents one
time slot containing information such as name of student, supervisor and second
examiner, the time and place where the student’s project is presented.

<<|Navigate to different dates|>>

Room 1 Room 2 Room 3

| Date & time | Date & time | Date & time
Student Student Student
Supervisor Supervisor Supervisor
Second examiner Second examiner Second examiner

| Date & time | Date & time | Date & time
Student Student Student
Supervisor Supervisor Supervisor
Second examiner Second examiner Second examiner

| Date & time | Date & time | Date & time
Student Student Student
Supervisor Supervisor Supervisor
Second examiner Second examiner Second examiner

| Date & time | Date & time | Date & time
Student Student Student
Supervisor Supervisor Supervisor

Second examiner

Second examiner

Figure 28. Format of timetable

47

Second examiner

The feature “edit timetable” enables an administrator to edit a generated
timetable based on the format described above. All time slots will be draggable
objects able to be moved after clicking and holding the mouse cursor on it. After
dropping the time slot the time slots are swapped and changes are saved using
Javascript and AJAX request.

To assign a second examiner to a project, the object representing the project is
dragged and dropped within the area representing a list of projects to be marked
by the second examiner.

SUDETYSOT second examiner

4>

D is o supevise oo s o seeonud ey
drag & dreo

LETINNCTY

Figure 29. High-level prototype of interface used to assign second examiners to
projects

To assign a second examiner to supervisor, select faculty members from drop
down boxes as supervisor and second examiner and click on the single yellow
arrow. The double yellow arrow represents assigning in both ways for instance
faculty member B as second examiner is assigned to supervisor A, and faculty
member A as second marker is assigned to all project, which supervises B.

The same rules apply to red arrows apart from the fact that they represent pairs

of faculty members who cannot be assigned together. Below these components,
lists of all of the already assigned pairs will be provided.

48

SUDEVSOT qoa second examingr

qoo aoh

SUPB Y SOT o second examiner

06 ’

<>

Figure 30. High-level prototype of interface used to assign second examiners to
supervisors and vice versa, or create pairs of faculty members who can be assigned
to each other.

This feature will be implemented as a simple dropdown box containing all
programmes and another dropdown box containing all the available rooms. After
selecting appropriate options, a button to submit the data will be provided. All
rooms already assigned will be displayed below the components.

49

5 Implementation

This section describes the implementation phase of this project. It covers
explanation of technologies and the approach used, as well as a detailed
description of the problems arisen during the coding. The whole implementation
process is divided in 3 deliverables. The first deliverable is a scheduler system
without any extended features. The second deliverable is the scheduler system
including extended features explained in section 3.3. The last deliverable is a
graphical user interface (GUI) provided for all groups of users.

Section 5.1 contains a description about DAL package (backend engine)
implementation.

Section 5.2 describes the scheduler system (mainly solver package) without
extended functionalities (first deliverable), problems arisen after

implementation of the first deliverable and how the problems were solved.

Section 5.3 describes an implementation of extended functionalities of the
scheduler system.

Section 5.4 is about the GUI development process.

50

5.1 Database access layer of backend engine

The database access layer (DAL) package is coded in Java language version 1.6
and designed to be as maintainable as possible. To switch to a different Database
Management System, software managing databases (DBMS) compatible with SQL
queries, just one method “connect()” in the class “SQLConnection”, needs to be
changed depending on what DBMS will be used. All settings information related
to a connection to DBMS is kept in one class “DALConfig” to make it maintainable
for future changes. The class containing all SQL queries “DAL” is separated into
two parts. One part contains the queries retrieving information from the old
system database (external). The latter one is related to the database design
specifically for this system (internal). Therefore, the database can be located on
different database servers if needed.

5.2 Scheduler with core functionalities (1* deliverable)

All classes of backend engine were coded in Java language version 1.6 by using
programming tool “Eclipse”. The version of Java on the department informatics
server where the system will be deployed will be checked before the decision
about a constraint solver is made, because of the fact that the most recent
version of Java was required by “Choco” library.

5.2.1 Application Programming Interface (API) of “Choco”

To implement the constraints described in section 4.3.2.3 the API of “choco”
library was required to be explored in detail. Small blocks of Java code are
written by exploring the API to be sure of the use of appropriate functions to
create a constraint model.

