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Quantum field theory on
curved space-time
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Quantum field theory (QFT) on curved space-time

@ Semi-classical limit of quantum gravity
@ Background geometry fixed and classical
@ Quantum field propagating on this background

@ Semi-classical Einstein equations

1 N
R;w - ERg;w + Ag;w - 87T<Tyv>ren

@ Renormalized stress-energy tensor <T},V>rcn
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QFT on curved space-time €L EEIREIE 8

Steps in quantum field theory on curved space-time

@ Classical Lagrangian describing the field
@ Canonical quantization

@ Definition of quantum states

(a) Orthonormal basis of field modes
(b) Choice of positive frequency

© Physical interpretation of states and observables
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(0) VWIS RSEEEE  Quantum scalar field

Quantum scalar field ®

Step 1 - classical Lagrangian

@ Classical Lagrangian density for a scalar field of mass M
Lo =V, ®VI'd + (M? +ER) D
@ Klein-Gordon equation
[O-M*—¢R]®=0
@ Klein-Gordon inner product

(@1, D2) g = i/s [@3V,, @1 — D1V, D3] dSF

Involves time derivative of ®
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(0) VWIS RSEEEE  Quantum scalar field

Quantum scalar field ®

Step 2 - canonical quantization
@ Canonical conjugate momentum

Lo

= — d = 9,;®
®= 75 t

@ Impose equal-time commutation relations on t = constant

[&(t,x), To(t,x")] = id(x,x')
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QFT on curved space-time Quantum scalar field

Quantum scalar field ®

Step 3 - definition of quantum states
(a) Choice of time t
Pick a suitable time co-ordinate ¢
(b) Choice of positive frequency modes ¢;
Solutions of the Klein-Gordon equation such that

pjoxe @ w>0

(c) Orthonormal basis of field modes
@ Positive frequency modes 4>].+ have positive norm
© Negative frequency modes ¢; have negative norm
e Complete set of positive and negative frequency

modes {47;’, ¢ }

v
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(0) VWIS RSEEEE  Quantum scalar field

Quantum scalar field ®

Step 3 - definition of quantum states
@ Expand classical field in terms of orthonormal basis

P = Za]'(l);_ + a}rqb]._
j

@ Promote expansion coefficients to operators 4;, ﬁ}r with

A At ALA o PSS o
[aj, ak] = dj [aj,8¢] =0 [a]-,ak] =0
@ 4; - particle annihilation operators
At _ . .
a; particle creation operators
@ Define the vacuum state |0):
aj[0) =0 )
Sussex, November 2014 9 /44
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(0 WOIRUITA ISR Quantum scalar field

Choice of time

@ Choice of ‘time’ co-ordinate
important

@ Definition of positive frequency

@ Implications for definition of
vacuum

@ Not completely unrestricted -
positive frequency modes must have
positive norm
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QFT on curved space-time Quantum fermion field

Quantum fermion field ¥
Step 1 - classical Lagrangian
@ Classical Lagrangian density for a fermion field of mass M
Ly =F [i7'V, — M] ¥

@ Dirac equation
[iv*V,—M]¥ =0

@ Dirac inner product

(Y1,¥2)p = /Tl’yy‘f’z das,

All modes have positive norm, regardless of the choice of positive
frequency
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(0) WO WL RSERELWE  Quantum fermion field

Quantum fermion field ¥

Step 2 - canonical quantization
@ Canonical conjugate momentum

5Ly

. Y =0,¥
e

I{J:

@ Impose equal-time anti-commutation relations on ¢ = constant

{¥(t x), Ty ( tx’)} i6(x,x")
{¥(tx),¥(¢,

x)} = = {ITy(t,x), [Ty (t,x") }
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(0) NNl e BIEIR I  Quantum fermion field

