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Introduction

Textures are a class of topological defects.

They are formed generically in cosmological models where a
non-abelian global symmetry is spontaneously broken.

Should the ΛCDM be augmented with textures?:

Cruz et al. ’08,’09 showed through bayesian analysis that a
cosmic texture is consistent with the CMB anomaly know as the
“Cold Spot”.
Other possibilities: Sunyaev-Zeldovic effect or a large void.
Other works show discrepancies: Feeney et al. ’12.
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Introduction

Textures are a class of topological defects.

They are formed generically in cosmological models where a
non-abelian global symmetry is spontaneously broken.

Should the ΛCDM be augmented with textures?:

Cruz et al. ’08,’09 showed through bayesian analysis that a
cosmic texture is consistent with the CMB anomaly know as the
“Cold Spot”.
Other possibilities: Sunyaev-Zeldovic effect or a large void.
Other works show discrepancies: Feeney et al. ’12.

All these analysis rely on the existing predictions on the
anisotropy pattern produced by global textures.

They use a very idealized analytical solution, (spherical symmetry

and self similar collapse) Turok et al. ’90

which is known to be unrealistic Borrill et al. ’92.
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Topological Defects
Kibble mechanism

Topological defects form generically during phase transitions.

Example: Domain Walls
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L = 1
2∂µφ∂

µφ− λ(φφ− η2)2.

The vacuum manifold is given by M = {−1, 1}.

The topology of M determines the type of defects which can form:

π0(M) 6= → Domain Walls π1(M) 6= → Cosmic Strings

π2(M) 6= → Monopoles π3(M) 6= → Textures
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Textures
The O(4)−model

Textures appear in theories where a non-abelian global symmetry
group G is completely broken at low energies.

Global SU(2) symmetry rotating a Higgs doublet.

Family symmetry.

These symmetries are easily implemented in GUT’s.

There are mechanisms where a non-abelian gauge symmetry
leads to a global symmetry at low energies. Turok 90

The simplest example: O(4)−model

L = 1
2
∂µφa ∂

µφa−λ(φaφa−η2)2, a = 1, . . . , 4.

φ̈a −∇2φa = −4λ(φbφb − η2)φa.

The model depends on a single parameter:

lφ ≡ m−1
φ = (

√
8λη)−1

The vacuum manifold is M∼= S3.
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Textures
Topology of the Vacuum Manifold

A texture is a localized region of space where the field φa winds
around M.

The Higgs lays on the vacuum manifold everywhere in space.

φaφa = η2.

The texture configuration defines a mapping R3 −→ S3.

Since π3(M) is non-trivial there are configurations which cannot
evolve into the homogeneous vacuum.

There is a conserved topological current:

jµ = 1
12π2η4 ε

µναβεabcdφa ∂νφb ∂αφd ∂βφd , Q =

∫
d3x j0 ∈ R.

The charge measures the fraction of M covered by the texture.
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Textures
Spherically symmetric Q = 1 configuration

~φ ≡ (φ1, φ2, φ3) = η sinχ(r) r̂ , φ4 = η cosχ(r).

χ(0) = 0, χ(r > R) = π =⇒ Q = 1.
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Texture collapse and unwinding
Derrick’s theorem

Consider a localized texture configuration φa(~r).
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Transforming the configuration as φa(~r)→ φa(α~r), with α > 1,
the energy decreases: textures are unstable to collapse.

E = 1
2

∫
d3x ~∇φa

~∇φa → α−1E

When R . lφ the field gradients pull φa(~r) over the potential barrier.

The topological charge is no longer conserved and the knot unwinds.

The energy escapes to infinity in an expanding shell of goldstone
bosons.
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CMB Anisotropies by Collapsing Textures
Integrated Sachs-Wolfe effect

Unwinding textures create a time-varying gravitational potential.

CMB photons crossing it receive a red- or a blue-shift.

Observer Collapsing Texture Last Scattering Surface

gµν = g (0)
µν + hµν ,

Θµν = ∂µφa ∂νφa − gµνL

To first order in the perturbations

∆T

T
(n̂, x) = − 1

2

∫ λobs

λem

dλ hij,0(xγ(λ)) n̂i n̂j , xγ(λ) = x− λn̂

Matter evolves in the unperturbed background,
photons travel along unperturbed trajectories.
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CMB Anisotropies by Collapsing Textures
Small-angle approximation

Metric perturbations can be solved in terms of Θµν ,

the anisotropy can be calculated explicitely. Stebbins et al. 94

Small-angle approximation

When the geodesics are almost parallel to the line of sight n̂
Hindmarsh 94:

∇2
⊥

∆T

T
(x⊥) = −8πG∇⊥ ·U(x⊥)

Ui (x⊥) = −(δji − n̂i n̂
j)

∫ λobs

λem

[
Θ0j(xγ(λ))− n̂kΘjk(xγ(λ))

]
dλ

Valid for fluctuations on small angular scales.

These results can be extended to the cosmological case provided

the impact parameter of the photons is small compared to H−1,
the unwinding time is small compared to H−1.
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CMB Anisotropies by Collapsing Textures
Cold Spot Formation

Photons crossing the texture before the unwinding are red-shifted.

γ

tb
t0

They fall in the potential well of a
fraction of the texture,

and climb out the potential well of
the full texture.
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CMB Anisotropies by Collapsing Textures
Hot Spot Formation

Photons crossing the texture after the unwinding are blue-shifted.

γ

tb

t0
They fall in the potential well of the
full texture,

and climb out the potential well of a
fraction of the texture.
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Analytical approach
Non-linear sigma model

At low energies the massive d.o.f. are not excited, thus φa(x) is
constrained to stay in M.

φaφa = η2.

We use an effective action with a Lagrange multiplier β:

L = 1
2∂µφa ∂

µφa − β(φaφa − η2).

