Outline	Introduction	Dirac neutrinos model	Conclusions

Dirac neutrinos from flavor symmetry

Cesar Bonilla

CSIC-IFIC, Universitat de Valencia

January 20, 2014

・ 「 ト ・ ヨ ト ・ ヨ ト

э

A. Aranda, C.B., S. Morisi, E. Peinado, J. Valle. arXiv:1307.3553

Outline	Introduction 0000000	Dirac neutrinos model	Conclusions

1 Introduction

- Flavor Symmetries
- Requirements
- 2 Dirac neutrinos model• Results

Outline

Introduction

Dirac neutrinos model 00000 Conclusions

・ 同 ト ・ ヨ ト ・ ヨ ト

2

Matter content in the Standard Model (SM):

A. Aranda, C.B., S. Morisi, E. Peinado, J. Valle. arXiv:1307.3553

Introduction

Dirac neutrinos model

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ ・ つ へ ()・

Refreshing the Flavor Problem:

- $m_{\nu} \neq 0$, neutrinos DO have mass and is pretty small:
 - $\Delta m^2_{21} = 7.59^{+0.20}_{-0.18} \times 10^{-5} \mathrm{eV}^2 \ \, \mathrm{and} \ \, |\Delta m^2_{31}| = 2.5^{+0.09}_{-0.16} \times 10^{-3} \mathrm{eV}^2.$

Dirac neutrinos model

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ ・ つ へ ()・

Refreshing the Flavor Problem:

• $m_{\nu} \neq 0$, neutrinos DO have mass and is pretty small:

 $\Delta m^2_{21} = 7.59^{+0.20}_{-0.18} \times 10^{-5} \mathrm{eV}^2 \ \text{and} \ |\Delta m^2_{31}| = 2.5^{+0.09}_{-0.16} \times 10^{-3} \mathrm{eV}^2.$

• why are the **lepton mixing angles larger** than the **quark mixing angles**?,

Dirac neutrinos model 00000

Refreshing the Flavor Problem:

• $m_{\nu} \neq 0$, neutrinos DO have mass and is pretty small:

 $\Delta m^2_{21} = 7.59^{+0.20}_{-0.18} \times 10^{-5} \mathrm{eV}^2 \ \text{and} \ |\Delta m^2_{31}| = 2.5^{+0.09}_{-0.16} \times 10^{-3} \mathrm{eV}^2.$

- why are the **lepton mixing angles larger** than the **quark mixing angles**?,
- what is the **neutrino nature** (Majorana Vs Dirac)?,

. . .

Dirac neutrinos model 00000

Refreshing the Flavor Problem:

• $m_{\nu} \neq 0$, neutrinos DO have mass and is pretty small:

 $\Delta m^2_{21} = 7.59^{+0.20}_{-0.18} \times 10^{-5} \mathrm{eV}^2 \ \text{and} \ |\Delta m^2_{31}| = 2.5^{+0.09}_{-0.16} \times 10^{-3} \mathrm{eV}^2.$

- why are the **lepton mixing angles larger** than the **quark mixing angles**?,
- what is the **neutrino nature** (Majorana Vs Dirac)?,
- why 3 families?

Outline	Introduction ●000000	Dirac neutrinos model 00000	Conclusions
Flavor Symmetries			
Then:			

We need to go *beyond* the SM.

One possibility is consider an additional symmetry, $SM \times \mathcal{G}$, with which:

• is justified the presence of **other fields** (RH-neutrinos, H_n , flavons, etc.) and

・ 同 ト ・ ヨ ト ・ モ ト

3

• is provided some structure to the fermion mass matrices.

Outline	000000	Olirac neutrinos model 00000	Conclusions
Flavor Symmetries			
A good way using relati $\mathcal{G} = \mathcal{G}_{\mathcal{F}}.$	y for explaining ferm ons among the fami	nion masses and mixing ang lies, horizontal symmetr	çles is ies ,

æ

< 17 >

where

1) $\Lambda_F >> \Lambda_{EW}$. Effective theories. 2) $\Lambda_F \sim \Lambda_{EW}$. Renormalizable models.

