Spontaneous Symmetry Breaking in Maximal Supergravities

Thomas Fischbacher
University of Southampton
Faculty of Engineering and the Environment

17.10.2011

Outline

(1) Some history on $\mathcal{N}=8, D=4$ SUGRA
(2) The Scalar Sector and Vacua
(3) Methods: old and modern
(4) Results and open problems
(5) Conclusion

Some history on $\mathcal{N}=8, D=4$ SUGRA
The Scalar Sector and Vacua Methods: old and modern Results and open problems

Conclusion

Some history on $\mathcal{N}=8, D=4$ SUGRA

- Construction
- Potential Relevance
- Structure of the model
- Major Discoveries

Some history on $\mathcal{N}=8, D=4$ SUGRA: Construction

- 1915: Einstein, Hilbert: General Relativity
- 1941: Rarita and Schwinger: Theory of Spin-3/2 field
- 1973: Wess and Zumino: Lagrangian for a SUSY field theory
- 1976: Freedman, van Nieuwenhuizen, Ferrara: SUGRA
- 1976: $\mathcal{N}=2, \mathcal{N}=3$
- 1977: Freedman and Das: local $S O(2), S O(3)$ invariance: Extra terms (spin-3/2 mass and cosmological constant)
- 1978: Cremmer and Julia: Model with 32 supercharges in $D=11$
- 1978: $\mathcal{N}=1$ in $D=11 \rightarrow \mathcal{N}=8$ in $D=4$
- 1980: de Wit, Nicolai: local $S O(8)$ symmetry

Some history on $\mathcal{N}=8, D=4$ SUGRA: Relevance

- SUGRA inevitable consequence of SUSY+GR. ($\delta_{\epsilon}^{2} \leadsto$ diff!)
- SUSY \sim Relations between particles and interactions ~ constraining principle.
- Maximal SUGRA: Particle content and couplings completely determined by symmetry - rigid construction.
- First completely unified model!
- Phenomenological failure: No SM-type chiral gauge interactions for $\mathcal{N} \geq 2$.
- Low energy limit of Superstring Theory. Potentially relevant for GUT/Planck-scale physics?
- Unexpected other uses due to AdS/CFT correspondence

Some history on $\mathcal{N}=8, D=4$ SUGRA
The Scalar Sector and Vacua Methods: old and modern Results and open problems

Conclusion

Some history on $\mathcal{N}=8, D=4$ SUGRA: Structure

$S O(8)$-gauged $\mathcal{N}=8$ SUGRA in $D=4:$

The Lagrangian

Some history on $\mathcal{N}=8, D=4$ SUGRA: Structure

- The full Lagrangian is fairly involved...

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2} e R(e, \omega)-\frac{1}{2} \epsilon^{\mu \nu \rho \sigma}\left(\bar{\psi}_{\mu}^{i} \gamma_{\nu} D_{\rho} \psi_{\sigma i}-\bar{\psi}_{\mu}^{i} \overleftarrow{D}_{\rho} \gamma_{\nu} \psi_{\sigma i}\right) \\
& -\frac{1}{12} e\left(\bar{\chi}^{i j k} \gamma^{\mu} D_{\mu} \chi_{i j k} \bar{\chi}^{i j k} \overleftarrow{D}_{\nu} \gamma^{\nu} \chi_{i j k}\right)-\frac{1}{96} \mathcal{A}_{\mu}^{i j k \ell} \mathcal{A}_{i j k \ell}^{\mu} \\
& -\frac{1}{8} e\left(F_{\mu \nu I J}^{+}\left(2 S^{I J, K L}-\delta_{K L}^{I J}\right) F^{+\mu \nu}{ }_{K L}+\text { h.c. }\right) \\
& -\frac{1}{2} e\left(F_{\mu \nu I J}^{+} S^{I J, K L} O^{+\mu \nu K L}+\text { h.c. }\right) \\
& -\frac{1}{4} e\left(O_{\mu \nu}^{+I J}\left(S^{I J, K L}+u^{i j}{ }_{I J} v_{i j K L}\right) O^{+\mu \nu K L}+\text { h.c. }\right) \\
& -\frac{1}{24} e\left(\bar{\chi}_{i j k} \gamma^{\nu} \gamma^{\mu} \psi_{\nu \ell}\left(\hat{\mathcal{A}}_{\mu}^{i j k \ell}+\mathcal{A}_{\mu}^{i j k \ell}\right)+\text { h.c. }\right) \\
& -\frac{1}{2} e \bar{\psi}_{\mu}^{i} \psi_{\nu}^{j} \bar{\psi}_{k}^{\mu} \psi_{\ell}^{\nu} \delta_{i j}^{k \ell} \\
& +\frac{\sqrt{2}}{4} e\left(\bar{\psi}_{\lambda}^{i} \sigma^{\mu \nu} \gamma^{\lambda} \chi_{i j k} \bar{\psi}_{\mu}^{j} \psi_{\nu}^{k}+\text { h.c. }\right)+\ldots
\end{aligned}
$$

