Alex Hunt
Partner
Bright Green Homes

Domestic Eco-Renovation

local examples
financing and funding
Who are we?
We have been conducting energy assessments, architectural services and eco-retrofits around Brighton & Hove since 2009

An Architect and Code for Sustainable Homes Assessor/Project Manager family business combine to make the planet a better place – one building at a time.
Climate Change & Regulation

- The 2008 Climate Change Act requires the UK to reduce its carbon emissions by 80% by 2050 against a 1990 baseline.

- The average household in the UK produces over ten tons of carbon dioxide per year from energy use in the home, consumption of food and products and transport. Under the new target this will need to be 8 tons by 2020 and 2 tons by 2050.
Energy Efficiency

Why?

- UK has targets to reach of 80% reduction in CO₂ by 2050
- Approx. 35% of all carbon emissions from built environment
- 27 million homes in UK, 7 million refurbishments by 2020 – 116,000 refurbishments a month!
- The average home emits over 5 ½ tons of CO₂ into the atmosphere every year

5 ½ Tonnes? That's equivalent to 275,000 miles on a train - Or 11 times around the world!
What drives Eco - Renovation / Eco Refurb / Eco Retrofit / Sustainable Refurbishment

★Drivers

★Climate Change
★Energy Price increase
★Regulation
★Comfort

★Measurement

★SAP
★Passivhaus
★Home Energy Masterplan
Examples of Privately funded Eco-renovations
Key Steps

- Initial Measurement & Assessment
- Motivations for clients Eco-renovation
- Design Process
- Pricing
- Value Engineering
- Project Management
- Delivery
CASE STUDY 1: Eastern Terrace Mews

Background

Period / Age of House: Regency 1860s
Type: Terraced
No. Bedrooms: 3
No. other rooms: 5
No. floors: 2
Floor Area: 143 m²
Cost: refurbishment work £100,000
Wall - mixed - cavity/solid/bungaroosh

Features

Internal wall insulation
6 zone Under-floor heating
a solar thermal system
a mechanical ventilation and heat recovery system
low energy LED lighting
solar tube lighting
natural paints and finishes

Moving from London to Brighton, our clients were looking for more than a straightforward modernisation of a property – they were looking for a house to buy that they could retrofit so that they could live according to their principles of ethical and efficient energy conservation. Bright Green Homes LLP designed and project managed the work creating a beautiful home with high specification finish that reduces the overall CO₂ emissions from 9 tonnes per annum to 2.5 tonnes per annum. The plan for the work involved three stages, with most of the work and refurbishment completed at stage 1, stage 2 being the replacement of windows and doors with double glazed uPVC alternatives, and stage 3 the installation of a FIT capable solar PV system.

Eco-Features

- Internal wall insulation
- 6 zone Under-floor heating
- Solar thermal system
- Mechanical ventilation and heat recovery system
- Secondary glazing
- Low energy LED lighting
- Solar tube lighting
- Natural paints and finishes
- Solar PV
CASE STUDY 1: Eastern Terrace Mews

Stage 1 - Assessment & Design

• Site Visit
• As Existing Drawings
• U value Calculations
• SAP Calculations
• Home Energy Report
• Planning Application
• Heritage Statement
CASE STUDY 1:
Eastern Terrace Mews

Challenges

• Internal Insulation
• Multiple Roof types
• Floor Heights & UF heating
• Party Wall & awkward spaces
• Logistics
• Integrating systems
Wall Insulation

Specific Challenges:

• Detailing around windows

• Demolition of original?

• Scheduling with other works

• Man Made / Natural materials?

Success:

External walls have a double skin of 50mm Celotex cross-battened to reduce thermal bridging over existing 40mm XPS which was retained to reduce waste: Airtightness barrier - plasterboard and skim finish.

U value: 0.19W/m²K
Roof Insulation

Specific Challenges:

• Detailing around windows

• Retaining existing character

• Head heights in places

• Man Made / Natural materials?

Success:

Roof skeilings have 50mm Celotex between rafters with 100mm under rafters with an airtightness layer of Intello Plus and plasterboard and skim throughout.