A. Aranda, C.B., S. Morisi, E. Peinado, J. Valle. arXiv:1307.3553

Outline	Introduction	Dirac neutrinos model 00000	Conclusions
Flavor Symmetries			

The additional symmetry group \mathcal{G}_F could be:

- Continuous: $U(1)^1, U(2);$
- Discrete: Z_n , Q_4^2 , D_6^3 , $A_{4,5}^4$, $S_{3,4}^5$, T'^6

¹Froggat and Nielsen...

²Frigerio, Hagedorn, Aranda, C.B., Rojas, Ramos... ³Babu...

⁴Altarelli, Feruglio, Merlo, Ma, Tanimoto, Valle...

⁵Meloni, Mondragon, A. and M., Morisi, Peinado...

э

⁶Aranda, Chen, Frampton, Merlo,...

A. Aranda, C.B., S. Morisi, E. Peinado, J. Valle. arXiv:1307.3553

Outline	Introduction 000●000	Dirac neutrinos model 00000	Conclusions
Flavor Symmetries			
What we wa	ant to do?		

We want to focus on the possibility that Majorana mass terms are not allowed from the flavor symmetry, i. e. neutrinos are Dirac fermions

< 3 > .

A >

э

Outline	Introduction	Dirac neutrinos model 00000	Conclusions
Requirements			

Let us consider one right-handed neutrino (N_R) per generation and that these fields are accommodated in a 3-dimensional irreducible representation of certain \mathcal{G}_F . Then, we have that in order to forbid any Majorana operator, e.g. $N_R^T N_R$,

★ $N_R \cong \mathcal{R}$ such that $\mathcal{R} \otimes \mathcal{R}$ is not invariant $\forall \mathcal{R} \in \mathcal{G}_F$. We found that ★-requirement is fulfilled by some non-Abelian groups.

・ 同 ト ・ ヨ ト ・ モ ト

э

• $\Delta(3N^2)$ for $N \ge 3$: these groups contain nine singlets and $(N^2 - 3)/3$ triplets for $N = 3\mathbb{Z}$. Otherwise, for $N \ne 3\mathbb{Z}$, they have three singlets and $(N^2 - 1)/3$ triplets.

• $\Delta(3N^2)$ for $N \ge 3$: these groups contain nine singlets and $(N^2 - 3)/3$ triplets for $N = 3\mathbb{Z}$. Otherwise, for $N \ne 3\mathbb{Z}$, they have three singlets and $(N^2 - 1)/3$ triplets.

Why $N \ge 3$?:

- i) For N=1, $\Delta(3)$ is isomorphic to Z_3 . This group is **discarded** because it is Abelian.
- ii) For N=2, $\Delta(12)$ is isomorphic to A_4 but $\mathbf{3} \otimes \mathbf{3} \supset \mathbf{1}$, then is also **discarded**.
- iii) For N=3, $\Delta(27)$ has two 3-dimensional ($\mathbf{3}_1$ and $\mathbf{3}_2$) and nine 1-dimensional irreps ($\mathbf{1}_i$ with i = 1, ..., 9). In this group $\mathbf{3}_i \otimes \mathbf{3}_i = \mathbf{3}_j \oplus \mathbf{3}_j \oplus \mathbf{3}_j$ then is a **candidate for creating a model of Dirac neutrinos**.

⁷H. Ishimori et al., Prog. Theor. Phys.Suppl. 183, 1 (2010) = → (= →) = ∽ (⊂ A. Aranda, C.B., S. Morisi, E. Peinado, J. Valle. arXiv:1307.3553

- $\Delta(3N^2)$ for $N \ge 3$: these groups contain nine singlets and $(N^2 3)/3$ triplets for $N = 3\mathbb{Z}$. Otherwise, for $N \ne 3\mathbb{Z}$, they have three singlets and $(N^2 1)/3$ triplets.
- $\Sigma(3N^3)$ for $N \ge 3$: the set of groups with $N(N^2 + 8)/3$ conjugacy classes, 3N singlets and $N(N^2 1)/3$ triplets.

