Evaporating black holes in the presence of a minimal length

Piero Nicolini

Frankfurt Institute for Advances Studies (FIAS) Institute for Theoretical Physics, Goethe University Frankfurt Frankfurt am Main, Germany

University of Sussex, United Kingdom, Nov 8, 2010

Black hole evaporation

(Mini) Black hole life

 T_H vs r_H

- Balding phase
- Spin down phase
- Schwarzschild phase $T_H \sim 1/r_H$
- Planck phase (?)

(Mini) Black holes @ LHC & Cosmic ray showers

Black Hole Spacetimes

Problem

- Curvature Singularity
- Divergent temperature at the evaporation endpoint
- III defined thermodynamics
- Breakdown of General Relativity at short scales

Solution

- We must invoke Quantum Gravity
- Viable approaches
 - String Theory induced Noncommutative Geometry
 - Generalized Uncertainty Principle
 - Loop Quantum Gravity
 - Asymptotically Safe Gravity

Noncommutative geometry

New uncertainty principle

►

$$[\mathbf{x}^{\mu}, \mathbf{x}^{\nu}] = i \,\theta^{\mu\nu} \Longrightarrow \Delta x^{\mu} \Delta x^{\nu} \sim \ell^2 \equiv ||\theta^{\mu\nu}|| \tag{1}$$

Quasi-classical source terms

Delocalization of source terms within an effective minimal length ℓ

$$\delta(ec{x})
ightarrow
ho_\ell(ec{x}^2) = rac{1}{\left(4\pi\ell^2
ight)^{3/2}} \, \exp\left(-rac{ec{x}^2}{4\ell^2}
ight)$$

The energy-momentum tensor delocalization

$$\begin{split} T_0^0 &= -M \; \rho_\ell (\; \vec{x}^2 \;) \\ T^{\mu}{}_{\nu} &= \mathrm{Diag} \left(-M \rho_\ell \;, p_r \;, p_\perp \;, p_\perp \; \right) \\ T^{\mu\nu} \;; \; \nu &= 0 \end{split}$$

GR

The energy-momentum tensor delocalization

$$\begin{split} T_0^0 &= -M \; \rho_\ell (\; \vec{x}^2 \;) \\ T^{\mu}{}_{\nu} &= \mathrm{Diag} \left(-M \rho_\ell \;, p_r \;, p_\perp \;, p_\perp \; \right) \\ T^{\mu\nu} \;; \; \nu &= 0 \end{split}$$

GR

€

The energy-momentum tensor delocalization

$$\begin{split} T_0^0 &= -M \; \rho_\ell (\; \vec{x}^2 \;) \\ T^{\mu}{}_{\nu} &= \mathrm{Diag} \left(-M \rho_\ell \;, p_r \;, p_\perp \;, p_\perp \; \right) \\ T^{\mu\nu} \;; \; \nu &= 0 \end{split}$$

GR

 \uparrow

The energy-momentum tensor delocalization

$$\begin{split} T_0^0 &= -M \; \rho_\ell (\; \vec{x}^2 \;) \\ T^{\mu}{}_{\nu} &= \mathrm{Diag} \left(-M \rho_\ell \;, p_r \;, p_\perp \;, p_\perp \; \right) \\ T^{\mu\nu} \;; \; \nu &= 0 \end{split}$$

GR

(?)

The energy-momentum tensor delocalization

$$\begin{split} T_0^0 &= -M \; \rho_\ell (\; \vec{x}^2 \;) \\ T^{\mu}{}_{\nu} &= \mathrm{Diag} \left(-M \rho_\ell \;, p_r \;, p_\perp \;, p_\perp \; \right) \\ T^{\mu\nu} \;; \; \nu &= 0 \end{split}$$

GR

The energy-momentum tensor delocalization

$$\begin{split} T_0^{\,0} &= -M \; \rho_\ell (\; \vec{x}^2 \;) \\ T^{\mu}{}_{\nu} &= \mathrm{Diag} \left(-M \rho_\ell \;, p_r \;, p_\perp \;, p_\perp \; \right) \\ T^{\mu\nu} \;; \; \nu &= 0 \end{split}$$

