Interacting Fixed-Points in Chiral Yukawa Systems -

Critical behaviour and Asymptotic Safety

Michael M. Scherer

in collaboration with Holger Gies, Lukas Janssen and Stefan Rechenberger

Theoretisch-Physikalisches Institut, Jena University

presented at Sussex University, March 8, 2010

<ロ> (日) (日) (日) (日) (日)

Outline

Chiral Yukawa systems in d=4

- Motivation: Triviality and Hierarchy in the standard model
- Asymptotic safety and the Wetterich equation
- Truncation for chiral Yukawa systems
- Fixed-points, critical exponents & predictivity

Chiral fermion models in d=3

- Motivation: quantitative control and statistical systems
- Four-fermion interactions and truncation
- Fixed-point mechanisms and results

(日) (周) (日) (日)

CHIRAL YUKAWA SYSTEMS IN d=4 with Holger Gies and Stefan Rechenberger

3

イロン イ団と イヨン イヨン

Standard model Higgs sector

- Higgs sector parametrizes masses of matter fields and weak gauge bosons
- will be directly tested at LHC
- Higgs sector plagued by two problems:

triviality & hierarchy problem

・ロト ・聞ト ・ヨト ・ヨト

• Parametrize Higgs field as

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{8} \phi^4 + \text{ i.a. with fermions}$$

3

・ロト ・四ト ・ヨト ・ヨト

• Parametrize Higgs field as

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{8} \phi^4 + \text{ i.a. with fermions}$$

• 1-loop correction in PT yields relation between bare and the renormalized coupling λ

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Parametrize Higgs field as

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{8} \phi^4 + \text{ i.a. with fermions}$$

• 1-loop correction in PT yields relation between bare and the renormalized coupling λ

• Landau-pole \rightarrow breakdown of perturbative QFT \rightarrow new d.o.f.?

・ロト ・聞ト ・ヨト ・ヨト

• Parametrize Higgs field as

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{8} \phi^4 + \text{ i.a. with fermions}$$

• 1-loop correction in PT yields relation between bare and the renormalized coupling λ

- Landau-pole \rightarrow breakdown of perturbative QFT \rightarrow new d.o.f.?
- Near Λ_L PT looses validity since λ grows large

イロン イヨン イヨン イヨン

• Parametrize Higgs field as

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{8} \phi^4 + \text{ i.a. with fermions}$$

• 1-loop correction in PT yields relation between bare and the renormalized coupling λ

- $\bullet~$ Landau-pole $\rightarrow~$ breakdown of perturbative QFT $\rightarrow~$ new d.o.f.?
- Near Λ_L PT looses validity since λ grows large
- Need non-perturbative tool to study triviality & take into account fermions!

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Huge hierarchy in SM

$\Lambda_{EW} \sim 10^2 GeV \ll \Lambda_{GUT} \sim 10^{16} GeV$

2

イロン イ理ト イヨト イヨト

Huge hierarchy in SM

 $\Lambda_{EW} \sim 10^2 GeV \ll \Lambda_{GUT} \sim 10^{16} GeV$

Higgs mass renormalizes quadratically ($\delta m^2 \sim \Lambda^2$) in PT

$$\overbrace{\sim 10^4 \text{GeV}^2}^{m_{\text{R}}^2} \sim \overbrace{\sim 10^{32} (X + \dots 10^{-28}) \text{GeV}^2}^{m_{\Lambda,\text{UV}}^2} -\delta m^2$$

with a counterterm $\delta m^2 = X \cdot 10^{32} {\rm GeV}^2$

3

・ロト ・聞 ト ・ ヨト ・ ヨト

Huge hierarchy in SM

 $\Lambda_{EW} \sim 10^2 GeV \ll \Lambda_{GUT} \sim 10^{16} GeV$

Higgs mass renormalizes quadratically ($\delta m^2 \sim \Lambda^2$) in PT

$$\overbrace{\sim 10^4 \text{GeV}^2}^{m_{\text{R}}^2} \sim \overbrace{\sim 10^{32} (X + ... 10^{-28}) \text{GeV}^2}^{m_{\Lambda,\text{UV}}^2} -\delta m^2$$

with a counterterm $\delta m^2 = X \cdot 10^{32} {
m GeV}^2$

- \bullet Perform fine-tuning with precision $\Lambda_{EW}^2/\Lambda_{GUT}^2\sim 10^{-28}.$
- This seems to be "unnatural"

(日) (圖) (E) (E) (E)

Huge hierarchy in SM

 $\Lambda_{EW} \sim 10^2 GeV \ll \Lambda_{GUT} \sim 10^{16} GeV$

Higgs mass renormalizes quadratically ($\delta m^2 \sim \Lambda^2$) in PT

$$\overbrace{\sim 10^4 \text{GeV}^2}^{m_{\text{R}}^2} \sim \overbrace{\sim 10^{32} (X + ... 10^{-28}) \text{GeV}^2}^{m_{\Lambda,\text{UV}}^2} -\delta m^2$$

with a counterterm $\delta m^2 = X \cdot 10^{32} {
m GeV}^2$

- \bullet Perform fine-tuning with precision $\Lambda_{EW}^2/\Lambda_{GUT}^2\sim 10^{-28}.$
- This seems to be "unnatural"

Hierarchy problem corresponds to existence of a large critical exponent $\Theta_I > 0$ at a fixed point (e.g. in ϕ^4 -theory at the GFP $\Theta = 2$)

(日) (圖) (E) (E) (E)

Asymptotic safety

- Triviality and the Hierarchy problem arise in perturbative QFT
- Non-perturbative scenario, which can circumvent these problems:

Asymptotic safety scenario (Weinberg '76)

・ロト ・聞ト ・ヨト ・ヨト

Asymptotic safety

- Triviality and the Hierarchy problem arise in perturbative QFT
- Non-perturbative scenario, which can circumvent these problems:

Asymptotic safety scenario (Weinberg '76)

- AS scenario mainly discussed in the context of a quantum theory for gravity
- Recently, AS scenario for QG has received strong support thanks to new techniques in non-perturbative quantum field theory
- Very active reasearch on realisation of AS in QG as well as observational consequences (BH, Cosmology, LHC physics,...)

