Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

CMB Anisotropies from Collapsing Textures

Work in collaboration with J. Urrestilla

Kepa Sousa

Departamento de Física Teórica e Historia de la Ciencia UPV/EHU.

kepa.sousa@ehu.es

University of Sussex, 27/01/2014

イロト イポト イヨト イヨト 三日

1/21

Outline

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

1 Introduction

2 Textures

3 Analytical approach

- 4 Numerical methods
- 5 Results

6 Conclusions

Introduction

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

- Textures are a class of topological defects.
- They are formed generically in cosmological models where a non-abelian global symmetry is spontaneously broken.
- Should the ΛCDM be augmented with textures?:
 - Cruz et al. '08, '09 showed through bayesian analysis that a cosmic texture is consistent with the CMB anomaly know as the "Cold Spot".
 - Other possibilities: Sunyaev-Zeldovic effect or a large void.
 - Other works show discrepancies: Feeney et al. '12.

Introduction

Anisotropies from Collapsing Textures

Introduction

- Textures
- Analytical approach
- Numerical methods
- Results
- Conclusions

- Textures are a class of topological defects.
- They are formed generically in cosmological models where a non-abelian global symmetry is spontaneously broken.
- Should the ΛCDM be augmented with textures?:
 - *Cruz et al. '08,'09* showed through bayesian analysis that a cosmic texture is consistent with the CMB anomaly know as the "Cold Spot".
 - Other possibilities: Sunyaev-Zeldovic effect or a large void.
 - Other works show discrepancies: Feeney et al. '12.

Introduction

Anisotropies from Collapsing Textures

Introduction

- Textures
- Analytical approach
- Numerical methods
- Results
- Conclusions

- Textures are a class of topological defects.
- They are formed generically in cosmological models where a non-abelian global symmetry is spontaneously broken.
- Should the ΛCDM be augmented with textures?:
 - Cruz et al. '08,'09 showed through bayesian analysis that a cosmic texture is consistent with the CMB anomaly know as the "Cold Spot".
 - Other possibilities: Sunyaev-Zeldovic effect or a large void.
 - Other works show discrepancies: Feeney et al. '12.
- All these analysis rely on the existing predictions on the anisotropy pattern produced by global textures.
- They use a very idealized analytical solution, (spherical symmetry and self similar collapse) Turok et al. '90
- which is known to be unrealistic Borrill et al. '92.

Topological Defects Kibble mechanism

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

• Topological defects form generically during phase transitions.

Textures The O(4)-model

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

- Textures appear in theories where a non-abelian global symmetry group G is completely broken at low energies.
 - Global SU(2) symmetry rotating a Higgs doublet.
 - Family symmetry.
- These symmetries are easily implemented in GUT's.
- There are mechanisms where a non-abelian gauge symmetry leads to a global symmetry at low energies. *Turok 90*

The simplest example: O(4)-model

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_{a} \partial^{\mu} \phi_{a} - \lambda (\phi_{a} \phi_{a} - \eta^{2})^{2}, \qquad a = 1, \dots, 4.$$

$$\ddot{\phi}_{a} -
abla^{2} \phi_{a} = -4\lambda (\phi_{b}\phi_{b} - \eta^{2}) \phi_{a}.$$

The model depends on a single parameter:

$$I_{\phi} \equiv m_{\phi}^{-1} = (\sqrt{8\lambda}\eta)^{-1}$$

• The vacuum manifold is $\mathcal{M} \cong S^3$.

Textures Topology of the Vacuum Manifold

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

A texture is a localized region of space where the field ϕ_a winds around \mathcal{M} .

The Higgs lays on the vacuum manifold everywhere in space.

$$\phi_{a}\phi_{a}=\eta^{2}.$$

- The texture configuration defines a mapping $\mathbb{R}^3 \longrightarrow S^3$.
- Since $\pi_3(\mathcal{M})$ is non-trivial there are configurations which cannot evolve into the homogeneous vacuum.