GR: $G_{\mu \nu} = 8 \pi T_{\mu \nu}$

The energy-momentum tensor delocalization

$$T_0^0 = -M \ \rho_{\ell}(\vec{x}^2)$$

$$T^{\mu}{}_{\nu} = \text{Diag}(-M\rho_{\ell}, p_r, p_{\perp}, p_{\perp})$$

$$T^{\mu\nu}; \nu = 0$$

GR:
$$G_{\mu \nu} = 8 \pi T_{\mu \nu} \longrightarrow$$

The energy-momentum tensor delocalization

$$\begin{split} T_0^0 &= -M \ \rho_\ell (\ \vec{x}^2 \) \\ T^\mu{}_\nu &= \mathrm{Diag} \left(-M \rho_\ell \ , p_r \ , p_\perp \ , p_\perp \ \right) \\ T^{\mu\nu}; \ \nu &= 0 \end{split}$$

GR:
$$G_{\mu \nu} = 8 \pi T_{\mu \nu} \longrightarrow T_0^0 = -M \delta(\vec{x})$$

The energy-momentum tensor delocalization

$$\begin{split} T_0^{\,0} &= -M \; \rho_\ell (\; \vec{x}^2 \;) \\ T^{\mu}{}_{\nu} &= \mathrm{Diag} \left(-M \rho_\ell \;, p_r \;, p_\perp \;, p_\perp \; \right) \\ T^{\mu\nu} \;; \; \nu &= 0 \end{split}$$

GR:
$$G_{\mu \nu} = 8 \pi T_{\mu \nu} \longrightarrow T_0^0 = -M \delta(\vec{x})$$

$$\uparrow$$

The energy-momentum tensor delocalization

$$\begin{split} T_0^{\,0} &= -M \; \rho_\ell (\; \vec{x}^2 \;) \\ T^{\mu}{}_{\nu} &= \mathrm{Diag} \left(-M \rho_\ell \;, p_r \;, p_\perp \;, p_\perp \; \right) \\ T^{\mu\nu} \;; \; \nu &= 0 \end{split}$$

GR:
$$G_{\mu \ \nu} = 8 \ \pi T_{\mu \ \nu} \longrightarrow T_0^0 = -M \ \delta(\vec{x})$$

$$\uparrow$$

$$\begin{split} T_0^0 &= -M \ \rho_\ell (\ \vec{x}^2 \) \\ T^\mu{}_\nu &= \mathrm{Diag} \left(-M \rho_\ell \ , p_r \ , p_\perp \ , p_\perp \right) \\ T^{\mu\nu}; \ \nu &= 0 \end{split}$$

GR:
$$G_{\mu \ \nu} = 8 \ \pi T_{\mu \ \nu} \longrightarrow T_0^0 = -M \ \delta(\vec{x})$$

$$\uparrow$$
NCGR
$$T_0^0 \mid_{\ell} = -M \ \rho_{\ell}(\vec{x}^2)$$

$$\begin{split} T_0^0 &= -M \ \rho_\ell (\ \vec{x}^2 \) \\ T^\mu{}_\nu &= \mathrm{Diag} \left(-M \rho_\ell \ , p_r \ , p_\perp \ , p_\perp \right) \\ T^{\mu\nu}; \ \nu &= 0 \end{split}$$

GR:
$$G_{\mu \ \nu} = 8 \ \pi T_{\mu \ \nu} \longrightarrow T_0^0 = -M \ \delta(\vec{x})$$

 $\ell \neq 0 \downarrow \uparrow \ell \to 0$
NCGR $T_0^0 \mid_{\ell} = -M \ \rho_{\ell}(\vec{x}^2)$

$$\begin{split} T_0^0 &= -M \ \rho_\ell (\ \vec{x}^2 \) \\ T^\mu{}_\nu &= \mathrm{Diag} \left(-M \rho_\ell \ , p_r \ , p_\perp \ , p_\perp \right) \\ T^{\mu\nu}; \ \nu &= 0 \end{split}$$

GR:
$$G_{\mu \ \nu} = 8 \ \pi T_{\mu \ \nu} \longrightarrow T_0^0 = -M \ \delta(\vec{x})$$

 $\ell \neq 0 \downarrow \uparrow \ell \to 0$
NCGR $\longleftarrow T_0^0 |_{\ell} = -M \ \rho_{\ell}(\vec{x}^2)$

$$\begin{split} T_0^{\,0} &= -M \; \rho_\ell (\; \vec{x}^2 \;) \\ T^{\mu}{}_{\nu} &= \mathrm{Diag} \left(-M \rho_\ell \;, p_r \;, p_\perp \;, p_\perp \; \right) \\ T^{\mu\nu} \;; \; \nu &= 0 \end{split}$$

