Magnetic moment $(g-2)_{\mu}$ and new physics

Dominik Stöckinger, TU Dresden

Sussex, November 2011

Magnetic moment $(g - 2)_{\mu}$ and new physics

Outline

Introduction

- Motivation and Prehistory
- Legacy of Brookhaven measurement: 3σ deviation
- New g 2 experiments at Fermilab and JParc
- Impact on New Physics in general
- SUSY could explain the deviation
 - General behaviour
 - Two-loop contributions
 - *a_µ*, parameter measurements and model discrimination
- 5 Alternatives to SUSY
- 6 Conclusions

Outline

Introduction

- Motivation and Prehistory
- Legacy of Brookhaven measurement: 3σ deviation
- 2 New g 2 experiments at Fermilab and JParc
- Impact on New Physics in general
- SUSY could explain the deviation
 - General behaviour
 - Two-loop contributions
 - a_{μ} , parameter measurements and model discrimination
- 5 Alternatives to SUSY
- 6 Conclusions

Muon magnetic moment

$$H_{\text{magnetic}} = -2(1 + a_{\mu}) \frac{e}{2m_{\mu}} \vec{B} \cdot \vec{S}$$

Measurement:

circular motion: $\omega_{c} = -\frac{e}{m_{\mu}}B$ spin precession: $\omega_{s} = -\frac{2(1+a_{\mu})e}{2m_{\mu}}B$ \rightarrow measure $\omega_{a} = \omega_{s} - \omega_{c} = -a_{\mu}\frac{e}{m_{\mu}}B$

Magnetic moment $(g - 2)_{\mu}$ and new physics

Introduction

< 同 > < 三 > < 三 > -

э

Muon magnetic moment

$$H_{\text{magnetic}} = -2(1 + a_{\mu}) \frac{e}{2m_{\mu}} \vec{B} \cdot \vec{S}$$

Quantum field theory:

< A > Introduction

< ≣ →

Why is a_{μ} special?

$$rac{m{a}_{\mu}}{m_{\mu}}\,ar{\mu}_{L}\,\sigma_{\mu
u}\,\mu_{R}\,m{F}^{\mu
u}$$

Beautifully simple "textbook" quantity, very precise

CP- and Flavour-conserving, chirality-flipping, loop-induced

compare: EDMs, $\begin{array}{c} b \rightarrow s\gamma\\ B \rightarrow \tau\nu\\ \mu \rightarrow e\gamma\end{array}$

EWPO

A B > A B >

Introduction

Classification of SM contributions

Introduction

< ロ > < 同 > < 三 > < 三 > -

3

 $\frac{\alpha}{2\pi}$

'57 Garwin et al:

$$g_\mu pprox 2 \Rightarrow$$
 Muon=Dirac particle!

Magnetic moment $(g - 2)_{\mu}$ and new physics

Introduction

2

'57 Garwin et al:

'68–'78 CERN measurement: '80-'11 Theory developments:

'01-'06 BNL measurement:

 $\frac{\alpha}{2\pi}$

 $g_{\mu} \approx 2 \Rightarrow$ Muon=Dirac particle!

hadronic cont. needed, confirmed! QED, hadronic,

weak cont. [Czarnecki, Krause, Marciano '95] [Heinemeyer, DS, Weiglein '04]

weak cont. needed, not confirmed!

→ Ξ →

'57 Garwin et al:

'68–'78 CERN measurement: '80-'11 Theory developments:

'01-'06 BNL measurement:

$\frac{\alpha}{2\pi}$

 $g_\mu pprox 2 \Rightarrow$ Muon=Dirac particle!

hadronic cont. needed, confirmed! QED, hadronic,

weak cont. [Czarnecki, Krause, Marciano '95] [Heinemeyer, DS, Weiglein '04]

weak cont. needed, not confirmed!

Legacy of the CERN experiment

'57 Garwin et al:

'68–'78 CERN measurement: '80-'11 Theory developments:

'01–'06 BNL measurement:

```
\frac{\alpha}{2\pi}
```

 $g_{\mu} \approx 2 \Rightarrow$ Muon=Dirac particle!

hadronic cont. needed, confirmed! QED, hadronic,

weak cont. [Czarnecki, Krause, Marciano '95] [Heinemeyer, DS, Weiglein '04]

weak cont. needed, not confirmed!

