
5 Scalar fields

5.1 Kallen-Lehmann representation of a two-point function

Consider for simplicity the case of one particle with mass m and spin 0. Suppose that,
at each point x, we can define a hermitian operator φ(x), a quantum field. If we change
coordinates, x→ x′ = Ω(Λ, a)x, then physical states will change accordingly

|ψ〉 → |ψ′〉 = U(Λ, a)|ψ〉 .

What is then φ(x′)? We impose it is a scalar field, i.e. its expectation values do not change
with coordinates

〈χ′|φ(x′)|ψ′〉 = 〈χ|U−1(Λ, a)φ(x′)U(Λ, a)|ψ〉 = 〈χ|φ(x)|ψ〉 .

This gives the transformation rule

φ(x′) = U(Λ, a)φ(x)U−1(Λ, a) .

In particular, note that
φ(x+ a) = eiPµa

µ

φ(x)e−iPµa
µ

.

Consider now the vacuum expecation value of the commutator of two scalar hermitian
quantum fields at two different space-time points x and y:

G(x− y) ≡ 〈0|[φ(x), φ(y)]|0〉 .

The fact that G depends only on the difference x− y is a consequence of the invariance of
the vacuum under translations, in fact

〈0|φ(x)φ(y)|0〉 = 〈0|eiP ·xφ(0)e−iP ·xeiP ·yφ(0)e−iP ·y|0〉 = 〈0|φ(0)e−iP ·(x−y)φ(0)|0〉 .

We study then the function

G(x) = 〈0|[φ(x), φ(0)]|0〉 .

We insert between the two fields a complete set of states:

1 =
∑
n

|n〉〈n| = |0〉〈0|+
∫

d3~p

(2π)32E~p
|~p〉〈~p|+ . . .

and we get

〈0|φ(x)φ(0)|0〉 =
∑
n

〈0|φ(x)|n〉〈n|φ(0)|0〉

=
∑
n

〈0|eiP ·xφ(0)e−iP ·x|n〉〈n|φ(0)|0〉 =
∑
n

e−ipn·x|〈0|φ(0)|n〉|2 .
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This gives

〈0|[φ(x), φ(0)]|0〉
∑
n

(
e−ipn·x − eipn·x

)
|〈0|φ(0)|n〉|2 =

∫
d4q

(2π)3
(
e−iq·x − eiq·x

)
ρ̃(q) ,

where
ρ̃(q) = (2π)3

∑
n

δ4(q − pn)|〈0|φ(0)|n〉|2 .

We now use the fact that the eigenvalues of P 2 and P 0 are non-negative, and that ρ̃(q) is
invariant under proper orthochronous Lorentz transformations, to recast ρ̃(q) in terms of
a spectral density ρ(q2), as follows:

ρ̃(q) = ρ(q2)Θ(q0) .

This implies

〈0|[φ(x), φ(0)]|0〉 =

∫
d4q

(2π)3
(
e−iq·x − eiq·x

)
ρ(q2)Θ(q0) .

We now change variable to µ2 ≡ q2, and obtain the Kallen-Lehmann representation of the
vacuum expectation value of the commutator of two scalar fields at different space-time
points

〈0|[φ(x), φ(0)]|0〉 =

∫ ∞
0

dµ2 ρ(µ2) i∆(x, µ2) .

The function ∆(x, µ2) is defined as

i∆(x, µ2) =

∫
d4q

(2π)3
(
e−iq·x − eiq·x

)
Θ(q0)δ(q2 − µ2) =

∫
d4q

(2π)3
e−iq·x ε(q0) ,

with ε(q0) ≡ Θ(q0)−Θ(−q0) the sign of q0. The function ∆(x, µ2) has a set of remarkable
propertiess

(i) (� + µ2)∆(x, µ2) = 0;

(ii) ∆(Λx, µ2) = ∆(x, µ2) if Λ ∈ L↑+;

(iii) ∆(x, µ2) is a function of x2 and ε(x0) only;

(iv) ∆(x, µ2) = −∆(−x, µ2);

(v) ∂
∂x0

∆(x− y, µ2)|x0=y0 = −δ3(~x− ~y);

(vi) ∆(x, µ2) = 0 if x2 < 0.

Property (vi) ensures that the commutator of two fields at points separated by a space-like
distance, i.e. that cannot be connected by a light-ray, vanishes. This ensures the causality
of the theory.
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Let us isolate the contribution of one-particle states

|〈0|φ(0)|1〉|2 =

∫
d3~p

(2π)32E~p
|〈0|φ(0)|~p〉|2 .

Since φ(x) is a scalar quantum field

〈0|φ(0)|~p〉 =
√
Zφ (independent of ~p) .

This gives

(2π)3δ4(q − p1)|〈0|φ(0)|1〉|2 =
Zφ
2E~q

δ(q0 − E~q)Θ(q0) = Zφδ(q
2 −m2)Θ(q0) .

This, and the fact that, for states with more than one particle, µ2 ≥ (2m)2, gives the
final form of the K’́allen-Lehmann representation for the vacuum expectation value of the
commutator of two scalar fields:

〈0|[φ(x), φ(y)]|0〉 = iZφ ∆(x− y,m2) +

∫ ∞
4µ2
dµ2ρ(µ2) i∆(x− y, µ2) .

Suppose that φ(x) is normalised so as to satisfy canonical commutation rules

[φ̇(x), φ(y)]|x0=y0 = −iδ3(~x− ~y) .

