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Determinants of Patent Citations in Biotechnology: An Analysis of Patent 

Influence Across the Industrial and Organizational Boundaries 

 
 
 
ABSTRACT 

The present paper extends the literature investigating key drivers leading certain patents to 

exert a stronger influence on the subsequent technological developments (inventions) than 

other ones. We investigated six key determinants, as (i) the use of scientific knowledge, (ii) 

the breadth of the technological base, (iii) the existence of collaboration in patent 

development, (iv) the number of claims, (v) the scope, and (vi) the novelty, and how the effect 

of these determinants varies when patent influence—as measured by the number of forward 

citations the patent received— is distinguished as within and across the industrial and 

organizational boundaries. We conducted an empirical analysis on a sample of 5,671 patents 

granted to 293 US biotechnology firms from 1976 to 2003. Results reveal that the 

contribution of the determinants to patent influence differs across the domains that are 

identified by the industrial and organizational boundaries. Findings, for example, show that 

the use of scientific knowledge negatively affects patent influence outside the biotechnology 

industry, while it positively contributes to make a patent more relevant for the assignee’s 

subsequent technological developments. In addition, the broader the scope of a patent the 

higher the number of citations the patent receives from subsequent non-biotechnology patents. 

This relationship is inverted U-shaped when considering the influence of a patent on 

inventions granted to other organizations than the patent’s assignee. Finally, the novelty of a 

patent is inverted-U related with the influence the patent exerts on the subsequent inventions 

granted across the industrial and organizational boundaries. 

 

Keywords: patent influence; determinants; industrial boundary; organizational boundary; 

biotechnology. 
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1. INTRODUCTION 

The growing importance of technological innovation for firms as a source of a sustainable 

competitive advantage [e.g. 1, 2] has led researchers to identify indicators to measure the 

outcomes of R&D process. Great attention has been specifically paid to patent data, which has 

been one of the most widely used sources of data among researchers for the evaluation of 

R&D outputs [3, 4]. A patent, as defined by the United States Patent and Trademark Office 

(USPTO), is “a property right granted by the Government of the United States of America to 

an inventor to exclude others from making, using, offering for sale, or selling the invention 

throughout the United States or importing the invention into the United States for a limited 

time in exchange for public disclosure of the invention when the patent is granted”.1 The 

temporary monopoly granted to a patent’s assignee(s) (individuals, private or public 

organizations) generally lasts for 20 years. A patent is granted when it satisfies three main 

criteria: the invention the applicant aims to patent must (i) be novel, (ii) involve a non-

obvious inventive step, and (iii) be capable of industrial application.2 Several factors have 

contributed to the adoption of patent data for the aforementioned evaluation purposes [5]. 

First, patent data are available in most countries, especially in industrialized economies, 

where governments have collected data longitudinally. Second, patents contain a large amount 

of bibliographical information classified according to standardized schemes which in turn 

allows comparative analyses. Third, the extensiveness of data allows researchers and analysts 

to carry out both cross-sectional and longitudinal researches across multiple levels of analysis 

(e.g. nations, organizations, and individuals). 

 The potential of patent data to serve as an indicator of R&D outcomes has therefore 

attracted the attention of a large number of scholars. For instance, patent data have been 

proved capable to inform on different facets of the R&D process and outputs, such as the 

value of firms’ intellectual property [6], efficiency of R&D processes [7] and technological 

position in the competitive landscape [8], as well as to assess the impact of innovation 

policies [9]. Significant research efforts have been particularly channeled in assessing the 

impact of patents and identifying those factors leading some patents to exert a stronger 

influence on subsequent technological developments (as mainly measured by forward 

citations counting) than other ones [e.g. 3, 10-12]. Despite these intensive research we have 

                                                
1 The definition is reported in the USPTO Glossary available at www.uspto.gov/main/glossary. Other patent 
offices provide similar definitions. 
2 See the USPTO 2012 “Manual of Patent Examining Procedure” available at 
www.uspto.gov/web/offices/pac/mpep/.  
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however limited knowledge on how the antecedents of patent influence differently affect the 

impact patents exerted on subsequent technologies when this impact is analyzed in different 

domains. In other words, it is less well understood whether patent influence is more or less 

bounded within specific domains. In this regard, the present paper aims at contributing to the 

extant literature on the determinants of patent influence by investigating how six key 

determinants previously identified in the literature (i) the use of scientific knowledge, (ii) the 

breadth of the technological base, (iii) the existence of collaboration in patent development, 

(iv) the number of claims, (v) the scope of the patent, and (vi) the novelty—differently shape 

the impact of patents in four domains as those identified within and across the industrial and 

organizational boundaries. 

We conducted our empirical analysis on a sample of 5671 (granted) patents registered 

at the USPTO by 293 US biotechnology firms from 1976 to 2003. The biotechnology industry 

is a suitable setting for our research given the importance of patents as an effective mean for 

the protection of intellectual property in this context [see also 13, 14]. Results reveal that the 

effect of the considered determinants varies according to the domain under investigation. For 

example, it emerges that the use of scientific knowledge negatively affects the influence a 

patent exerts on subsequent technologies outside the biotechnology industry, while it 

positively contributes to make the patent technologically more relevant for the assignee’s 

future inventions; a patent of a broader scope impacts subsequent patents that are granted 

outside the biotechnology domains and to other firms, where its influence is positive and 

inverted U-shaped, respectively; the novelty of a patent has an inverted U-shape effect on  

patent influence across the industrial and organizational boundaries. 

 The remainder of the paper is organized as follows. Section 2 reviews the existing 

study investigating patent influence and describes the six main determinants we considered 

for our analysis. In Section 3, the research methodology is presented. Sections 4 and 5 report 

the results and discussion, respectively. Finally, Section 6 concludes the study. 

2. THEORETICAL BACKGROUND 

2.1. Measuring Patent Influence  

The skewness characterizing the distribution the influence of patents on the subsequent 

technological developments makes the design of evaluation measures and tools a complex 

activity [15, 16]. Many attempts have been made in the extant literature to provide useful 

empirical strategies focused on information strongly correlated with patent influence. Some of 

the earlier research [e.g. 17] focused, for example, on the estimation of patent influence as 



 -5- 

reflected by the private value of patent rights, i.e. by analyzing the renewal data (e.g. patent 

renewals and renewal fee schedules). This approach has been subsequently validated and 

improved by several studies [7, 18]. The main logic underlying the adoption of renewal data 

is that the most valuable patents are those renewed to full statutory term, since renewing the 

patent protection for an additional year is expensive for the patent holders. However, this 

approach presents three main limitations [19]. First, for those patents renewed over their 

statutory lifetime, the renewal fees provide a lower rather than an upper bound for patent 

value. Second, this approach does not capture discontinuity in the patent value over its life 

until the patent reaches the maximum term. In fact, it is supposed that the annual returns from 

having the patent in force decrease monotonically over the patent life. Finally, renewal data 

provide information only on the part of patent value generally defined as patent premium [20], 

which represents the extra value that the invention generates to the assignee when it is 

patented. 

