3 Representations of the Lorentz group

3.1 Reducible and irreducible representations

Direct sum representations. Given two representations D, and D, of a group G, with dimen-
sions n; and n, respectively, the direct sum D; @ D, is the block-diagonal matrix

Di(g) O

D, ®D = .

(D, 2)(8) ( 0 Ds(2)
The generators of D; ® D, are

X0
X((IDIEBDZ) = ( 0 X((lDz) ) )

and dim(D; & D,) = dim(D;) + dim(D,).
Direct product representations. Let |i), i = 1,2,...,n; a basis for the vector space V| over

which the representation D; acts, and |a), @ = 1,2,...n, a basis for V, over which D, acts.
Let us define V| ® V, the vector space generated by [i)|e). We can define the direct product
representation Dy ® D, as

(D1 ® D)@y = (D1(9)|D) (D2(g)l)) -
Consequently
(D1 ® D2)(&)]ia,jp = [D1(©)]ij[D2(2)]ap -
The corresponding generators are given by

(X0 05 = [XPVj Oup + 617 (X Lap -

With a change of basis, direct product representations can generally be written in a block-
diagonal form, i.e. as a direct sum of other representations.

A representation that is the direct sum of other representations is called reducible

An irreducible representation is one that is not reducible.

Example. With the method of the maximum eigenvalue of J; we have constructed irreducible
representations of SU(2) of finite dimension.

We can construct reducible representations of SU(2) by taking the direct product of n two-
dimensional representations D of SU(2), as follows:

D=D®D®---®D = D;_;i..j, =DiyD

n times

ij2 s Diﬂjn °

Such direct product representation can be decomposed into irreducible representations by look-
ing for the highest eigenvalue of Js, e.g.

1 1
—®-=001.
287709

Sometimes representations are labelled by their respective dimensions, so the above relation
might be found in the form2®2 = 1@ 3.



3.2 The Lorentz group

The Lorentz group is the group of linear transformation on coordinates x* = 0,1,...,d — 1
preserving the space-time interval

s = X' X" N = diag(1,-1,-1,...,-1),,
X - XM= AEXY

2

s s? = N X*x" = nﬂvAgA:,x”x‘T =g

The above relation has to be valid for an arbitrary x*, which implies
nuyAzA(VT = Npor -
In matrix notation
s> =xTnx X = Ax

A"pA =n  Lorentz group condition

The transformations leaving n = diag(1l,—1,—1,—1) constitute the group O(1,3) =~ O3, 1),
acting on Minkowsy space-time.

The transformations leaving 1 invariant constitute the group O(4), acting on 4-dimensional Eu-
clidean space. In fact

Q'1o=0"Q=1 orthogonal group condition
Taking the determinant of the Lorentz group condition gives
det(AT) det(n) det(A) = (det(A))* det(n) = det(n) = (det(A))> =1,
which implies

det A +1 proper LT, e.g. identity, rotations, boost
c =
-1 improper LT, e.g. parity A = diag(1,-1,-1,-1)

The 00-component of the Lorentz group condition also gives

3 3
AP =D AN =1 = A)=1+ > (AN >1.
i=1

i=1
This gives

{Ag >1  orthochronous LT

Ag < —1 non-orthochronous LT, e.g. time-reversal A = diag(—1,1,1,1)

To summarise



det(A)
LK: proper Lﬁ: proper
1 orthochronous non-orthochronous
(e.g. identity, rotations, boosts) (e.g. PT)
LT improper L' improper
-1 orthochronous non-orthochronous
(e.g. parity P) (e.g. time-reversal T)

3.3 Lie algebra of the Lorentz group

The Lorentz group in d-dimensions is the subgroup O(1,d — 1) = O(d — 1, 1) of GL(d,R). As
such, it has d(d — 1)/2 generators (6 in four dimensions), as follows

M,,

=-M,,, u=0,1,...d-1, A:exp[éMVMﬂy].
To find M,,, we consider an infinitesimal Lorentz transformation
A+ o (= ).
From the definition of the Lorentz group we get w,, = —w,,. In fact
Mo DNGAL = Mpe = Npo = N (T, + W1, + W) = Tpo + Wpor + Wop = Wpo = —Werp -
This gives the explicit form of M,,, as follows (see Problem Sheet 3)
A52ﬂ+wﬁzﬂﬁiéf”@4t=$(Mwﬂ:—“ﬁnw—¢wwy
Using the explicit form of M,,, we obtain their commutation rules (see Problem Sheet 3)

[Myv’ Mp(r] = i(nprwr + nvo'Myp - n,u(erp - nvay(r) .