List of constraint functions of “Choco” library used in the constraint model:

o allDifferent
“States that all pairs of variables have distinct values (which is
useful for some matching problems) (v_1!=v_2!=v_3!=..!=v_n).”

o and
“States that every constraints in arguments have to be satisfied
(cC1ACc2A.Ac_n)”

o atMostNValue
“States that the number of different values occurring in the array
of variables to be at most nvalue.”

“States that the two arguments are equals (x = y).”

51

o gt
“States that the first argument is greater than the second one
(x>y).”

o ifThenElse
“States that if the first constraint is satisfied, the second one should
be also verified, otherwise the third one should be verified

((c.1Ac2)||(lc.1 Ac3)).

Can also state that if the first constraint is satisfied, it returns the
second parameter, otherwise it returns the third one.”

o It
“States that the first parameter is less than the second one (x <y).”
o max
“States that the last argument is equal to the greater value of the
other arguments (z = max(x_1, x_2, .., x_n)).”
© min
“States that the last argument is equal to the smaller value of the
other arguments (z = min(x_1, x_2, ..., x_n)).”
o neq

“States that the two arguments are not equals (x != y).”

o occurenceMax
“States that the occurrence variable is at most equal to the number
of occurrences of the given value in the list of variables.”

“States that one or more of the constraints in arguments have to be
satisfied (c_1 || c_2 ||...|| c_n).” [choco constraints]

5.2.2 Generating time slots

Before any process of the scheduler starts, time slots need to be generated. For
this purpose the function “generateTimeSlotObjects” is implemented. It retrieves
all required information such as a start and end date of a schedule, start and end
time of a day in the schedule and a length (number of minutes) of one time slot.
After all these data are populated from database, the method iterates in two
nested loops. The outer one has a stopping condition when no more days are
available for scheduling. The inner one creates time slot objects and iterates
from the start time by adding the length of one slot to it until it reaches the end
time. The method returns an arraylist containing the generated time slots.

52

5.2.3 Generating time constraints

Before time constraint objects can be generated, the actual time constraints must
be inserted into the database. An XML file structure will be designed and sent to
the department informatics office in order to obtain all faculty members’ time
constraints. This approach is used because there is restricted access to the
database containing the timetables of all faculty members. When the file was
provided the method “readXmlFile” of class “XmlProcessing” reads it and stores
the constraints for further processing.

Afterwards, the methods “generateProjectTimeConstraints” and “generateRoom-
TimeConstraints” are invoked. The basic principle of these two classes is
identical. They iterate through the time constraints retrieved from database and
create time constraint objects. The objects are stored in a hash table where a key
is a project id or room id and the value is a vector of time constraints objects.

XML Structure of the file:

<?xml ="1.0"7>
<constraints>
<faculty>
<member>
<person_code> sampson</person_code>
<constraint>
<start>/ 00
<end> /09 -0h - vh
</constraint>
</member>
</faculty>
<constraints>

(O Bl</start>
DUl vlh</end>

5.2.4 Generating variable domains

Each variable of the “choco” constraint model must have a domain containing all
valid values. The idea of generating a project domain is that the method
“generateProjectDomain” iterates through a collection of time slots and time
constraints of supervisor and students involved in the particular project and add
to the domain just ids of slots, which are valid for both of them. To find out which
slots are valid the method “isSlotiInDomain” is used to compare a time slot and
constraint, passed as parameters.

The ruleis: starttime of slot >= end time of constraint AND
end time of slot >= start time of constraint

53

5.2.5 Generating second examiner load

One of the requirements is to generate second examiners’ loads (maximum
amount of projects they are allowed to mark).

The basic rule is: L2 = 2*L. - NP

where L2 stands for load of faculty member as second examiner
L stands for load of the faculty member as supervisor
NP stands for a number of projects the faculty member supervises

Because the sum of loads generated by this rule is very rarely equal to the
number of projects to be marked, the loads must be amended. The idea of how
the loads are changed, is to decrease or increase each load by one until the sum
of loads is equal to the number of projects.

5.2.6 Generating timetable

To generate a timetable, the object of “choco” class “CPSolver” must be created
and the constraint model must be added to it. Before the method “solve”, that
searches for a solution can be invoked, the optimization of solver should not be
omitted. Two key points are important to make searching more efficient: how to
prioritise selecting variables and how to select values from variables’ domains.