・ロト ・聞ト ・ヨト ・ヨト

Asymptotic safety

- Triviality and the Hierarchy problem arise in perturbative QFT
- Non-perturbative scenario, which can circumvent these problems:

Asymptotic safety scenario (Weinberg '76)

- AS scenario mainly discussed in the context of a quantum theory for gravity
- Recently, AS scenario for QG has received strong support thanks to new techniques in non-perturbative quantum field theory
- Very active reasearch on realisation of AS in QG as well as observational consequences (BH, Cosmology, LHC physics,...)
- Setting of the AS scenario is more general and might also be applied to other QFTs that have problems with non-renormalizability
- As a toy model for the SM we will investigate a class of chiral Yukawa systems

General notion of asymptotic safety

Effective average action: $\Gamma_k[\chi] = \sum_i g_{i,k} \mathcal{O}_i$, Scale dependence: $k \partial_k \Gamma_k[\chi] = \sum_i \beta_{i,k} \mathcal{O}_i$.

M. M. Scherer (TPI Jena)

General notion of asymptotic safety

Effective average action: $\Gamma_k[\chi] = \sum_i g_{i,k} \mathcal{O}_i$, Scale dependence: $k \partial_k \Gamma_k[\chi] = \sum_i \beta_{i,k} \mathcal{O}_i$.

General notion of asymptotic safety

Effective average action: $\Gamma_k[\chi] = \sum_i g_{i,k} \mathcal{O}_i$, Scale dependence: $k \partial_k \Gamma_k[\chi] = \sum_i \beta_{i,k} \mathcal{O}_i$.

Triviality & hierarchy problem in the asymptotic safety scenario

- If NGFP exists we can draw the limit $\Lambda\to\infty\to$ system independent from UV cutoff \to no triviality problem
- Dimension of the critical surface: $\Delta = \dim S =$ number of relevant directions
- If $\Delta < \infty \rightarrow$ system predictive
- Hierarchy problem \sim large critical exponents $\Theta_I > 0$.
- RG computation will show how large the Θ_I are at a NGFP (GFP $\Theta = 2$)

(日) (周) (王) (王)

Exact RG equations (ERGE) derived from path-integral representation (Wetterich '93)

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \mathsf{STr}\{[\Gamma_k^{(2)}[\Phi] + R_k]^{-1}(\partial_t R_k)\}, \quad \partial_t = k \frac{d}{dk}$$

æ

イロン イ団と イヨン イヨン

Exact RG equations (ERGE) derived from path-integral representation (Wetterich '93)

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \mathsf{STr}\{[\Gamma_k^{(2)}[\Phi] + R_k]^{-1}(\partial_t R_k)\}, \quad \partial_t = k \frac{d}{dk}$$

Plugging in an effective average action $\Gamma_k[\Phi] = \sum_i g_{i,k} \mathcal{O}_i$, we obtain β -functions

 $\partial_t g_{i,k} = \beta_{i,k}(g_{1,k}, g_{2,k}, \ldots)$

イロト イポト イヨト イヨト 三日

Exact RG equations (ERGE) derived from path-integral representation (Wetterich '93)

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \mathsf{STr}\{[\Gamma_k^{(2)}[\Phi] + R_k]^{-1}(\partial_t R_k)\}, \quad \partial_t = k \frac{d}{dk}$$

Plugging in an effective average action $\Gamma_k[\Phi] = \sum_i g_{i,k} \mathcal{O}_i$, we obtain β -functions

$$\partial_t g_{i,k} = \beta_{i,k}(g_{1,k}, g_{2,k}, \ldots)$$

At a FP we linearize the β -functions

$$\partial_t g_{i,k} = B_i^j (g_{j,k} - g_j^*), \ B_i^j = \frac{\partial \beta_i}{\partial g_{j,k}} \Big|_{g^*}$$

æ

ヘロト 人間ト 人間ト 人間ト

Exact RG equations (ERGE) derived from path-integral representation (Wetterich '93)

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \mathsf{STr}\{[\Gamma_k^{(2)}[\Phi] + R_k]^{-1}(\partial_t R_k)\}, \quad \partial_t = k \frac{d}{dk}$$

Plugging in an effective average action $\Gamma_k[\Phi] = \sum_i g_{i,k} \mathcal{O}_i$, we obtain β -functions

$$\partial_t g_{i,k} = \beta_{i,k}(g_{1,k}, g_{2,k}, \ldots)$$

At a FP we linearize the β -functions

$$\partial_t g_{i,k} = B_i^j (g_{j,k} - g_j^*), \ B_i^j = \frac{\partial \beta_i}{\partial g_{j,k}} \Big|_{g^*}$$

General solution of the linearized fixed-point equation

$$g_{i,k} = g_i^* + \sum_{l} C_l V_i^l \left(\frac{k_0}{k}\right)^{\Theta_l}$$

ヘロト 人間ト 人間ト 人間ト

Exact RG equations (ERGE) derived from path-integral representation (Wetterich '93)

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \mathsf{STr}\{[\Gamma_k^{(2)}[\Phi] + R_k]^{-1}(\partial_t R_k)\}, \quad \partial_t = k \frac{d}{dk}$$

Plugging in an effective average action $\Gamma_k[\Phi] = \sum_i g_{i,k} \mathcal{O}_i$, we obtain β -functions

$$\partial_t g_{i,k} = \beta_{i,k}(g_{1,k}, g_{2,k}, \ldots)$$

At a FP we linearize the β -functions

$$\partial_t g_{i,k} = B_i^j (g_{j,k} - g_j^*), \ B_i^j = \frac{\partial \beta_i}{\partial g_{j,k}}\Big|_{g^*}$$

General solution of the linearized fixed-point equation

$$g_{i,k} = g_i^* + \sum_{l} C_l V_i^l \left(\frac{k_0}{k}\right)^{\Theta_l}$$

- Re $\Theta_I > 0$: relevant coupling (to be fixed by experiment)
- Re $\Theta_I < 0$: irrelevant coupling (prediction for physical observable in the IR)

