5 Scalar fields

5.1 Kallen-Lehmann representation of a two-point function

Consider for simplicity the case of one particle with mass m and spin 0. Suppose that,
at each point x, we can define a hermitian operator ¢(x), a quantum field. If we change
coordinates, x — x’ = Q(A, a)z, then physical states will change accordingly

) = 1) =U(A, a)ly) .

What is then ¢(2')?7 We impose it is a scalar field, i.e. its expectation values do not change
with coordinates

(o2 ') = (XU (A, a)o(«") U (A, a)[ib) = (x]d(@)[¢) .
This gives the transformation rule
¢(a') = U(A, a)p(x)U' (A, a).

In particular, note that ‘ '
o(x + a) = T p(x)eTra"

Consider now the vacuum expecation value of the commutator of two scalar hermitian
quantum fields at two different space-time points x and y:

Gz —y) = (0llg(x), ¢(y)]]0) -

The fact that G depends only on the difference x — y is a consequence of the invariance of
the vacuum under translations, in fact

(0l(2)d(y)]0) = (0] G (0)e™ T ¥h(0)e|0) = (0]¢(0)e ™" (0)[0) .
We study then the function
G(x) = (0l[(z), 6(0)]]0) .

We insert between the two fields a complete set of states:

1= S il =000+ | G S+
and we get

(016(2)6(0)[0) = > (0] () ) {n]$(0)]0)

n

=) (0l (0)e " |n) (n](0) Ze“’nﬂ (0](0)|m) .
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This gives

Ol16(). 200 3 (7 = =) [l =
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where

pla) = 2m)° Y 6% (q = pa)|(0]6(0) ).

We now use the fact that the eigenvalues of P? and P° are non-negative, and that p(q) is
invariant under proper orthochronous Lorentz transformations, to recast p(q) in terms of
a spectral density p(q®), as follows:

This implies ;
01166 60110) = [ 525 (797 = %) pla*)la’).

We now change variable to 2 = ¢?, and obtain the Kallen-Lehmann representation of the
vacuum expectation value of the commutator of two scalar fields at different space-time
points

(0l (x), 9(0)]]0) = /0 dp? p(p*) iA(, 1)
The function A(z, p?) is defined as

s (= O ) = [ e,

with €(q%) = 0(¢°) — ©(—¢°) the sign of ¢°. The function A(z, 4?) has a set of remarkable
propertiess

(i) @+ p*)Az, p?) = 0;

it) A(Az,p?) = Az, p?) if A € LL;

iii) A(z,42) is a function of 22 and ¢(z°) only;
(iv) Az, p*) = =A(=z, p?);
(v) g A =y, p1?) ooy = —03(F — 3));
(vi) Az, pu?) =0if 22 < 0.

Property (vi) ensures that the commutator of two fields at points separated by a space-like
distance, i.e. that cannot be connected by a light-ray, vanishes. This ensures the causality
of the theory.



Let us isolate the contribution of one-particle states

3y

OO = [ ZE =00,
Since ¢(x) is a scalar quantum field

(0|¢(0)|p) = \/Zs (independent of ).

This gives

(2 a = I OO = 256" ~ EYOl’) = Zyd(a® ~ m*)la").

This, and the fact that, for states with more than one particle, u?> > (2m)?, gives the
final form of the K’allen-Lehmann representation for the vacuum expectation value of the
commutator of two scalar fields:

(Oll¢(2), d(W)]0) = iZy Alw —y,m?) + /deprg) Az —y, 1)

4p2

Suppose that ¢(x) is normalised so as to satisfy canonical commutation rules

[0(2), 6(y)]lso=y0 = —i6*(T — 7).
We then obtain
0 3o
A5 {016(2), B 0]ua—yp = ~i6(E — )
= (qu +/ d/fp(/f)) —i6°(& — 9).

4p?

This gives the normalisation condition

1=27, +/ dpp(p?) .
4p2

Since p(p?) is non-negative, and Z, is by construction non-negative, we obtain the con-
straint 0 < Z;, < 1. If Z, = 1, then the field ¢(x) creates states that do not overlap with
two- or more-particle states. It is therefore a free field.