The initial search strategy is:
Selector for variable: “DomOverDeg"“

“A heuristic selecting the variable with smallest ration (domainSize /
degree), the degree of a variable is the number of constraints linked to it.”
[choco search strategy]

Selector for value: “RandomIntValSelector”

“Selecting randomly the value in the domain”
[choco search strategy]

5.2.7 Key problems and their solutions

Testing the first deliverable revealed that java heap space had to be extended.
After setting enough amount of memory, the problem was that the time needed
to generate a solution was substantially long. The process ran for 48 hours and
no solution was found. After consideration of possible alternatives, it is decided
to divide the CSP into two separate problems; assigning second examiners to
projects and assigning time slots and rooms to projects. This decreases the level
of constraints and scope of search space. It also enables higher control over the
process of assigning second markers (see next section).

54

5.3 Extended features of scheduler (2™ deliverable)

5.3.1 Assigning second examiners to projects

The pseudo code of assigning second examiners to projects (method
“compareDomains”) is as follows:

1. Generate loads of second examiners by invoking method
“generate2ndMarkersLoads”

2. Assign second examiners to particular projects as set up by administrator

3. Assign second markers to projects of particular supervisors as set up by
administrator

4. While there are projects without second examiners do
Find project with smallest domain

Iterate through collection of second examiners and do intersections of
project (including supervisor and student) and second examiner domains,
and select those who have the intersection containing the highest number
of values. Exclude second examiners who were already assigned to

projects and fully used their loads.

Check whether the pair of supervisor and second examiner is not
assigned to more than the limit set up by administrator. If so, select a

different examiner and check again.

Assign the second examiner to the project and decrease the load of the

examiner by one.

If the load is less or equal to zero, mark the examiner as unavailable to be

assigned.

The extra features limiting same faculty members to be assigned to the
same projects, assigning second examiners to projects or supervisors are

implemented within this method.

Second examiners with the smallest domains have higher priority to be selected
first and are assigned to projects where intersections of project and second
examiner domains are largest sets. The reason is that the bigger domains are
able to obtain the higher probability that can be achieved to generate a valid
timetable. Also it supports the feature, which helps to find the maximum number

of slots to be possibly swapped.

55

5.3.2 Relocation time constraint

To implement extra feature that gives each faculty member a time for relocation,
the following pseudo code was used:

1. Select all music projects
2. Iterate through music project collection

For each supervisor of a music project, set the constraint that they cannot
be assigned to a non music project one time slot before and after

5.3.3 Possible swaps feature

This feature is implemented as “servlet” method “doGet” of class “Possible-
Swaps“. When the user sends a request to this “servlet” with the parameter
containing a project id, the method retrieves the time slot id of the project from
the database. Afterwards it iterates through all of the project domains
(intersections of student, supervisor and second examiner domains) and returns
the ids of the projects whose domains contain the slot id of the project passed as
parameter. The projects are marked with a different colour and are valid to be
swapped.

5.4 Graphical user interface (GUI)

All parts of the GUI are implemented in PHP language by using PHP framework
“Symfony”. Three modules are created within the GUI application. Module
“Login” deals with authentication containing functions to login and logout.
Module “Timetable” deals with showing a timetable either personal or
containing all presentations. Only administrators can amend the timetable.
Module “Admin” contains all administration functions.

As one of the requirements is to make the application user-friendly and easy to
use, the GUI usability is critical.

5.4.1 Drag & drop technique

To make the interface interactive and easy to use, the drag & drop technique was
used. One of the biggest advantages is that a user is not temped to type anything
in and it prevents the user from easily making an error. The second significant
advantage is that manipulation with the timeslots is quick and clear to users,
which is important when managing large-scale timetables.

This technique will be coded in JavaScript using the external “Prototype” library.
When a user clicks on a “draggable” object (project time slots) and holds down
the left mouse button, the object can be dropped by releasing the button on
droppable objects (containers for project tome slots).

56

When drop event occurs, an AJAX request to invoke an appropriate function is
made to the web server. The function executes and sends back a response to the
client. The response is processed on the client side (JavaScript) and if required
the document (web page) is amended by Document Object Model and results of
the request are displayed.