イロト イポト イヨト イヨト 三日

Toy model - chiral Yukawa system

Derivative expansion, leading-order truncation

$$\Gamma_{k} = \int d^{4}x \Big\{ i(\bar{\psi}_{L}^{a}\partial\!\!/\psi_{L}^{a} + \bar{\psi}_{R}\partial\!\!/\psi_{R}) + (\partial_{\mu}\phi^{a\dagger})(\partial^{\mu}\phi^{a}) \\ + U_{k}(\rho) + \bar{h}_{k}\bar{\psi}_{R}\phi^{a\dagger}\psi_{L}^{a} - \bar{h}_{k}\bar{\psi}_{L}^{a}\phi^{a}\psi_{R} \Big\}$$

- $N_{
 m L}$ left-handed fermions $\psi^a_{
 m L}$, 1right-handed fermion $\psi_{
 m R}$
- $N_{
 m L}$ complex bosons ϕ^a

E

ヘロト 人間ト 人間ト 人間ト

Toy model - chiral Yukawa system

Derivative expansion, leading-order truncation

$$\Gamma_{k} = \int d^{4}x \Big\{ i(\bar{\psi}_{L}^{a}\partial\!\!\!/\psi_{L}^{a} + \bar{\psi}_{R}\partial\!\!\!/\psi_{R}) + (\partial_{\mu}\phi^{a\dagger})(\partial^{\mu}\phi^{a}) \\ + U_{k}(\rho) + \bar{h}_{k}\bar{\psi}_{R}\phi^{a\dagger}\psi_{L}^{a} - \bar{h}_{k}\bar{\psi}_{L}^{a}\phi^{a}\psi_{R} \Big\}$$

- $N_{
 m L}$ left-handed fermions $\psi^a_{
 m L}$, 1right-handed fermion $\psi_{
 m R}$
- $N_{
 m L}$ complex bosons ϕ^a
- invariant under chiral $\mathit{U}(\mathit{N}_{\mathrm{L}})_{\mathrm{L}} \otimes \mathit{U}(1)_{\mathrm{R}}$ transformations
- define $\rho=\phi^{a\dagger}\phi^a$

• dimensionless quantities: $\tilde{\rho} = k^{2-d}\rho$, $h^2 = k^{d-4}\bar{h}_k^2$, $u(\tilde{\rho}) = k^{-d}U_k(\rho)|_{\rho=k^{d-2}\tilde{\rho}}$

(日) (圖) (E) (E) (E)

Toy model - chiral Yukawa system

Derivative expansion, leading-order truncation

$$\Gamma_{k} = \int d^{4}x \Big\{ i(\bar{\psi}_{L}^{a}\partial\!\!/\psi_{L}^{a} + \bar{\psi}_{R}\partial\!\!/\psi_{R}) + (\partial_{\mu}\phi^{a\dagger})(\partial^{\mu}\phi^{a}) \\ + U_{k}(\rho) + \bar{h}_{k}\bar{\psi}_{R}\phi^{a\dagger}\psi_{L}^{a} - \bar{h}_{k}\bar{\psi}_{L}^{a}\phi^{a}\psi_{R} \Big\}$$

- N_{L} left-handed fermions $\psi_{\mathrm{L}}^{\it{a}}$, 1right-handed fermion ψ_{R}
- $N_{
 m L}$ complex bosons ϕ^a
- \bullet invariant under chiral $\mathit{U}(\mathit{N}_{\rm L})_{\rm L} \otimes \mathit{U}(1)_{\rm R}$ transformations
- $\bullet~{\rm define}~\rho=\phi^{a\dagger}\phi^a$

• dimensionless quantities: $\tilde{\rho} = k^{2-d}\rho$, $h^2 = k^{d-4}\bar{h}_k^2$, $u(\tilde{\rho}) = k^{-d}U_k(\rho)|_{\rho=k^{d-2}\tilde{\rho}}$

Fixed-point mechanism

Loop contributions to the running of κ

 $\partial_t \kappa = -2\kappa + \text{bosonic interactions} - \text{fermionic interactions}$

- \bullet Dominating fluctuations of boson field allow for positive κ^*
- Suitable κ -dependence flattens the β -function near fixed-point (reduces the hierachy problem)
- near FP the vev exhibits a conformal behaviour $v \sim k$

ヘロト 人間 ト くほ ト くほ トー

Fixed-point analysis for our toy model

- Whether or not the balancing possible crucially depends on d.o.f. of the model.
- LO truncation can be parametrized by three couplings: h^2, λ, κ .

$$\partial_t h^2 = \beta_h(h^2, \lambda, \kappa) = 0,$$

$$\partial_t \lambda = \beta_\lambda(h^2, \lambda, \kappa) = 0.$$

 \Rightarrow obtain a conditional fixed-point

$$\partial_t \kappa = \beta_\kappa(h^{2*}, \lambda^*, \kappa) = 0.$$

・ロト ・聞ト ・ヨト ・ヨト

Fixed-point analysis for our toy model

- Whether or not the balancing possible crucially depends on d.o.f. of the model.
- LO truncation can be parametrized by three couplings: h^2, λ, κ .

$$\begin{aligned} \partial_t h^2 &= \beta_h(h^2, \lambda, \kappa) = 0, \\ \partial_t \lambda &= \beta_\lambda(h^2, \lambda, \kappa) = 0. \end{aligned}$$

 \Rightarrow obtain a conditional fixed-point

$$\partial_t \kappa = \beta_\kappa(h^{2*}, \lambda^*, \kappa) = 0.$$

 β_{κ} -function receives the contributions

Fixed-points and critical exponents

We find a NGFPs for $1 \le N_L \le 29$

<ロ> (日) (日) (日) (日) (日)

Fixed-points and critical exponents

We find a NGFPs for $1 \le N_L \le 29$

and the CRITICAL EXPONENTS

∃⇒

UV fixed-point regime for $N_{ m L}=10$

 ${\scriptstyle \bullet}$ Convergence of the fixed-point potential u^{*} at LO

$$\begin{split} {\rm FP:} \qquad \kappa^* = 0.0152, \quad \lambda^* = 12.13, \quad h^{*2} = 57.41\,, \\ {\rm Critical \ exponents:} \qquad \Theta_1 = 1.056, \quad \Theta_2 = -0.175, \quad \Theta_3 = -2.350 \end{split}$$

- ${\color{red}\bullet}$ 1 relevant direction \rightarrow 1 physical parameter to be fixed
- All other parameters are predictions from the theory
- $\bullet\,$ The real part of the relevant direction is 1.056 $\rightarrow\,$ Hierarchy problem weaker