 We base our research on a complementary approach aimed at measuring the influence 

of patents on subsequent technological developments by the number of forward citations 

patents receive [e.g. 21, 22, 23]. The pioneering study by Trajtenberg demonstrated the 

existence of a positive and significant correlation between the social returns to innovation and 

forward citation indicators. Specifically, the author stated, “The cited patents opened the way 

to a technologically successful line of innovation [...]. Thus, if citations keep coming, it must 

be that the innovation originating in the cited patent had indeed proven to be valuable” [3: 

p.174]. Similarly, Albert et al. [24], focusing on the patents held by Eastman Kodak, showed 

the presence of a strong association between citation counts and the technical importance of 

patents. Patents’ technological relevance, as reflected by forward citations, has been also 

proved to positively affect economic-based indicators, thus strengthening the strategic 

importance of assessing patents’ technical performance. For example, Shane [25] found that, 

for a small sample of semiconductor firms, patents weighted by citations have more predictive 

power in a Tobin’s Q equation than simple patent counts. Citations-weighted patents also 

turned out to be more highly correlated with R&D than simple patent counts. By analyzing a 

set of German patented inventions, Harhoff et al. [10] found that patents with greater 

economic relevance were more likely to be cited in subsequent patents. Giummo [26] found 

similar patterns by examining the royalties received by the inventor(s) and patent holder(s) at 

nine major German corporations under the German Employee Compensation Act. Lanjouw 

and Schankerman [27] also used citations, revealing that they have significant power to 

predict which patents will be renewed and which will be litigated. Hall et al. [11] revealed the 
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existence of a positive relationship linking patent forward citations and the stock market 

valuation of firms’ intangibles, showing that an extra citation per patent boosts market value 

by 3%. Finally, Gambardella et al. [19] employed data from an extensive European survey 

and found that patents’ inventor economic return is significantly and positively correlated 

with the number of citations these receive. 

In order to provide a better understanding of the role played by forward citations as  

proxy of patent influence, it is worth analyzing in more details what a patent document means. 

As discussed, a patent awards to one or more assignee (individuals, private or public 

organizations) the right to exclude others from the unauthorized use of the disclosed invention 

for a predetermined period of time. Patent citations define and limit the scope of the property 

rights by indicating the technological base upon which a specific patent is built [11]. Patent 

citations are added by the applicant, even if the decision regarding which citations to include 

ultimately rests with patent examiners, who may thus create noise in assessing the impact of 

patents, especially when citations are used as a proxy of knowledge flows [11, 28, 29]. 

Nevertheless, despite this limitation, forward citations remain one of the most suitable 

indicators to assess the influence of patents.  

 Apart from ‘how’ measuring the influence of patents, a further question that has 

however received only scant attention in previous studies is ‘where’ measuring the influence. 

A patented invention may influence the technological landscape of subsequent inventions 

within or across the specific industry in which it is granted. For example, the case of Viagra, 

originally developed by Pfizer for cardiovascular applications, has found significant 

application for the treatment of erectile dysfunction; a similar pattern emerged in the 

Corning’s development of fiber optics, which have found important applications in the 

development of communication technologies [21]. On the other hand, the inventing firm or 

other organizations have exploited a patented technology to further develop technological 

solutions. The most classic example is represented by the ‘EMI CAT’ scanner created by the 

UK firm Electrical Musical Industries (EMI) Ltd. and then largely employed and refined by 

other companies that successfully dominated the market. Another case refers to Bowmar that 

invented the pocket calculator, which was however technologically exploited by Texas 

Instruments, Hewlett Packard and others [30]. Thereby, these cases highlight the importance 

to deepen our understanding of how patent influence varies across domains—identified by the 

industrial and organizational boundaries—to properly assess the impact of patented 

technological solutions as well as to design R&D strategies and policies aimed at maximizing 

the output of the inventing process. 
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2.2. Antecedents of Patent Influence  

Drawing from previous literature, we focus the attention on six determinants of the influence 

of patents: (i) the use of scientific knowledge, (ii) the breadth of the technological base, (iii) 

the existence of collaboration in patent development, (iv) the number of claims, (v) the scope 

of the patent, and (vi) the novelty. 

Scientific Knowledge: Scholars have discussed the significant contribution of science to 

economic growth for years [31, 32]. Research has demonstrated that knowledge flowing from 

public research organizations makes a considerable contribution to industrial innovations and, 

consequently, to welfare. For instance, Mansfield [33], analyzing 76 US firms in seven 

industries, found that 11% of product innovations and 9% of process innovations would not 

have been developed in the absence of recent academic research. Fleming and Sorenson [34] 

suggested that science functions as a map of the technological landscapes that can guide 

private research towards the most economically promising technological areas, thus avoiding 

wasteful experimentations. Nevertheless, regarding the relationship between the use of 

scientific knowledge (non-patent references) and patent impact, contrasting results can be 

found [35]. While Henderson et al. [36] and Mowery et al. [37] found that academic patents 

receive more citations than non-university patents, thus confirming the importance of 

scientific knowledge as input in the inventing process, other authors have provided divergent 

results, showing that links to science exert different effects on the impact of resulting patents 

according to the firm’s industry, the inventive problems to be addressed, and the level of 

analysis (firm or patent) [34, 38, 39]. 