GR:
$$G_{\mu \nu} = 8 \pi T_{\mu \nu} \longrightarrow T_0^0 = -M \delta(\vec{x})$$

 $\ell \neq 0 \downarrow \uparrow \ell \rightarrow 0$
NCGR: $G_{\mu \nu}|_{\ell} = 8 \pi T_{\mu \nu}|_{\ell} \longleftarrow T_0^0|_{\ell} = -M \rho_{\ell}(\vec{x}^2)$

$$\begin{split} T_0^0 &= -M \ \rho_\ell (\ \vec{x}^2 \) \\ T^\mu{}_\nu &= \mathrm{Diag} \left(-M \rho_\ell \ , p_r \ , p_\perp \ , p_\perp \right) \\ T^{\mu\nu}; \ \nu &= 0 \end{split}$$

GR:
$$G_{\mu \ \nu} = 8 \ \pi \ T_{\mu \ \nu} \longrightarrow T_0^0 = -M \ \delta(\vec{x})$$

 $\uparrow \ell \to 0 \qquad \ell \neq 0 \downarrow \uparrow \ell \to 0$
NCGR: $G_{\mu \ \nu}|_{\ell} = 8 \ \pi \ T_{\mu \ \nu}|_{\ell} \longleftarrow T_0^0|_{\ell} = -M \ \rho_{\ell}(\vec{x}^2)$

The Schwarzshild Geometry in the presence of ℓ Einstein/fluid equations

$$ds^{2} = -e^{2\Phi(r)} (1 - 2m(r)/r) dt^{2} + \frac{dr^{2}}{1 - 2m(r)/r} + r^{2} d\Omega^{2}$$
(2)

$$\frac{dm}{dr} = 4\pi r^2 \rho , \qquad (3)$$

$$\frac{1}{2g_{00}}\frac{dg_{00}}{dr} = \frac{m(r) + 4\pi r^3 p_r}{r(r - 2m(r))} , \qquad (4)$$

$$\frac{2g_{00}}{dp_r} \frac{dr}{1} \frac{r(r-2m(r))}{dg_{00}} \frac{2}{(r-2m(r))} \frac{2}{(r-2m($$

$$\frac{dr}{dr} = -\frac{2g_{00}}{2g_{00}}\frac{dr}{dr}(\rho + p_r) + \frac{1}{r}(p_\perp - p_r)$$
(5)

$$p_r = -\rho_\ell \tag{6}$$

The solution

$$\bullet (G_N = 1, c = 1)$$

$$ds^2 = \left(1 - \frac{4M}{r\sqrt{\pi}}\gamma\right) dt^2 - \left(1 - \frac{4M}{r\sqrt{\pi}}\gamma\right)^{-1} dr^2 - r^2 d\Omega^2$$
(7)

• $\gamma \equiv \gamma \left(3/2 \ , r^2/4\ell^2 \right)$ is the lower incomplete Gamma function:

$$\gamma \left(3/2 \ , r^2/4\ell^2 \right) \equiv \int_0^{r^2/4\ell^2} dt \ t^{1/2} e^{-t}$$
(8)

The horizon equation $g_{00}(r_H) = -g_{rr}^{-1}(r_H) = 0$

The horizon equation $g_{00}(r_H) = -g_{rr}^{-1}(r_H) = 0$

The horizon equation $g_{00}(r_H) = -g_{rr}^{-1}(r_H) = 0$

 $M = 1.9 \,\ell$

The horizon equation $g_{00}(r_H) = -g_{rr}^{-1}(r_H) = 0$

 $M = 3 \ell \Rightarrow$ two horizons; $M = \ell \Rightarrow$ no horizon;

 $M = 1.9 \,\ell \Rightarrow$ one degenerate horizon $r_0 \approx 3.0 \,\ell$, extremal BH.

At the black hole centre

The Ricci scalar near the origin is

$$R(0) = \frac{4M}{\sqrt{\pi}\,\ell^3}\tag{9}$$

- The curvature is constant and positive (deSitter geometry)
- If M < M₀ ⇒ no BH and no naked singularity (mini-gravastar?)