(Toy-)Higgs mass and (Toy-)Top mass from asymptotic safety

- Flow is fixed by IR value of κ
- In realistic model this corresponds to the Higgs vev

$$v = \lim_{k \to 0} \sqrt{2\kappa} k$$

• IR values of other two parameters are predictions related to the Higgs and the top mass

 $m_{\text{Higgs}} = \sqrt{\lambda_2} v, \quad m_{\text{top}} = \sqrt{h^2} v.$

(日) (圖) (E) (E) (E)

(Toy-)Higgs mass and (Toy-)Top mass from asymptotic safety

- Flow is fixed by IR value of κ
- In realistic model this corresponds to the Higgs vev

$$v = \lim_{k \to 0} \sqrt{2\kappa} k$$

IR values of other two parameters are predictions related to the Higgs and the top mass

 $m_{\text{Higgs}} = \sqrt{\lambda_2} v, \quad m_{\text{top}} = \sqrt{h^2} v.$

• Choosing v = 246 GeV and $N_{\text{L}} = 10$ as an example, we find

 $m_{\text{Higgs}} = 0.97 v = 239 \text{GeV}, \quad m_{\text{top}} = 5.56 v = 1422 \text{GeV}.$

イロト イロト イヨト イヨト 三日

CHIRAL YUKAWA SYSTEMS IN d=3 with Holger Gies, Lukas Janssen and Stefan Rechenberger

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Chiral fermion models in d=3, Motivation

- Understanding EW SSB requires quantitative control of fluctuating chiral fermions and bosons beyond PT
- 3-d chiral fermion models (QED₃, Thirring model): high- T_c cuprates, graphene

イロン イヨン イヨン イヨン

Chiral fermion models in d=3, Motivation

Quantitative comparisons between (non-perturbative) field-theoretical models

1. Example: O(N)-models (table from Blaizot et al., Phys. Rev. E80: 030103, 2009)

N	N BMW				Resummed perturbative expansions					Monte-Carlo and high-temperature series				
	η	ν	ω	C	η	ν	ω	c	Ref. ^a	η	ν	ω	c	Ref. ^a
0	0.034	0.589	0.83		0.0284(25)	0.5882(11)	0.812(16)		[17]	0.030(3)	0.5872(5)	0.88		[18][19]
1	0.039	0.632	0.78	1.15	0.0335(25)	0.6304(13)	0.799(11)	1.07(10)	[17][14]	0.0368(2)	0.6302(1)	0.821(5)	1.09(9)	[20][21]
2	0.041	0.674	0.75	1.37	0.0354(25)	0.6703(15)	0.789(11)	1.27(10)	[17][14]	0.0381(2)	0.6717(1)	0.785(20)	1.32(2)	[22][23]
3	0.040	0.715	0.73	1.50	0.0355(25)	0.7073(35)	0.782(13)	1.43(11)	[17][14]	0.0375(5)	0.7112(5)	0.773		[24, 25]
4	0.038	0.754	0.72	1.63	0.035(4)	0.741(6)	0.774(20)	1.54(11)	[17][14]	0.0365(10)	0.749(2)	0.765	1.6(1)	[25][21]
10	0.022	0.889	0.80		0.024	0.859			[26]					

TABLE I: Coefficient c and critical exponents of the O(N) models for d = 3.

19 / 27

Chiral fermion models in d=3, Motivation

Quantitative comparisons between (non-perturbative) field-theoretical models

1. Example: O(N)-models (table from Blaizot et al., Phys. Rev. E80: 030103, 2009)

N		BMW		Resummed perturbative expansions					Monte-Carlo and high-temperature series					
	η	ν	ω	C	η	ν	ω	c	$\operatorname{Ref.}^{a}$	η	ν	ω	c	Ref. ^a
0	0.034	0.589	0.83		0.0284(25)	0.5882(11)	0.812(16)		[17]	0.030(3)	0.5872(5)	0.88		[18][19]
1	0.039	0.632	0.78	1.15	0.0335(25)	0.6304(13)	0.799(11)	1.07(10)	[17][14]	0.0368(2)	0.6302(1)	0.821(5)	1.09(9)	[20][21]
2	0.041	0.674	0.75	1.37	0.0354(25)	0.6703(15)	0.789(11)	1.27(10)	[17][14]	0.0381(2)	0.6717(1)	0.785(20)	1.32(2)	[22][23]
3	0.040	0.715	0.73	1.50	0.0355(25)	0.7073(35)	0.782(13)	1.43(11)	[17][14]	0.0375(5)	0.7112(5)	0.773		[24, 25]
4	0.038	0.754	0.72	1.63	0.035(4)	0.741(6)	0.774(20)	1.54(11)	[17][14]	0.0365(10)	0.749(2)	0.765	1.6(1)	[25][21]
10	0.022	0.889	0.80		0.024	0.859			[26]					

TABLE I: Coefficient c and critical exponents of the O(N) models for d = 3.

2. Example: Gross-Neveu-model with N fermions in d=3 (e.g. N = 12):

- MC similation (S. Hands, A. Kocic & J. B. Kogut, 1993): $\nu = 1.022$, $\eta_{\sigma} = 0.913$
- FRG (L. Rosa, P. Vitale & C. Wetterich, 2002): $\nu = 1.023, \ \eta_{\sigma} = 0.936$

ヘロト 人間ト 人間ト 人間ト

Classification of 3d fermionic models

$$S = \int d^3 x \{ \bar{\psi}^a \gamma^\mu \partial_\mu \psi^a + (\bar{\psi}^a \mathcal{O}_X \psi^a) (\bar{\psi}^b \mathcal{O}_Y \psi^b) \}$$

3

イロト イヨト イヨト イヨト

Classification of 3d fermionic models

$$S = \int d^3 x \{ \bar{\psi}^a \gamma^\mu \partial_\mu \psi^a + (\bar{\psi}^a \mathcal{O}_X \psi^a) (\bar{\psi}^b \mathcal{O}_Y \psi^b) \}$$