Breadth of Technological Base: Scholars have emphasized that innovativeness often depends 

on firms’ ability to search for knowledge widely [e.g. 23, 39], since a broader search increases 

the likelihood of discovering new and useful knowledge combinations [40]. However, the 

search process is highly path-dependent and constrained by organizational routines [41], 

hence leading organizations to search for knowledge locally, i.e., into the neighbor of their 

existing capabilities [42]. The relationship between searching widely and patent influence has 

been extensively discussed. For example, by analyzing the innovation processes in the optical 

disk industry, Rosenkopf and Nerkar [23] found that patented innovations reflecting broader 

search efforts also have a greater impact on subsequent technologies. Using data on over half 

a million patents, Singh [43] revealed that patents based on a broad range of technologies 

present a higher quality. Finally, Capaldo and Messeni Petruzzelli [44] showed the positive 

impact exerted by the number of different knowledge domains across which firms search on 

the number of forward citations received by their patents. A broader search involves new 
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interaction between the components, thus constituting the basis for a broader range of 

subsequent innovative developments and contributing to the pace of the technological 

progress [45]. A broader search process may also expand the patent life, then increasing the 

monopolistic rents of the holder organization [46]. However, increasing the breadth of 

technological search may have harmful consequences on the development of successful 

inventions. In fact, searching widely is a risky process that may lead to uncertain and 

unpredictable outcomes. Furthermore, searching across and combining a great variety of 

technological components may create several difficulties due to a lack of absorptive capacity, 

common knowledge base, and inexperience or unfamiliarity with the recombined technologies 

[47].  

Joint Development: Developing innovation can be conceived as a process where 

complementary and heterogeneous inputs (i.e., pieces of knowledge) are transformed into 

outputs (i.e., results of innovations) [48]. The increasing complexity of the knowledge-

creation processes has lead firms to rely upon external resources [49] and hence search 

beyond their own organizational boundaries for valuable knowledge and skills 

complementing their capabilities [50]. In fact, innovation partly depends on firm-specific 

knowledge resources and strongly depends on determinants external to the firm. This is 

because firms often specialize in one or few fields of knowledge and rarely have all the 

required resources internally. Therefore, to innovate successfully, firms need to collaborate to 

gain access to knowledge resources that are not internally available [51]. Collaborations allow 

organizations to expand their knowledge base and, thus, to explore new opportunities and 

solutions [52], which in turn may lead to the development of technologically valuable 

innovations [e.g. 53]. Nevertheless, despite these advantages, collaborations may also hamper 

the result of the innovation process due to the emergence of opportunistic behaviors and 

differences between partners’ bargaining power [e.g. 54]. This may increase competition and 

reduce the benefits going along with inter-organizational resource integration. Inter-

organization collaborations at the patent level may be captured by analyzing the presence of 

co-assignees, i.e. whether patent property rights are jointly shared between two or more 

organizations [55, 56]. Co-owned patents may assume an important role in industries with 

strong regimes of appropriability, such as chemical, pharmaceutical, and biotechnology [55]. 

In addition, joint patents are largely the result of inter-organizational collaborations where the 

companies are unable to ‘divide’ the invention among the partners, hence creating the 

necessity to share the intellectual property [57]. 
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Claims: The claims reported in patent documents define the legally enforceable aspects of the 

given invention. Patent claims can be distinguished as principal and subordinate. The former 

defines the essential novel features of the invention, whereas the latter describes detailed 

features of the innovation. The number of claims can affect patent influence: the broader the 

property rights protection the higher the probability that others will rely upon the invention. 

This explains the incentive leading assignees in increasing the number of claims in the patent 

application [58]. Tong and Frame [59] were the first to use information on claims to conduct 

empirical analysis. Specifically, they investigated the relationship between the number of 

claims reported in patents and several macroeconomic (nation-level) indicators of 

technological development. Later, Lanjouw and Schankerman [27] adopted the information 

on claims to test their influence on the likelihood of challenge and validity suits for a sample 

of US patents. Recently, Bonaccorsi and Thoma [60] employed the number of patent claims 

as an indicator to analyze how the quality of patents varies across different communities of 

inventors.  

Scope: One of the most discussed determinants of patent impact is represented by its 

technological scope. The scope of a patent may be an important determinant of the efficacy of 

patent protection [61]. In their pioneering study, Merges and Nelson evidenced how “[...] the 

broader the scope, the larger the number of competing products and processes that will 

infringe the patent [...]” [62: p. 839], thus increasing the technological influence of the patent. 

The relevance of the scope to enhance patent influence has been also investigated by several 

empirical works. For instance, Lerner [63] demonstrated that the patent scope has a significant 

and positive effect on the valuation of venture capitalists financing biotechnology start-ups. 

Shane [64], conducting an extensive analysis of 1,397 patents assigned to the Massachusetts 

Institute of Technology, showed that the scope of patents increases the likelihood of the 

relative inventions to be commercialized.  

Novelty: One of the central concepts in the innovation study is that refining and improving an 

existing technology and introducing a new approach to technical practices are fundamentally 

different things [65]. The development of novel technologies is generally associated with the 

first stage of the technology life-cycle, being thus characterized by market uncertainty and 

R&D efforts [66]. However, if successful, technologies coming through this phase and 

moving to the growth stage have more opportunities to become radical innovations, hence 

breaking existing technological paradigms [64], shifting towards new trajectories, and 

representing the basis on which further innovations are built. Therefore, novel patented 

innovations may represent rare, valuable, and inimitable sources of competitive advantage for 
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firms [67], allowing business growth and new business development [13]. Such an advantage 

mainly derives from the benefits associated with learning economies [68], causal ambiguity 

[69], switching costs [70], consumer learning, and reputation advantages [71]. Nevertheless, 

as discussed, developing a novel patented innovation is an uncertain and risky task [72]. 

Environmental factors, such as the pace of technology and market evolution [73], may also 

affect the relevance of such novel technical solutions. In particular, technological uncertainty 

makes buyers reluctant to invest in product-specific competencies [70, 71, 74], with the 

consequent risk of introducing an underdeveloped product that will make final customers 

more willing to switch to alternative products [75]. In addition, market evolution may imply 

changes in consumer tastes or preferences, emergence of new regulations, degree of market 

fragmentation, and consumer learning [76], which may in turn impact the diffusion and 

success of a novel patented innovation. 

3. METHODS 

3.1. Research Setting and Sample Data 

We conducted out empirical analysis on the US biotechnology industry. The rise of 

biotechnology has its origins in the discovery of the double helix structure of DNA by Watson 

and Crick in 1953 and the subsequent development of DNA recombination by Cohen and 

Boyer in 1973. The latter can be considered a radical innovation process that broke the 

barriers of entry into the pharmaceutical industry [77, 78]. We chose this particular research 

setting since the biotechnology industry is one of the most innovation-intensive industries 

[79], and the patenting activity within this context plays a critical strategic role for firms’ 

performance [80-82]. We focus our attention on the US market representing the most 

significant center of innovation for biotechnology [14, 80, 83]. For instance, in 2006, the US 

market was revealed as the market with the highest concentration of dedicated biotechnology 

firms, which spent US$25,101 million on R&D, accounting for 75% of total biotechnology 

R&D expenditures in developed countries [84].  

