
2 Lie groups and Lie algebras

2.1 Lie groups
In physics, we are often interested in transformations that depend in a smooth way on a number
of parameters αa, a = 1, 2, . . . ,N.
Example: rotations in 3D depend smoothy on the three Euler angles α, β, γ, i.e. R(α, β, γ) =

R(θi), i = 1, 2, 3.
Let us call α ≡ (α1, α2, . . . , αn), and g(α) a generic element of one of such groups. Then, we can
set

g(α)|α=0 = e .

If the group elements depend smoothly on the parameters, we can perform a Taylor expansion
around α = 0, and obtain

g(α) = g(0)︸︷︷︸
=e

+
∂

∂αa
g(α)|α=0︸         ︷︷         ︸
≡iXa

αa + . . .

Xa are N linear operators called the generators of the group
A Lie group G is a group which depends smoothly on some (real) parameters, i.e.

(LG1) its elements form a smooth (∞-differentiable) manifold

(LG2) group multiplication (in fact g(α)g−1(β)) is a smooth function G ×G → G

A representation D of a Lie group G is a smooth map D : G → L(V), with L(V) the set of linear
transformations over a vector space V .
If D is a representation of al Lie group G, we denote D(g(α)) ≡ D(α), with D(0) = 1.

Theorem 2.1 For a Lie group, the representation D(α) of an element g(α) continuously con-
nected to the identity can be written as

D(α) = exp [iαaXa] , a = 1, 2, . . . ,N ,

where αa are real parameters and Xa are linearly independent matrices. The dimension of V is
called the dimension of the representation.

The linear operators Xa are called the generators of the representation D. They span a vector
space, called the Lie algebra of the group (in the representation D). Note that, if D(α) is unitary,
then Xa are hermitian operators (see Problem Sheet 2).
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2.2 Lie algebra of the generators
Consider two group elements g1 and g2. Their product is still a group element:

g1 = exp
(
iα1

aXa

)
g2 = exp

(
iα2

aXa

) =⇒ g1g2 ≡ g3 = exp
[
iγaXa

]
.

Since, in general, given two operators u, v such that their commutator [u, v]z ≡ uv − vu , 0, we
have

exp[u] exp[v] = exp
(
u + v +

1
2

[u, v] + . . .

)
,

we have
g1g2 , exp

(
i(α1

a + α2
a)Xa

)
.

However, let us consider u ≡ iα1
aXa and v ≡ iα2

aXa, and the product

exp[u]︸ ︷︷ ︸
=g1

exp[v]︸︷︷︸
=g2

exp[−u]︸   ︷︷   ︸
=g−1

1

exp[−v]︸   ︷︷   ︸
=g−1

2

= exp ([u, v] + . . . ) = exp(w) , w ≡ iβaXa .

For infinitesimal transformations, u, v→ 0, we can expand the exponentials, and get

(1 + iα1
aXa)(1 + iα2

bXb)(1 − iα1
aXa)(1 − iα2

bXb) + · · · = 1 + iβcXc .

This implies
−α1

aα
2
b[Xa, Xb] = iβcTc ,

which means that the commutator [Xa, Xb] is a linear combination of the generators Xa, conven-
tionally cast in the form

[Xa, Xb] = i fabcXc .

The numbers fabc are called the structure constants of the Lie algebra. By construction, they are
independent of the representation of the Lie group. We have then proven that the generators Xa

in any representation form a vector space that is closed under commutation

(LA1) [Xa, Xb] = i fabcXc

From a direct calculation, one can also show that

(LA2) [Xa, [Xb, Xc]] + [Xb, [Xc, Xa]] + [Xc, [Xa, Xb]]︸                                                     ︷︷                                                     ︸
cyclic permutations

= 0

A vector space with a product satisfying (LA1) and (LA2) is called a Lie Algebra
From the algebraic structure of the generators we infer the following properties for fabc:

(LA1) =⇒ fbac = − fabc (antisymmetric in a and b)

(LA2) =⇒ fade fbcd + fcde fabd + fbde fcad = 0

Note that the structure constans and the exponential map are enough to ontain the full structure
of a Lie group, even beyond infinitesimal transformations. Also, if a Lie group admits a unitary
representation, fabc are real (see Problem Sheet 2)
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2.3 Adjoint representation
The generators of the adjoint representation are defined by

(Ta)bc = −i fabc = i fbac .