U value: 0.15W/m²K
Floor Insulation
First floor

Specific Challenges:

• Defective existing joists

• Services

• UF heating allowance

• Protecting after fitting

Success:

Separating floor has new suspended ceiling with 100mm of Earthwool acoustic insulation to reduce noise between floors and 30mm Celotex between joists above to form support for new underfloor heating system.
CASE STUDY 1: Eastern Terrace Mews

Floor Insulation
Ground floor

Specific Challenges:

• Head heights/Lintels

• Insulation value

• Changes to sub surface

• Drainage Inspection

Success:

Groundfloor retained the existing XPS insulation over slab, to reduce waste with 30mm added Celotex between battens to support new underfloor heating system.

U value: 0.22W/m²K
CASE STUDY 1: Eastern Terrace Mews

Party Wall & Awkward Spaces

Specific Challenges:

• Insulating the party wall without removing the existing structure (cost/waste)

• Alternative materials - value
CASE STUDY 1:
Eastern Terrace Mews

Logistics

Specific Challenges:

• Managing Waste
• Managing Trades
• Managing Parking
• Managing Neighbours
Integrating Systems

Specific Challenges:

• Airtightness & insulation details

• Solar Thermal & Plumbing

• MVHR

• Underfloor Heating & Bamboo floor

CASE STUDY 1:
Eastern Terrace Mews
CASE STUDY 1:
Eastern Terrace Mews - SUCCESS!
CASE STUDY 1: Eastern Terrace Mews

Results
CASE STUDY 2: Elms Lea Avenue

Background

Period / Age of House: Post war 1950s
Type: Detached
No. Bedrooms: 4
No. other rooms: 4
No. floors: 2
Floor Area: 168 m²
Cost: refurbishment work £120,000
Extension £60,000
Wall - mixed - cavity/solid

Features

External wall insulation
3 zone Under-floor heating
a solar thermal system
4kWp Solar PV
low energy LED lighting
Wood burning stove
natural paints and finishes

Moving to a new home in Brighton our clients were looking for a project that had a good basic layout, opportunity to convert an existing garage into a self contained extension for an elderly relative and plenty of opportunity to improve the ‘eco’ credentials of the house. Bright Green Homes LLP were involved from the beginning with the energy assessment and design of the new house, right through to the full renovation work and building the extension. The original 1950s house was an F rated property using nearly 49,000kWh of energy a year - nearly 10 tonnes of CO₂ every year. Once all of the measures were installed this was reduced by 80% to 2.3 tonnes per annum.

Eco-Features

- Cork External Wall Insulation & Timber cladding
- Triple Glazed Windows & Doors
- 3 zone under Floor Heating
- High Efficiency Gas Condensing Boiler
- Solar Thermal System

- 4kWp Solar PV
- Low Energy LED lighting throughout
- Wood Burning Stove
- Recycled Paint
CASE STUDY 2: Elms Lea Avenue

Stage 1 - Assessment & Design

• Site Visit
• As Existing Drawings
• U value Calculations
• SAP Calculations
• Home Energy Report
• Planning Application
• Re-Application!!
CASE STUDY 2: Elms Lea Avenue

Stage 1 - Home Energy Plan

This is equivalent to an annual requirement for space heating and hot water of: **47,889kWh**

And Electricity Requirement: **1,098kWh**

This is equivalent to a *predicted* annual fuel bill: **£2,047.26**

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Energy Efficiency Measure</th>
<th>SAP Rating</th>
<th>EI Rating</th>
<th>CO2 kg/yr</th>
<th>% saving on CO2 emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td></td>
<td>43</td>
<td>38</td>
<td>10,049</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>New boiler</td>
<td>59</td>
<td>52</td>
<td>7,070</td>
<td>30%</td>
</tr>
<tr>
<td>2</td>
<td>Insulation & underfloor heating</td>
<td>64</td>
<td>58</td>
<td>6,156</td>
<td>39%</td>
</tr>
<tr>
<td>3</td>
<td>Low Energy Lighting</td>
<td>64</td>
<td>58</td>
<td>6,156</td>
<td>39%</td>
</tr>
<tr>
<td>4</td>
<td>Converting Garage</td>
<td>70</td>
<td>67</td>
<td>4,905</td>
<td>51%</td>
</tr>
<tr>
<td>5</td>
<td>Draughtproofing</td>
<td>72</td>
<td>70</td>
<td>4,478</td>
<td>55%</td>
</tr>
<tr>
<td>6</td>
<td>New windows</td>
<td>74</td>
<td>72</td>
<td>4,098</td>
<td>59%</td>
</tr>
<tr>
<td>7</td>
<td>Solar Thermal</td>
<td>75</td>
<td>73</td>
<td>3,968</td>
<td>61%</td>
</tr>
<tr>
<td>8</td>
<td>External Wall Insulation</td>
<td>77</td>
<td>75</td>
<td>3,643</td>
<td>64%</td>
</tr>
<tr>
<td>9</td>
<td>Solar PV</td>
<td>86</td>
<td>84</td>
<td>2,305</td>
<td>77%</td>
</tr>
</tbody>
</table>
CASE STUDY 2: Elms Lea Avenue