• There is a conserved topological current:

$$j^{\mu} = rac{1}{12\pi^2\eta^4} \epsilon^{\mu
ulphaeta} \epsilon^{abcd} \phi_a \,\partial_
u \phi_b \,\partial_lpha \phi_d \,\partial_eta \phi_d, \quad Q = \int d^3x j^0 \in \mathbb{R}.$$

 \blacksquare The charge measures the fraction of ${\cal M}$ covered by the texture.

Textures Spherically symmetric Q = 1 configuration

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

$$\vec{\phi} \equiv (\phi_1, \phi_2, \phi_3) = \eta \sin \chi(r) \hat{r}, \qquad \phi_4 = \eta \cos \chi(r).$$
$$\chi(0) = 0, \qquad \chi(r > R) = \pi \implies Q = 1.$$

Texture collapse and unwinding

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

• Consider a localized texture configuration $\phi_a(\vec{r})$.

Transforming the configuration as $\phi_a(\vec{r}) \rightarrow \phi_a(\alpha \vec{r})$, with $\alpha > 1$, the energy decreases: textures are unstable to collapse.

$$E = \frac{1}{2} \int d^3x \, \vec{\nabla} \phi_a \vec{\nabla} \phi_a o lpha^{-1} E$$

- When $R \lesssim l_{\phi}$ the field gradients pull $\phi_a(\vec{r})$ over the potential barrier.
- The topological charge is no longer conserved and the knot unwinds.
- The energy escapes to infinity in an expanding shell of goldstone bosons.

CMB Anisotropies by Collapsing Textures Integrated Sachs-Wolfe effect

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

Unwinding textures create a time-varying gravitational potential.CMB photons crossing it receive a red- or a blue-shift.

$$g_{\mu\nu} = g_{\mu\nu}^{(0)} + h_{\mu\nu},$$

$$\partial_{\mu\nu} = \partial_{\mu}\phi_{a}\partial_{\nu}\phi_{a} - g_{\mu\nu}\mathcal{L}$$

To first order in the perturbations

$$rac{\Delta T}{T}(\hat{\mathbf{n}},\mathbf{x}) = -rac{1}{2}\int_{\lambda_{em}}^{\lambda_{obs}} d\lambda \ h_{ij,0}(\mathbf{x}_{\gamma}(\lambda)) \ \hat{n}^{i} \ \hat{n}^{j}, \quad \mathbf{x}_{\gamma}(\lambda) = \mathbf{x} - \lambda \hat{\mathbf{n}}$$

Matter evolves in the unperturbed background,

photons travel along unperturbed trajectories.

CMB Anisotropies by Collapsing Textures

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

- Metric perturbations can be solved in terms of $\Theta_{\mu\nu}$,
- the anisotropy can be calculated explicitely. Stebbins et al. 94

Small-angle approximation

When the geodesics are almost parallel to the line of sight **n** *Hindmarsh 94*:

$$abla_{\perp}^2 rac{\Delta T}{T}(\mathbf{x}_{\perp}) = -8\pi G
abla_{\perp} \cdot \mathbf{U}(\mathbf{x}_{\perp})$$

$$U_i(\mathbf{x}_{\perp}) = -(\delta_i^j - \hat{n}_i \hat{n}^j) \int_{\lambda_{em}}^{\lambda_{obs}} \left[\Theta_{0j}(\mathbf{x}_{\gamma}(\lambda)) - \hat{n}^k \Theta_{jk}(\mathbf{x}_{\gamma}(\lambda))
ight] d\lambda$$

- Valid for fluctuations on small angular scales.
- These results can be extended to the cosmological case provided
 - the impact parameter of the photons is small compared to H^{-1} ,
 - the unwinding time is small compared to *H*⁻¹.

CMB Anisotropies by Collapsing Textures Cold Spot Formation

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

Photons crossing the texture before the unwinding are red-shifted.

- They fall in the potential well of a fraction of the texture,
- and climb out the potential well of the full texture.

CMB Anisotropies by Collapsing Textures Hot Spot Formation

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

- They fall in the potential well of the full texture,
- and climb out the potential well of a fraction of the texture.