During the process the user is always informed of the current status of
application, either if it is waiting for a response (loading bar), exception
occurred, the task was accomplished, or failed.

5.4.2 Login

To login to the system, a simple login form is provided to fill in with required
information such as username and password. When the form is submitted, the
“submitLogin” function is invoked to authenticate the user. After successful
authentication, the timetable is displayed.

Urniversity
of Sussex

Scheduler

Erder vour gquery here Wot logged m

Flesize, provide vour lopin details

Username
Passwaord

Login

Figure 31. Login page

57

5.4.3 Personal timetable

When a user is authenticated and clicks on the option “Personal timetable”, their
login details are read from a session and an appropriate timetable is displayed to
the user.

Figure 32. Personal timetable page

5.4.4 Timetable containing all presentations

This option shows a timetable containing all student presentations. The
timetable is implemented as a component in the timetable module (path
“actions/components.class.php”). The method “executeTimetable-Component”
iterates through all time slots comparing them with assigned time slots to
presentations. If an empty time slot is hit, an empty column html code is
generated; otherwise code for the time slot representing the presentation,
including information about student, supervisor and second examiner is
generated.

58

Lrver s
\ uf Q\;\sr\

Scheduler

L OFre Q. e iogged in as |
timeldble of presentations of final students
L
.-
-
|]
i

[
[| a

1
- L 1

Figure 33. Page shows a timetable containing all student presentation.

5.4.5 Edit timetable

This feature is accessible only by the administrator. The timetable can be
amended just by dragging and dropping timeslots into desired positions. This
“drag&drop” technique is implemented using JavaScript (external library
“Prototype” used), AJAX and PHP. All timeslots are draggable and can be dropped
to empty containers with a fixed date and time. During the generation of these
containers the slot ids are mapped to the ids of the containers. The same rules
apply to project time slot ids and therefore they become mapped to the project
ids. When the user drags the timeslot and drops on some container, an AJAX
request with parameters project id and timeslot id is made to the web server. A
PHP function updates the data and returns a response containing information to
swap the project. It is recognized whether the project is swapped either with
another project or an empty time slot. The swap is stored and a “step back”
functionality is provided in case that the swap was made by mistake. The
processes are saved as a stack, thus there is no restriction how many steps back
can be processed. Note that the number of possible steps back is shown in the
brackets in the button. After clicking on the button “Show All” a timetable
containing all presentations is displayed.

59

Se:hcdu ICE’

B back | Show ail i 11.de help § Desaiect marked aio:s SRR :
F it timelable ek

.-
'

-

| n E

n u- r
' -

L -

"

Wnué

braveran
O Stisaey,

Figure 34. Edit a timetable

Scheduler

[Step back(2) ‘ 1‘ Deseiect marked siots R

Ldit timetable el

togged 45 |

UsS

iy epsin

O Sresoy

Figure 35. “Drag&Drop” technique used to swap a time slot

60

The extended feature described in the section 3.3 (showing timeslots valid to
swaps) can be invoked just by double clicking on a project slot. All projects valid
to be swapped by the project clicked on, are marked with a different colour to
distinguish from the timeslots not valid to be swapped.

Figure 36. Valid project to be swapped are marked with different colour.

5.4.6 Informing user about current status

Whatever function is performed on the system by the user will have to have a
comment or notification informing the user that it has either been successful or
now, along with the progress that an action is actually taking place. The
following screenshots show how this information is displayed to the user.

61

<

Figure. 37 System is waiting for a response from server

| Adniten, st)

e

Figure 38. A request or process was successful

62

b oprrerany

i Stiases

Scheduler

o Lop i e

Assign secand mdarker/examiner Lo praject

n n
Assign all

Figure 39. A request or process failed

5.4.7 Adding time constraints of faculty members

The interface for faculty members is provided to add their time constraints. To
add an entry, a drop down boxes to select the dates and time need to be used.
Time constraints can be deleted just by clicking on the buttons next to them.

Y e
A o] T

Logges o ug |

Figure 40. Adding faculty member’s time constraints

63

5.4.8 Assigning second examiner to supervisor and vice versa

This feature provides the administrator to assign particular second examiners to
projects supervised by a particular faculty member. It can also be done the other
way, so that both of them are involved in projects either as supervisors or second
examiners. The assignment can be deleted by clicking on the button just next to
it.