Challenges

- Underfloor Heating
- External Wall Insulation
- Integrated Renewables
- Airtightness/ Draughtproofing
- Triple Glazed Windows & Doors
- Planning/Neighbours/Parking/Storage
CASE STUDY 2: Elms Lea Avenue

Floor Insulation & UF Heating

Specific Challenges:

• Rebuilding Floor

• Underfloor Heating system

• Floating floor

Success:
Rebuilding the groundfloor with 2 layers of 100mm Ecowool & Insummate to support new underfloor heating system.

U value: 0.16W/m²K
CASE STUDY 2: Elms Lea Avenue

External Wall Insulation

Specific Challenges:

• Integrating CWI & EWI
• Window details
• Minimising thermal bridging

Success:

Ecobead CWI & Cork external wall insulation in 2 layers cross batten to reduce thermal bridging

U value: 0.24W/m²K
CASE STUDY 2: Elms Lea Avenue

Renewables

Specific Challenges:

• maximising South facing roof - remove chimney

• Seagulls!

• Creating a Plant room

• Balancing Solar Thermal & heating system

Success:

Integrating a 4kWP Solar PV, Solar thermal system and new system boiler
CASE STUDY 2:
Elms Lea Avenue

Airtightness/
Draughtproofing

Specific Challenges:

• Airtightness in leaky old building

• Joists/Windows/Plugs/weak spots

• Taping the FF ceiling and PVA/Plaster as barrier

• Old vs. New
CASE STUDY 2: Elms Lea Avenue

Triple Glazed Windows/Doors

Specific Challenges:

• Long Lead Times

• Bulky Storage

• Weight

• Small errors can lead to large problems
CASE STUDY 2: Elms Lea Avenue

Planning/Neighbours /Parking/Storage

Specific Challenges:

- Planning restrictions
- Where to put Stuff!
- Quiet Residential Areas
- Weather
CASE STUDY 2:
Elms Lea Avenue - SUCCESS!
CASE STUDY 2:
Elms Lea Avenue

Results

- Space Heating requirement (kWh/m²/yr)
- Primary energy consumption (kWh/m²/yr)
- CO2 emissions per m²

Graphs showing the changes in space heating requirement, primary energy consumption, and CO2 emissions before and after various stages of renovation and installation of EWI & SHW and Solar PV systems.
Market Values & Energy

<table>
<thead>
<tr>
<th>Area</th>
<th>Purchase price</th>
<th>Money Spent</th>
<th>Value (2016)*</th>
<th>% increase in value</th>
<th>PE before (kWh/m²)</th>
<th>PE after (kWh/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Terrace Mews (2011)</td>
<td>£499,950</td>
<td>£100,000</td>
<td>£1,027,000</td>
<td>85.4%</td>
<td>326.58</td>
<td>52.73</td>
</tr>
<tr>
<td>Elms Lea Avenue (2012)</td>
<td>£625,000</td>
<td>£180,000</td>
<td>£1,085,339</td>
<td>44.9%</td>
<td>320.73</td>
<td>95.87</td>
</tr>
<tr>
<td>The Plough (2015)</td>
<td>£475,000</td>
<td>£200,000</td>
<td>£804,646</td>
<td>27.3%</td>
<td>tbc</td>
<td>tbc</td>
</tr>
<tr>
<td>Bishopstone Drive (2016)</td>
<td>£392,000</td>
<td>£100,000</td>
<td>£567,615</td>
<td>19.3%</td>
<td>265.46</td>
<td>55.8</td>
</tr>
</tbody>
</table>

* These figures are from Zoopla.co.uk after refining their initial estimates to include the renovation work.