Legacy of the BNL experiment

- E - N

'57 Garwin et al:

'68–'78 CERN measurement: '80-'11 Theory developments:

'01-'06 BNL measurement:

$\frac{\alpha}{2\pi}$

 $g_{\mu} \approx$ 2 \Rightarrow Muon=Dirac particle!

hadronic cont. needed, confirmed! QED, hadronic,

weak cont. [Czarnecki, Krause, Marciano '95] [Heinemeyer, DS, Weiglein '04]

weak cont. needed, not confirmed!

Legacy of the BNL experiment

< ∃ >

'57 Garwin et al:

'68–'78 CERN measurement: '80-'11 Theory developments:

'01-'06 BNL measurement:

```
\frac{\alpha}{2\pi}
```

 $g_\mu pprox 2 \Rightarrow$ Muon=Dirac particle!

hadronic cont. needed, confirmed! QED, hadronic,

weak cont. [Czarnecki, Krause, Marciano '95] [Heinemeyer, DS, Weiglein '04]

weak cont. needed, not confirmed!

Legacy of the BNL experiment

→ ∃ →

Era of the muon g - 2 experiment at Brookhaven

$a_{\mu}^{\exp} = (11\,659\,208.9\pm6.3) \times 10^{-10}$

Magnetic moment $(g - 2)_{\mu}$ and new physics

Introduction

Current status: SM prediction

Full SM: $a_{\mu} \times 10^{10} - 11659000$

dR08:	178.5(5.1)	(3.6 σ)
JN09:	179.0(6.5)	(3.2σ)
HLMNT09:	177.3(4.8)	(4.0 σ)
Detal09:	183.4(4.9)	(3.2 σ)
JS11:	179.7(6.0)	(3.3 σ)
HLMNT11:	182.8(4.9)	(3.3 σ)
BDDJ11:	175.4(5.3)	(4.1 σ)

Exp:

BNL06: ... 208.9(6.3)

 3σ deviation established

э

Current status: SM prediction

Hadronic vacuum polarization contributions:

Recent progress:

new exp data (CMD2, SND, KLOE, B-factories)

 \Rightarrow significantly more precise!

possible explanations of *τ*-based results

ightarrow confirmation of e^+e^- -based evaluations

[Benayoun et al '07][Jegerlehner, Szafron '11]

assume e⁺ e⁻ data different

⇒ contradiction to Higgs mass bounds! [Marciano, Passera, Sirlin '08]

Magnetic moment $(g - 2)_{\mu}$ and new physics

Introduction

Current status: SM prediction

Hadronic light-by-light contributions

new estimates with correct sign, using different approximations

[Bijnens, Prades '07]	10.0 ± 4.0
[Melnikov, Vainshtein '03]	13.6 ± 2.5
[Jegerlehner '08]	11.4 ± 3.8
[Jegerlehner, Nyffeler '09]	11.6 ± 4.0
[Prades, Vainshtein, de Rafael '08]	10.5 ± 2.6

Cannot be computed from first principles — Error difficult to assess!

Promising new approaches: lattice, Dyson-Schwinger, perturbative

Discrepancy

SM prediction too low by $\approx (25\pm8)\times10^{-10}$

Why? Confirmation needed!

Note: discrepancy twice as large as $a_{\mu}^{\text{SM,weak}}$

but we expect: $a_{\mu}^{
m NP} \sim a_{\mu}^{
m SM,weak} imes \left(rac{M_{W}}{M_{
m NP}}
ight)^2 imes$ couplings

Magnetic moment $(g - 2)_{\mu}$ and new physics

Introduction

Outline

Introduction

- Motivation and Prehistory
- Legacy of Brookhaven measurement: 3σ deviation

New g - 2 experiments at Fermilab and JParc

- Impact on New Physics in general
- 4 SUSY could explain the deviation
 - General behaviour
 - Two-loop contributions
 - a_{μ} , parameter measurements and model discrimination
- 5 Alternatives to SUSY
- 6 Conclusions

伺 ト イヨ ト イヨ ト

The Opportunity

<ロ> (四) (四) (三) (三) (三) New g - 2 experiments at Fermilab and JParc

3

The Opportunity

Barge around St. Lawrence

- Airlift coils to barge off Long Island
- Estimated barge cost \$1M to transport yoke steel and coils
- Ship through St Lawrence -> Great Lakes -> Calumet SAG
- Airlift from somewhere around Romeoville, IL to Fermilab