Quantum fermion field ¥

Step 3 - definition of quantum states
(a) Choice of time t
Pick a suitable time co-ordinate ¢
(b) Choice of positive frequency modes ;
Solutions of the Dirac equation such that

pjxe @ w>0

(c) Orthonormal basis of field modes
@ Both positive frequency modes 1p].+ and negative
frequency modes ¢;~ have positive norm
e Complete set of positive and negative frequency

modes {1/);’, Yy }
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Ot e L
Quantum fermion field ¥

Step 3 - definition of quantum states

@ Expand classical field in terms of orthonormal basis

Y = ijlp;“ + c}zpj—
]

@ Promote expansion coefficients to operators 13]-, ¢; with

{bj,b,t} =0j = {C]-,c,’:}

@ bj, ¢; - particle annihilation operators

IAa;F, ¢! - particle creation operators

o Define the vacuum state |0):

bj|0) = ¢;10) =0
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QFT on curved space-time Quantum fermion field

Observables for physical interpretation of states

Massive scalar field ®
Stress-energy tensor

1

Tw = (1-20)V,9V,d+ (25 -5

A— A 1 N 1 A

Massive fermion field ¥
Stress-energy tensor

to = v [emt] - [58]- [p28]
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QFT on curved space-time [VENERSE o) (4

An example in Minkowski space

@ Minkowski space in cylindrical
co-ordinates

Z F: 3
ds* = —dt* 4+ dp?® + p* de® + dz* A
@ Scalar field modes A
1

efithrimq)Jrikz]m (qp)

KN f

@ Norm of the modes is positive if p
w >0 X

@ Frequency of the modes is positive if
w >0
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An example
Rindler space

Rindler co-ordinates

t = e$sinh (¢7) z = % cosh (g7)

4

Rindler scalar field modes

1
4)] = 2|(D|e—zw’r¢ (x,y,C)

Onst

\
-
&

Rindler vacuum
@ w > 0 - positive frequency

@ w > 0 - positive norm

@ Rindler vacuum not

[ Figure taken from Fulling and

equivalent to Minkowski Matsas Scholarpedia 9 31789 (2014) ]
vacuum
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38 An example

Rotating quantum states on
Minkowski space-time
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Minkowski space-time

Minkowski space in rotating co-ordinates

ZJ\
Minkowski space in cylindrical R
co-ordinates
z
ds* = —dt* 4+ dp?® + p* dg* + dz*
Rotating co-ordinates o
t— ¢, p—¢=¢—Ot P
X
Rotating metric
ds? = —(1—0°0%) dP +20°Qdidg + dp* + p? d§* + d2?

Speed of light surface (SOL) when p = Q!
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Minkowski space-time

Scalar field modes

1 —iwt+ime+ikz 1 —iwt+img+ikz
R =—¢
47] 3 2| ’ ]m(qp) 82 | ‘ ]m(qp)

w = w — mQ)
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Minkowski space-time

Scalar field modes

1 —iwt+ime+ikz 1 —iwt+img+ikz
R =—¢
47] 3 2| ’ ]m(qp) 82 | | ]m(qp)

w = w — mQ)

Norm of these modes

(5 97) ke = 25 (.7')

|l
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LI QB SRRSO Quantum scalar field

Scalar field modes

1 —iwt+ime+ikz 1 —iwt+img+ikz
R =—¢
47] 3 2| | ]m(qp) 3 2| | ]m(qp)

w = w — mQ)

Norm of these modes

(5 97) ke = ﬁ5 (.7')

Frequency of these modes
Corotating Hamiltonian H = id; # id;

Frequency in rotating co-ordinates w
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WY EINGIESEEREICSR I Quantum scalar field

Defining states

Rotating vacuum state
@ Positive frequency modes cp;r must have positive norm
@ We must therefore choose positive frequency modes ¢; with w > 0
. *
o Negative frequency modes are ¢;

@ Expansion of the field
— * b+ ator
P = }m;/ dw/dk [a]¢] + aj4>]-]

@ Vacuum state |0) is then identical to the non-rotating Minkowski
vacuum

[ Letaw and Pfautsch PRD 22 1345 (1980) ]
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W VAN EIEICRLin il Quantum scalar field