Large mass regime, $M \gg M_0$

- inner horizon \rightarrow origin
- outer horizon $\rightarrow 2M$

The Hawking temperature

$$T_{H} = \frac{1}{4\pi r_{H}} \left[1 - \frac{r_{H}^{3}}{4\ell^{3}} \frac{e^{-r_{H}^{2}/4\ell^{2}}}{\gamma \left(3/2 ; r_{H}^{2}/4\ell^{2}\right)} \right]$$
(10)

- ► If $r_H^2/4\ell^2 >> 1 \Rightarrow T_H = \frac{1}{4\pi r_H}$ coincides with the Hawking result
- If r_H ≃ ℓ ⇒ T_H reaches a maximum ≃ 0.015 × 1/ℓ corresponds to a mass M ≃ 2.4 × ℓ and r_H ≃ 4.7ℓ
- SCRAM phase: cooling down to absolute zero at $r_H = r_0 = 3.0\ell$ and $M = M_0 = 1.9 \ell$, the extremal BH
- If $r < r_0$ there is no black hole.

 T_H vs r_H for the commutative case

 T_H vs r_H for the commutative and **NC** case.

Back reaction

- relevant back-reaction in Planck phase.
- ▶ SCRAM phase ⇒ a suppression of quantum back-reaction
- At maximum temperature, the thermal energy is $E = T_H^{Max} \simeq 0.015 / \ell$, while the mass is $M \simeq 2.4 \ell M_P^2$

•
$$E \sim M \Rightarrow \ell \approx 0.2 L_P \sim 10^{-34} cm.$$

For this reason we can safely use unmodified form of the metric during all the evaporation process.

The Dirty solution

►

TOV equation

$$\frac{dp_r}{dr} = -\frac{m(r) + 4\pi r^3 p_r}{r(r - 2m(r))} \left(\rho + p_r\right) + \frac{2}{r} \left(p_\perp - p_r\right) \quad (11)$$

1. p_r and p_{\perp} must be asymptotically vanishing; 2. p_r and p_{\perp} must be finite at the horizon(s); 3. p_r and p_{\perp} must be finite at the origin.

$$\rho(r) + p_r(r) \equiv -\ell \, (1 - 2m/r) \, \frac{d\rho}{dr} = \frac{1}{2\ell} \, r \, \rho \, (1 - 2m/r) \, (12)$$

$$ds^{2} = -e^{2\Phi(r)} (1 - 2m(r)/r) dt^{2} + \frac{dr^{2}}{1 - 2m(r)/r} + r^{2} d\Omega^{2}$$
$$2\Phi(r) = -\frac{MG}{\ell} \left(1 - \frac{2}{\sqrt{\pi}}\gamma(3/2, r^{2}/4\ell^{2})\right)$$
(13)

The Wormhole solution

► TOV equation

$$\frac{dp_r}{dr} = -\frac{m(r) + 4\pi r^3 p_r}{r(r - 2m(r))} (\rho + p_r) + \frac{2}{r} (p_\perp - p_r)$$
(14)

$$p_r = -\frac{1}{4\pi r^3} m(r).$$
 (15)

$$ds^{2} = -dt^{2} + \frac{dr^{2}}{1 - 4M\gamma \left(\frac{3}{2}; r^{2}/4\ell^{2}\right)/\sqrt{\pi}r} + r^{2}d\Omega^{2} \quad (16)$$

Properties of the charged source term

 \blacktriangleright the charge is diffused throughout a region of linear size ℓ

$$\rho_{el.}(r) = \frac{e}{\left(4\pi\ell^2\right)^{3/2}} \exp\left(-r^2/4\ell^2\right)$$
(17)

a "point-like object" when a minimal length is considered.We find the electric field to be:

$$E(r) = \frac{2Q}{\sqrt{\pi}r^2}\gamma\left(\frac{3}{2};\frac{r^2}{4\ell^2}\right)$$
(18)

 $\blacktriangleright F^{\mu\nu} = \delta^{0[\mu|} \delta^{r|\nu]} E(r) \Rightarrow T_{el.\nu}^{\mu}$

The solution

•
$$ds^2 = g_{00} dt^2 - g_{00}^{-1} dr^2 - r^2 d\Omega^2$$
 with

$$g_{00} = 1 - \frac{4M}{r\sqrt{\pi}}\gamma + \frac{Q^2}{\pi r^2} \left[F(r) + \sqrt{2}\frac{r}{\ell}\gamma\right]$$
(19)