Some history on $\mathcal{N}=8, D=4$ SUGRA: Structure

- ... but here we focus on the last line:

$$
\begin{aligned}
& +e\left(\frac{1}{144} \eta \epsilon_{i j k \ell m n p q} \bar{\chi}^{i j k} \sigma^{\mu \nu} \chi^{\ell m n} \bar{\psi}_{\mu}^{p} \psi_{\nu}^{q}\right. \\
& \left.\quad+\frac{1}{8} \bar{\psi}_{\lambda}^{i} \sigma^{\mu \nu} \gamma^{\lambda} \chi_{i k l} \bar{\psi}_{\mu j} \gamma_{\nu} \chi^{j k l}+\text { h.c. }\right) \\
& +\frac{\sqrt{2}}{864} \eta e\left(\epsilon_{i j \ell \ell m n q}^{i j k} \bar{\chi}_{i j k} \sigma^{\mu \nu} \chi_{\ell m n} \bar{\psi}_{\mu}^{r} \gamma_{\nu} \chi_{p q r}+\text { h.c. }\right) \\
& +\frac{1}{32} e \bar{\chi}^{i k l} \gamma^{\mu} \chi_{j k l} \bar{\chi}^{j m n} \gamma_{\mu} \chi_{i m n} \\
& -\frac{1}{96} e \bar{\chi}^{i j k} \gamma^{\mu} \chi_{i j k} \bar{\chi}^{\ell m n} \gamma_{\mu} \chi_{\ell m n} \\
& +\sqrt{2} g e A_{1 i j} \bar{\psi}_{\mu}^{i} \sigma^{\mu \nu} \psi_{\nu}^{j}+\frac{1}{6} g e A_{2 i}^{j k \ell} \bar{\psi}_{\mu}^{i} \gamma^{\mu} \chi_{j k \ell} \\
& +\frac{\sqrt{2}}{144} g \eta e \epsilon^{i j k p q r \ell m} A_{2 p q r}^{n} \bar{\chi}_{i j k} \chi_{\ell m n}+\text { h.c. } \\
& +g^{2} e\left(\frac{3}{4} A_{1}^{i j} A_{1 i j}-\frac{1}{24} A_{2}{ }^{i}{ }_{j k \ell} A_{2 i}{ }^{j k \ell}\right)
\end{aligned}
$$

Some history on $\mathcal{N}=8, D=4$ SUGRA
The Scalar Sector and Vacua Methods: old and modern Results and open problems

Some history on $\mathcal{N}=8, D=4$ SUGRA: Structure

- "Why is this so complicated if it has so much symmetry?" Imagine listing the vertex coordinates of a dodecahedron in cartesian space.
- What are the key features?
- Particle spectrum:
- Graviton $e(\times 1)$,
- Gravitini $\psi^{i}(\times 8)$,
- Vectors $F_{I J}(\times 28)$,
- Fermions $\chi^{i j k}(\times 56)$,
- Scalars $\phi(\times 70)$
- GR + Rarita-Schwinger + Dirac + YM + Higgses + var. Couplings + Scalar Potential

Some history on $\mathcal{N}=8, D=4$ SUGRA: Structure

- Generalized Electric/Magnetic duality invariance: 28 vector equations of motion +28 Bianchi identities \Rightarrow $\mathrm{Sp}(56)$-symmetry, but restricted by relation between F and $\delta \mathcal{L} / \delta F$ to subgroup G containing $S U(8)$.
- Another perspective: Dimensional reduction of $D=11$ SUGRA $\left(R+F^{2}+F F A\right)$ gives 35 pseudo-scalars from 3-form $A_{m n p}$ in $D=11$, plus 28 scalars from $g_{m n}$, plus 7 scalars from dualizing $A_{\mu \nu i}$. Obvious $S O(7)$ symmetry can be enlarged to $S O(8) ; 35$ scalars then live on $S L(8) / S O(8)$. This can be extended to also include pseudo-scalars: 35+35 (pseudo-)scalars live on $G / S U(8)$, with G a non-compact $70+63-$ dimensional Lie group with maximal compact subgroup $S U(8)$.
- $\mathcal{N}=8$ SUGRA in $D=4$ has hidden global $E_{7(+7)}$ symmetry!