⁷H. Ishimori et al., Prog. Theor. Phys.Suppl. 183, 1 (2010) = → (= →) = →) A. Aranda, C.B., S. Morisi, E. Peinado, J. Valle. arXiv:1307.3553

- $\Delta(3N^2)$ for $N \ge 3$: these groups contain nine singlets and $(N^2 3)/3$ triplets for $N = 3\mathbb{Z}$. Otherwise, for $N \ne 3\mathbb{Z}$, they have three singlets and $(N^2 1)/3$ triplets.
- $\Sigma(3N^3)$ for $N \ge 3$: the set of groups with $N(N^2 + 8)/3$ conjugacy classes, 3N singlets and $N(N^2 1)/3$ triplets.
- T_N for N = 7, 13, 19, 31, 43, 49: these groups have 3 singlets and (N - 1)/3 three-dimensional irreducible representations.

⁷H. Ishimori et al., Prog. Theor. Phys.Suppl. 183, 1 (2010) = → (= →) = →) A. Aranda, C.B., S. Morisi, E. Peinado, J. Valle. arXiv:1307.3553

Outline	$\frac{Introduction}{0000000}$	Dirac neutrinos model 00000	Conclusions
The model			

	\overline{L}	ℓ_{1R}	ℓ_{2R}	ℓ_{3R}	N_R	H
$SU(2)_L$	2	1	1	1	1	2
$\Delta(27)$	3	1	1'	1″	3	3′

Table: Matter assignments of the model.

The most general invariant Lagrangian for leptons is written as

$$\mathcal{L}_{\ell} = \sum_{i=1}^{3} Y_i^{\ell} \bar{L} \ell_{iR} H + Y^{\nu} \bar{L} N_R \tilde{H} + h.c.,$$

where we use the compact notation $H = (H_1, H_2, H_3)$ and $\tilde{H} = (\tilde{H}_1, \tilde{H}_2, \tilde{H}_3)$ with $\tilde{H}_i \equiv i\sigma_2 H^*$.

Outline	Introduction	Dirac neutrinos model	Conclusions

The most general invariant Lagrangian for leptons is written as

$$\mathcal{L}_{\ell} = \sum_{i=1}^{3} Y_i^{\ell} \bar{L} \ell_{iR} H + Y^{\nu} \bar{L} N_R \tilde{H} + h.c.,$$

and mass matrices, after EWSB, are:

$$M_{\nu} = \begin{pmatrix} av_{1} & bv_{3} & cv_{2} \\ cv_{3} & av_{2} & bv_{1} \\ bv_{2} & cv_{1} & av_{3} \end{pmatrix}$$
(1)
$$M_{\ell} = \begin{pmatrix} Y_{1}^{\ell}v_{1} & Y_{2}^{\ell}v_{1} & Y_{3}^{\ell}v_{1} \\ Y_{1}^{\ell}v_{2} & \omega Y_{2}^{\ell}v_{2} & \omega^{2}Y_{3}^{\ell}v_{2} \\ Y_{1}^{\ell}v_{3} & \omega^{2}Y_{2}^{\ell}v_{3} & \omega Y_{3}^{\ell}v_{3} \end{pmatrix}$$

< ∃ >

where $\omega = e^{2\pi i/3}$ and v_i are Higgs scalar vevs.

 	 1 1 1	-
u	 	e

Introduction 0000000 Dirac neutrinos model 00000

The vev alignment⁷ $\langle H \rangle = v(1, 1, 1)$ turns out to be *natural* in $\Delta(27)$ and taking it into account the mass matrices get the following form,

$$M_{\nu} = v \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$
(2)
$$M_{\ell} = v \begin{pmatrix} Y_{1}^{\ell} & Y_{2}^{\ell} & Y_{3}^{\ell} \\ Y_{1}^{\ell} & \omega Y_{2}^{\ell} & \omega^{2} Y_{3}^{\ell} \\ Y_{1}^{\ell} & \omega^{2} Y_{2}^{\ell} & \omega Y_{3}^{\ell} \end{pmatrix}$$

⁷This minimum is the global one, for more details see, C. Nishi, Phys. Rev. D 88, 033010 (2013),[1306.0877].