Lorentz algebra in 4 dimensions. The explicit form of M,,, in four dimensions is

0 Ki K, K;

Mo = 0 -Jz ) My = K;
o 0 - M;; = €
0

e anti-hermitian generators of boosts

0i 00 00 i o0 00 0 i
i 000 0000 0000
K=tooool” 2=li000| o000
0000 0000 i 000



e hermitian generators of rotations
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Since the generators of boost are not hermitian, the fundamental representation of the Lorentz
group is not unitary. This poses problems for Quantum Mechanics, because we need unitary
representations acting on wave functions to leave transition amplitudes invariant. We might
then ask whether there exist other unitary representations of the Lorentz group, different from
the fundamental one. Let us consider the analogy with ordinary quantum mechanics, which is
invariant under rotations. There, the fundamental representation of the group of rotations SO(3)
was the adjoint representation of its double cover SU(2), which has an isomorphic Lie algebra.
Suppose we are able to find a group whose Lie algebra isomorphic to that of SO(1, 3), of which
SO(1, 3) constitutes the adjoint representation. Note that, a group generated by the Lie algebra
of a group G is called the universal cover (or covering) of group G. Our task is that of finding
the universal cover of SO(1, 3). First, we observe that

TI'(JiJj) = 26ij , TI'(J,'Kj) = O, TI'(K,‘K]') = _251']' .

The Lie algebra is then non-compact. Unfortunately, it can be shown that the only finite-
dimensional representations of any (semi-simple) non-compact Lie group is the trivial one, where
all elements are mapped into the identity. So, if we are to construct a relativistic quantum me-
chanics, we need to consider infinite-dimensional unitary representations of the Lorentz group.
Finite dimensional representations are nevertheless very useful. In fact, suppose we want to find
relativistically invariant equations for classical fields. Then, there is no need for these fields to
be wave functions and have a probabilistic interpretation.

3.4 Finite-dimensional representations of the Lorentz group

The explicit commutation rules for the generators of the Lorentz group are
[Ji, J;] = i€ i [Ki, K] = —i€ i [Ji, K] = i€y Ky .
We now consider the two linear combinations

1 1
SiZE(Ji—l_iKi)’ AiZE(Ji_iKi)'

The operators S; and A; are hermitian and give two independent SU(2) algebras:

[SiaSj] = ifiijk, [AiaAj] = —ifijkAk, [Si’Aj] =0.



So, the Lie algebra of SO(1,3) is isomorphic the direct sum of two SU(2) Lie algebras, or
so(1,3) ~ su(2) @ su(2). Therefore, each finite-dimensional representations of the Lie algebra of
SO(1, 3) is labelled by the pair

(51, 82), 5; =0,

The Casimir operators are
SP=sisi+1),  A2=s(s+1).

The number s, + s, is called the total spin of the representation and dim(sy, 5,) = (2s51+1)(2s,+1).
Given a representation (s, 5,), from S; and A; we can compute J; and K;. Then, given a set of
three parameters for rotations @ = (a1, @,, @3) and three parameters for boosts ﬁ = (B1,52,03),
the generic element of the representation can be written in the form

o o2 . > 23 3 I
QU152 B) = exp [z(df’- J+pB- K)] = exp [Ew‘”’Mﬁf}’”)] ,
with Mff;"”) the generators of the representation in covariant form.

(0,0): scalars. This is the trivial representation, i.e.
S, =0, A, =0, = J;,=0, K;=0.

so that Q@O (g, ﬁ) = 1. Objects that transform under (0, 0) are invariant under Lorentz transfor-
mations, and are called scalars. Example: the Higgs field ¢.