Some history on $\mathcal{N}=8, D=4$ SUGRA: Structure

- General feature: After suitable dualizations, dimensionally reduced $D=11$ SUGRA can be brought into form that exhibits global exceptional E-series symmetries: E_{6} in $D=5$, E_{7} in $D=6, E_{8}$ in $D=3$: Generalized electric-magnetic dualities.
- Related to U-duality symmetry in Superstring Theory.
- Origin of these symmetries not yet fully clear, but tantalizing hints of strong relations to beautiful mathematics (del Pezzo surfaces, Octonions, hyperbolic Kac-Moody algebras, ...)

Some history on $\mathcal{N}=8, D=4$ SUGRA: Major Discoveries

- Our first "Theory of Everything"!
(But phenomenologically a failure.)
- Potentially renormalizable! (Question not settled yet.)
- Simplest interacting S-matrix in $D=4$?
- KLT relations: $\mathcal{N}=8$ SUGRA $\sim(\mathcal{N}=4 \text { SYM })^{2}$ (Holds at tree level, evidence up to 4-loop level.)
- AdS/CFT application: RG Flow (CFT) \leftrightarrow Geometry (AdS)
- AdS4/CFT3 application: Field theory on M2 branes
- Further AdS/CMT applications
- Non-compact gauge groups possible! (C. Hull, 1985); allow de Sitter solutions; Uses in cosmological inflation phenomenology: (Kallosh, Linde, Prokushkin, Shmakova, 2002)

The Scalar Sector and Vacua

- Situation for $\mathcal{N}=8$ in $D=4$ essentially very similar to situation in other dimensions.
- Stationary Lorentz-invariant solutions of field equations \equiv critical points in scalar potential.
- 11-D perspective: Much of the complicated dynamics in $D=11$ ends up in the scalar potential. By finding solutions \& uplifting them to a full $D=11$ embedding, we may learn something about $\mathrm{D}=11$ SUGRA / M-Theory.

The Scalar Sector and Vacua

- General form of scalar potential: $V(\phi) \sim \# A_{1}^{2}-\# A_{2}^{2}$ $\left(A_{1 / J}: \bar{\phi}^{i}{ }_{\mu} A_{1 i j} \sigma^{\mu \nu} \phi^{j}{ }_{\nu}\right.$ gravitino mass term; $A_{2}{ }^{i}{ }_{j k l}: \sim \bar{\psi} A_{2} \chi$ "gravitino-fermion mass term")
- A_{1}, A_{2} are polynomial in vielbein
$\mathcal{V}=\exp \left(\phi_{A} T^{A}\right) \in E_{11-d(11-d)} / K\left(E_{11-d(11-d)}\right)$
($\mathrm{D}=3$: quadratic, $\mathrm{D}=4,5$: cubic)
- Computationally ($\mathrm{D}=4$ case):
(1) Take values for 70 scalars
(2) Map to E_{7} algebra generator in complex 56-dim. fundamental irrep.
(3) Exponentiate and form "T-tensor"
(c) Extract A_{1}, A_{2}
(3) Compute potential
- Check stationarity

The Scalar Sector and Vacua

- General Properties:
- Potentials unbounded from below
- For compact gauge groups: generally AdS solutions
- All interesting stationary points are saddle points; can be stable nevertheless (BF-Bound).
- SUSY stationary points stable; many non-SUSY s.p. unstable
- Solutions known before 2009:
- $\mathrm{SO}(8)$ solution with $\mathcal{N}=8$ SUSY: $\phi=0$
- $\mathrm{SO}(8) \rightarrow \mathrm{SO}(3) \times \mathrm{SO}(3)$
(Oldest known solution; has $\mathcal{N}=5$
counterpart with $S O(5) \rightarrow S O(3))$
- $\mathrm{SO}(8) \rightarrow \mathrm{SO}(7)^{ \pm}$(2 inequivalent ways)
- $\mathrm{SO}(8) \rightarrow \mathrm{G}_{2}$ with $\mathcal{N}=1$ SUSY
- $\mathrm{SO}(8) \rightarrow \mathrm{SU}(3) \times \mathrm{U}(1)$ with $\mathcal{N}=2$ SUSY
- $\mathrm{SO}(8) \rightarrow \mathrm{SU}(4)$

Methods: old and modern

- Conceptually, the problem of finding critical points in the potential is very simple.
- Superficially involves just basic calculus and linear algebra.
- Problem lies in the complexity of these potentials!
- Example: $S O(8) \times S O(8)$ Gauged SUGRA with 32 supercharges in $D=3$: Scalar manifold is $E_{8(8)} / S O(16)$: 128 (= 248 -120)-dimensional.
- "Euler angle" type parametrization of 128-dimensional submanifold of E_{8} needed.