Outline	$\begin{array}{c} \mathbf{Introduction} \\ \texttt{0000000} \end{array}$	Dirac neutrinos model 00000	Conclusions
Warning			

The lepton mixing matrix is,

$$U = U_{\ell}^{\dagger} U_{\nu} \tag{3}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э.

where U_{ℓ} and U_{ν} are those which diagonalize

$$M_{\ell}M_{\ell}^{\dagger}$$
 and $M_{\nu}M_{\nu}^{\dagger}$, (4)

respectively. But when the vev alignment is $\langle H \rangle = v(1, 1, 1)$ we have that,

$$U_{\ell} = U_{\nu} = U_{\omega} \equiv \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{bmatrix}$$
(5)

and then

$$U = U_{\ell}^{\dagger} U_{\nu} = \mathbb{I}.$$

Outline	$\begin{array}{c} \mathbf{Introduction} \\ \texttt{0000000} \end{array}$	Dirac neutrinos model 00000	Conclusions
Warning			

The lepton mixing matrix is,

$$U = U_{\ell}^{\dagger} U_{\nu} \tag{3}$$

- 4 同 ト - 4 日 ト - 4 日 ト

э

where U_{ℓ} and U_{ν} are those which diagonalize

$$M_{\ell}M_{\ell}^{\dagger}$$
 and $M_{\nu}M_{\nu}^{\dagger}$, (4)

respectively. But when the vev alignment is $\langle H \rangle = v(1, 1, 1)$ we have that,

$$U_{\ell} = U_{\nu} = U_{\omega} \equiv \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{bmatrix}$$
(5)

and then

 $U = U_{\ell}^{\dagger} U_{\nu} = \mathbb{I}.$ This is not compatible with data! (6)

 -	10	

Introduction 0000000 Dirac neutrinos model 00000

Conclusions

We found that if we consider small deviations of the vev alignment, e.i. $\langle H \rangle = \hat{v}(1 + \epsilon_1, 1 + \epsilon_2, 1)^T$, the mass matrices become

$$M_{\nu} = \hat{v} \begin{pmatrix} a(1+\epsilon_{1}) & b & c(1+\epsilon_{2}) \\ c & a(1+\epsilon_{2}) & b(1+\epsilon_{1}) \\ b(1+\epsilon_{2}) & c(1+\epsilon_{1}) & a \end{pmatrix}$$
(7)
$$M_{\ell} = \hat{v} \begin{pmatrix} Y_{1}^{\ell}(1+\epsilon_{1}) & Y_{2}^{\ell}(1+\epsilon_{1}) & Y_{3}^{\ell}(1+\epsilon_{1}) \\ Y_{1}^{\ell}(1+\epsilon_{2}) & \omega Y_{2}^{\ell}(1+\epsilon_{2}) & \omega^{2}Y_{3}^{\ell}(1+\epsilon_{2}) \\ Y_{1}^{\ell} & \omega^{2}Y_{2}^{\ell} & \omega Y_{3}^{\ell} \end{pmatrix}.$$

and the lepton mixing matrix is not the identity,

$$U = U_{\ell}^{\dagger} U_{\nu} \neq \mathbb{I} .$$
 (8)

Outline	Introduction	Dirac neutrinos model	Conclusions

Then, we rewrote the parameters (a, b, c, Y_i^{ℓ}) in terms of the neutrino mass splittings $(\Delta m_{21}^2 \text{ and } |\Delta m_{31}^2|)$ and charge lepton masses, deviated the vev up to 30% and selected those solutions which satisfy the global fits⁸ for the mixing angles at 3σ ,