Magnetic moment $(g - 2)_{\mu}$ and new physics

New g - 2 experiments at Fermilab and JParc

Advantages of Fermilab

π decay length 900m vs 88m

- 6–12 times more stored muons per initial proton
- 4 times fill frequency
- 20 times reduced hadronic-induced background at injection

The Collaboration

First collaboration meeting after approval in March

Magnetic moment $(g - 2)_{\mu}$ and new physics

Complementary experiment at JParc (N. Saito)

The second

New Muon g-2/EDM Experiment at J-PARC with Ultra-Cold Muon Beam

Magnetic moment $(g - 2)_{\mu}$ and new physics

3 GeV proton beam

(333 uA)

New g – 2 experiments at Fermilab and JParc

< ロ > < 同 > < 三 > < 三 >

Complementary experiment at JParc (N. Saito)

			J-PARC
Muon momentum	3.09 GeV/c		0.3 GeV/c
gamma	29.3		3
Storage field	B=1.45 T		3.0 T
Focusing field	Electric quad		None
# of detected μ+ decays	5.0E9	1.8E11	1.5E12
# of detected μ- decays	3.6E9	-	-
Precision (stat)	0.46 ppm	0.1 ppm	0.1 ppm

Goal of both new (g-2) experiments

 $a_\mu^{
m exp}-a_\mu^{
m SM}=(255??\pm 16^{
m Exp}\pm 34^{
m Th}??) imes 10^{-11}$ Data in \sim 4–5 years

- Tremendously useful complement of LHC (and flavour physics experiments), independent of final value [Hertzog, Miller, de Rafael, Roberts, DS '07]
- Benchmark for any new physics scenario
- Timely, complementary constraints
- This will be demonstrated in the following

-

Outline

Introduction

- Motivation and Prehistory
- Legacy of Brookhaven measurement: 3σ deviation

New g – 2 experiments at Fermilab and JParc

Impact on New Physics in general

- 4 SUSY could explain the deviation
 - General behaviour
 - Two-loop contributions
 - a_{μ} , parameter measurements and model discrimination
- 5 Alternatives to SUSY

6 Conclusions

A > < > > < >

Why is a_{μ} special?

CP- and Flavour-conserving, chirality-flipping, loop-induced

 $\begin{array}{ll} b \rightarrow s\gamma \\ \text{compare:} & \text{EDMs, } B \rightarrow \tau\nu \\ \mu \rightarrow e\gamma \end{array}$

EWPO

э

Magnetic moment $(g - 2)_{\mu}$ and new physics

Impact on New Physics in general

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

New physics contributions to a_{μ}

g - 2 = chirality-flipping interaction

 m_{μ} = chirality-flipping interaction as well

are the two related?

- H - N

New physics contributions to a_{μ}

g - 2 = chirality-flipping interaction

 m_{μ} = chirality-flipping interaction as well

are the two related?

New physics loop contributions to a_{μ} , m_{μ} related by chiral symmetry

[Czarnecki, Marciano '01]

generally:
$$\delta a_{\mu}(ext{N.P.}) = \mathcal{O}(C) \left(rac{m_{\mu}}{M}
ight)^2, \quad C = rac{\delta m_{\mu}(ext{N.P.})}{m_{\mu}}$$

generally:
$$\delta a_{\mu}(ext{N.P.}) = \mathcal{O}(C) \left(rac{m_{\mu}}{M}
ight)^2, \quad C = rac{\delta m_{\mu}(ext{N.P.})}{m_{\mu}}$$

classify new physics: C very model-dependent

A B > A B >

э

generally:
$$\delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(rac{m_{\mu}}{M}
ight)^2, \quad C = rac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}}$$

classify new physics: C very model-dependent

Impact on New Physics in general

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

generally:
$$\delta a_{\mu}(ext{N.P.}) = \mathcal{O}(C) \left(rac{m_{\mu}}{M}
ight)^2, \quad C = rac{\delta m_{\mu}(ext{N.P.})}{m_{\mu}}$$

classify new physics: C very model-dependent

Impact on New Physics in general

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

generally:
$$\delta a_{\mu}(ext{N.P.}) = \mathcal{O}(C) \left(rac{m_{\mu}}{M}
ight)^2, \quad C = rac{\delta m_{\mu}(ext{N.P.})}{m_{\mu}}$$

classify new physics: C very model-dependent

Impact on New Physics in general

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

a_{μ} and new physics

Different types of new physics lead to very different δa_{μ} (N.P.)

