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Some history on N = 8,D = 4 SUGRA: Construction

1915: Einstein, Hilbert: General Relativity

1941: Rarita and Schwinger: Theory of Spin-3/2 �eld

1973: Wess and Zumino: Lagrangian for a SUSY �eld theory

1976: Freedman, van Nieuwenhuizen, Ferrara: SUGRA

1976: N = 2, N = 3

1977: Freedman and Das: local SO(2), SO(3) invariance:
Extra terms (spin-3/2 mass and cosmological constant)

1978: Cremmer and Julia: Model with 32 supercharges
in D=11

1978: N = 1 in D = 11 → N = 8 in D = 4

1980: de Wit, Nicolai: local SO(8) symmetry
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Some history on N = 8,D = 4 SUGRA: Relevance

SUGRA inevitable consequence of SUSY+GR. (δ2ε ; di�!)

SUSY ∼ Relations between particles and interactions
∼ constraining principle.

Maximal SUGRA: Particle content and couplings completely
determined by symmetry � rigid construction.

First completely uni�ed model!

Phenomenological failure: No SM-type chiral gauge
interactions for N ≥ 2.

Low energy limit of Superstring Theory. Potentially relevant
for GUT/Planck�scale physics?

Unexpected other uses due to AdS/CFT correspondence
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Some history on N = 8,D = 4 SUGRA: Structure

SO(8)�gauged N = 8 SUGRA in D = 4:

The Lagrangian
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Some history on N = 8,D = 4 SUGRA: Structure

The full Lagrangian is fairly involved. . .

L = −1
2eR(e, ω)− 1

2ε
µνρσ

(
ψ̄i
µγνDρψσi − ψ̄i

µ

←−
D ργνψσi

)
− 1

12e
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χ̄ijkγµDµχijk χ̄
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+ . . .
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Some history on N = 8,D = 4 SUGRA: Structure

. . . but here we focus on the last line:

. . .

+e
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Some history on N = 8,D = 4 SUGRA: Structure

�Why is this so complicated if it has so much symmetry?� �
Imagine listing the vertex coordinates of a dodecahedron in
cartesian space.

What are the key features?
Particle spectrum:

Graviton e (Ö 1),
Gravitini ψi (Ö 8),
Vectors FIJ (Ö 28),
Fermions χijk (Ö 56),
Scalars φ (Ö 70)

GR + Rarita�Schwinger + Dirac + YM + Higgses +
var. Couplings + Scalar Potential
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Some history on N = 8,D = 4 SUGRA: Structure

Generalized Electric/Magnetic duality invariance: 28 vector
equations of motion + 28 Bianchi identities ⇒
Sp(56)�symmetry, but restricted by relation between F and
δL/δF to subgroup G containing SU(8).

Another perspective: Dimensional reduction of D = 11 SUGRA
(R + F 2 + FFA) gives 35 pseudo-scalars from 3�form Amnp in
D = 11, plus 28 scalars from gmn, plus 7 scalars from dualizing
Aµνi . Obvious SO(7) symmetry can be enlarged to SO(8); 35
scalars then live on SL(8)/SO(8). This can be extended to

also include pseudo�scalars: 35+35 (pseudo�)scalars live on
G/SU(8), with G a non�compact 70+63�dimensional Lie
group with maximal compact subgroup SU(8).

N = 8 SUGRA in D = 4 has hidden global E7(+7) symmetry!
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Some history on N = 8,D = 4 SUGRA: Structure

General feature: After suitable dualizations, dimensionally
reduced D = 11 SUGRA can be brought into form that
exhibits global exceptional E-series symmetries: E6 in D = 5,
E7 in D = 6, E8 in D = 3: Generalized electric�magnetic
dualities.

Related to U�duality symmetry in Superstring Theory.

Origin of these symmetries not yet fully clear, but tantalizing
hints of strong relations to beautiful mathematics (del Pezzo
surfaces, Octonions, hyperbolic Kac�Moody algebras, . . . )
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Some history on N = 8,D = 4 SUGRA: Major Discoveries

Our �rst �Theory of Everything�!
(But phenomenologically a failure.)

Potentially renormalizable! (Question not settled yet.)

Simplest interacting S�matrix in D = 4?

KLT relations: N = 8 SUGRA ∼ (N = 4 SYM)2 (Holds at
tree level, evidence up to 4�loop level.)

AdS/CFT application: RG Flow (CFT) ↔ Geometry (AdS)

AdS4/CFT3 application: Field theory on M2 branes

Further AdS/CMT applications

Non�compact gauge groups possible! (C. Hull, 1985); allow de
Sitter solutions; Uses in cosmological in�ation phenomenology:
(Kallosh, Linde, Prokushkin, Shmakova, 2002)
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The Scalar Sector and Vacua

Situation for N = 8 in D = 4 essentially very similar to
situation in other dimensions.

Stationary Lorentz�invariant solutions of �eld equations ≡
critical points in scalar potential.