 $\begin{array}{l} 0.017 < \sin^2 \theta_{13} < 0.033 \\ 0.36(0.37) < \sin^2 \theta_{23} < 0.68(0.67) \ \mathrm{NH(IH)} \\ 0.27 < \sin^2 \theta_{12} < 0.37. \end{array}$

⁸D. Forero, M. Tortola and J. W. F.Valle, Phys.Rev. ⊕86, 073012=(2012). www.actionalizedictics.com A. Aranda, C.B., S. Morisi, E. Peinado, J. Valle. arXiv:1307.3553

Outline	Introduction 0000000	Dirac neutrinos model ●0000	Conclusions
Results			
NH case			

We got a correlation between the atmospheric angle and the lightest neutrino mass.

2

< (T) >

Image: 1

< ∃⇒

Outline	Introduction 0000000	Dirac neutrinos model 00000	Conclusions
Results			
NH case			

Figure: NH case: the horizontal dotted lines represent the best fit values, the blue and gray horizontal bands are the 1σ and 2σ allowed ranges, respectively. The blue, red and black points are model expectations corresponding to vev deviations of 10%, 20% and 30% respectively. The vertical dot-dashed line indicates KATRIN's sensitivity.

Outline	Introduction 0000000	Dirac neutrinos model 00000	Conclusions
Results			
IH case			

Figure: IH case: note that in this case a 30% vev deviation is not enough to reach the best fit value of θ_{23} .

æ

Outline	Introduction 0000000	Dirac neutrinos model 00000	Conclusions
Results			

We also checked that the model is not ruled out by the decay $\mu \rightarrow e\gamma$. The experimental bound⁹ set by MEG is of the order $\mathcal{O} \sim 10^{-13}$.

Cases	$\operatorname{Br}^{\operatorname{th}}(\mu \to e\gamma)$	$m_{\nu_1} (\text{eV})$	$\sin^2 \theta_{23}$
i)	1.98×10^{-14}	0.2399	0.4956
ii)	1.74×10^{-14}	0.0930	0.4615
iii)	1.65×10^{-14}	0.0762	0.6107

Theoretical branching ratios for the process $\mu \to e\gamma$ for three different cases corresponding to three different sets of (ϵ_1, ϵ_2) , m_{ν_1} , and $\sin^2 \theta_{23}$.

⁹MEG Collaboration, J. Adam et al.,1303.0754. □ → (∃ → () → (

Figure: This plot is for NH in our model and i = 1, 2, 3 are the corresponding branching ratios for those sets in last Table.

・ロト ・同ト ・ヨト ・ヨト

æ

Outline	Introduction 0000000	Dirac neutrinos model 00000	Conclusions

• We have a model for Dirac neutrinos from the flavor symmetry group $\Delta(27)$,

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ のへで

Outline	Introduction 0000000	Dirac neutrinos model 00000	Conclusions

- We have a model for Dirac neutrinos from the flavor symmetry group $\Delta(27)$,
- The expected $\mu \to e\gamma$ branching ratios in our model are consistent with the current bounds,

・ 同 ト ・ ヨ ト ・ モ ト

э

Outline	Introduction 0000000	Dirac neutrinos model 00000	Conclusions

- We have a model for Dirac neutrinos from the flavor symmetry group $\Delta(27)$,
- The expected $\mu \to e\gamma$ branching ratios in our model are consistent with the current bounds,
- A complete analysis including flavor changing neutral transitions.

・ 同 ト ・ ヨ ト ・ モ ト

3

Outline	Introduction 0000000	Dirac neutrinos model 00000	Conclusions

- We have a model for Dirac neutrinos from the flavor symmetry group $\Delta(27)$,
- The expected $\mu \to e\gamma$ branching ratios in our model are consistent with the current bounds,
- A complete analysis including flavor changing neutral transitions.

(日) (モー・ (日)

3

• Is it possible to include the quarks in this scenario?