- $M = \oint_{\Sigma} d\sigma^{\mu} \left(T^{0}_{\mu}|_{matt.} + T^{0}_{\mu}|_{el.} \right)$ where, Σ , is a t = const., closed three-surface.
- $\blacktriangleright F(r) \equiv \gamma^2 \left(\frac{1}{2}, \frac{r^2}{4\ell^2} \right) \frac{r}{\sqrt{2\ell}} \gamma \left(\frac{1}{2}, \frac{r^2}{2\ell^2} \right)$

The asymptotic behaviors

- small $r \Rightarrow F(r) \sim O(r^6)$
- again the "singularity" is cured by the vacuum fluctuation of the spacetime fabric

$$g_{00} = 1 - \frac{m_0}{3\sqrt{\pi}\,\ell^3}\,r^2 + O\left(\,r^4\,\right) \tag{20}$$

where m_0 is "bare mass" only.

▶ at large distance, the asymptotic observer measures the *total* mass-energy M and the electric field in the usual way

$$g_{00} = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} \tag{21}$$

The Hawking temperature

$$4\pi T_{H} = \frac{1}{r_{+}} \left[1 - \frac{r_{+}^{3} \exp(-r_{+}^{2}/4\ell^{2})}{4\ell^{3}\gamma \left(3/2, r_{+}^{2}/4\ell^{2}\right)} \right] + \frac{4Q^{2}}{\pi r_{+}^{3}} \left[\gamma^{2} \left(3/2, r_{+}^{2}/4\ell^{2}\right) + \frac{r_{+}^{3} \exp(-r_{+}^{2}/4\ell^{2})}{16 \ell^{3}\gamma \left(3/2, r_{+}^{2}/4\ell^{2}\right)} F(r_{+}) \right]$$

- again instead of growing indefinitely temperature reaches a maximum value and then drops to zero at the extremal BH
- the effect of charge is just to lower the maximum temperature.

 T_H vs r_H for Q = 0

 T_H vs r_H for Q = 0, 1

 T_H vs r_H for Q = 0, 1, 2

 T_H vs r_H for Q = 0, 1, 2, 3

 T_H vs r_H for Q = 0, 1, 2, 3, 4

 T_H vs r_H for Q = 0, 1, 2, 3, 4, 5

 T_H vs r_H for Q = 0, 1, 2, 3, 4, 5, 6

 T_H vs r_H for Q = 0, 1, 2, 3, 4, 5, 6, 7

Schwinger effect

•
$$w = \frac{e^2 E^2}{\pi^2 \hbar^2 c} \exp\left(-\pi \ m^2 c^3 \ /e \ E \ \hbar\right)$$

▶ being *e* the electric charge and *E* the electric field.

BH decay

•
$$E_{horizon} > E_{critical} = \frac{m^2 c^3}{e \hbar} \Leftrightarrow Z \ge 1$$
, where $Q = Ze$

- $r_{dyadosphere} \gg \ell$.
- The Schwinger effect dominates the Hawking effect till a neutral phase.

Extradimensional Solutions

$$ds_{(m+1)}^{2} = g_{00} dt^{2} - g_{00}^{-1} dr^{2} - r^{2} d\Omega_{m-1}^{2}$$

$$g_{00} = 1 - \frac{1}{M_{*}^{m-1}} \frac{2M}{r^{m-2} \Gamma\left(\frac{m}{2}\right)} \gamma\left(\frac{m}{2}, \frac{r^{2}}{4\ell^{2}}\right) \qquad (22)$$

Charged case

$$g_{00} = 1 - \frac{1}{M_*^{m-1}} \frac{2M}{r^{m-2}\Gamma\left(\frac{m}{2}\right)} \gamma\left(\frac{m}{2}, \frac{r^2}{4\ell^2}\right) + \frac{4Q^2(m-2)}{M_*^{m-1}\pi^{m-3}r^{2m-4}} \left[F_m(r) + c_m\left(\frac{r}{\ell}\right)^{m-2} \gamma\left(\frac{m}{2}, \frac{r^2}{4\ell^2}\right)\right] F(r) \equiv \gamma^2\left(\frac{m}{2} - 1, \frac{r^2}{4\ell^2}\right) - \frac{2^{(8-3m)/2}r^{m-2}}{(m-2)\ell^{(m-2)}} \gamma\left(\frac{m}{2} - 1, \frac{r^2}{2\ell^2}\right)$$