One of the major criticisms advanced against the adoption of patent data is represented 

by the unobserved heterogeneity across industries and technology fields [85], which can 

significantly affect the suitability of patents as indicators of R&D outcomes. However, in the 

biotechnology field, innovations are more discrete in terms of product fragmentation, and, 

hence, may be covered by a small number of patents [80]. Individual patents can yield 

substantial rents from commercialization and/or licensing. For this reason, firms operating in 
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this industry are likely to dedicate significant resources on the writing of strong and relevant 

patent applications. This supports the use of patent data as a proxy of the R&D outcomes. 

 For the empirical analysis, we relied on a patent dataset drawn from a population of 

358 US public and private firms included in the BioScan database in 2010. BioScan is one of 

the most recognized biotechnology industry reporting services [13]. We searched for patents 

firms filed under the US patent system during the observation period 1976–2003 by querying 

the USPTO database.3 We included in the sample only those firms that granted at least one 

biotechnology patent in the observation period—we identified the industrial boundary by 

using the US patent technological classes [86].4 This reduced the sample of firms from 358 to 

293. Those firms granted 5671 patents, which represent our final sample and unit of analysis.5 

For each patent, we collected bibliographical data and backward and forward patent citations. 

Analyzing distribution of patents across the firms in our sample (see Figure 1), Genentech, 

Pioneer Hi-Bred, and Chiron emerge as the main players in terms number of patents (14.44%, 

12.03%, and 10.67%, respectively). 

Genentech
14.44%

Pioneer Hi-Bred
12.03%

Chiron 
10.67%

Human Genome 
Sciences
6.14%

Amgen
5.15%

ZymoGenetics
4.94%

Genencor
3.91%

Affymetrix
3.10%

New England 
BioLabs
2.15%

Maxygen
1.30%

Cytokinetics
1.25%

Other firms
34.91%

 
Figure 1. Distribution of biotechnology patents across the firms in the sample. 

                                                
3 We selected the 1976–2003 period for the following reasons. First, the conceptualization and development of 
the key operational principles of biotechnology paradigm, that are the genetic engineering and monoclonal 
antibodies, started in early 1970s and first venture capitalists recognized the utility of these techniques in the late 
1970s [78]—for example, Genentech, the first new biotechnology firm, was founded in 1976. Second, the 
USPTO allows electronic search for patents starting from 1976. Finally, since the data were collected in 2009, 
we ended the observation period in 2003 in order to allow the patents to be cited in an equal five-year time 
window. 
4 Building on previous studies [86], the boundaries of the biotechnology domain were defined using the 
following three-digit US technological classes: 424, 435, 436, 514, 530, 536, 800, 930, and PLT. 
5 The number of patents grown rapidly from 1976 up to 2003 with a peak of 981 and 739 patents in 1995 and 
2000, respectively. 
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3.2. Variables 

Dependent Variables: As discussed in the previous section, we estimated the influence of a 

patent on subsequent technologies as the number of forward citations the patent received [3, 

4, 15, 60, 87]. The use of forward citations is particularly suitable for our study, since 

citations added by examiners do not represent a critical issue for two main reasons. First, we 

analyze the biotechnology context, where the share of applicants attributed forward citations 

is on average greater than 70% [28] and assignees strategically withhold only 5–7% of 

forward citations [29]. Second, we rely on patents granted by the USPTO to US firms, hence 

further reducing the share of examiner citations, which has been proven to be especially high 

among foreign firms [28].6 To control for the fact that older patents have a higher likelihood 

of being cited by following patents, we considered only those citing patents filed within a 

five-year time window after the given patent’s filing date [42].  

With the aim to disentangle the influence of patents across different domains, we 

distinguished it according to the industrial (biotechnology) and organizational boundaries (see 

Figure 2). Firstly, we considered the whole patent influence (Influence), which was measured 

by the number of forward citations a patent received from subsequent patents. Following 

previous research [3, 87], the whole influence of the patent i (1,2,…,m) is assessed as follows: 
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where t (1976,…,2003) refers to the i-th patent’s filing year and Citi,t is the number of forward 

citations the i-th patent received from following patents up to five years after the filing date. 

Secondly, we classified patent influence as within (InfluenceInBio) and outside 

(InfluenceOutBio) the boundary of the biotechnology industry [4, 23]. In particular, a patent 

citing the given patent i is classified as inside the biotechnology industry if it is assigned to at 

least one of the nine US technology classes defining the boundary of the biotechnology 

industry (see footnote 4), otherwise it is classified as outside the biotechnology. Thus, a 

patent’s influence within and outside the industrial boundary is evaluated as: 
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6 The share of examiners’ citations in our sample of patents, which may be accounted for only the 410 patents 
granted after 2000, is about 22% of the overall number of forward citations. 
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where t (1976,…,2003) refers to the i-th patent’s filing year and CitInBioi,t and CitOutBioi,t 

represent the number of forward citations the i-th patent received by the subsequent patents 

assigned inside and outside the biotechnology industry within a 5-year time window, 

respectively. Finally, referring to the organizational boundary, the influence of a patent is 

distinguished into InfluenceInFirm and InfluenceOutFirm if the citing patent is granted to the 

same assignee as the given patent or to a different one [4, 88]. Therefore, we adopted the 

following measures:  
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where t (1976,…,2003) refers to the i-th patent’s filing year and CitInFirmi,t and CitOutFirmi,t 

represent the number of forward citations the i-th patent received by the subsequent patents 

granted to the same firm assignee or other assignees within a 5-year time window, 

respectively.  

 

 
Figure 2. Patent influence across the industrial (biotechnology) and organizational boundaries. 
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To validate our patent influence indicators, we conducted a robustness test by 

analyzing the distribution of the family size of patents, which has been proven to be an 

alternative predictor of the relevance underlying an invention [27, 89]. Specifically, we 

referred to family size as “the number of different patent systems in which protection for a 

single invention is sought” [89: p. 2]. Thus, even though family size is not suitable for the 

purpose of the present paper, since it does not allow patent influence to be distinguished 

across multiple domains, we compared our citation-based measure with patent family size. 