(1/2,0) and (0, 1/2): Weyl spinors. The two representations (1/2,0) and (0, 1/2) of the Lie
algebra of the Lorentz group are called spinor representations of the Lorentz group. These rep-
resentations are two-dimensional, and defined by

g

1/2,0): Si=—,

0,1/2): S,=0, A,-:%, (“right”) .

A =0, (“left”),

This gives ‘
. - éai (left)
Ji= 50y, K; =

2 + éai (right)

Let us consider now an operator Q; = QU/29 generated by the left algebra:
5 =2 P [N = F
Qu(@.f) =expi@- J+f- K)| =exp [l(a —if)- 5} .
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Due to the identity
IndetQ =Tr(InQ) .

and the fact that o; are traceless, we have
det (QL(&, ,5’)) = exp (Tr [%(ai - iﬁ[)Tr(O'i)]) =1.

Therefore, € is a 2 X 2 complex matrix with unit determinant, hence Q; € SL(2, C). Note that
SL(2, C) can be obtained by exponentiating the Lie algebra su(2) with complex parameters.
Similarly, an operator Qz = Q©1/2 generated by the right algebra is given by

Qr(a, ﬁ) = exp

S
. . o
i@+ lﬁ) . —] .
2
There are some very important relations between these matrices:

e SL(2,C) is not unitary, but
Q=0
The above relation implies
Q=0
Since ngl belongs to (0, 1/2), this means that ) = (QZ)T also belongs to (0, 1/2). There-
fore, if we regard (1/2,0) as the fundamental representation of SL(2, C), then (0, 1/2) is
the so-called conjugate representation.

e Due to the relation between Pauli matrices

*
0200, = —0;,

we have
UzQLO'Z = Q; .
This implies:
O-ZQ{O-ZQL = UZQ%O’Q‘QR =1 .
and that, if i transforms according to (1/2,0), then o»¢* transforms according to (0, 1/2).
Similarly, if y transforms according to (0, 1/2), then o,y ™ transforms according to (1/2, 0).

A two-component complex vector that transforms according to (1/2,0) (equivalently according
to the fundamental representation of SL(2, C) is called a left-handed (Weyl) spinor ¢, a = 1,2.
Example: the field v, describing a left-handed neutrino.

A two-component complex vector that transforms according to (0, 1/2) (equivalently according
to the conjugate representation of SL(2, C) is called a right-handed (Weyl) spinor ¥, & = 1,2.
Example: the field vg describing a right-handed neutrino.

The generators of the left- and right-handed spinor representations are given in terms of the
matrices o, = (1, 0;) and 7, = (1, —0;) as follows

i

L — ag(1/20) _ = =
va = Mw =7 (O'”O'V - O'VO'IM) ,
R _ pg01/2) _ | - =
ZW = MMV =12 (O’MO'V - a'va'ﬂ) .

@)



(1/2,0) @ (0,1/2): Dirac spinors. So far we have not been able to make a link between the S ;
and the A;. This link is provided by parity. Consider the Lorentz transformation in Minkowsky
space corresponding to parity. This is represented by the 4 X 4 matrix P = diag(1,-1,-1,-1).
The action of parity on the generators of the Lorentz group is given by

PIP'=J.. PKP'=-K = S, A,

This relation must hold in any representation of the Lorentz group. Therefore, if we need a theory
that is invariant under parity, we need to represent this operators. Since the parity operator swaps
S, and A;, it maps the (1/2, 0) representation into the (0, 1/2) representation. Therefore, in such a
theory we need both representations. This is accomplished by constructing the direct sum of the
two representations (1/2,0)® (0, 1/2). An object transforming according to this representation is
a four-dimensional vector ¢ p, a pair of Weyl spinors, one left-handed and the other right-handed,
as follows

o = ( o ) L we(/2,0), xze(0.1/2).
Example: since electrodynamics is parity invariant, the field ¢, describing an electron has to be
a Dirac spinor.
Note that, since o) transforms according to (0, 1/2), one can write a Weyl spinor as a Dirac
spinor as follows

_[ ¥
l//D=(O_2wz)’ ¢’L€(1/2’0)

A four-dimensional spinor that depends as above only on a single Weyl spinor is called a Majo-
rana spinor.