∇2φa + η−2(∂µφb ∂
µφb)φa = 0.

The effective e.o.m. admit an analytic solution describing a
spherically symmetric texture collapse Turok et al. 90

~φ ≡ (φ1, φ2, φ3) = η sinχ r̂ , φ4 = η cosχ.

χ(r , t < 0) = 2 arctan(−r/t), χ(r , t > 0) =

{
2 arctan(r/t) + π, r < t
2 arctan(t/r) + π, r > t.

13 / 21



Anisotropies
from Collapsing

Textures

Introduction

Textures

Analytical
approach

Numerical
methods

Results

Conclusions

Analytical approach
Non-linear sigma model

Note that:

Turok’s solution extends all the way to spatial infinity,

and it has a linearly divergent mass:

M(r < Λ) ∼ 8πη2Λ

The small angle approximation is used implicitly:

The photon emission point,
the unwinding site,

and the observer

are at an infinite distance from each other.
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Analytical approach
Problems of the Self-Similar solution
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Template used to compare the CMB data with the texture model:

∆T

T
(r , t0) = ε

t0

(2r2 + t2
0 )1/2

, ε ≡ 8π2Gη2.

Turok et al. 90, Stebbins et al. 94

Known problems

The sigma-model approximation breaks at the unwinding.

All photons crossing the unwinding site receive the same amount
of red/blue-shift, independently of the time of passing.

The anisotropy profile decays very slowly ∼ r−1.
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Analytical approach
Problems of the Self-Similar solution
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Template used to compare the CMB data with the texture model:

∆T

T
(r , t0) = ε

t0

(2r2 + t2
0 )1/2

, ε ≡ 8π2Gη2.

Turok et al. 90, Stebbins et al. 94

The self-similar solution requires very special initial conditions

Q ∈ Z, ( in a cosmological context fractional charges are generic.)

Spherical symmetry.

A coherent velocity is needed to preserve the self-similar state.
Borrill et al. 92,94
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Numerical Methods
Discrete equations of motion

We evolve a discrete version of the O(4)−model in a cubic lattice.

ϕa
i,n

N = 963
, ∆x = 5∆t = 4lφ.

Fields are evolved in discrete time-steps:

φa(x) −→ φi,n
a .

Derivatives are represented by finite
differences:

φ̇a(x) −→ φ̇
i,n+

1
2

a =
φi,n+1
a − φi,n

a

∆t
.

At the edges of the lattice we use periodic boundary conditions,

we run the simulation for 96 grid units.

The discrete e.o.m. in a Minkowski background:

φ̇
i,n+

1
2

a = φ̇
i,n− 1

2
a +

[
∇2φi,na − 4λ(φi,nb φi,nb − η

2)φi,na
]

∆t

φi,n+1
a = φi,na + φ̇

i,n+
1
2

a ∆t
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Numerical Methods
Calculation of the anisotropy

We calculate the anisotropy on a sequence of 48 photon planes

Planes are separated by one lattice spacing.

They travel along one of the mayor axis of the lattice.

Half cross the unwinding site before the event,

half cross the unwinding site afterwards.

The anisotropy is calculated from
the small-angle formula:

∇2
⊥

∆T

T
(x⊥) = −8πG∇⊥ ·U(x⊥),

which is solved using a F.F.T.

The integration constant is fixed
requiring < ∆T

T >= 0. Borril et al. 94
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Numerical methods
Initial configuration

The initial correlation lenght was set to 16 grid points

The initial configuration is set assigning random points from M
on a 33 sublattice.

Intermediate points are filled using an algorithm which
minimizes the total energy.

Only a 4% of the initial conditions lead to a texture unwinding.

φ2 < η2/4, Borril et al. 93, 94

We obtained an ensemble of random initial conditions leading to
unwinding events.

ϕa
i,n

We evolved 1300 initial conditions,

obtaining 50 texture unwindings.

Only 33 were selected for the ensemble,

discarding multiple unwinding events and
those close to the begining and end of the
simulation.
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Numerical methods
Limitations of this approach

The evolution of cosmic textures involves physics both at
microscopical and cosmological length-scales.

The microscopical length-scale: lφ = m−1
φ

Cosmological length-scale: ξc ∼ H−1

R = H−1/lφ ∼ 1050

The asymptotic regime is reached when R ∼ 200, Borril et al. 92.
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Time evolution and radial profile of the anisotropy

Averaged anisotropy profiles:
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Textures become spherical close to the collapse. Turok et al .90

Maximum of the hot spot profile ∆T
T |max = (+0.77± 0.21)ε,

minimum of the cold spot profile ∆T
T |min = (−0.49± 0.13)ε,

in agreement with Borrill et al. 94

The unwinding event is resolved, δt ∼ 40lφ.

The hot and cold spot profile functions are more localized than
in the analytic solution.
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Time evolution and radial profile of the anisotropy

Averaged anisotropy profiles:
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The brightness of the spot decays at early and late times.

The CMB analyses depend on the expected number of spots due
to textures.

Ns(θ > θc) =⇒ dNs

dθc
∼ θ−3

This estimate is partially based on numerical simulations which
do not consider how photons interact with the texture.

Our results also indicate a strong dependence on the photon
emission and detection times.
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Conclusions

Results

A library of 33 random initial conditions leading to single unwinding
events.

Calculation the corresponding anisotropy profiles using the small-angle
approximation.

The averaged anisotropy pattern is significantly more localized, and
has a smaller peak than the Turok solution (20− 50%).

Textures are only observable during a finite interval around the

unwinding event.

To be done:

Repeat the simulations in a FRW background.

Resimulate in a larger lattice to increase precision and diminish
boundary effects.

Characterize the small scale anisotropies due to random fluctuations

of the fields.
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