We found our measures of patent influence strongly related to family size, thus bestowing 

further confidence on our choice. 

 

Independent Variables: To account for the use of scientific knowledge (ScienKnowledge) in 

the inventing process, we measured the number of scientific non-patent references the given 

patent cited. The number of non-patent backward citations is a suitable measure to evaluate 

the extent to which a patent is based on scientific knowledge [10, 90].7 To measure the 

breadth of the technological base (TechBreadth) upon which the given patent is built, we 

relied on the measure proposed by Jaffe and Trajtenberg [4]. The construction of this measure 

follows three steps: (i) identification of all citations made by the given patent i, (ii) 

identification of the technological classes assigned to the cited patents and (iii) computation 

of the index equal to one minus the Herfindahl concentration index. Thus, it results in the 

following equation: 

, 
! " = 
n 

j 
ij s TechBreadth 2 1 

 
where sij refers to the fraction of patents cited by patent i that belong to technological class j 

out of n technological categories assigned to the patents by the USPTO. Specifically, we refer 

to the three-digit classes [91]. Since this variable cannot be defined when there are no 

backward citations, in this case, technological breadth is set equal to zero. The joint 

development of patents (JointDevelopment) was computed by counting the number of co-

applicants to which the patent was granted [35, 55].8 To account for the effect exerted by 

claims, we measured the number of claims per patent (Claims) [19, 27, 59]. Following the 

approach proposed by Lerner [63], we measured the scope of a patent (Scope) as a time-

                                                
7 Results are confirmed when we measured the use of scientific knowledge as a dummy variable taking value 
one if the focal patent cites at least one non-patent reference, and zero otherwise. 
8 Inter-organizational collaborations were measured also as a dummy variable taking value one if the focal patent 
is assigned to more than one firm, and zero otherwise. The results did not significantly changed. 
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invariant count of the number of three-digit technological classes the USPTO assigned to the 

patent [10]. Finally, the novelty of a patent (Novelty) was evaluated as the number of three-

digit technological classes in which patents cited by the patent are found, but the patent itself 

is not classified [64].  

 

Table 1. Definitions of the dependent, independent, and control variables. 

Variable Description 
Dependent variables  
Influence Number of citations a patent received  
InfluenceInBio Number of citations a patent received from patents within the 

biotechnology domain 
InfluenceOutBio Number of citations a given patent received from patents outside the 

biotechnology domain 
InfluenceInFirm Number of citations a patent received from patents granted to the 

same assignee 
InfluenceOutFirm Number of citations a patent received from patents granted to a 

different assignee 
  
Independent variables  
ScienKnowledge Number of non-patent references a patent cited 
TechBreadth Breath of the technological base upon which a patent is built 
JointDevelopment Number of patent co-applicants  
Claims Number of patent claims 
Scope Number of US three-digit technological classes assigned to a patent 
Novelty Number of US three-digit technological classes in which patents 

cited by a patent are found, but wherein the patent itself is not 
classified 

  
Control variables  
FirmPatents Number of patents the assignee filed at the USPTO during a five-

year time window preceding the filing date of the given patent 
FirmAge Number of years elapsed between the assignee’s year of 

incorporation and the filing year of the given patent  
TeamSize Number of inventors involved in a patent 
BackCitations Number of patent backward citations 
CitAge Coefficient of variation (standard deviation/mean) of the number of 

years elapsed from the filing date of the cited patents to the filing 
date of a patent  

GovInt Dummy variable that takes value one if a patent was funded by the 
U.S. government, zero otherwise 

SIC Code Dummy variable indicating the main assignee’s SIC code 
Year Dummy variables indicating a particular year in the observation 

period (1976–2003 period) 
Note: Influence, InfluenceInBio, InfluenceOutBio, InfluenceInFirm, and InfluenceOutFirm 
variables count the number of citations a patent received within a five-year time window. 

 

Control Variables: We also included several control variables that may explain patent 

influence. First, we controlled for firms’ patent stock (FirmPatents), which is used to take 

into account the technological capital owned by the biotechnology firm to which the given 
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patent is granted [13, 14, 92]. The firm’s patent stock was measured as the number of patents 

the firm granted at the USPTO during a 5-year time window preceding the filing date of the 

given patent. Second, we controlled for the firm’s age (FirmAge) as the number of years 

elapsed between the firm’s year of incorporation and the patent’s filing year [79]. Third, the 

size of the team involved in a patent’s development can have a direct effect on its relevance, 

because of economies of specialization, a larger and more diverse pool of knowledge, and 

access to a wider and more heterogeneous external network. Therefore, we included the 

number of inventors involved in the given patent (TeamSize) [43]. Fourth, we controlled for 

the patent’s number of backward citations (BackCitations) [10]. Fifth we controlled for the 

age of the patents the focal patent cited, i.e. the number of years elapsed from the filing date 

of the cited patents to the filing date of the focal patent. We specifically included a variable 

(CitAge) measuring the coefficient of variation (standard deviation/average) of the age of 

cited patens.9 Sixth, we controlled whether a patent was financially supported by the US 

government (GovInterest). This was evaluated by a dummy variable that takes a value one if 

the given patent was funded by US governmental agencies and zero otherwise. Finally, we 

also included dummy variables (33) for the main SIC codes assigned to the patents’ assignees 

and year dummies (26). Table 1 summarizes our variables. 

3.3. Estimation Procedure 

The dependent variables are count variables, taking only integer and positive values. Thus, the 

use of linear regression modeling is inadequate since the distribution of residuals will be 

heteroskedastic non-normal. In this case, the use of a Poisson regression approach is 

preferred. This estimation however assumes the mean and variance to be equal while patent 

data often present over-dispersion, i.e. the variance exceeds the mean [93]. The over-

dispersion is confirmed by the coefficients of variation equal to 2.30, 2.66, 4.22, 2.77, and 

2.82 for Influence, InfluenceInBio, InfluenceOutBio, InfluenceInFirm, and InfluenceOutFirm, 

respectively. Therefore, as for previous studies [e.g. 23], we found the negative binomial 

estimation as more suitable to our data—this specification can handle over-dispersion since it 

allows the variance to differ from the mean [93]. The negative binomial estimation considers 

a variable yi that follows a Poisson regression model with parameter !i and omitted variable ui 

such that exp(ui) follows a gamma distribution with mean one and variance ": 

 
                                                
9 By introducing the coefficient of variation of the age of cited patents we further reduced the risk of 
multicollinearity issues in the regression models since the average and standard deviation tend to be correlated—
in our data the correlation between the average and standard deviation of the age of cited patents is equal to 
0.530. 
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 where i=1, …, 5,671, $i is the error term, and [%1, …, %m, &1, …, &k] is vector of the parameter to 

estimate—%m refers to the independent variables (IndepVar) and &k refers to the control 

variables (ContrVar). The models were estimated through the “nbreg” routine in the STATA 

10.0 software package. Significance levels are based on Huber-White robust standard errors. 