4 ロ ト 4 回 ト 4 臣 ト 4 臣 ト 王 つへで 12/21

Analytical approach

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

At low energies the massive d.o.f. are not excited, thus $\phi_a(\mathbf{x})$ is constrained to stay in \mathcal{M} .

$$\phi_{a}\phi_{a}=\eta^{2}.$$

• We use an effective action with a Lagrange multiplier β :

$$\mathcal{L}=rac{1}{2}\partial_{\mu}\phi_{a}\,\partial^{\mu}\phi_{a}-eta(\phi_{a}\phi_{a}-\eta^{2}).$$

$$\nabla^2 \phi_{\mathsf{a}} + \eta^{-2} (\partial_\mu \phi_b \, \partial^\mu \phi_b) \phi_{\mathsf{a}} = 0.$$

 The effective e.o.m. admit an analytic solution describing a spherically symmetric texture collapse *Turok et al. 90*

$$\vec{\phi} \equiv (\phi_1, \phi_2, \phi_3) = \eta \sin \chi \hat{r}, \qquad \phi_4 = \eta \cos \chi.$$

 $\chi(r,t<0) = 2\arctan(-r/t), \quad \chi(r,t>0) = \begin{cases} 2\arctan(r/t) + \pi, & r < t \\ 2\arctan(t/r) + \pi, & r > t. \end{cases}$

Analytical approach Non-linear sigma model

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

Note that:

- Turok's solution extends all the way to spatial infinity,
- and it has a linearly divergent mass:

$$M(r < \Lambda) \sim 8\pi \eta^2 \Lambda$$

イロト イヨト イヨト イヨト

14 / 21

- The small angle approximation is used implicitly:
 - The photon emission point,
 - the unwinding site,
 - and the observer

are at an infinite distance from each other.

Analytical approach Problems of the Self-Similar solution

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

Template used to compare the CMB data with the texture model:

$$\frac{\Delta T}{T}(r,t_0) = \epsilon \frac{t_0}{(2r^2+t_0^2)^{1/2}}, \qquad \epsilon \equiv 8\pi^2 G \eta^2.$$

Turok et al. 90, Stebbins et al. 94

Known problems

- The sigma-model approximation breaks at the unwinding.
- All photons crossing the unwinding site receive the same amount of red/blue-shift, *independently of the time of passing*.
- The anisotropy profile decays very slowly $\sim r^{-1}$.

Analytical approach Problems of the Self-Similar solution

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

Template used to compare the CMB data with the texture model:

$$\frac{\Delta T}{T}(r,t_0)=\epsilon \frac{t_0}{(2r^2+t_0^2)^{1/2}}, \qquad \epsilon\equiv 8\pi^2 G\eta^2.$$

Turok et al. 90, Stebbins et al. 94

The self-similar solution requires very special initial conditions

 $lacksymbol{ extbf{ e$

Spherical symmetry.

A coherent velocity is needed to preserve the self-similar state. Borrill et al. 92,94

Numerical Methods Discrete equations of motion

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

We evolve a discrete version of the O(4)-model in a cubic lattice. Fields are evolved in discrete time-steps: $\phi_a(\mathbf{x}) \longrightarrow \phi_a^{\mathbf{i},n}$ φ_ai,n Derivatives are represented by finite differences. $\dot{\phi}_{a}(\mathbf{x}) \longrightarrow \dot{\phi}_{a}^{\mathbf{i},n+\frac{1}{2}} = \frac{\phi_{a}^{\mathbf{i},n+1} - \phi_{a}^{\mathbf{i},n}}{\mathbf{A} + \mathbf{A}}.$ $N = 96^3$, $\Delta x = 5\Delta t = 4I_{ch}$. At the edges of the lattice we use periodic boundary conditions, we run the simulation for 96 grid units. The discrete e.o.m. in a Minkowski background: $\dot{\phi}_{a}^{i,n+\frac{1}{2}} = \dot{\phi}_{a}^{i,n-\frac{1}{2}} + \left[\nabla^{2}\phi_{a}^{i,n} - 4\lambda(\phi_{b}^{i,n}\phi_{b}^{i,n} - \eta^{2})\phi_{a}^{i,n}\right]\Delta t$

Numerical Methods Calculation of the anisotropy

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

- Planes are separated by one lattice spacing.
- They travel along one of the mayor axis of the lattice.
- Half cross the unwinding site before the event,

half cross the unwinding site afterwards.