Extradimensional Solutions

Properties of the solutions

- Geometric and thermodynamic behavior equivalent to the 4d one.
 - ► \Rightarrow there exists a mass threshold M_0 below which BH do not form.
 - $\blacktriangleright \; \Rightarrow$ there exists a zero temperature black hole remnant

BH remnants

- ▶ $1/\ell \sim M_* \sim 1$ TeV
- ▶ remnant cross section $\sigma_{BH} \simeq \pi r_0^2 \sim 10 \text{ nb} \longrightarrow 10 \text{ BHs per second at LHC.}$

Extradimensional Solutions

Maximum Temperatures for different m in the neutral case

	3	4	5	6	7	8	9	10
T_{H}^{max} (GeV)	$18 imes10^{16}$	30	43	56	67	78	89	98
T_{H}^{max} (10 ¹⁵ K)	$.21 imes10^{16}$.35	.50	.65	.78	.91	1.0	1.1

Remnant Masses and radii for different m

	3	4	5	6	7	8	9	10
M_0 (TeV)	2.3×10^{16}	6.7	24	94	$3.8 imes 10^2$	$1.6 imes 10^3$	$7.3 imes10^3$	$3.4 imes 10^4$
$r_0 (10^{-4} \text{ fm})$	4.88×10^{-16}	5.29	4.95	4.75	4.62	4.52	4.46	4.40

Potential catastrophic risk @ LHC

Black hole life times

$$\frac{dM}{dt} = -A_H \Phi, \qquad \Phi = 2 \int \frac{d^d p}{(2\pi)^d} \frac{e^{-\frac{1}{8}\ell^2 p^2} p}{e^{p\beta_d} - 1} \qquad (23)$$

Numerical results

• Assuming $M_{in} = 10$ TeV, for both brane and bulk emission

$$t_{
m decay} \lesssim 10^{-16} \, {
m sec} \ ,$$
 (24)

for any d = 3 - 10.

Summary and Outlook

Black hole solutions in the presence of ℓ

- one, two or no horizon.
- a deSitter core
- The singular behavior of the Hawking temperature is cured.
- SCRAM phase and zero-temperature final state.
- The quantum back-reaction is unimportant
- Neutral, dirty, wormhole, charged, extradimensional cases

Projects

- Spinning (charged) case
- inflationary cosmology w/o inflaton, Primordial BHs, dark matter.
- Unruh/Hawking (matter fields)
- Analog models (BEC, superfluids)

Summary and Outlook

Asymptotic Safety in QG \leftrightarrow NC Geometry

Running gravitational constant

$$G_{AS}(p) = \frac{G_0}{1 + \alpha G_0 p^2} \tag{25}$$

The black hole

$$g_{00} = 1 - \frac{2G_{AS}(r)M}{r}$$
(26)

$$G_{AS}(r) = \frac{G_0 r^3}{r^3 + \tilde{\alpha} G_0[r + \beta G_0 M]}$$
(27)

$$G_{\ell}(r) = G_0 \frac{2\gamma \left(3/2; r^2/4\ell^2\right)}{\sqrt{\pi}}$$
(28)

$$G_{\ell}(p) = G_0 \ e^{-\ell^2 p^2}$$
(29)

Summary and Outlook

$\mathsf{LQG} \leftrightarrow \mathsf{NC} \ \mathsf{Geometry}$

- LQBHs
- regular geometry
- zero temperature final state

	NCBHs	LQBHs	ASBHs
curv. sing.	cured	cured	$cured^*$
gravity eqns	Einstein equations	no	no
max temp.	yes	yes	yes
evap. end	BH remnant	two scenarios	BH remnant
charge	yes	no	no
extradim.	yes	no	no
charge + extra	yes	no	no
angular mom.	yes	no	no
*			

References

- P. N., A. Smailagic and E. Spallucci, 2006
 "NC geometry inspired Schwarzschild balck hole" *Phys. Lett. B* 632, 547.
- R. Casadio and P. N., 2008 "The decay-time of NC micro-black holes" JHEP 0811, 072.
- P. N., 2009

"NC black holes, the final appeal to quantum gravity: a review"

Int. J. of Mod. Phys. A 24, 1229.

P. N. and E. Spallucci, 2009

"NC geometry inspired wormholes and dirty black holes" *Class. Quant. Grav.* **27**, 015010.