Methods: old and modern

- Reminder: Euler angles
- $S O(3)$ Euler angles in 3-d: 3×3 matrix; entries are polynomial in $\cos \left(\alpha_{j}\right), \sin \left(\alpha_{j}\right)$.
- Rough estimate: Every matrix entry involves binary choice for each of the three angles: $3 \times 3 \times 2^{3}=72$ trigonometric factors (Actual matrix: 29).
- $E_{8(8)} / S O$ (16) Problem conceptually somewhat trickier here, as half-angles may alternatively appear, too: more choice!
- Generic matrix entry polynomial with at least binary choice (sinh / cosh) for each "angle" variable: $\sim 2^{128}$ summands.
- $D=3$ scalar potential 4-th order polynomial in matrix entries. Very crude estimate: $\sim 5^{128} \approx 10^{89}$ summands.
- Many of these potentials have more terms than there are electrons in the accessible Universe $\left(\sim 10^{80}\right)$!

Methods: old and modern

The rules to the game of Brockian Ultracricket, as played in the higher dimensions are strange and inexplicable. A full set of the rules is so massively complicated that the only time they were all bound together to form a single volume, they underwent gravitational collapse and became a black hole.
(D.N.A., Life, the Universe and Everything)

Thomas Fischbacher
Spontaneous Symmetry Breaking in Maximal Supergravitie

Methods: old and modern

- So, what to do?
- ... and by the way, how have the seven known solutions for $\mathcal{N}=8, D=4$ SUGRA been found?

Methods: old and modern

- One idea (N. Warner's approach, suggested by Tomaras):
- Choose subgroup $H \subset G$.
- Scalar potential V is a singlet w.r.t. gauge group G, and also w.r.t. H.
- Let us expand $V\left(\phi_{0}+\delta \phi\right)$ around a stationary point - we consider the action of G on $\delta \phi$:

$$
V\left(\phi_{0}+\delta \phi\right)=V\left(\phi_{0}\right)+\delta \phi(\partial V / \partial \phi)+\frac{1}{2}(\delta \phi)^{2}\left(\partial^{2} V / \partial \phi^{2}\right)+\ldots
$$

- Stationarity $\equiv(\partial V / \partial \phi=0)$.
- If $\delta \phi$ transforms non-trivially under $H \subset G$, the linear term is absent (as one cannot form a G-singlet from a single H-nonsinglet).
- Consequence: Stationary points on H-invariant submanifold lift to stationary points of the full potential!

Methods: old and modern

- Trade-off: Large subgroup $H \subset G$: low-dimensional H-invariant sub-manifold: Easy to analyze (few Euler angles, exponentiation feasible), but will not find solutions with residual unbroken gauge symmetry smaller than H .
- Useful choice: $H=S U(3)$ (N. Warner): 6-dimensional submanifold, analysis produced $S O(8), S O(7)^{ \pm}, G_{2}, S U(4), S U(3) \times U(1)$ solutions.
- Another choice (T.F., 2003): $H=S O$ (3), Embedding: $\mathbf{8}_{v} \rightarrow \mathbf{3}+5 \cdot \mathbf{1}$: 10 scalars, potential with 12240 terms.

Methods: old and modern

- Since the 80 's, no new solutions have been found for a long time...
- One article from 2009: "Are There Any New Vacua of Gauged N=8 Supergravity in Four Dimensions?" (C. Ahn, K. Woo arXiv:0904.2105; none found).
- Another article from 2009: "Fourteen new stationary points in the scalar potential of $\mathrm{SO}(8)$-gauged $\mathrm{N}=8, \mathrm{D}=4$ supergravity" (T.F. - arXiv:0912.1636)
- Among the new solutions: a SUSY vacuum with residual $U(1) \times U(1)$ symmetry, 8 critical points without any residual gauge symmetry: $S O(8)$ broken completely.

Methods: old and modern

- Breakthrough based on a completely new approach to the problem.
- Situation right now: there seem to be at least 160 different critical points, some with fairly interesting properties.
- Some calculations still running; first batch of 40 solutions was released recently (T.F., arXiv:1109.1424).