Due to the Jacobi identity for fabc, we have [Ta,Tb] = i fabcTc, which means that indeed Ta

generate a representation of a Lie group.
The dimension of the adjoint representation is the number of generators, hence the number of
real parameters needed to uniquely specify a group element.
Consider the real, symmetric matrix

gab ≡ Tr (TaTb) .

This matrix can be diagonalised and recast in the form

gab = k diag(+1, . . . ,+1︸       ︷︷       ︸
m

,−1, . . . ,−1︸       ︷︷       ︸
N−m

) .

If m = n, the Lie algebra is said to be compact. A Lie group generated by a compact Lie algebra
is said to be a compact Lie group.
In a compact Lie algebra, Tr (TaTb) = λδab. In this case, we have

[Ta,Tb] = i fabcTc =⇒ Tr ([Ta,Tb]Tc) = i fabdTr (TdTc) = iλ fabc =⇒ fabc = −iλ−1Tr ([Ta,Tb]Tc) .

This in turn implies that, for compact Lie algebras, fabc is totally antisymmetric. In fact

Tr ([Ta,Tb]Tc) = Tr(TaTbTc) − Tr(TbTaTc)
= Tr(TbTcTa) − Tr(TCTbTa) = Tr ([Tb,Tc]Ta)

This implies fabc = fbca =⇒ fabc is antisymmetric also in a, b.
Note that, if fabc are real, then the adjoint representation is a real representation. Therefore, if it
is unitary, is also orthogonal.

2.4 Examples of Lie groups and their algebras
General linear group GL(n,K). This is the group of invertible linear transformations on Kn,
with K = R or C. These are all n × n matrices with entries in K with determinant different from
zero.

real parameters: n2 GL(n,R)

2n2 GL(n,C)

Dilatations. x 7→ λx, with x ∈ Kn, λ ∈ K

parameters: 1 GL(1,R)
2 GL(1,C)

Dilatations form a subgroup of GL(n,K).
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Special linear group SL(n,K). These are all n×n matrices with entries inK with determinant
equal to one. By construction SL(n,K) ⊂ GL(n,K).

parameters: n2︸︷︷︸
real entries

− 1︸︷︷︸
det M=1

SL(n,R)

2n2︸︷︷︸
real entries

− 2 = 2(n2 − 1)︸          ︷︷          ︸
det M=1+i·0

SL(n,C)

Orthogonal groups. Let M be an orthogonal transformation for a scalar product g : Rn ×

R
n → R. Let us fix an orthonormal basis {ei}i=1,...,n such that the matrix gi j = g(ei, e j) is g =

diag(+1, . . . ,+1︸       ︷︷       ︸
s

,−1, . . . ,−1︸       ︷︷       ︸
n−s

). The orthogonal group on such space is a Lie group denoted by

O(s, n− s). We can associate to M the matrix Mi j = g(ei,Me j), that has the property MT gM = g .
This fixes all the elements on the diagonal and above the diagonal of M, thus giving n(n + 1)/2
constraints. Therefore

parameters: n2︸︷︷︸
real entries

−
n(n + 1)

2︸    ︷︷    ︸
MT gM=g

=
n(n − 1)

2
.

Examples:
O(n): group of isometries in n dimensions (MT M = 1)
O(3, 1): Lorentz group

Special orthogonal groups. Note that MT gM = g =⇒ (det M)2 = 1. This implies det M =

±1, hence orthogonal groups are divided into two connected components according to the value
of det M. The component that contains the identity has det M = 1, and is called special orthogo-
nal group SO(s, n − s).

parameters:
n(n − 1)

2
.

Example: SO(n) is the group of rotations in n dimensions. Note that in three dimensions , SO(3)
has 3 × 2/2 = 3 parameters, which are in fact the three Euler’s angles.