Average year on year increases = 8%
Clear CO2 savings to be made
Clearly reduced running costs for domestic energy bills
A complicated process
Many moving parts
Drivers are NOT energy efficiency on its own
Effective project management is key
Substantial Financial Rewards
Examples of Publicly funded Eco-renovations
Low Energy Assessment Fund 2012

Funded by DECC Feb/Mar 2012 - £60k

150 Home Energy Assessments

• Hanover
• Portslade
• Hollingdean

• Working with B&H 10:10 and the Brighton Energy Cooperative
This showed that on average the houses in each of the areas would be suitable for substantial improvements to their homes. On average the homes could reduce their CO\textsubscript{2} emissions by >40%. This is also equivalent to an annual fuel cost reduction of >40%.
Actual savings in Hanover

Aggregated data for CO2 emissions per house

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average emissions - current</td>
<td>5,205</td>
<td>kg / yr</td>
</tr>
<tr>
<td>Average emissions - potential</td>
<td>2,527</td>
<td>kg / yr</td>
</tr>
<tr>
<td>Average savings</td>
<td>2,678</td>
<td>kg / yr</td>
</tr>
</tbody>
</table>

Aggregated data for total CO2 emissions savings

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total savings (all properties)</td>
<td>133,888</td>
<td>kg / yr</td>
</tr>
<tr>
<td>Average savings (per property)</td>
<td>2,678</td>
<td>kg / yr</td>
</tr>
<tr>
<td>Average % savings (per property)</td>
<td>50.4%</td>
<td></td>
</tr>
</tbody>
</table>
Green Deal Pioneer Places Project 2013

Funded by DECC Feb/Mar 2013 - £250k

• 100 Green Deal Energy Assessments across Brighton & Hove

• Up to £10,000 of energy efficiency improvements on 10 homes in B&H
 • Including EWI/IWI
 • Boiler changes
 • Heating controls
 • Loft insulation
 • LED lights
EWI / IWI

Installed EWI in Gardner Street, Southampton Street, Cuthbert Road, Brewer Street & IWI/EWI hybrid on Newport Road

Loft Insulation, New boiler

The ‘smaller jobs’ new loft insulation, new boiler, LEDs – Mile Oak Road, Crayford Road, Uplands Road, Livingstone House

New Products

Using cutting edge products such as Loftzone, Alpha Intec & Baxi Gas Flue Saver boilers, LEDs etc.
Floors
Strategically placed moisture monitors in 2 of the properties to determine results of insulation on moisture levels in floor joists

External Wall Insulation
Monitoring what is happening in the masonry walls behind the EWI

Overall Understanding
Placing monitors all over the building
Figure 10
Total measures installed under ECO and Green Deal by 31 December 2015, by scheme

ECO accounts for the vast majority of measures installed

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Number of Measures (thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO – CERO</td>
<td></td>
</tr>
<tr>
<td>ECO – CSCO</td>
<td></td>
</tr>
<tr>
<td>ECO – Affordable Warmth</td>
<td></td>
</tr>
<tr>
<td>Home Improvement Fund and Cashback</td>
<td></td>
</tr>
<tr>
<td>Green Deal finance</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Solid wall insulation
- Hard to treat cavity wall insulation
- Easy to treat cavity wall insulation
- Loft insulation
- Boiler replacement
- Other measures

Note
1. Green Deal finance potentially overlapped with ECO and the Home Improvement Fund, so Green Deal finance measures cannot be added to the other schemes’ measures without double counting.

Source: Department of Energy & Climate Change
The Green Deal was abandoned late 2015 after spending £240 million.

Green Deal cost the taxpayer £17,000 per plan.

ECO costs:

- CERO £2.41 billion
- CSCO £0.6 billion
- AW £1.11 billion
- Admin £4 million
- TOTAL £4.14 billion

Delivered negligible CO$_2$ savings!

All figures from NAO – Green Deal & Energy Company Obligation report – April 2016
Customer journey through the Green Deal

Too complex?
Summary

Private Finance
- 80% CO₂ reductions are possible
- It has significant impact on value of house
- It requires significant upfront investment
- It’s not achieved in isolation
- Project management is key
- Complex process

Public Finance
- 40% CO₂ reductions are achievable
- Huge advantages for people on lower incomes
- It doesn’t have to cost huge amounts of money (£10-20k)
- Householder more able to afford rent/mortgage
- Complex process
What Next

- Energy Efficiency in the home can be expensive
- It can have significant impacts on CO2 emissions
- It can work well with quality tradespeople
- Government scheme clearly failed
- Mass roll out STILL needed…
- BREXIT?
Alternatives?