4. RESULTS 

Table 2 report the descriptive statistics and correlation between our variables. Correlations 

among the independent variables are low such that multicollinearity can be considered to be 

not a cause for concern. We also standardized the independent variables before creating the 

squared terms and running the regression. The standardization reduces potential 

multicollinearity issues in the estimation process when testing the curvilinear effect of an 

independent variable [94]. 

 In Table 3, we reported the results of the negative binomial estimations of patent 

influence across the different domains identified by the industrial and organizational 

boundaries: Model 1 report the analysis for patent Influence, whereas Models 2–5 test patent 

influence as distinguished in InfluenceInBio, InfluenceOutBio, InfluenceInFirm, and 

InfluenceOutFirm, respectively. We reported the estimation of the over-dispersion parameter 

alpha (!) for each model. The results confirm the negative binomial estimation to be more 

suitable than the Poisson one since the estimated over-dispersion parameter is significantly 

different from zero in each model. In addition, when the squared term of an independent 

variable was found not statistically significant in the regression model, we ran another 

regression excluding this term. This allowed us to obtain better estimates by further reducing 

the risk of multicollinearity issues. 

 Model 1 provides evidence that the number of claims (Claims, % = 0.1896, p < 0.001; 

Claims2, % = -0.0061, p < 0.001) and the novelty of a patent (Novelty, % = 0.2658, p < 0.001; 

Novelty2, % = -0.0423, p < 0.1) are curvilinearly (inverted-U) related with the patent’s 
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influence. The results are different when analyzing the influence within the biotechnology 

domain (Model 2). Specifically, while the inverted U-shape effect of the number of claims 

(Claims, % = 0.1866, p < 0.001; Claims2, % = -0.0059, p < 0.001) is in line with the 

relationships we found for Influence (Model 1), the involvement of more than one firm in the 

development of a patent (JointDevelopment, %=0.0960, p < 0.1) also exerts a positive effect 

on the number of citations the patent receives from subsequent domain-specific 

(biotechnology) patented inventions. Model 3 reveals that both ScienKnowledge (% = -0.0022, 

p < 0.001) and TechBreadth (% = -0.0419, p < 0.1) negatively affect the influence of a patent 

on subsequent patents granted outside the industrial boundaries (ValueOutBio). Differently, 

Claims (% = 0.0645, p < 0.01) and Scope (% = 0.0762, p < 0.001) show a positive impact on 

InfluenceOutBio. Finally, the novelty (Novelty, % = 0.4590, p < 0.001; Novelty2, % = -0.0467, p 

< 0.001) curvilinearly affects (inverted-U) the influence the patent exerts on subsequent 

invention outside the industry domain. In Model 4, we tested the determinants of patent 

influence within the assignee’s organizational boundaries. The use of scientific knowledge 

(ScienKnowledge , % = 0.0014, p < 0.01) is positively related with InfluenceInFirm, whereas 

the number of claims (Claims, % = 0.1650, p < 0.001; Claims2, % = -0.0045, p < 0.001) 

confirms the inverted-U shaped effect supported in Model 1 and Model 2. In Model 5, the 

effect of the antecedents on the impact of patents across the assignee’s organizational 

boundaries is tested. The results show the number of claims (Claims, % = 0.1648, p < 0.001; 

Claims2, % = -0.0061, p < 0.001), the scope (Scope, % = 0.0517, p < 0.1; Scope2, % = -0.0174, p 

< 0.05), and the novelty measure (Novelty, % = 0.2905, p < 0.001; Novelty2, % = -0.0413, p < 

0.001) exerting a non-monotonic impact (inverted-U) on the number of citations the patent 

received from companies other than that of the assignee. Finally, referring to the control 

variables, it is worth noting the positive effect of the number of inventors (TeamSize) and the 

negative impact of the coefficient of variation of the age of the cited patents (CitAge) on 

patent impact in the different domains, except for patent influence across the industrial field 

(Model 3) and within the organization context (Model 4). 

5. DISCUSSION 

Overall, we revealed that the six key determinants we analyzed differently contribute to 

explain the influence of patents as this is decomposed according to the industrial and 

organizational boundaries. Table 4 summarizes the main results. Figure 3 reports the slope 

analysis and plots the relationships between the six determinants and patent influence. 
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Table 2. Descriptive statistics and correlation matrix (N = 5671). 
Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. Influence 1.000 
        

         
2. InfluenceInBio 0.974 1.000 

       
         

3. InfluenceOutBio 0.508 0.301 1.000 
      

         
4. InfluenceInFirm 0.570 0.562 0.263 1.000 

     
         

5. InfluenceOutFirm 0.980 0.953 0.505 0.393 1.000 
    

         
6. ScienKnowledge 0.022 0.025 0.000 0.037 0.016 1.000 

   
         

7. TechBreadth 0.074 0.055 0.104 0.027 0.076 0.224 1.000 
  

         
8. JointDevelopment -0.004 0.002 -0.026 -0.017 -0.001 0.043 0.045 1.000 

 
         

9. Claims 0.024 0.015 0.043 0.046 0.015 0.106 0.041 0.011 1.000          
10. Scope 0.079 0.056 0.120 0.025 0.082 0.054 0.147 0.028 0.062 1.000         
11. Novelty 0.090 0.043 0.221 0.041 0.092 0.427 0.429 0.007 0.088 0.072 1.000        
12. FirmPatents -0.117 -0.097 -0.121 -0.047 -0.119 0.072 0.012 -0.015 0.002 0.044 -0.149 1.000       
13. FirmAge -0.068 -0.048 -0.104 0.053 -0.089 -0.089 -0.099 -0.064 -0.077 0.003 -0.174 0.201 1.000      
14. TeamSize -0.001 -0.005 0.018 -0.011 0.002 0.080 0.075 0.221 0.118 0.063 0.073 0.010 -0.140 1.000     
15. CitAge 0.030 0.017 0.064 0.022 0.029 0.104 0.430 0.035 0.072 0.051 0.277 -0.121 -0.110 0.071 1.000    
16. BackCitations 0.053 0.023 0.136 0.036 0.051 0.534 0.289 -0.012 0.128 0.090 0.572 -0.103 -0.134 0.069 0.224 1.000   
17. GovInterest 0.040 0.022 0.083 0.032 0.037 0.015 0.026 0.129 0.010 0.012 0.026 -0.071 -0.073 0.092 0.013 0.007 1.000 