- SUSY, RS, ADD, ...: strong parameter constraints
- Z', UED, LHT, ...: ruled out if deviation confirmed

If new physics found at LHC:

- a_{μ} constitutes a benchmark for new physics models
- can sharply distinguish between different types of models
- timely, complementary constraints, parameter measurements

・ロト ・同ト ・ヨト ・ヨト

a_{μ} and new physics

Different types of new physics lead to very different δa_{μ} (N.P.)

- SUSY, RS, ADD, ...: strong parameter constraints
- Z', UED, LHT, ...: ruled out if deviation confirmed

If new physics found at LHC:

- a_{μ} constitutes a benchmark for new physics models
- can sharply distinguish between different types of models
- timely, complementary constraints, parameter measurements

Now illustrate general points with examples

< ロ > < 同 > < 回 > < 回 >

Outline

- Motivation and Prehistory

SUSY could explain the deviation

- General behaviour
- Two-loop contributions
- a_{μ} , parameter measurements and model discrimination

伺 ト イヨ ト イヨ ト

SUSY and the MSSM

• free parameters: \tilde{p} masses and mixings, μ and tan β

Magnetic moment $(g - 2)_{\mu}$ and new physics

SUSY could explain the deviation

< 同 > < 三 > < 三 >

g-2 in the MSSM: chirality flips, λ_{μ} , and H_2

$$\tan \beta = \frac{\langle H_2 \rangle}{\langle H_1 \rangle}, \qquad \mu = H_2 - H_1 \text{ transition}$$
some terms
$$\propto \lambda_{\mu} \langle H_1 \rangle = m_{\mu} \qquad \rightarrow a_{\mu}^{\text{SUSY}} \propto \frac{m_{\mu}^2}{M_{\text{SUSY}}^2}$$
some terms
$$\propto \lambda_{\mu} \mu \langle H_2 \rangle = m_{\mu} \mu \tan \beta \qquad \rightarrow a_{\mu}^{\text{SUSY}} \propto \tan \beta \operatorname{sign}(\mu) \frac{m_{\mu}^2}{M_{\text{SUSY}}^2}$$
potential enhancement $\propto \tan \beta = 1 \dots 50 \text{ (and } \propto \operatorname{sign}(\mu))$

・ロト ・ 同ト ・ ヨト ・ ヨト

= 990

~

g-2 in the MSSM

numerically

$$a_{\mu}^{\text{SUSY}} \approx 12 \times 10^{-10} \tan \beta \, \text{sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2$$

SUSY could be the origin of the observed $(25 \pm 8) \times 10^{-10}$ deviation!

 a_{μ} significantly restricts the SUSY parameters

ightarrow generically, positive μ , large tan β /small $M_{\rm SUSY}$ preferred

Precise analysis justified!

Magnetic moment $(g - 2)_{\mu}$ and new physics

SUSY could explain the deviation

< ロ > < 同 > < 回 > < 回 >

g-2 in the MSSM

numerically

$$a_{\mu}^{\text{SUSY}} \approx 12 \times 10^{-10} \tan \beta \, \text{sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2$$

1-loop and most 2-loop contributions known

• remaining theory uncertainty of SUSY prediction: [DS '06]

$$\delta a_{\mu}^{
m SUSY} pprox 3 imes 10^{-10}$$

Aim in Dresden: reduce error to $1 \times 10^{-10} \Rightarrow$ full computation!

Magnetic moment $(g - 2)_{\mu}$ and new physics

SUSY could explain the deviation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Status of SUSY prediction

1-Loop

 $\propto \tan \beta$

[Fayet '80],... [Kosower et al '83],[Yuan et al '84],... [Lopez et al '94],[Moroi '96]

complete

2-Loop (SUSY 1L) e.g. $\propto \log \frac{M_{\text{SUSY}}}{m_{e}}$

[Degrassi, Giudice '98] [Marchetti, Mertens, Nierste, DS '08] [Schäfer, Stöckinger-Kim, v. Weitershausen, DS '10]

 $\frac{\text{photonic}}{(\tan\beta)^2}$ rest under investigation

2-Loop (SM 1L)