11-D perspective: Much of the complicated dynamics in
D = 11 ends up in the scalar potential. By �nding solutions &
uplifting them to a full D = 11 embedding, we may learn
something about D=11 SUGRA /M�Theory.
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The Scalar Sector and Vacua

General form of scalar potential: V (φ) ∼ #A2
1 −#A2

2

(A1IJ : φ̄
i
µA1 ijσ

µνφjν gravitino mass term;
A2

i
jkl : ∼ ψ̄A2χ �gravitino�fermion mass term�)

A1,A2 are polynomial in vielbein

V = exp(φAT
A) ∈ E11−d(11−d)/K (E11−d(11−d))

(D=3: quadratic, D=4,5: cubic)

Computationally (D=4 case):
1 Take values for 70 scalars
2 Map to E7 algebra generator in complex 56-dim. fundamental

irrep.
3 Exponentiate and form �T�tensor�
4 Extract A1,A2

5 Compute potential
6 Check stationarity
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The Scalar Sector and Vacua

General Properties:
Potentials unbounded from below
For compact gauge groups: generally AdS solutions
All interesting stationary points are saddle points; can be
stable nevertheless (BF-Bound).
SUSY stationary points stable; many non-SUSY s.p. unstable

Solutions known before 2009:
SO(8) solution with N = 8 SUSY: φ = 0
SO(8)→ SO(3)× SO(3)
(Oldest known solution; has N = 5
counterpart with SO(5)→ SO(3))
SO(8)→ SO(7)± (2 inequivalent ways)
SO(8)→ G2 with N = 1 SUSY
SO(8)→ SU(3)×U(1) with N = 2 SUSY
SO(8)→ SU(4)
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Methods: old and modern

Conceptually, the problem of �nding critical points in the
potential is very simple.

Super�cially involves just basic calculus and linear algebra.

Problem lies in the complexity of these potentials!

Example: SO(8)× SO(8) Gauged SUGRA with 32
supercharges in D = 3: Scalar manifold is E8(8)/SO(16): 128
(= 248− 120)�dimensional.

�Euler angle� type parametrization of 128�dimensional
submanifold of E8 needed.
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Methods: old and modern

Reminder: Euler angles
SO(3) Euler angles in 3�d: 3× 3 matrix; entries are
polynomial in cos(αj), sin(αj).
Rough estimate: Every matrix entry involves binary choice for
each of the three angles: 3× 3× 23 = 72 trigonometric factors
(Actual matrix: 29).
E8(8)/SO(16) Problem conceptually somewhat trickier here, as
half�angles may alternatively appear, too: more choice!
Generic matrix entry polynomial with at least binary choice
(sinh / cosh) for each �angle� variable: ∼ 2128 summands.
D = 3 scalar potential 4�th order polynomial in matrix entries.
Very crude estimate: ∼ 5128 ≈ 1089 summands.
Many of these potentials have more terms than there are
electrons in the accessible Universe (∼ 1080)!
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Methods: old and modern

Douglas Adams inevitably comes to one's mind:

The rules to the game of Brockian Ultra-

cricket, as played in the higher dimensions

are strange and inexplicable. A full set of

the rules is so massively complicated that the

only time they were all bound together to

form a single volume, they underwent gravi-

tational collapse and became a black hole.

(D.N.A., Life, the Universe and Everything)

(Image source: http://tinyurl.com/45xlvfb)

. . . but these potentials are actually not that simple!
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Methods: old and modern

So, what to do?

. . . and by the way, how have the seven known solutions for
N = 8,D = 4 SUGRA been found?
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Methods: old and modern

One idea (N. Warner's approach, suggested by Tomaras):

Choose subgroup H ⊂ G .
Scalar potential V is a singlet w.r.t. gauge group G , and also
w.r.t. H.
Let us expand V (φ0 + δφ) around a stationary point � we
consider the action of G on δφ:

V (φ0 + δφ) = V (φ0) + δφ(∂V /∂φ) +
1

2
(δφ)2(∂2V /∂φ2) + . . .

Stationarity ≡ (∂V /∂φ = 0).
If δφ transforms non�trivially under H ⊂ G , the linear term is
absent (as one cannot form a G�singlet from a single
H�nonsinglet).
Consequence: Stationary points on H�invariant submanifold
lift to stationary points of the full potential!
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Methods: old and modern

Trade�o�: Large subgroup H ⊂ G : low�dimensional
H�invariant sub�manifold: Easy to analyze (few Euler angles,
exponentiation feasible), but will not �nd solutions with
residual unbroken gauge symmetry smaller than H.

Useful choice: H = SU(3) (N. Warner): 6�dimensional
submanifold, analysis produced
SO(8), SO(7)±,G2, SU(4), SU(3)× U(1) solutions.

Another choice (T.F., 2003): H = SO(3), Embedding:
8v → 3 + 5 · 1: 10 scalars, potential with 12 240 terms.
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Methods: old and modern

Since the 80's, no new solutions have been found for a long
time. . .

One article from 2009: �Are There Any New Vacua of Gauged
N=8 Supergravity in Four Dimensions?� (C. Ahn, K. Woo �
arXiv:0904.2105; none found).