- γ_{μ} in usual Euclidean chiral rep., i.e. 4 imes 4
- $\psi^a, \bar{\psi}^a$ are 4-component spinors
- reducible rep. gives rise to 2 "fifth- γ " matrices γ_4 & γ_5 : $\{\gamma_{4,5}, \gamma_{\mu}\} = 0$, $\{\gamma_4, \gamma_5\} = 0$
- 4 × 4 Dirac algebra $\mathcal{O}_X, \mathcal{O}_Y \in \{\mathbb{1}, \gamma_\mu, \gamma_4, \sigma_{\mu\nu}, i\gamma_\mu\gamma_4, i\gamma_\mu\gamma_5, i\gamma_4\gamma_5, \gamma_5\}$
- define chiral projectors $P_{\rm L/R} = \frac{1}{2}(1 \pm \gamma_5)$
- Weyl spinors: $\psi_{L/R} = P_{L/R}\psi$, $\bar{\psi}_{L/R} = \bar{\psi}P_{R/L}$

ヘロト 人間ト 人間ト 人間ト

Classification of 3d fermionic models

$$S = \int d^3x \{ \bar{\psi}^a \gamma^\mu \partial_\mu \psi^a + (\bar{\psi}^a \mathcal{O}_X \psi^a) (\bar{\psi}^b \mathcal{O}_Y \psi^b) \}$$

- γ_{μ} in usual Euclidean chiral rep., i.e. 4 imes 4
- $\psi^a, \bar{\psi}^a$ are 4-component spinors
- reducible rep. gives rise to 2 "fifth- γ " matrices γ_4 & γ_5 : $\{\gamma_{4,5}, \gamma_{\mu}\} = 0$, $\{\gamma_4, \gamma_5\} = 0$
- 4 × 4 Dirac algebra $\mathcal{O}_X, \mathcal{O}_Y \in \{\mathbb{1}, \gamma_\mu, \gamma_4, \sigma_{\mu\nu}, i\gamma_\mu\gamma_4, i\gamma_\mu\gamma_5, i\gamma_4\gamma_5, \gamma_5\}$
- define chiral projectors $P_{\rm L/R} = \frac{1}{2}(\mathbb{1} \pm \gamma_5)$
- Weyl spinors: $\psi_{L/R} = P_{L/R}\psi$, $\bar{\psi}_{L/R} = \bar{\psi}P_{R/L}$
- Now impose chiral ${
 m U}(\textit{N}_{
 m L})_{
 m L} \otimes {
 m U}(\textit{N}_{
 m R})_{
 m R}$ symmetry

$$\begin{array}{ll} \mathrm{U}(N_{\mathrm{L}})_{\mathrm{L}}: & \psi_{\mathrm{L}}^{a} \mapsto U_{\mathrm{L}}^{ab}\psi_{\mathrm{L}}^{b}, & \bar{\psi}_{\mathrm{L}}^{a} \mapsto \bar{\psi}_{\mathrm{L}}^{b}(U_{\mathrm{L}}^{\dagger})^{ba}, \\ \mathrm{U}(N_{\mathrm{R}})_{\mathrm{R}}: & \psi_{\mathrm{R}}^{a} \mapsto U_{\mathrm{R}}^{ab}\psi_{\mathrm{R}}^{b}, & \bar{\psi}_{\mathrm{R}}^{a} \mapsto \bar{\psi}_{\mathrm{R}}^{b}(U_{\mathrm{R}}^{\dagger})^{ba} \end{array}$$

 \bullet includes ${\rm U}(1)_{\rm A}$ axial transformations and ${\rm U}(1)_{\rm V}$ phase rotations, thus

 $\mathrm{U}(N_{\mathrm{L}})_{\mathrm{L}} \otimes \mathrm{U}(N_{\mathrm{R}})_{\mathrm{R}} \cong \mathrm{SU}(N_{\mathrm{L}})_{\mathrm{L}} \otimes \mathrm{SU}(N_{\mathrm{R}})_{\mathrm{R}} \otimes \mathrm{U}(1)_{\mathrm{A}} \otimes \mathrm{U}(1)_{\mathrm{V}}$

Reducible rep \Rightarrow discrete trafos not unique

• Charge conjugation $C = \frac{1}{2}[(1 + \epsilon)\gamma_2\gamma_5 + i(1 - \epsilon)\gamma_2\gamma_4]$ and ϵ arbitrary complex phase

$$\mathcal{C}: \psi^a \mapsto \left(\bar{\psi}^a \mathcal{C} \right)^T, \quad \bar{\psi}^a \mapsto - \left(\mathcal{C}^\dagger \psi^a \right)^T$$

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reducible rep \Rightarrow discrete trafos not unique

• Charge conjugation $C = \frac{1}{2}[(1 + \epsilon)\gamma_2\gamma_5 + i(1 - \epsilon)\gamma_2\gamma_4]$ and ϵ arbitrary complex phase

$$\mathcal{C}: \psi^a \mapsto \left(\bar{\psi}^a \mathcal{C} \right)^T, \quad \bar{\psi}^a \mapsto - \left(\mathcal{C}^{\dagger} \psi^a \right)^T$$

• Parity trafe $(x_1, x_2, x_3) \mapsto (-x_1, x_2, x_3) =: \tilde{x}$ with $P = \frac{1}{2}[(1 + \zeta)\gamma_1\gamma_4 + i(1 - \zeta)\gamma_1\gamma_5]$

 $\mathcal{P}: \psi^a(x) \mapsto P\psi^a(\tilde{x}), \quad \bar{\psi}^a(x) \mapsto \bar{\psi}^a(\tilde{x})P^{\dagger}$

◆ロト ◆聞と ◆注と ◆注と 二注

Reducible rep \Rightarrow discrete trafos not unique

• Charge conjugation $C = \frac{1}{2}[(1 + \epsilon)\gamma_2\gamma_5 + i(1 - \epsilon)\gamma_2\gamma_4]$ and ϵ arbitrary complex phase

$$\mathcal{C}: \psi^{a} \mapsto \left(\bar{\psi}^{a} \mathcal{C} \right)^{T}, \quad \bar{\psi}^{a} \mapsto - \left(\mathcal{C}^{\dagger} \psi^{a} \right)^{T}$$