[Chen,Geng'01][Arhib,Baek '02] [Heinemeyer,DS,Weiglein '03] [Heinemeyer,DS,Weiglein '04]

complete

SUSY could explain the deviation

A (10) × (10) × (10) ×

Physics of subleading contributions (examples)

Important for drawing precise conclusions from confronting SUSY-prediction with $a_{\mu}^{\text{Exp-SM}}$

Magnetic moment $(g - 2)_{\mu}$ and new physics

SUSY could explain the deviation

Technical details: Photon loops

All SUSY 1-loop diagrams with additional photon loop

● leading log: -7...-9%

[Degrassi, Giudice '98]

- full result: subleading logs, log $(m_{\chi}/m_{ ilde{
 u}_{\mu}})$, non-log terms
- additional terms O(1%)
- full result more precise [v. Weitershausen, Schäfer, Stöckinger-Kim, DS '09]
- technically difficult but useful: contains all infrared divergences

(日本) (日本) (日本)

Technical details: f/\tilde{f} -loops

All SUSY 1-loop diagrams with additional f/\tilde{f} -loop (3rd generation)

- finite, gauge invariant class of contributions
- enhanced by top/bottom Yukawa coupling
- partial results [Drechsel, Gnendiger, Passehr, Schäfer, Stöckinger-Kim, DS] [Fargnoli, Stöckinger-Kim]
- typically O(1%)

 $a_{\mu}^{
m SUSY} \propto$ chirality flip $\propto \lambda_{\mu}$

However, one-loop coupling to "wrong" Higgs doublet induces shift

$$\lambda_{\mu} \rightarrow \frac{\lambda_{\mu}}{1 + \Delta_{\mu}}$$
 or $\delta m_{\mu}^{OS} = \frac{m_{\mu}}{1 + \Delta_{\mu}} + \dots$

Corresponding 2-loop shift in $a_{\mu}^{\rm SUSY}$

[Marchetti, Mertens, Nierste, DS '08]

$$m{a}_{\mu}^{
m SUSY}
ightarrow rac{m{a}_{\mu}^{
m SUSY}}{1+\Delta_{\mu}}$$

Technical details: leading two-loop corrections

$$\boldsymbol{a}_{\mu}^{\mathrm{SUSY}} = \boldsymbol{a}_{\mu}^{\mathrm{SUSY,1L}} \left(1 - \frac{4\alpha}{\pi} \log \frac{M_{\mathrm{SUSY}}}{m_{\mu}} \right) \left(\frac{1}{1 + \Delta_{\mu}} \right)$$

• QED-logs: -7... - 9%• $(\tan \beta)^2$: +1... + 15%, $\Delta_{\mu}(M_{SUSY}) \approx -0.0018 \tan \beta \operatorname{sign}(\mu)$

< ロ > < 同 > < 回 > < 回 >

SUSY and a_{μ}

$$a_{\mu}^{\text{SUSY}} \approx 12 \times 10^{-10} \tan \beta \operatorname{sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2$$

 $\tan \beta = \frac{v_2}{v_1}, \ \mu = H_1 - H_2$ transition — central for EWSB

If SUSY signals at LHC:

 a_{μ} complementary for: model selection, parameter measurements \rightarrow understand EWSB, link to GUT scale ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

a_µ sharply distinguishes SUSY models breaks LHC degeneracies

Magnetic moment $(g - 2)_{\mu}$ and new physics

SUSY could explain the deviation

- E - N

LHC already rules out small masses in CMSSM

• \Rightarrow large tan β (SPS1b,4)? Non-CMSSM (heavier squarks)?

• a_{μ}^{SUSY} smaller?

Magnetic moment $(g - 2)_{\mu}$ and new physics

SUSY could explain the deviation

< ロ > < 同 > < 回 > < 回 >

Ways to reconcile the LHC bounds with a_{μ}

LHC mainly constrains squarks/gluinos

- Even within the CMSSM: heavy masses + large $\tan \beta$
- Beyond the CMSSM: sleptons lighter than squarks
- Don't worry, SUSY still viable but the LHC—*b*-decays— a_{μ} tensions start preferring some parameter regions
 - If SUSY exists, a_{μ} will be even important to measure parameters

・ロト ・同ト ・ヨト ・ヨト

 $\tan \beta = \frac{V_2}{V_1}$ central for understanding EWSB LHC: $(\tan \beta)^{\text{LHC},\text{masses}} = 10 \pm 4.5$ bad [Sfitter: Lafaye, Plehn, Rauch, Zerwas '08, assume SPS1a]

 a_{μ} improves tan β considerably

vision: test universality of tan β , like for $\cos \theta_W = \frac{M_W}{M_Z}$ in the SM: $(t_{\beta})^{a_{\mu}} = (t_{\beta})^{\text{LHC,masses}} = (t_{\beta})^{H} = (t_{\beta})^{b}$?