The administrator can also specify which members of faculty cannot be involved
in the same project as the supervisor and second marker.

In order to comply with usability, the feature of the drop down box is
implemented in order to minimize user error and increase efficiency.

L nverate
\ o Saraaey,

Scheduler

LSS i DA Logged moas |
Assicir secand mdrker fexdaniiner Lo supervisor
Py
o :
o]
|

Y
2,
|3
&

[a——

Figure 41. Page shows a feature of assigning faculty members to each other

5.4.9 Assigning room to programme

The feature “assigning a room to particular programme” is implemented by the
interface displayed in the screen shot below. The same idea is applied as in the
previous section.

64

! ey ary
] SNipaaey,

Scheduler

Froes v g o Logged = as |

AL COtrse pragramine [roam

'

Figuré 42. Assigning rooms to particular programmes

5.4.10 Add room for scheduling

The administrator is allowed to add or delete rooms where projects are
presented. The simple interface is provided for this task.

JE ! o cran
; Ead SNtlmsen

o 1 ” 3 |
Scheduler

Logged o as |

Raanrs avatlable tar scbedulling

Figure 43. Adding or deleting rooms available for scheduling

65

6 Testing

6.1 Correctness of timetable

A black-box testing approach was used to test the correctness of the results
produced by the scheduler. A unit test method was written specifically to test
every constraint applied during the generating a timetable. It reveals which
particular constraints are not satisfied. The test automatically runs after each
generation of timetable to minimise the fact that an invalid timetable is provided
to the informatics department office.

6.2 Optimization and efficiency of solver

Several settings of the search strategy were tested to improve the efficiency of
the scheduler. The search strategy has the impact on a selection priority of
variables and values in domains.

The list of strategies tested:

Test strategy #1
Variable selector:
StaticVarOrder (A heuristic selecting the first non instantiated
variable in the given static order)
Value selector:
MinVal (Selecting the lowest value in the domain)

Results: after 48 hours no solution

Test strategy #2
Variable selector:
StaticVarOrder (A heuristic selecting the first non instantiated
variable in the given static order)
Value selector:
RandomlIntValSelector (Selecting randomly the value in the
domain)

Results: after 48 hours no solution

Test strategy #3
Variable selector:
MinDomain (A heuristic selecting the variable with smallest
domain)
Value selector:
RandomlIntValSelector (Selecting randomly the value in the
domain)

Results: The time was changing because of randomness, a solution
founded within approximately 3 minutes.

66

Test strategy #4

Variable selector:
DomOverDeg (A heuristic selecting the variable with smallest

ration (domainSize / degree), the degree of a variable is the
number of constraints linked to it.)

Value selector:
RandomIntValSelector (Selecting randomly the value in the

domain)

Results: The time was changing because of randomness, a solution
founded within approximately 5 minutes.

120
100
80
Test #1
60 - Test #2
Test #3
40 Test #4
20
0

6.3 Use case testing

All functionalities were tested by following the scenarios and instructions of the
extended functionalities section.

67

7 Deployment

The system was deployed and tested on a local machine. “WAMPP” software was
installed to make the machine behave like a web server. The source code must be
placed in “www” directory to be able to execute.

A life-version of the system will be deployed on the informatics web server. After
discussion with the helpdesk, the server’s version of PHP will be updated to the
most recent one. This is required to deploy the system based on PHP “Symfony”
version 1.2. If any unexpected problems arise related to the compatibility with
the PHP version, the version 1.1 of the framework will be used otherwise. The
compatibility with the “Symfony” version 1.1 has already been tested by running
the compatibility test script on the server.

68

8 Conclusion

In general, no serious problems have arisen during the whole project. It was
found that during the analysis stage of the project, only the core functionalities of
the system were discovered. However during the design phase of the project
and through further discussions with the client, there were other extra
functionalities took into consideration that would be very beneficial to be
implemented from the administrator point of view.

This project has taught the valuable importance of the analysis stage and how
this is one of the most difficult parts of the project, due to the fact that truly being
able to find out what the user of the systems actually wants is not easy. This has
proved a valuable learning curve because unlike previous assignments where the
task and the problem had been given, within the project a more real-world
experience has been taken into consideration, having to find out the needs of the
user and then develop the system accordingly.