Defining states

Rotating thermal state
e Frequency in rotating co-ordinates w = w — mQ)

@ Energy in rotating thermal expectation values at inverse
temperature g = T~!

oy = OG)
= oxp () —1

@ Modes with w > Obutw <0
Limit B — co is non-zero
Divergent when w ~ 0

@ Rotating thermal states are ill-defined everywhere

[ Vilenkin PRD 21 2260 (1980) |

[ Duffy and Ottewill PRD 67 044002 (2003) ]

Elizabeth Winstanley (Sheffield) Rotating quantum states Sussex, November 2014

22 /44



LI QB SRRSO Quantum scalar field

Defining states with a boundary present

o & = 0 at reflecting boundary at p = R
o Field modes

1

RNC

e—icTJf+imEﬁ+ikz]m (Um nP/R)

@ Frequency

w=H\K+y%,/R> & =w—-mO

e If R < 71, by the properties of the zeros of the Bessel functions,
w>0forallw >0

@ In this case rotating thermal states are well-defined

[ Duffy and Ottewill PRD 67 044002 (2003) ]
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W SQUAI SRRSO Quantum fermion field

Fermion field modes

U ifrvike [ X
i= Vo X
== L+ 5™ qp)
V2 \ 2iA /1 BEAOHDIT, 4 (gp)

~ 1

[ Ambrus and EW PLB 734 296 (2014) ]
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W SQUAI SRRSO Quantum fermion field

Fermion field modes

L g X
= e 2AE
vi 8712 E[ X

‘= L \/ 1+ ZT/}keim(ﬁ]m(qp)
2\ 2iAy /1 BRADI), 4 (gp)

~ 1

Norm of these modes

(Wi, 7)) p =6 (i,j")

[ Ambrus and EW PLB 734 296 (2014) ]
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W EINGIE SRR Quantum fermion field

Rotating vacuum state

Vilenkin quantization [ Vilenkin PRD 21 2260 (1980) |
@ Positive frequency E > 0

Positive frequency modes 1;

Negative frequency modes llJ] iy 1[1]

Expansion of the field

Yy, = ;/j: dE/dk [bj;lej + C;‘F:V{/;j}

Vacuum state |Oy) is then identical to the non-rotating Minkowski
vacuum

v
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W SQUAI SRRSO Quantum fermion field

Rotating vacuum state

Iyer quantization [Iyer PRD 26 1900 (1982) |

e Positive frequency E > 0
e Expansion of the field

[e 9}

‘PI:;/E

@ Vacuum state |0;) is then not the non-rotating Minkowski vacuum

dE / ak by + ]

>0,|E[>M

bi.y E>0
i = ié’”“c}‘,.v E<0
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W EINGIE SRR Quantum fermion field

Rotating thermal state

Frequency in rotating co-ordinates E = w — Q (m + 1)

Energy in rotating thermal expectation values at inverse
temperature g = T~}

5,1

bivN. = (cteNg = — NI )
(bjbjr)p = (cjcy)p exp(ﬁﬁ>+1

Limit 8 — oo is non-zero for modes with E < 0
Rule out such modes by using Iyer quantization
Fermi-Dirac density of states factor finite for all E

Rotating thermal state can be defined on the unbounded
space-time for fermions but not bosons

[ Ambrus and EW PLB 734 296 (2014) ]
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Minkowski space-time Quantum fermion field

Rotating thermal state

IN[Tyl

4r — u=0

’ mme= 4=2,80-08
1=2,B0=1.
1=2,B0=1.25

[ Ambrus and EW PLB 734 296 (2014) ]
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3N Quantum fermion field

Rotating quantum states on
anti-de Sitter space-time
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Anti-de Sitter (adS) space-time

=21
=dn
Metric R o
ds* = a*sec®p[—dt* +dp? g
+sin?p (d6% +sin® 0d¢?)]| ¢ y ¢t $
F 1=0
a - radius of curvature of adS
t:—% Y
[ Figure taken from Avis, Isham and
Storey, PRD 18 3565 (1978) | T ]
(0=n) (e=0)
p=L p=0 =L
(8=T) (6=0)
(al (b)
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Rotating adS