We then obtain

∂

∂x0
〈0|[φ(x), φ(y)]|0〉|x0=y0 = −iδ3(~x− ~y)

=

(
Zφ +

∫ ∞
4µ2
dµ2ρ(µ2)

)
− iδ3(~x− ~y) .

This gives the normalisation condition

1 = Zφ +

∫ ∞
4µ2
dµ2ρ(µ2) .

Since ρ(µ2) is non-negative, and Zφ is by construction non-negative, we obtain the con-
straint 0 ≤ Zφ ≤ 1. If Zφ = 1, then the field φ(x) creates states that do not overlap with
two- or more-particle states. It is therefore a free field.

Infinitesimal transformations.
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5.2 Free scalar fields

Consider now a free quantum scalar field φ(x), satisfying

U(Λ, a)φ(x)U−1(Λ, a) = φ(Λx+ a) ,

with the additional condition

〈0|φ(0)|~p〉 = 1 =⇒ 〈0|φ(x)|~p〉 = e−ip·x .

The effect of this field is to transform |~p〉 into the vacuum. We then construct an annihi-
lation operator a(~p) that “destroys” a particle of momentum ~p, as follows:

a(~p)|0〉 = 0 ,

a(~p)|~p′〉 = (2π)32E~pδ
3(~p− ~p′)|0〉 .

Given this operator, a free hermitian scalar quantum field φ(x) is given by

φ(x) =

∫
d3~p

(2π)22E~p

(
e−ip·xa(~p) + eip·xa†(~p)

)
.

From the definition of an adjoint operator, we get that a†(~p) “creates” a particle of mo-
mentum ~p, as follows

a†(~p)|0〉 = |~p〉 ,

and is therefore called creation operator. We can construct two-particle states by successive
application of creationoperators

a†(~p1)a
†(~p2)|0〉 = a†(~p1)|~p2〉 = |~p1, ~p2〉 .

How is |~p1, ~p2〉 related to |~p2, ~p1〉 = a†(~p1)a
†(~p2)|0〉? This depends on the relation between

a†(~p1)a
†(~p2) and a†(~p1)a

†(~p2). If we impose commutation relations

[a(~p), a(~p′)] = 0 , and [a(~p), a†(~p′)] = (2π)32E~pδ
3(~p− ~p′) ,

we obtain 〈0|[φ(x), φ(y)]|0〉 = 0 if (x − y)2 < 0, which preserves causality. These commu-
tation relations imply

|~p2, ~p1〉 = |~p1, ~p2〉 ,

which implies these particles are bosons.
We now construct an operator that gives us the total energy of a state |~p1, ~p2, . . . , pN〉.
This is the Hamiltonian

H =

∫
d3~p

(2π)22E~p
E~p a

†(~p)a(~p) ,

H|~p1, ~p2, . . . , pN〉 =
N∑
i=1

E~pi |~p1, ~p2, . . . , pN〉 =⇒ 〈ψ|H|ψ〉 ≥ 0 .
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Also, a direct calculation yields

[H,φ(x)] = −i∂0φ(x) =⇒ H = P0 (generator of time translations) .

Similarly, we can construct the momentum operator :

~P =

∫
d3~p

(2π)22E~p
~p a†(~p)a(~p) .

If we build the operator P µ ≡ (H, ~P ), we obtain [P µ, φ(x)] = −i∂µφ(x), which means that
P µ is the generator of translations. Similarly, Jµν = xµPν−xνPµ is the generator of Lorentz
transformations, and since these particles have spin zero, there is no other contribution to
Jµν . Consistently, Wµ = 0. Note that this representation of fields is a approrpriate for
both massive and massless particles.
A direct computation show that the Hamiltonian H can be expressed in terms of a Hamil-
tonian density H(x) as follows:

H =

∫
d3H(x) , H(x) =

1

2
φ̇2 +

1

2
(~∇φ)2 +

1

2
m2φ2 . . . .

where the dots give a constant contribution to the energy, which we can neglect. Since
H(x) can be expressed in terms of local fields

[φ(x), φ(y)] = 0 , (x− y)2 < 0 =⇒ [H(x),H(y)] = 0 , (x− y)2 < 0 .

Therefore, Hamilitonian densities made of local operators are causal.
Last, we observe that φ(x) satisfies the equation (�+m2)φ(x) = 0. But this is the classical
equation of motion obtained from the most general Lorentz-invariant quadratic Lagrangian
for a classical scalar field:

L = c1(∂µφ)(∂µφ) + c2φ
2 ,

by computing the corresponding equations of motions, and setting

c1 =
1

2
, c2 = −1

2
m2 .

In fact, one could start from L, solve the corresponding equation of motion, and promote
the solution φ(x) to an operator by introducing the operators of creation and annihilation,
and interpreting their action as before. Such a procedure is called canonical quantisation.
Note that, if we wish to interpret the solutions of a classical Lagrangian as a quantum field,
we obtain important constraints on the coefficients c1 and c2. In fact, from the Lagrangian,
we can compute the Hamiltonian density as follows

π(x) ≡ ∂L
∂(∂0φ(x))

, and H = πφ̇− L .

In the present case

π(x) = φ̇ , and H = c1π
2 + c1(~∇φ)2 − c2φ2 .
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If the term containing π2 is to be interpreted as the kinetic energy, we must have c1 > 0.
Also, if we want that the energy is bounded from below, we need to have c2 < 0. The
actual value c2 = −m2c1 is set by imposing that this quantised Hamiltonian is the energy
of particles of mass m.
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