Unitary groups. Consider a unitary operator M with respect to a product g : Cn × Cn → C.
The groups of unitary operators in n dimensions is denoted by U(n). Recall that, if we fix an
orthonormal basis {ei}i=1,...,n such that g(ei, e j) = δi j, and we associate to M a matrix Mi j =

g(ei,Me j), we have M†M = 1. This condition gives n2 real conditions (see Problem Sheet 2).

parameters: 2n2︸︷︷︸
real entries

− n2︸︷︷︸
M†M=1

= n2 .

Also,
M†M = 1 =⇒ | det M| = 1 =⇒ det M = eiφ .

The operators with det M = 1 form the special unitary group SU(n).

parameters: n2︸︷︷︸
parameters of U(n)

− 1︸︷︷︸
det M=1
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2.5 The group SU(2)

The group SU(2) is made up of 2 × 2 complex matrices with unit determinant.

Fundamental representation. Consider the Pauli matrices σa, a = 1, 2, 3:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

From them construct τa ≡ σa/2. The matrix

U(~θ) = exp[iθaτa] = cos(θ/2) + i sin(θ/2)θ̂aσa , θ ≡ |~θ| , θ̂ = ~θ/θ .

is an element of SU(2). In fact, since τa are hermitian, U is unitary. Also, since τa are traceless

det U = det
(
exp[iθaτa]

)
= exp[Tr(iθaτa)] = 1 .

So the τa are the generators of the representation that defines the group, which is called the funda-
mental representation. The Lie algebra of the group can be obtained from an explicit calculation:

[τa, τb] = iεabcτc , a, b, c ∈ {1, 2, 3} ,

where εabc is the Levi-Civita symbol, defined by

εabc =

{
+1 cyclic permuations ε123 = ε312 = ε231 = +1
−1 anti-cyclic permutations ε213 = ε321 = ε132 = −1

Adjoint representation. The generators are (Ta)bc = −iεabc:

T1 =

 0 0 0
0 0 −i
0 i 0

 , T2 =

 0 0 i
0 0 0
−i 0 0

 , T3 =

 0 −i 0
i 0 0
0 0 0

 .
Since the adjoint representation is real, exp[iθaTa] is not only a unitary matrix, but it is also
an orthogonal matrix with unit determinant, so it is a member of SO(3). Therefore, the adjoint
representation of SU(2) is the fundamental representation of SO(3). This is the group of rotations
in three dimensions, parameterised in terms of the Euler’s angles as

Ω(α, β, γ) = exp[iαT3] exp[iβT2] exp[iγT3] .

Once we have the adjoint representation, we compute

Tr(TaTb) = 2δab .

Therefore, the Lie algebra of SU(2) is compact.
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Relation between SU(2) and SO(3). Since the Lie algebra of the adjoint representation of
SU(2) is the Lie algebra of SO(3), we can establish a one-to-one correspondence (isomorphism)

Lie algebra of SU(2) ≈ Lie algebra of SO(3) .

Is there also an isomorphism between SU(2) and SO(3)? The answer is no. Heuristically, if we
interpret θ as a rotation angle, for a rotation of 2π around an axis, say the z-axis, we have

exp[i(2π)T3] = 1 , exp[i(2π)τ3] = −1 ,

so not all representations of SU(2) are also representations of SO(3). More precisely, consider
~v ∈ R3 = (v1, v2, v3), and construct the 2 × 2 matrix vaσa. Then, ∀U ∈ SU(2), we have (see
Problem Sheet 2)

U(vaσa)U−1 = [Ω~v]aσa ,

with Ω ∈ SO(3). Note that this is not a one-to-one correspondence, because if U ∈ SU(2)
corresponds to Ω ∈ SO(3), so does −U. In mathematical terms, we say that SU(2) is the double
cover of SO(3).

2.6 Finite-dimensional representations of SU(2)

We now want to characterise all the finite-dimensional unitary representations of SU(2). We
consider then the generators Ja of a finite-dimensional representation. They satisfy of course the
abstract SU(2) algebra [Ja, Jb] = iεabcJc. Each operator Ja is hermitian, so we can diagonalise
the operator J3.
We then define “raising” and “lowering” operators as follows

J± =
1
√

2
(J1 + iJ2) =⇒ [J3, J±] = ±J± , [J+, J−] = J3 , J− = (J+)†

Now, if J3|m〉 = m|m〉, we have

J3J±|m〉 = [J3, J±]|m〉 + J±J3|m〉 = (m ± 1)J±|m〉 .