Rotating co-ordinates

L
ToT 92 9=¢-Qr N
ds? = a’sec’p[—edT* +dp? 0‘:

+2Q sin? psin® 0 dT d§ . 0ol
+sinp (d92 +sin% 0 dgﬁz)] 05

where -1.0
i _ A s 2 1.5\
¢ = (1—Q?sin’psin”6) 1= - )
. P
fp_e%d-of—hght surface (SOL) where [ Ambrus and EW arXiv:1405.2215
a [gr-qc] |
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Anti-de Sitter

Scalar field modes

¢n€m = ane_iWT+imq)Rn€(p)®€m(9) = ane_i&?+imaRn€(P)®€m(9) J
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Scalar field modes

¢n£m = aneiiwprimq)Rnf (p)®€m (9) = aneii&%Jrim(ﬁRné (P)@)Em (9)

Quantum numbers

W =w —mO w=2n+4l+x

K:g+¢M%H{Rﬂ+Z>O

n>0 0> |m| >0

Elizabeth Winstanley (Sheffield) Rotating quantum states Sussex, November 2014 32 /44



Scalar field modes

¢n£m = aneiiwprimq)Rnf (p)®€m (9) = aneii&%Jrim(ﬁRné (P)®Em (9)

Quantum numbers

W =w —mO w=2n+4l+x

K:g+¢M%H{Rﬂ+Z>O

n>0 ¢>|m| >0

Norm of these modes

w
(Prems Purorm ) ke = W‘Snn’(sﬂ’ S

Elizabeth Winstanley (Sheffield) Rotating quantum states Sussex, November 2014 32 /44



S

Defining states

Rotating vacuum state

Positive frequency modes ¢!, must have positive norm

We must therefore choose positive frequency modes ¢, with
w>0

Negative frequency modes are ¢;,,

Expansion of the field

D = ZZ [anfmqbnfm + a;fm(l):(lém]

n ¢ m

@ Vacuum state |0) is then identical to the non-rotating anti-de Sitter
vacuum

v

[ Kent and EW arXiv:1410.3215 [gr-qgc] ]
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S

Defining states
Rotating thermal state

@ Frequency in rotating co-ordinates w = w — mQ)

@ Energy in rotating thermal expectation values at inverse
temperature g = T~}

6 (. j')
exp (Bw) —1

From the properties of the quantum numbers

<a;ﬂ]'/>‘3 =

w=x+2n+L{>x+2n+|m| > |m|

= w>|m-mQ>0 ifQ<l1

If Q) < 1 rotating thermal states will be well-defined

If () < 1 there is no speed-of-light surface
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Anti-de Sitter

Fermion field modes

Peom = € E Xeom(p, 0, §) J

[ Cotaescu PRD 60 124006 (1999)]
[ Ambrus and EW arXiv:1405.2215 [gr-qc] ]
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Gl i

Fermion field modes

l/JEEm - e_iE%XEEm (P/ 9/ (F)

Quantum numbers

E=E-—mQ E=Ma+2n+0+2
n>0 0> |m| >0

[ Cotaescu PRD 60 124006 (1999)]
[ Ambrus and EW arXiv:1405.2215 [gr-qc] ]
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Gl i

Fermion field modes

lIJElm - e_iE%XEfm (P/ 6/ (F)

Quantum numbers

E=E-—mQ E=Ma+2n+0+2
n>0 0> |m| >0

Norm of these modes

(lpEﬁmr lpE’Z/m’)D = 40 Sy 0 (E/ El)

[ Cotaescu PRD 60 124006 (1999)]
[ Ambrus and EW arXiv:1405.2215 [gr-qc] ]
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Quantum fermion field
Defining states