(1/2,1/2): vectors. Once we have the fundamental and conjugate representations of SL(2, C),
we can obtain all other representations by taking tensor products of these, and decomposing the
results in irreducible representations by using the same technique used for SU(2). We start with

(1/2,0)®(0,1/2) = (1/2,1/2).

This is the fundamental representation of SO(1,3). Objects that transform according to this
representation are called vectors. In fact, using the matrix o,, we can associate to each four-
vector x* = (x%, x!, x2, x*) the complex 2 x 2 matrix

3 1 + 2
X x' —ix
X=xo, = .
K ( X +ix =X )
This matrix transforms according to (1/2, 1/2) as follows:
2o =020,

with Q; € SL(2,C) an element of the (1/2,0) representation, and Qz an element of the (0, 1/2)
representation that corresponds to the same group parameters. Since o, is a basis for the vector
space of 2 X 2 matrices, then &' = xo,. It is possible to show that

X = AXT
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where A%, is a Lorentz transformation. Since there are two matrices of SL(2, C) that give rise to
the same Lorentz transformation, SL(2, C) is the double cover of the Lorentz group.
Note that one can also associate to a four-vector x* a 2 X 2 matrix using . In this case

- ¥ = Qp2Q = x"5,,

with Qf an element of the (0, 1/2) representation. Again, x* and x* are related by a Lorentz
transformation.

Objects transforming with respect to the (1/2, 1/2) representations are called vectors. Example:
the electromagnetic field A*.

.....

.....

ing according to

Thitim — (TYtim = NaL - A ADY - AD T
For instance, A% is a (1, 1) tensor.
Higher-spin representations are constructed by taking suitable tensor products of the represen-
tations we have seen so far, and then decomposing the resulting representation into irreducible
representations using the same method used for SU(2) representations.
To discuss the first example, we need the concept of dual tensor. Given the rank-(2, 0) tensor,

T its dual T is obtained from
T = VBT

where e = €.vap 18 the totally antisymmetric symbol in four dimensions with €23 = +1.
The first higher-spin representation we can construct is

(1/2,0)®(1/2,0) = (0,0)® (1,0) .

Objects transforming according to (0, 0) are scalars. Objects transforming according to (1, 0) are
spin-1 antisymmetric self-dual tensors 7+, i.e.

T" =-T", and T" =T".
Dimension of T#" = 6 - 3 =3=dim(1,0).
—— ——
antisymmetri  self-dual
Siimilarly
0,1/2)®(0,1/2) = (0,0)® (0, 1) .
Objects transforming according to (0, 1) are spin-1 antisymmetric anti-self-dual tensors 7+, i.e.
" =-T", and T =-T".
Every rank-2 tensor 7#” can be constructed by taking the direct product of two vector represen-
tations, as follows
(1/2,1/2)®(1/2,1/2) = [(1/2,0) ® (0, 1/2)] ® [(1/2,0) ® (0, 1/2)]
=[(1/2,00®(1/2,00] ® [(0,1/2) ® (0, 1/2)]
=[(0,0)®(1,0)]®[(0,0) & (0, 1)]
=0,00e1,0000, Hed,1).
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Every rank-2 tensor T contains a spin-0 part (0, 0), a spin-1 part (1,0) @ (0, 1) and a spin-2 part
(1, 1), corresponding to the decomposition

T = an + A" + S,

1
a=-T", AR = AW S =g and SK =0
4 1 D e Ve H

e.g. electromagnetic tensor FH”
& g e.g. stress-energy tensor @+

d4-1) 4@+1
@-D 4+ 1 4 6 4+ 9

2 2 —— —— ——
— — dim(0,0)  dim[(1,0)&(0,1)] dim(1,1)
anti-symmetric ~ symmetric traceless

dimensions of T# =4 x4 =1 +