• The anisotropy is calculated from the small-angle formula:

$$abla_{\perp}^{2} \frac{\Delta T}{T}(\mathbf{x}_{\perp}) = -8\pi G
abla_{\perp} \cdot \mathbf{U}(\mathbf{x}_{\perp}),$$

- which is solved using a F.F.T.
- The integration constant is fixed requiring $\langle \frac{\Delta T}{T} \rangle = 0$. Borril et al. 94

Numerical methods

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

The initial correlation lenght was set to 16 grid points

- The initial configuration is set assigning random points from ${\cal M}$ on a 3^3 sublattice.
- Intermediate points are filled using an algorithm which minimizes the total energy.
- Only a 4% of the initial conditions lead to a texture unwinding.

 $\phi^2 < \eta^2/4$, Borril et al. 93, 94

• We obtained an ensemble of random initial conditions leading to unwinding events.

- We evolved 1300 initial conditions,
- obtaining 50 texture unwindings.
- Only 33 were selected for the ensemble,
 - discarding multiple unwinding events and
 - those close to the begining and end of the simulation. <□> <∂> <≥> <≥> ≥

Numerical methods Limitations of this approach

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

The evolution of cosmic textures involves physics both at microscopical and cosmological length-scales.

- The microscopical length-scale: $I_{\phi} = m_{\phi}^{-1}$
- \blacksquare Cosmological length-scale: $\xi_c \sim H^{-1}$

$$\mathcal{R}=H^{-1}/I_{\phi}~\sim~10^{50}$$

The asymptotic regime is reached when $\mathcal{R} \sim 200$, *Borril et al. 92*.

Time evolution and radial profile of the anisotropy

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

Averaged anisotropy profiles:

- Textures become spherical close to the collapse. Turok et al .90
- Maximum of the hot spot profile $\frac{\Delta T}{T}|_{max} = (+0.77 \pm 0.21)\epsilon$,
- minimum of the cold spot profile $\frac{\Delta T}{T}|_{min} = (-0.49 \pm 0.13)\epsilon$, in agreement with *Borrill et al. 94*
- The unwinding event is resolved, $\delta t \sim 40 I_{\phi}$.
- The hot and cold spot profile functions are more localized than in the analytic solution.

Time evolution and radial profile of the anisotropy

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

Averaged anisotropy profiles:

- The brightness of the spot decays at early and late times.
- The CMB analyses depend on the expected number of spots due to textures.

$$N_s(heta > heta_c) \qquad \Longrightarrow \qquad rac{dN_s}{d heta_c} \sim heta^{-3}$$

- This estimate is partially based on numerical simulations which do not consider how photons interact with the texture.
- Our results also indicate a strong dependence on the photon emission and detection times.

Conclusions

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

Results

- A library of 33 random initial conditions leading to single unwinding events.
- Calculation the corresponding anisotropy profiles using the small-angle approximation.
- The averaged anisotropy pattern is significantly more localized, and has a smaller peak than the Turok solution (20 – 50%).
- Textures are only observable during a finite interval around the unwinding event.

Conclusions

Anisotropies from Collapsing Textures

Introduction

Textures

Analytical approach

Numerical methods

Results

Conclusions

Results

- A library of 33 random initial conditions leading to single unwinding events.
- Calculation the corresponding anisotropy profiles using the small-angle approximation.
- The averaged anisotropy pattern is significantly more localized, and has a smaller peak than the Turok solution (20 – 50%).
- Textures are only observable during a finite interval around the unwinding event.

To be done:

- Repeat the simulations in a FRW background.
- Resimulate in a larger lattice to increase precision and diminish boundary effects.
- Characterize the small scale anisotropies due to random fluctuations of the fields.