Rotating vacuum state
o All fermion modes have positive norm

@ Non-rotating vacuum state arises from choosing E > 0 to be
positive frequency

@ Rotating vacuum state arises from choosing E > 0tobe positive
frequency

@ From the properties of the quantum numbers
E=Ma+2n+/0+2> Ma+2n+ |m|+2 > |m|

= E>ml-mQ>0 ifQ<1

e If O) <1, the rotating vacuum coincides with the non-rotating
vacuum

o If ) > 1 the rotating and non-rotating vacua are different

v
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Gl i

Rotating thermal state

Frequency in rotating co-ordinates E = E — m(Q)

Energy in rotating thermal expectation values at inverse
temperature g = T~}

5.1

biv Ve = (cTen)p = — VT
<JJ>5 (c]c])ﬂ exp(/%E>+1

Limit 8 — oo is non-zero for modes with E < 0
Rule out such modes by using rotating vacuum

Fermi-Dirac density of states factor finite for all E

Rotating thermal state can be defined on the unbounded
space-time for all (2

[ Ambrus and EW, arXiv:1405.2215 [gr-qc] ]
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Gl i

Rotating thermal state

k=0.,8 =08 — ¢ =09

T:; m———() =0.85

4- === =0.8
=0.65
=0.

[ Ambrus and EW arXiv:1405.2215 [gr-qc] ]
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Gl i

Rotating thermal state

LoglTi; 1 —— k=0
6 — B =0.8

4

[ Ambrus and EW arXiv:1405.2215 [gr-qc] ]
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Gl i

Rotating thermal state

Log[T;;] g =o.

10 ---=p =L

=

[ Ambrus and EW arXiv:1405.2215 [gr-qc] ]
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Conclusions J
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Conclusions

Minkowski space

Scalars
@ Positive frequency modes must have positive norm
@ Rotating vacuum is the same as the Minkowski vacuum

@ Rotating thermal states cannot be defined unless the system is
enclosed in a boundary sufficiently close to the axis of rotation

Fermions
@ All modes have positive norm
@ Two possible rotating vacua: Vilenkin and Iyer

@ Rotating thermal states can be defined on the unbounded
space-time using the Iyer quantization

@ Rotating thermal states diverge on the speed-of-light surface
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Anti-de Sitter space

Scalars
@ Rotating vacuum is identical to the non-rotating vacuum

e If ) < 1, positive norm modes have positive frequency as seen by
the rotating observer

@ Rotating thermal states well-defined in this case

Fermions
e If ) <1, rotating vacuum is identical to the non-rotating vacuum

e If () > 1, rotating vacuum is distinct from the non-rotating
vacuum

e For all Q) rotating thermal states can be defined

Elizabeth Winstanley (Sheffield) Rotating quantum states Sussex, November 2014 43 / 44



Anti-de Sitter space

Scalars
@ Rotating vacuum is identical to the non-rotating vacuum

e If ) < 1, positive norm modes have positive frequency as seen by
the rotating observer

@ Rotating thermal states well-defined in this case

Fermions
o If ) <1, rotating vacuum is identical to the non-rotating vacuum

e If ) > 1, rotating vacuum is distinct from the non-rotating
vacuum

@ For all Q) rotating thermal states can be defined

Elizabeth Winstanley (Sheffield) Rotating quantum states Sussex, November 2014 43 / 44



Conclusions

Conclusions
Key points

@ Fermions and bosons are different when it comes to defining
quantum states

@ Much more freedom in definition of fermionic quantum states

@ Can define quantum states for fermions which have no analogue
for bosons
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Conclusions

Conclusions
Key points

@ Fermions and bosons are different when it comes to defining
quantum states

@ Much more freedom in definition of fermionic quantum states

@ Can define quantum states for fermions which have no analogue
for bosons

Implications
@ Considerations apply to general curved space-times

@ No rotating thermal state exists on a Kerr black hole for bosonic
fields

@ A rotating thermal state can be defined for fermions on a Kerr
black hole

[ Casals et al PRD 87 064027 (2013) ]

v
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