Methods: old and modern

- How does the new method work?
- Based on a combination of tricks:
- Numerical validation of candidate solutions.
- Complete intermediate avoidance of symbolic methods in search: numerical approach.
- Re-phrasing stationarity condition as a (high-dimensional) numerical optimization problem: various choices for objective function, e.g. $|\nabla V|^{2}=0=\min$!
- Utilizing advanced algorithmic methods to obtain fast gradients.
- ...

Methods: old and modern

- Based on a combination of tricks:
- ...
- 2nd "prettifying" optimization to bring numerical solution to nicely coordinate-aligned form.
- Arbitrary-precision numerics for all optimizations to obtain numbers to $100+$ valid digits.
- Inverse Symbolic Computation (Integer relation algorithm PSLQ) to map numerical values to "simple" polynomials with integer coefficients (which they are a root of).
- Generally applicable to all models with many scalars and complicated potentials!

Methods: old and modern

- Fast Gradients: Approach
- Given a function $f:\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right) \in \mathcal{C}^{2}$ and a computer implementation of a program P calculating f that needs time T to calculate f at a given point.
- Naive approach to calculate gradient needs at least $n+1$ function evaluations, gives half the available numerical accuracy.
- Speelpenning's PhD thesis (1980): There is a (fully automatic) program transformation $\mathrm{P} \rightarrow \tilde{\mathrm{P}}$ such that $\tilde{\mathrm{P}}$ calculates both $f(\vec{x})$ and $\nabla f(\vec{x})$ in at most $5 T$ - independent of n, and with full numerical accuracy!
- Method widely used in engineering design optimization - e.g. to deal with many geometry parameters.

Methods: old and modern

- Fast Gradients: Approach
- Price to be paid:
- Must evaluate f once and remember all intermediate numerical quantities. . .
- ... plus one extra number per intermediate value. . .
- ... and the complete execution path (i.e. all conditional branches/loop exits taken).
- Strategy: One first evaluates f, then goes once again through the calculation backwards, trying to answer for each intermediate value the question: "If, at the point this intermediate quantity y became first known, we replaced it by $y+\epsilon$, by how much (relative to ϵ) would the final result change (to 1st order in ϵ)?'
- Can use chain rule to back-propagate these "sensitivities" through entire calculation.
- Sensitivities on input data = gradient!

Methods: old and modern

- Inverse symbolic computation - Example:
- Given the number such as 8.4721359549995793928183473374625524708812367192230514507 to 50 valid digits, is there a polynomial with integer coefficients carrying substantially less than $50 \log _{2} 10$ bits of information of which this is a zero?
- The PSLQ algorithm gives us a candidate analytic expression for this number: $\sqrt{36+16 \sqrt{5}}$.
- This analytic conjecture then can be checked to a very high number of digits (and often also analytically).
- In combination with other tricks, this allows us to completely avoid the intractable intermediate analytic stage - and nevertheless obtain analytic results!

Results and open problems

- Among the new solutions:
- $U(1) \times U(1) \mathcal{N}=1$ vacuum.
- Supersymmetry not a pre-requisite for stability - this was seen already in $D=3$, but in $D=4$ the only known example so far is the old $S O(3) \times S O(3)$ critical point!
- Details: arXiv: 1010. 4910 (T.F., K. Pilch, N. Warner)
- Also: Novel solutions with many different symmetries (another $S O(3) \times S O(3), S O(3) \times U(1) \times U(1), S O(3) \times U(1)(3 \times)$, $S O(3)(4 x)$; many of type $U(1) \times U(1), U(1)$ and $\emptyset)$.

Open problems

- What about maximal SUGRA in $D=5$ (and correspondingly, $\mathcal{N}=4$ SYM)? \rightarrow Currently investigated (T.F., Gereon Kaiping)
- Optimization-based method contains an element of chance: "fishing" for solutions. Some are found more often than others. This has been found to systematically miss some solutions (in particular, the stable $S O(3) \times S O(3)$ solution!) - are there ways to improve this?
- RG flows in $D=3$ CFT that involve new critical points?
- 11-dimensional mother geometries?

Conclusion

- Detailed analysis of supergravity potentials in a (fairly large) class of models with many scalars has been considered intractable for a long time.
- This turned out to be wrong - there indeed is a general method to systematically analyze these potentials.
- Some of the methods employed probably can be used to great benefit for other problems in QFT as well. (Parameter fitting?)
- Powerful novel approaches produce many new results right now, but leave a number of blind spots. (Some solutions missed systematically.)
- Many options for creatively modifying/extending the method (e.g. tweaking the objective function, using conjectured properties of solutions, homotopy methods, etc.)