The use of open sourced software “Symfony PHP framework” and “choco” made
the project more challenging, because it relied on the qualities of these systems.
Consequently, if there was a bug in either of these programs this would have a
direct effect on the stability of the system created.

8.1 Assessment of success

All of the functionalities even the extended one have been implemented and the
success of the project has been proven by the fact that it has been used to
generate this year’s final years presentation schedule.

One limitation discovered during the real life testing was that the time slots or
chunks could be dispersed. This is a feature that could be implemented into the
system with more time given.

8.2 Suggestions for extensions

Currently importing of faculty members’ time constraints is done by reading
them from the xml file provided by the informatics department office. As an
extension of the system this could be replaced by importing the data straight
from the current University timetabling system.

The other possible extension to the system is to use a thread controller, which
can be implemented in order to have greater control of other threads generating
the timetable. This means that more timetables can be generated at the same
time whilst being parallel. If a function is implemented that can measure the
quality of the timetable, then one of them can be chosen as the best solution. The
controller can pause or suspend the thread if required.

The timetable could be exported as an “ical” file, so users can use external

software supporting this type of file and add the timetable to the other
applications such as google calendar, ical, outlook express, etc. Also an ical file

69

parser can be written that would read the time constraints from the ical file
provided by user.

70

BIBLIOGRAPHY:

* [Pinedo, 1995] Pinedo, M. (1995). Scheduling - Theory, Algorithms, and
Systems.

* [T’kindt, Billaut, 2006] T’kindt, V. and Billaut,]. (2006). Multicriteria
Scheduling - Theory,Models and Algorithms.

* [np-complete] Wikipedia, The free encyclopedia, 2008. NP-complete. URL:

* [Corne, Fang, Mellish] Dave Corne, D., Fang, H. and Mellish CH. Solving the
Modular Exam - Scheduling Problem with Genetic Algorithms.

* [code&conduct] BCS, September 2004. Code of good practice. URL:

* [choco white paper] Choco Library, 2008. General description of the
library URL:

* [ajax def] Wikipedia, The free encyclopedia, 2008. Ajax. URL:

* [servlet def] Sun Microsystems, 2009. Java Servlet Technology. URL:

* [php def] Wikipedia, The free encyclopedia, 2008. PHP. URL:

e [Potencier] Potencier, F. (2009). Symfony, the definitive guide to symfony.

* [javascript def] PCMag, 2009. Javascript. URL:

71

[choco constraints] Choco manual, 2009. Cocho constraints. URL:

[choco search strategy] Choco manual, 2009. Search strategy. URL:

72

Appendix

Log

Analysis phase of a development process

13/10/ 2008 | Initial meeting with supervisor

20/10/ 2008 | Interview customer to gather requirements

26/10/ 2008 | Analysing requirements

04/11/ 2008 | Interview customer to gather non-functional requirements

14/11/ 2008 | Generating Use Case Diagrams

18/11/ 2008 | Writing scenarios

O

25/11/ 2008 | Producing project plan

26/11/ 2008 | Background research

73

01/12/2008 | Study Constraint Satisfaction Problem (CSP)

11/12/ 2008 | Research regarding constraint solver

Design phase of a development process

15/01/ 2009 | Design high level class diagram

18/01/ 2009 | Design database model
21/01/ 2009 | Design high level sequence diagram

/01/ 2009 | Meeting with supervisor

O

28/01/ 2009 | Design low level class diagrams

Coding and testing phase of a development
process

06/02/ 2009 | Implement designed ERM

21/02/ 2009 | Meeting with supervisor

24/02/ 2009 | Implement Database Access Layer (DAL)

30/02/ 2009 | Design overall/ formal model of CSP

74

08/03/2009 | Implement constraint model for constraint solver

27/03/ 2009 | Testing database access layer (DAL)

28/03/ 2009 | Testing solver package

30/03/ 2009 | Study documentation of “Symfony” PHP framework

07/04/ 2009 | Implement a graphical user interface (GUI)

14/04/ 2009 | Testing of GUI

07/04/ 2009 | Meeting with supervisor and department officer

19/04/ 2009 | Fixing bugs of solver package

20/04/ 2009 | Producing a draft of final timetable/schedule 2009

21/04/2009 | Write final report

75