RetrofitWorks

- RetrofitWorks is a ‘not for private profit’ co-operative, matching communities & homeowners who want to retrofit their homes, with local, quality assured SME assessors and installers.

Brighton & Hove Energy Services (BHESCo)

- A not-for-profit social enterprise bringing together the community of Brighton and Hove to develop renewable energy projects, improve energy efficiency, reduce fuel bills and tackle fuel poverty.

Brighton Energy Cooperative Community Fund

- Open for any organisation in the Brighton and Hove, East or West Sussex areas to support either renewable electricity generation or to implement energy efficiency measures, supported by donors & income from community owned solar.
What to do for Mr. & Mrs. Smith? Homeowners, Employed, Good income?

- Make it simple?
- Make it accessible?
- A straightforward solution they can pay for themselves?
- Reduce red tape?
- Incentives?
- People don’t improve energy efficiency in isolation?
 - Moving house, extension, loft conversion, internal decorations, new kitchen, new bathroom etc. etc.
UK Renovation Market & VAT receipts

- In 2014 Total UK renovation market = £14 billion
- 35% of people buy a property that needs renovation to save money!
- On average people spend £33,000 and 12% spend >£50,000
- VAT spent on renovation/yr = approx. £2.8 billion?

1. FT online Aug 2014
2. Propertywire – Feb 2016
VAT in construction

You may be able to charge the reduced rate of 5% for some types of work if it meets certain conditions, including:

- You can charge the reduced rate of VAT on work you do to install qualifying energy-saving products, and certain grant-funded heating and security equipment for people over 60 or on benefits.

- You can also charge the reduced rate for extra work you need to do as part of the installation. But you must charge the standard rate of 20% on all work if the installation is just part of another, bigger job.

Example You have to cut a new hatch in the ceiling to install loft insulation. Because you needed to do this as part of the insulation, you can charge reduced-rate VAT.

Example You replace a roof with a new, insulated one. Because the insulation is just part of a bigger job, you have to charge the standard rate of 20% on the whole job.
Straight forward and easy to understand?

- You pay the reduced rate of 5% for:
 - controls for central heating and hot water systems
 - draught insulation, eg around windows and doors
 - insulation on walls, floors, ceilings, lofts, etc
 - solar panels
 - wind turbines
 - water turbines
 - ground-source heat pumps
 - air-source heat pumps
 - micro combined heat and power units
 - wood-fuelled boilers
BUT – VAT Notice 708/6

2.1 - The reduced rate applies to the installation of certain specified energy-saving materials (see paragraph 2.5) in, or in the curtilage of residential accommodation (see paragraph 2.16).

The reduced rate applies whether or not the installation is grant-funded and includes the price of the goods themselves.

If you supply energy-saving materials without installing them, your supply is standard-rated.

2.3 - Although the installation of energy savings materials is reduced rated, it is normal for other goods and services to be provided at the same time. 2.3.4 - Where you are undertaking more than one job at the same premises, the VAT liability will depend upon the circumstances. For example, if you are contracted to build an extension and, as part of the same contract, required to fit thermostatic valves to all the radiators in the house, then this is a single standard rated supply of construction services.

However, if you have a contract to building an extension and some time after the work has commenced, the homeowner separately asks you to install thermostatic valves, this is then a separate supply and reduced rated.
- EPC shows demonstrable improvement
- Zero (10%?) Rate VAT
- Contractor bills client NO (or 10%) VAT

- Include Home Energy Masterplan or equivalent Deliver renovation

- Integrate retrofit with other work
- New bathroom, kitchen, extension
Keep it simple! Use an existing system?

Assessment before and after renovation (jobs/quality?)

Self advertising – or spend a small amount marketing

Open up potential for £3.5 billion market

Small builders included in process & makes VAT registered builder (quality?) competitive with small 2 man teams

Clients get a home renovated, and more energy efficient – and maybe even costs them less!
Thanks for listening

Any questions:

Alex Hunt
Sustainable Building Consultant
01273 202866
alex@brightgreenhomes.co.uk