Magnetic moment $(g - 2)_{\mu}$ and new physics

Outline

Motivation and Prehistory

- Legacy of Brookhaven measurement: 3σ deviation
- New g 2 experiments at Fermilab and JParc
- Impact on New Physics in general
- SUSY could explain the deviation
 - General behaviour
 - Two-loop contributions
 - a_{μ} , parameter measurements and model discrimination

Alternatives to SUSY

Conclusions

Littlest Higgs (with T-parity)

Bosonic SUSY

- partner states, same spin
- cancel quadratic div.s
- T-parity⇒lightest partner stable

[Georgi; Arkani-Hamed,Cohen,Georgi] Concrete LHT model: [Cheng, Low '03] [Hubisz, Meade, Noble, Perelstein '06]

 $a_{\mu}^{
m LHT} < 1.2 imes 10^{-10}$ [Blanke, Buras, et al '07] Clear-cut prediction, sharp distinction from SUSY possible

Magnetic moment $(g - 2)_{\mu}$ and new physics

Alternatives to SUSY

< ロ > < 同 > < 三 > < 三 >

Randall-Sundrum models

Big question: Where does the hierarchy $M_{\rm Pl}: M_W \sim 10^{17}$ come from? Answer: beautifully explained by warp factor e^{-kL}

Island Universes in Warped Space-Time

Gravity propagates in extra dimension each KK-Graviton contributes equally, weakly, **no decoupling!** TeV-scale determined by:

- coupling $k/M_{\rm Pl}$
- scale $\Lambda_{\pi} = e^{-kL} M_{\rm Pl}$

theory breaks down at scale $\sim \Lambda_{\pi}$, n_c KK-gravitons up to that scale

$$ightarrow a_{\mu}^{
m RS} \sim rac{5n_c}{16\pi^2} rac{m_{\mu}^2}{\Lambda_{\pi}^2}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

g-2 and Randall-Sundrum models

Complementarity: LHC

- Iowest KK-modes
- masses
- a_{μ} from KK-loops
 - feels all KK-modes
 - e.g. $C_{\rm Grav} \propto M^2, \ C_{\rm H} \sim 1$
 - guides model building of full theory

- E - N

Other types of new physics

What if the LHC does not find new physics — "Dark force"? [Pospelov, Ritz...]

- very light new vector boson
- very weak coupling
- motivated e.g. by dark matter, not by EWSB

$C \propto 10^{-8}, M < 1 { m GeV}$

- a_{μ} can be large
- could be "seen" by a_µ-exp.

< 回 > < 三 > < 三

Outline

Motivation and Prehistory

- Legacy of Brookhaven measurement: 3σ deviation
- 2 New g 2 experiments at Fermilab and JParc
- Impact on New Physics in general
- SUSY could explain the deviation
 - General behaviour
 - Two-loop contributions
 - a_{μ} , parameter measurements and model discrimination
- 5 Alternatives to SUSY

6 Conclusions

Conclusions

- Currently $a_{\mu}^{\mathrm{Exp}} a_{\mu}^{\mathrm{SM}} pprox (25\pm8) imes 10^{-10}$ tantalizing
- New Fermilab measurement will start soon very promising!
- $a_{\mu}^{\text{N.P.}}$ very model-dependent, typically $\mathcal{O}(\pm 1 \dots 50) \times 10^{-10}$
 - Benchmark, model discriminator
 - unique properties
- New measurement of a_{μ} will
 - sharply distinguish models, even with similar LHC signatures
 - break degeneracies
 measure central parameters

 a_{μ} will provide essential complementary input in the quest to understand TeV-scale physics — no matter what the result BSM physics can look forward to the new a_{μ} measurement!!

< 同 > < 三 > < 三 > 、

э