• Parity trafo $(x_1, x_2, x_3) \mapsto (-x_1, x_2, x_3) =: \tilde{x}$ with $P = \frac{1}{2}[(1 + \zeta)\gamma_1\gamma_4 + i(1 - \zeta)\gamma_1\gamma_5]$ $\mathcal{P}: \psi^a(x) \mapsto \mathcal{P}\psi^a(\tilde{x}), \quad \bar{\psi}^a(x) \mapsto \bar{\psi}^a(\tilde{x})\mathcal{P}^{\dagger}$

• time reversal $(x_1, x_2, x_3) \mapsto (x_1, x_2, -x_3) =: \hat{x}$ with $T = \frac{1}{2}[(1+\eta)\gamma_2\gamma_3 + i(1-\eta)\gamma_1]$ $T : \psi^a(x) \mapsto T\psi^a(\hat{x}), \quad \bar{\psi}^a(x) \mapsto \bar{\psi}^a(\hat{x})T^{\dagger}$

Reducible rep \Rightarrow discrete trafos not unique

• Charge conjugation $C = \frac{1}{2}[(1 + \epsilon)\gamma_2\gamma_5 + i(1 - \epsilon)\gamma_2\gamma_4]$ and ϵ arbitrary complex phase

$$\mathcal{C}: \psi^{a} \mapsto \left(\bar{\psi}^{a} \mathcal{C} \right)^{T}, \quad \bar{\psi}^{a} \mapsto - \left(\mathcal{C}^{\dagger} \psi^{a} \right)^{T}$$

• Parity trafe $(x_1, x_2, x_3) \mapsto (-x_1, x_2, x_3) =: \tilde{x}$ with $P = \frac{1}{2}[(1 + \zeta)\gamma_1\gamma_4 + i(1 - \zeta)\gamma_1\gamma_5]$ $\mathcal{P}: \psi^a(x) \mapsto \mathcal{P}\psi^a(\tilde{x}), \quad \bar{\psi}^a(x) \mapsto \bar{\psi}^a(\tilde{x})\mathcal{P}^{\dagger}$

• time reversal $(x_1, x_2, x_3) \mapsto (x_1, x_2, -x_3) =: \hat{x}$ with $T = \frac{1}{2}[(1 + \eta)\gamma_2\gamma_3 + i(1 - \eta)\gamma_1]$ $T : \psi^a(x) \mapsto T\psi^a(\hat{x}), \quad \bar{\psi}^a(x) \mapsto \bar{\psi}^a(\hat{x})T^{\dagger}$

Transformation properties of bilinears:

Classification

Invariant terms under $U(N_L)_L \otimes U(N_R)_R \otimes C(\epsilon = 1) \otimes \mathcal{P}(\zeta = 1) \otimes \mathcal{T}(\eta = 1)$:

- no invariant mass terms
- invariant standard kinetic terms
- 12 invariant 4-Fermi interaction terms

$$\begin{pmatrix} \bar{\psi}_{\rm L}^{a} \psi_{\rm R}^{b} \end{pmatrix} \left(\bar{\psi}_{\rm R}^{b} \psi_{\rm L}^{a} \right), \\ \left(\bar{\psi}_{\rm L}^{a} \gamma_{4} \psi_{\rm L}^{b} \right) \left(\bar{\psi}_{\rm L}^{b} \gamma_{4} \psi_{\rm R}^{b} \right), \quad \left(\bar{\psi}_{\rm R}^{a} \gamma_{4} \psi_{\rm R}^{b} \right) \left(\bar{\psi}_{\rm R}^{b} \gamma_{4} \psi_{\rm R}^{a} \right), \\ \left(\bar{\psi}_{\rm L}^{a} \gamma_{\mu} \psi_{\rm L}^{b} \right) \left(\bar{\psi}_{\rm L}^{b} \gamma_{\mu} \psi_{\rm L}^{a} \right), \quad \left(\bar{\psi}_{\rm R}^{a} \gamma_{\mu} \psi_{\rm R}^{b} \right) \left(\bar{\psi}_{\rm R}^{b} \gamma_{\mu} \psi_{\rm R}^{a} \right), \\ \left(\bar{\psi}_{\rm L}^{a} i \gamma_{\mu} \gamma_{4} \psi_{\rm R}^{b} \right) \left(\bar{\psi}_{\rm R}^{b} i \gamma_{\mu} \gamma_{4} \psi_{\rm L}^{a} \right)$$

+6 terms with inverse flavour structure

◆□→ ◆圖→ ◆理→ ◆理→ 三理

Classification

Invariant terms under $U(N_L)_L \otimes U(N_R)_R \otimes C(\epsilon = 1) \otimes \mathcal{P}(\zeta = 1) \otimes \mathcal{T}(\eta = 1)$:

- no invariant mass terms
- invariant standard kinetic terms
- 12 invariant 4-Fermi interaction terms

$$\begin{pmatrix} \bar{\psi}_{\rm L}^{a} \psi_{\rm R}^{b} \end{pmatrix} \left(\bar{\psi}_{\rm R}^{b} \psi_{\rm L}^{a} \right),$$

$$\begin{pmatrix} \bar{\psi}_{\rm L}^{a} \gamma_{4} \psi_{\rm L}^{b} \end{pmatrix} \left(\bar{\psi}_{\rm L}^{b} \gamma_{4} \psi_{\rm L}^{a} \right), \quad \left(\bar{\psi}_{\rm R}^{a} \gamma_{4} \psi_{\rm R}^{b} \right) \left(\bar{\psi}_{\rm R}^{b} \gamma_{4} \psi_{\rm R}^{a} \right),$$

$$\begin{pmatrix} \bar{\psi}_{\rm L}^{a} \gamma_{\mu} \psi_{\rm L}^{b} \end{pmatrix} \left(\bar{\psi}_{\rm L}^{b} \gamma_{\mu} \psi_{\rm L}^{a} \right), \quad \left(\bar{\psi}_{\rm R}^{a} \gamma_{\mu} \psi_{\rm R}^{b} \right) \left(\bar{\psi}_{\rm R}^{b} \gamma_{\mu} \psi_{\rm R}^{a} \right),$$

$$\begin{pmatrix} \bar{\psi}_{\rm L}^{a} i \gamma_{\mu} \gamma_{4} \psi_{\rm R}^{b} \end{pmatrix} \left(\bar{\psi}_{\rm R}^{b} i \gamma_{\mu} \gamma_{4} \psi_{\rm L}^{a} \right)$$

+6 terms with inverse flavour structure

• terms with inverse flavour structure are not independent: Fierz transformations = 6 equations $\Rightarrow 12 - 6 = 6$ invariant terms

Classification includes NJL-type models, Thirring model, Gross-Neveu model and effetive models for various parts of the cuprate phase diagram

Partial bosonization

Hubbard-Stratonovich trafo introduces 6 boson-fermion i.a.