                  
Mean 10.25 9.80 2.45 2.03 8.22 31.23 0.532 0.099 20.09 2.273 4.062 109.8 20.11 3.004 0.351 9.138 0.033 
Std. Dev. 25.93 23.42 6.13 5.63 23.16 48.53 0.293 0.315 21.73 0.998 6.553 131.1 22.20 2.021 0.383 19.61 0.180 
Min 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 
Max 305 296 62 71 266 438 0.931 2 683 8 63 531 137 27 11.56 259 1 
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Table 3. Negative binomial regression on patent influence across different domains (N = 5671). 

 Model 1 
(Influence) 

Model 2 
(InfluenceInBio) 

Model 3 
(InfluenceOutBio) 

Model 4 
(InfluenceInFirm) 

Model 5 
(InfluenceOutFirm) 

Independent variables           
ScienKnowledge 0.0004 (0.0005) 0.0008 (0.0005) -0.0022*** (0.0005) 0.0014** (0.0005) 0.0002 (0.0005) 
TechBreadth 0.0018 (0.0331) 0.0400 (0.0322) -0.0419† (0.0215) 0.0280 (0.0240) -0.0147 (0.0417) 
JointDevelopment 0.0803 (0.0539) 0.0960† (0.0545) 0.0143 (0.0528) -0.0106 (0.0589) 0.0814 (0.0540) 
Claims 0.1896*** (0.0236) 0.1866*** (0.0236) 0.0645** (0.0215) 0.1650*** (0.0237) 0.1648*** (0.0243) 
Claims2 -0.0061*** (0.0010) -0.0059*** (0.0010)   -0.0045*** (0.0010) -0.0061*** (0.0011) 
Scope 0.0153 (0.0206) -0.0051 (0.0213) 0.0762*** (0.0170) -0.0099 (0.0199) 0.0517† (0.0289) 
Scope2         -0.0174* (0.0088) 
Novelty 0.2658*** (0.0486) 0.0461 (0.0488) 0.4590*** (0.0471) 0.0690 (0.0547) 0.2905*** (0.0520) 
Novelty2 -0.0423*** (0.0062)   -0.0467*** (0.0062)   -0.0413*** (0.0064) 

Control variables           
FirmPatents -0.0211 (0.0260) -0.0172 (0.0266) -0.0044 (0.0215) -0.0904*** (0.0230) -0.0157 (0.0288) 
FirmAge -0.0013 (0.0033) -0.0016 (0.0033) -0.0076** (0.0028) -0.0043 (0.0029) 0.0008 (0.0035) 
TeamSize 0.0625*** (0.0169) 0.0674*** (0.0170) 0.0089 (0.0184) 0.0307 (0.0199) 0.0680*** (0.0184) 
CitAge -0.1416** (0.0457) -0.1450** (0.0455) -0.0589 (0.0450) 0.0572 (0.0628) -0.1907*** (0.0544) 
BackCitations 0.1030* (0.0468) 0.1917*** (0.0579) 0.0352 (0.0462) -0.0316 (0.0526) 0.0855* (0.0431) 
BackCitations2   -0.0211*** (0.0037)       
GovInterest -0.0431 (0.0954) -0.0087 (0.0986) 0.0862 (0.0983) 0.1699 (0.1102) -0.0973 (0.0961) 
SIC Code Included Included Included Included Included 
Year Included Included Included Included Included 

Intercept  2.9711*** (0.3750) 2.2830*** (0.3791) 3.1207*** (0.3275) 1.0649** (0.3272) 2.7858*** (0.4049) 
Log pseudo-likelihood  -18122.71 -17527.43 -10090.10 -12213.85 -16793.01 
Degree of freedom 63 63 62 62 64 
Alpha (over-dispersion) 0.916*** (0.030) 0.912*** (0.031) 0.397*** (0.021) 0.647*** (0.025) 0.908*** (0.042) 
Notes:  †p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001; 

Huber-White robust standard errors in parentheses; 
The hypothesis test for the over-dispersion is that the alpha parameter is zero. 
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We specifically found that the use of scientific knowledge negatively affects a patent’s 

impact on subsequent patents that are granted outside the biotechnology industry, while it 

increases the technological relevance of the patent for the assignee’s future inventions. A 

more extensive use of scientific knowledge may provide assignees with a broader knowledge 

base to source for subsequent inventions [34, 95]. On the other hand, the negative effect of the 

use of scientific knowledge on the number of citations a patent receives from subsequent non-

biotechnology patents may be due to the greater complexity that features patents building on a 

broader scientific knowledge base [39]. This in turn contributes to reduce the degree of 

understanding and applicability in sectors other than biotechnology. 

 

Table 4. Determinants and main effects on patent influence. 

 Influence InfluenceInBio InfluenceOutBio InfluenceInFirm InfluenceOutFirm 
ScienKnowledge n.s. n.s. - + n.s. 
TechBreadth n.s. n.s. - n.s. n.s. 
JointDevelopment n.s. + n.s. n.s. n.s. 
Claims ! ! + ! ! 
Scope n.s. n.s. + n.s. ! 
Novelty ! n.s. ! n.s. ! 

Note: “n.s.” indicates that the effect of the determinant on the patent influence was not significant (p > 0.1). 
 

Findings also show that the breadth of technological base generally does not 

significantly affect the influence a patent exerts on subsequent technological developments. In 

other words, the analysis suggests that combining knowledge across either multiple or few 

domains does not significantly contribute to enhancing the impact of the resulting patented 

invention. This result may be explained by the research on knowledge search and 

recombination process according to which most innovative firms are those performing a 

balanced search process [34, 41]. In fact, on the one hand, excessive complexity [96] and lack 

of absorptive capacity [47], and, on the other hand, a limited set of technological opportunities 

to be combined [40] may, respectively, undermine search efforts towards the development of 

significant inventions. Nevertheless, a different result emerges when referring to a patent 

influence outside the biotechnology industry where a patent’s technological breadth exerts a 

negative effect on the citations the patents receives from non-biotechnology patents. The costs 

of going along with complexity seem to outweigh the benefits of multiple recombinant 

possibilities, by significantly reducing the capability of organizations operating in different 

industrial domains to build on the technological solutions posed by such patented inventions 

[97].  
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Figure 3. Determinants of patent influence (ceteris paribus, only significant relationships are 

reported, i.e. p<0.1). 
 