Another article from 2009: �Fourteen new stationary points in
the scalar potential of SO(8)�gauged N=8, D=4 supergravity�
(T.F. � arXiv:0912.1636)

Among the new solutions: a SUSY vacuum with residual
U(1)× U(1) symmetry, 8 critical points without any residual
gauge symmetry: SO(8) broken completely.
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Methods: old and modern

Breakthrough based on a completely new approach to the
problem.

Situation right now: there seem to be at least 160 di�erent
critical points, some with fairly interesting properties.

Some calculations still running; �rst batch of 40 solutions was
released recently (T.F., arXiv:1109.1424).
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Methods: old and modern

How does the new method work?

Based on a combination of tricks:

Numerical validation of candidate solutions.
Complete intermediate avoidance of symbolic methods in
search: numerical approach.
Re�phrasing stationarity condition as a (high�dimensional)
numerical optimization problem: various choices for objective
function, e.g. |∇V |2 = 0 = min!
Utilizing advanced algorithmic methods to obtain fast
gradients.
. . .
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Methods: old and modern

Based on a combination of tricks:

. . .
2nd �prettifying� optimization to bring numerical solution to
nicely coordinate�aligned form.
Arbitrary�precision numerics for all optimizations to obtain
numbers to 100+ valid digits.
Inverse Symbolic Computation (Integer relation algorithm �
PSLQ) to map numerical values to �simple� polynomials with
integer coe�cients (which they are a root of).

Generally applicable to all models with many scalars and

complicated potentials!
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Methods: old and modern

Fast Gradients: Approach

Given a function f : (Rn → R) ∈ C2 and a computer
implementation of a program P calculating f that needs time
T to calculate f at a given point.
Naive approach to calculate gradient needs at least n + 1
function evaluations, gives half the available numerical
accuracy.
Speelpenning's PhD thesis (1980): There is a (fully automatic)
program transformation P→ ~P such that ~P calculates both
f (~x) and ∇f (~x) in at most 5T � independent of n, and with
full numerical accuracy!
Method widely used in engineering design optimization � e.g.
to deal with many geometry parameters.
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Methods: old and modern

Fast Gradients: Approach
Price to be paid:

Must evaluate f once and remember all intermediate
numerical quantities. . .
. . . plus one extra number per intermediate value. . .
. . . and the complete execution path (i.e. all conditional
branches/loop exits taken).

Strategy: One �rst evaluates f , then goes once again through
the calculation backwards, trying to answer for each
intermediate value the question: �If, at the point this
intermediate quantity y became �rst known, we replaced it by
y + ε, by how much (relative to ε) would the �nal result
change (to 1st order in ε)?�
Can use chain rule to back�propagate these �sensitivities�
through entire calculation.
Sensitivities on input data = gradient!
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Methods: old and modern

Inverse symbolic computation � Example:

Given the number such as
8.4721359549995793928183473374625524708812367192230514507
to 50 valid digits, is there a polynomial with integer
coe�cients carrying substantially less than 50 log

2
10 bits of

information of which this is a zero?
The PSLQ algorithm gives us a candidate analytic expression

for this number:
√
36 + 16

√
5.

This analytic conjecture then can be checked to a very high
number of digits (and often also analytically).

In combination with other tricks, this allows us to completely
avoid the intractable intermediate analytic stage � and
nevertheless obtain analytic results!
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Results and open problems

Among the new solutions:

U(1)× U(1) N = 1 vacuum.
Supersymmetry not a pre�requisite for stability � this was seen
already in D = 3, but in D = 4 the only known example so far
is the old SO(3)× SO(3) critical point!
Details: arXiv:1010.4910 (T.F., K. Pilch, N. Warner)
Also: Novel solutions with many di�erent symmetries (another
SO(3)× SO(3), SO(3)× U(1)× U(1), SO(3)× U(1) (3×),
SO(3) (4x); many of type U(1)× U(1), U(1) and ∅).
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Open problems

What about maximal SUGRA in D = 5 (and correspondingly,
N = 4 SYM)? → Currently investigated (T.F., Gereon
Kaiping)

Optimization�based method contains an element of chance:
��shing� for solutions. Some are found more often than others.
This has been found to systematically miss some solutions (in
particular, the stable SO(3)× SO(3) solution!) � are there
ways to improve this?

RG �ows in D = 3 CFT that involve new critical points?

11�dimensional mother geometries?
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Conclusion

Detailed analysis of supergravity potentials in a (fairly large)
class of models with many scalars has been considered
intractable for a long time.

This turned out to be wrong � there indeed is a general
method to systematically analyze these potentials.

Some of the methods employed probably can be used to great
bene�t for other problems in QFT as well. (Parameter �tting?)

Powerful novel approaches produce many new results right
now, but leave a number of blind spots. (Some solutions
missed systematically.)

Many options for creatively modifying/extending the method
(e.g. tweaking the objective function, using conjectured
properties of solutions, homotopy methods, etc.)
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