- 1 scalar boson $\sim ar{\psi}^{\text{a}}_{\mathrm{L}} \psi^{\text{b}}_{\mathrm{R}}$
- 2 pseudo-scalar bosons $\sim \bar{\psi}^{a}_{\rm L/R} \gamma_4 \psi^{b}_{\rm L/R}$
- 2 vector bosons $\sim \bar{\psi}^{\rm a}_{\rm L/R} \gamma_{\mu} \psi^{\rm b}_{\rm L/R}$
- 1 pseudo-vector boson $\sim ar{\psi}^{a}_{
 m L} i \gamma_{\mu} \gamma_{4} \psi^{b}_{
 m R}$

 \Rightarrow in general: competing order parameters!

(日) (圖) (E) (E) (E)

Partial bosonization

Hubbard-Stratonovich trafo introduces 6 boson-fermion i.a.

- 1 scalar boson $\sim ar{\psi}^{\text{a}}_{\mathrm{L}} \psi^{\text{b}}_{\mathrm{R}}$
- 2 pseudo-scalar bosons $\sim \bar{\psi}^{a}_{\rm L/R} \gamma_4 \psi^{b}_{\rm L/R}$
- 2 vector bosons $\sim \bar{\psi}^{a}_{\rm L/R} \gamma_{\mu} \psi^{b}_{\rm L/R}$
- 1 pseudo-vector boson $\sim ar{\psi}^a_{
 m L} i \gamma_\mu \gamma_4 \psi^b_{
 m R}$

 \Rightarrow in general: competing order parameters!

- Focus on Lorentz-invariant and parity-conserving condensation channel: scalar i.a.
- $N_{
 m R}=1$ and $N_{
 m L}\geq 1$: similar to SM with $N_{
 m L}=2$
- \Rightarrow Yukawa action

$$S_{\mathsf{Yuk}} = \int \mathrm{d}^3 x \{ \frac{1}{2\lambda} \phi^{\mathfrak{s}\dagger} \phi^{\mathfrak{s}} + \bar{\psi}_{\mathrm{L}}^{\mathfrak{s}} \mathrm{i} \partial \psi_{\mathrm{L}}^{\mathfrak{s}} + \bar{\psi}_{\mathrm{R}} \mathrm{i} \partial \psi_{\mathrm{R}} + \phi^{\mathfrak{s}\dagger} \bar{\psi}_{\mathrm{R}} \psi_{\mathrm{L}}^{\mathfrak{s}} - \phi^{\mathfrak{s}} \bar{\psi}_{\mathrm{L}}^{\mathfrak{s}} \psi_{\mathrm{R}} \}$$

(日) (圖) (E) (E) (E)

Truncation

NLO derivative expansion

$$\begin{split} \Gamma_{k} &= \int \mathrm{d}^{3} x \Big\{ Z_{\mathrm{L},k} \bar{\psi}_{\mathrm{L}}^{a} \mathrm{i} \partial \!\!\!/ \psi_{\mathrm{L}}^{a} + Z_{\mathrm{R},k} \bar{\psi}_{\mathrm{R}} \mathrm{i} \partial \!\!/ \psi_{\mathrm{R}} + Z_{\phi,k} \left(\partial_{\mu} \phi^{a\dagger} \right) (\partial^{\mu} \phi^{a}) + U_{k} (\phi^{a\dagger} \phi^{a}) \\ &+ \bar{h}_{k} \bar{\psi}_{\mathrm{R}} \phi^{a\dagger} \psi_{\mathrm{L}}^{a} - \bar{h}_{k} \bar{\psi}_{\mathrm{L}}^{a} \phi^{a} \psi_{\mathrm{R}} \Big\}. \end{split}$$

3

イロン イ団と イヨン イヨン

Truncation

NLO derivative expansion

$$\begin{split} \Gamma_{k} &= \int \mathrm{d}^{3} x \Big\{ Z_{\mathrm{L},k} \bar{\psi}_{\mathrm{L}}^{\mathfrak{d}} i \partial\!\!\!/ \psi_{\mathrm{L}}^{\mathfrak{d}} + Z_{\mathrm{R},k} \bar{\psi}_{\mathrm{R}} i \partial\!\!\!/ \psi_{\mathrm{R}} + Z_{\phi,k} \left(\partial_{\mu} \phi^{\mathfrak{a}\dagger} \right) (\partial^{\mu} \phi^{\mathfrak{a}}) + U_{k} (\phi^{\mathfrak{a}\dagger} \phi^{\mathfrak{a}}) \\ &+ \bar{h}_{k} \bar{\psi}_{\mathrm{R}} \phi^{\mathfrak{a}\dagger} \psi_{\mathrm{L}}^{\mathfrak{d}} - \bar{h}_{k} \bar{\psi}_{\mathrm{L}}^{\mathfrak{a}} \phi^{\mathfrak{a}} \psi_{\mathrm{R}} \Big\}. \end{split}$$

For the symmetric regime (SYM), we expand the effective potential around zero field,

$$u_{k} = m_{k}^{2}\tilde{\rho} + \frac{\lambda_{2,k}}{2!}\tilde{\rho}^{2} + \frac{\lambda_{3,k}}{3!}\tilde{\rho}^{3} + \dots$$
$$m^{2}, \ \lambda_{n_{\max}} > 0.$$