Infinitesimal transformations.



5.2 Free scalar fields

Consider now a free quantum scalar field ¢(x), satisfying
U(A, @)p(z)U (A, 0) = 6(Az +a),
with the additional condition

(01p(0)|p) =1 = (0lo(x)[p) = e 7.

The effect of this field is to transform |p) into the vacuum. We then construct an annihi-
lation operator a(p) that “destroys” a particle of momentum p, as follows:

a(p)|0) =0,
a(p)lp) = (2m)°2E50° (5 — 1)[0) -

Given this operator, a free hermitian scalar quantum field ¢(z) is given by
d3p ‘ .
o —ip-T ipx .t
o) = / i, B D)

From the definition of an adjoint operator, we get that a'(p) “creates” a particle of mo-
mentum p, as follows
a'(p)|0) = ),

and is therefore called creation operator. We can construct two-particle states by successive
application of creationoperators

a'(p1)al (92)|0) = a' (1) |52) = [Py, Da) -

How is |1, pa) related to |pa, p1) = al(p1)a’(p2)|0)? This depends on the relation between
a'(py)al(py) and a' (py)al(py). If we impose commutation relations

[a(P),a(p)] =0, and [a(p),a' ()] = (27)°2E:6° (5 — 1),

we obtain (0|[¢(z), #(y)]|0) = 0 if (z — y)? < 0, which preserves causality. These commu-
tation relations imply
D2, P1) = [P1, P2)
which implies these particles are bosons.
We now construct an operator that gives us the total energy of a state |pi,pa, ..., pN)-
This is the Hamiltonian
d3p

HZ/W%EWT(@@(@,

N
H|ﬁl7ﬁ27'”)p]\7> — ZE_} |ﬁlaﬁ27"'7pN> — <77Z)|H|¢> 2 0.
i=1
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Also, a direct calculation yields
[H, ¢(z)] = —idyp(x) = H = Py (generator of time translations) .

Similarly, we can construct the momentum operator:

o R
= / mpa (P)a(p) -
If we build the operator P# = (H, P), we obtain [P*, ¢(x)] = —id"¢(z), which means that
P* is the generator of translations. Similarly, J,, = z,P, —x, P, is the generator of Lorentz
transformations, and since these particles have spin zero, there is no other contribution to
Juw. Consistently, W, = 0. Note that this representation of fields is a approrpriate for
both massive and massless particles.

A direct computation show that the Hamiltonian H can be expressed in terms of a Hamil-
tonian density H(x) as follows:

1. 1 = 1
H= /d?”H(x) : H(z) = §¢2 + §(V¢)2 + §m2¢2 o
where the dots give a constant contribution to the energy, which we can neglect. Since

H(x) can be expressed in terms of local fields

[6(2),6(y)] =0, (x—y)?<0 = [H(z),H(y)] =0, (z—y)?*<0.

Therefore, Hamilitonian densities made of local operators are causal.

Last, we observe that ¢(x) satisfies the equation (O+m?)¢(x) = 0. But this is the classical
equation of motion obtained from the most general Lorentz-invariant quadratic Lagrangian
for a classical scalar field:

L = c1(0,0)(0"d) + c20?
by computing the corresponding equations of motions, and setting

1 1,

C1 = 5 3 Co = —ém .

In fact, one could start from L, solve the corresponding equation of motion, and promote
the solution ¢(z) to an operator by introducing the operators of creation and annihilation,
and interpreting their action as before. Such a procedure is called canonical quantisation.
Note that, if we wish to interpret the solutions of a classical Lagrangian as a quantum field,
we obtain important constraints on the coefficients ¢; and ¢y. In fact, from the Lagrangian,
we can compute the Hamiltonian density as follows

oL

W(:E)Em, and H=mn¢p—L.

In the present case

m(z) =¢, and H =’ + cl(ﬁcb)Z — o

bt



If the term containing 72 is to be interpreted as the kinetic energy, we must have ¢; > 0.
Also, if we want that the energy is bounded from below, we need to have co < 0. The
actual value ¢, = —m?c; is set by imposing that this quantised Hamiltonian is the energy
of particles of mass m.