  The joint development of a patent presents a significant effect only when referring to 

the influence of the patent within the biotechnology domain. This effect is positive and may 

be closely related to the nature of the patent in our sample. The majority of joint patents 

(about 90%) occur between biotechnology firms or between biotechnology firms and large 

pharmaceutical companies. Being highly focused on specific strategic issues, these patents 

may result of interest especially to those firms operating within the biotechnology. This 

finding is in line with a recent study by Zidorn and Wagner [98], who found that alliances in 

the biotechnology industry are generally established to specialize in a certain research field, 

rather than to explore and enter into new markets and domains, hence making the influence of 

their innovative outcomes generally bounded within biotechnology.  

The effect of the number of claims on the future citations a patent receives is 

curvilinear (inverted-U) in all the considered domains - except for the influence the patent 
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exerts outside biotechnology, where the impact is linear and positive. Results suggest that as 

the number of original functionalities a patent claims increases the uncertainties associated 

with the domain of application of the patent also increase [99]. This may therefore reduce the 

probability that the patent is used as a valuable source for the subsequent technological 

developments. 

 The results on scope suggest the presence of a curvilinear effect on patent influence 

outside the assignee’s organizational domain. The effect is however linear and positive on 

patent influence outside biotechnology. As expected, a patent of a wide industrial 

applicability is more likely to find successful applications outside the specific organizational 

and industrial domains, although in the former a trade-off emerges. This finding seems to 

suggest that a patent with a broader scope may be the result of specific strategic choices rather 

than innovativeness of the given patent per se [62]; thus, the patent may result in being 

technologically less valuable for other organizations.  

 Finally, the last determinant we investigated is the novelty of patents, that is, the 

extent to which the patent differs from the state of the art. Our analysis shows that its effect is 

curvilinear on patent influence as a whole and patent influence across the industrial and 

organizational boundaries. This suggests that a high degree of novelty may slow down the 

diffusion of the patented invention [73]. In fact, other firms, also operating outside the 

biotechnology industry, may encounter difficulties in absorbing and using the novel invention 

since their different and distant technological competences and knowledge bases. This may 

therefore hinder those firms’ capability in innovating by following the new traced directions. 

6. CONCLUDING REMARKS 

In this paper, we put forward potential estimates of patent influence on subsequent 

technological developments: (i) the use of scientific knowledge, (ii) the breadth of the 

technological base, (iii) the existence of collaboration in patent development, (iv) the number 

of claims, (v) the scope of the patent, and (vi) the novelty. We measured patent influence as 

the number of citations received by subsequent patents. Citations were distinguished across 

four domains identified by the industrial and organizational boundaries. The results, based on 

an empirical analysis of 5671 biotechnology patents from 1976 to 2003, revealed that the 

contribution of the estimates to patent influence varies as the different domains of impact are 

considered.  

 Our study contributes to the research on patent estimation in three main ways. First, 

we conducted a multi-dimensional analysis of patent influence by differentiating the impact 
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patents exerted within and outside its industrial domain and within and across the assignee’s 

organizational boundaries. This shed more light on the meaning of patent influence on 

subsequent patented technologies, hence providing a better comprehension of how inventors 

and organizations may focus their resources on the different determinants according to the 

specific impact they aim at enhancing. Second, the present paper is one of the few attempts to 

analyze patent influence by presenting a rather broad investigation of the potential 

antecedents. In fact, we discussed the influence of a number of full-text patent indicators, thus 

showing how they differently affect the types of impact. Third, we provided an in-depth 

investigation of a highly complex sector, as the biotechnology industry, where patenting 

activity plays a fundamental role for understanding the dynamics that characterize the 

innovation processes. 

 The analysis offered several practical implications. In fact, by investigating patent 

influence on the basis of different perspectives, we encourage inventing individuals and firms 

to correctly identify the main patenting aim for a more effective resource allocation. We 

showed that patent influence differs across the industrial and organizational domains, thus 

highlighting that strategies and actions need to be carefully designed in the attempt to achieve 

the desired impact given contrasting effects of the considered determinants. For example, 

findings show that joint development activity makes patents technologically relevant within 

the biotechnology industry, while patents with a broader scope exert a stronger influence on 

the technological developments outside biotechnology. The evaluation of a firm’s patent 

portfolio should therefore take into account these differences by weighting patent 

characteristics on the basis of which type of impact should be increased. An understanding of 

the different patenting results may also allow policy makers to define policies and aids to 

better address the required purposes. This is the case of the effect exerted by the use of 

scientific knowledge. A patent that is built more extensively on scientific knowledge 

represents an important base for subsequent technologies (inventions) of the patent’s assignee. 

This provides evidence of the importance to create incentives for firms to strengthen their 

scientific base by, for example, the recruitment of scientists as well as the establishment of 

collaborations with research-oriented organizations. 

It is worth noting the limitations of our analysis. First, despite the extensive and well-

recognized role of forward citations in capturing the influence of patents [11, 12, 20], their 

use has been questioned. In particular, patent citations are often added by examiners rather 

than by assignees [11, 28], and examiners may lack the necessary resources for conducting an 

extensive search of the prior art [28] or decide to withhold citations for strategic reasons [29], 
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hence creating some concerns about the reliability of citation-based indicators. Future 

research efforts should focus on the development of alternative proxies, based, for example, 

on multi-indicator approaches, to assess patent influence. Second, the paper did not 

investigate the potential interdependencies between the full-text patent indicators. Therefore, 

further studies could investigate the interacting effects between the determinants of patent 

influence in order to test the presence of complementary or substitutive effects. Third, the 

proposed research framework could be studied by introducing additional perspectives, such as 

strategic, geographical, and institutional. For instance, the geographical locations of patent 

assignee may contribute to explain differences across patent impact dimensions. Finally, the 

work analyzed only firms operating in the biotechnology industry and located in the US. 

Future studies may validate the results across different sectors and countries. 
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