イロト イヨト イヨト イヨト

æ

Truncation

NLO derivative expansion

$$\begin{split} \Gamma_{k} &= \int \mathrm{d}^{3} x \Big\{ Z_{\mathrm{L},k} \bar{\psi}_{\mathrm{L}}^{a} \mathrm{i} \partial \!\!\!/ \psi_{\mathrm{L}}^{a} + Z_{\mathrm{R},k} \bar{\psi}_{\mathrm{R}} \mathrm{i} \partial \!\!\!/ \psi_{\mathrm{R}} + Z_{\phi,k} \left(\partial_{\mu} \phi^{a\dagger} \right) (\partial^{\mu} \phi^{a}) + U_{k} (\phi^{a\dagger} \phi^{a}) \\ &+ \bar{h}_{k} \bar{\psi}_{\mathrm{R}} \phi^{a\dagger} \psi_{\mathrm{L}}^{a} - \bar{h}_{k} \bar{\psi}_{\mathrm{L}}^{a} \phi^{a} \psi_{\mathrm{R}} \Big\}. \end{split}$$

For the symmetric regime (SYM), we expand the effective potential around zero field,

$$\begin{aligned} u_k &= m_k^2 \tilde{\rho} + \frac{\lambda_{2,k}}{2!} \tilde{\rho}^2 + \frac{\lambda_{3,k}}{3!} \tilde{\rho}^3 + \dots \\ m^2, \; \lambda_{n_{\max}} > 0. \end{aligned}$$

For the SSB regime, the minimum of u_k is $\kappa_k := \tilde{\rho}_{\min} > 0$,

$$\begin{array}{rcl} u_k & = & \displaystyle \frac{\lambda_{2,k}}{2!} (\tilde{\rho} - \kappa_k)^2 + \displaystyle \frac{\lambda_{3,k}}{3!} (\tilde{\rho} - \kappa_k)^3 + \ldots \\ & \displaystyle \kappa, \ \lambda_{n_{\max}}, \ \lambda_2 > 0. \end{array}$$

イロン イヨン イヨン イヨン

SYM: β -function for Yukawa coupling

 $\partial_t h^2 = (\eta_\phi + \eta_L + \eta_R - 1)h^2$

• Sum rule as a condition for an interacting FP (similar to QEG)

イロト イポト イヨト イヨト 三日

SYM: β -function for Yukawa coupling

 $\partial_t h^2 = (\eta_\phi + \eta_L + \eta_R - 1)h^2$

- Sum rule as a condition for an interacting FP (similar to QEG)
- \bullet For the complete set of couplings find fixed-points in SYM for $\textit{N}_{\rm L}=\{1,2\}$

$N_{\rm L}$	h_*^2	m_*^2	λ_2^*	η_{ϕ}^*	$\eta^*_{ m L}$	$\eta^*_{ m R}$	ν	ω	
1	4.496	0.326	5.099	0.716	0.142	0.142	1.132	0.786	
2	3.364	0.104	3.643	0.512	0.162	0.325	1.100	0.809	

_

(日) (圖) (E) (E) (E)

SYM: β -function for Yukawa coupling

 $\partial_t h^2 = (\eta_\phi + \eta_L + \eta_R - 1)h^2$

- Sum rule as a condition for an interacting FP (similar to QEG)
- For the complete set of couplings find fixed-points in SYM for $N_{\rm L}=\{1,2\}$

$N_{\rm L}$	h_*^2	m_*^2	λ_2^*	η_{ϕ}^*	$\eta^*_{ m L}$	$\eta^*_{ m R}$	ν	ω	
1	4.496	0.326	5.099	0.716	0.142	0.142	1.132	0.786	
2	3.364	0.104	3.643	0.512	0.162	0.325	1.100	0.809	

SSB: fixed-point needs balancing of fermion and boson fluctuations.

$N_{ m L}$	h_*^2	κ_*	λ_2^*	η_{ϕ}^*	$\eta^*_{ m L}$	$\eta^*_{ m R}$	ν	ω
3	2.718	0.009	2.967	0.371	0.154	0.487	0.883	0.675
4	2.713	0.042	2.954	0.279	0.125	0.637	1.043	0.678
5	2.519	0.079	2.717	0.204	0.100	0.746	1.124	0.715
10	1.452	0.256	1.506	0.075	0.046	0.913	1.092	0.872
100	0.148	3.301	0.149	0.006	0.004	0.993	1.008	0.989

-

(日) (圖) (E) (E) (E)

• Universal FP values and critical exponents as a function of $N_{\rm L}$:

<ロ> (日) (日) (日) (日) (日)

• Universal FP values and critical exponents as a function of $N_{\rm L}$:

イロト イヨト イヨト イヨト

• Universal FP values and critical exponents as a function of $N_{\rm L}$:

Conclusions

CHIRAL YUKAWA SYSTEMS IN d=4:

- Revealed a possible AS mechanism for the standard model with high predictivity
- Massless Goldstone and fermion fluctuations not present in the standard model (Destabilization at NLO)
- Include $SU(N_{\rm L})$ gauge bosons (work in progress with H. Gies and S. Rechenberger)

イロト イヨト イヨト イヨト

Conclusions

CHIRAL YUKAWA SYSTEMS IN d=4:

- Revealed a possible AS mechanism for the standard model with high predictivity
- Massless Goldstone and fermion fluctuations not present in the standard model (Destabilization at NLO)
- Include $SU(N_{\rm L})$ gauge bosons (work in progress with H. Gies and S. Rechenberger)

CHIRAL YUKAWA SYSTEMS IN d=3:

- Different FP mechanisms in SYM and SSB
- Benchmark values for critical exponents in new universality classes for strongly correlated chiral fermions
- Test of convergence: $\eta \leq 1$, check with O(N)-model, (in principle NNLO required)
- Take into account other condensation channels competing order parameters

・ロト ・聞ト ・ヨト ・ヨト

Conclusions

CHIRAL YUKAWA SYSTEMS IN d=4:

- Revealed a possible AS mechanism for the standard model with high predictivity
- Massless Goldstone and fermion fluctuations not present in the standard model (Destabilization at NLO)
- Include $SU(N_{\rm L})$ gauge bosons (work in progress with H. Gies and S. Rechenberger)

CHIRAL YUKAWA SYSTEMS IN d=3:

- Different FP mechanisms in SYM and SSB
- Benchmark values for critical exponents in new universality classes for strongly correlated chiral fermions
- Test of convergence: $\eta \leq 1$, check with O(N)-model, (in principle NNLO required)
- Take into account other condensation channels competing order parameters

Thanks to Holger Gies, Lukas Janssen and Stefan Rechenberger

ヘロト 人間ト 人間ト 人間ト