Outline	Introduction 0000000	Dirac neutrinos model 00000	Conclusions

- We have a model for Dirac neutrinos from the flavor symmetry group $\Delta(27)$,
- The expected $\mu \to e\gamma$ branching ratios in our model are consistent with the current bounds,
- A complete analysis including flavor changing neutral transitions.

・ 同 ト ・ ヨ ト ・ モ ト

3

- Is it possible to include the quarks in this scenario?
- Thank you.

Outline	Introduction 0000000	Dirac neutrinos model 00000	Conclusions

BACKUP

∃ 990

A. Aranda, C.B., S. Morisi, E. Peinado, J. Valle. arXiv:1307.3553

Outline	Introduction	Dirac neutrinos model	Conclusions

The scalar potential¹⁰ invariant under Standard Model and $\Delta(27)$,

$$\begin{split} V_{\Delta(27)} &= \mu^2 \left[H_1^{\dagger} H_1 + H_2^{\dagger} H_2 + H_3^{\dagger} H_3 \right] + \lambda_0 \left[H_1^{\dagger} H_1 + H_2^{\dagger} H_2 + H_3^{\dagger} H_3 \right]^2 \\ &+ \lambda_1 \left[(H_1^{\dagger} H_1)^2 + (H_2^{\dagger} H_2)^2 + (H_3^{\dagger} H_3)^2 \right] \\ &- \lambda_1 \left[(H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + (H_2^{\dagger} H_2) (H_3^{\dagger} H_3) + (H_3^{\dagger} H_3) (H_1^{\dagger} H_1) \right] \\ &+ \lambda_2 \left[\left| H_1^{\dagger} H_1 \right|^2 + \left| H_2^{\dagger} H_2 \right|^2 + \left| H_3^{\dagger} H_3 \right|^2 \right] \\ &+ \lambda_3 \left[(H_1^{\dagger} H_2) (H_1^{\dagger} H_3) + (H_2^{\dagger} H_3) (H_2^{\dagger} H_1) + (H_3^{\dagger} H_1) (H_3^{\dagger} H_2) \right] + h.c. \end{split}$$

¹⁰G. Branco, J. Gerard and W. Grimus, Phys.Lett. B136, 383 (1984) ≡ ∽۹€ A. Aranda, C.B., S. Morisi, E. Peinado, J. Valle. arXiv:1307.3553

Outline	Introduction 0000000	Dirac neutrinos model 00000	Conclusions

On the other hand, to this scalar potential we add soft breaking terms (SBTs) so as to induce a small deviation from the vev alignment $(1,1,1)^{11}$, namely

$$V' = V_{\Delta(27)} + V_{SB} \tag{9}$$

э

where

$$V_{SB} = \mu_{12}^2 H_1^{\dagger} H_2 + \mu_{13}^2 H_1^{\dagger} H_3 + \mu_{23}^2 H_2^{\dagger} H_3 + h.c.$$
(10)

 ¹¹This leads to a correlation between the atmospheric angle and the lightest neutrino mass as showed
 Image: Correlation between the atmospheric angle and the lightest neutrino mass as showed

 A. Aranda, C.B., S. Morisi, E. Peinado, J. Valle.
 arXiv:1307.3553

Outline	Introduction Dir 0000000 000		Dira 0000	rac neutrinos model			Conclusions	
Cases	m_{h_1}	m_{I}	h_2	m_{h_3}	m_{A_2}	m_{A_3}	$m_{H_2^{\pm}}$	$m_{H_3^{\pm}}$
i)	124.68	8 431	.64 4	58.96	434.60	462.34	300.14	338.65
ii)	124.83	3 254	.94 2	91.34	405.28	414.29	240.56	255.36
iii)	124.89	9 274	.21 3	37.97	398.77	402.60	292.562	304.14
		Cases	λ_0	λ_1	λ_2	λ_3		-
		i)	1.69	1.88	-1.89	-1.40		
		ii)	0.78	-0.39	1.71	-1.83		

-1.12

0.53

-1.90

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

1.99

iii)