Therfore, J±|m〉 ∝ |m ± 1〉.
We consider the state | j〉 corresponding to the highest eigenvalue j of J3. By construction J+| j〉 =

0. Applying J+ to this state we obtain

J−| j〉 = N j| j − 1〉 .

Squaring the above we can compute the normalisation factor N j, as follows:

〈 j|J+J−| j〉 = 〈 j|[J+, J−]| j〉 = 〈 j|J3| j〉 = j = N2
j =⇒ N j =

√
j

This allows us to show that
J+| j − 1〉 = N j| j〉
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as follows:

J+| j − 1〉 =
1
N j

J+J−| j〉 =
1
N j

[J+, J−]| j〉 =
1
N j

J3| j〉 =
j

N j
| j〉 = N j| j〉

Applying J− to | j − 1〉 gives
J−| j − 1〉 = N j−1| j − 2〉 ,

with a coefficient N j−1 that can be determined by squaring the above equation, as follows:

N2
j−1 = 〈 j − 1|J+J−| j − 1〉 = 〈 j − 1|J−J+ + [J+, J−]| j − 1〉 = N2

j + 〈 j − 1|J3| j − 1〉 = N2
j + j − 1 .

This gives the relation
N2

j−1 − N2
j = j − 1 .

Also, if we apply J+ to | j − 2〉 we obtain

J+| j − 2〉 =
1

N j−1
J+J−| j − 1〉 =

1
N j−1

(J−J+ + [J+, J−])| j − 1〉 =
1

N j−1

(
J−N j| j〉 + J3| j − 1〉

)
=

1
N j−1

(N2
j + j − 1︸      ︷︷      ︸

=N2
j−1

)| j − 1〉 = N j−1| j − 1〉 .

We now prove by induction that, for every non-negative integer k, once we define

J−| j − k〉 = N j−k| j − k − 1〉 ,

we have
N2

j−k − N2
j−k+1 = j − k ,

and
J+| j − k − 1〉 = N j−k| j − k〉 .

We have already shown both equations to hold for k = 1. Assuming they hold for k − 1 we show
they hold for k. In fact, squaring J−| j − k〉, we obtain

N2
j−k = 〈 j − k|J+J−| j − k〉 = 〈 j − k|J−J+ + J3| j − k〉 .

Using the induction hypothesis J+| j − k〉 = N j−k+1| j − k + 1〉, we have

〈 j − k|J−J+| j − k〉 = N2
j−k+1 .

This gives
N2

j−k = N2
j−k+1 + j − k ,

which is the first of the two relations we needed to show. Now, applying J− to | j − k − 1〉 gives

J+| j − k − 1〉 =
1

N j−k
J+J−| j − k〉 =

1
N j−k

(J−J+ + [J+, J−])| j − k〉 =
1

N j−k
(J−J+ + J3)| j − k〉 .
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Using the induction hypothesis, we obtain

J−J+| j − k〉 = N j−k+1J−| j − k + 1〉 = N2
j−k+1| j − k〉 .

This gives

J+| j − k − 1〉 =
1

N j−k
(N2

j−k+1 + j − k︸           ︷︷           ︸
=N2

j−k

)| j − k〉 = N j−k| j − k〉 .

In the end, for each k, we have the two relations

J−| j − k〉 = N j−k| j − k − 1〉
J+| j − k − 1〉 = N j−k| j − k〉 ,

as well as the recursion relation
N2

j−k − N2
j−k+1 = j − k .

We can now solve the above recursion relation by adding all the rows of the following table

N2
j = j

N2
j−1 − N2

j = j − 1
N2

j−2 − N2
j−1 = j − 2

...
...

...
N2

j−k − N2
j−k+1 = j − k

N2
j−k = (k + 1) j − k(k−1)

2 = 1
2 (k + 1)(2 j − k) .

If the representation is finite dimensional, ∃l : J−| j − l〉 = 0. But this implies

〈 j − l|J+J−| j − l〉 = N2
j−k =

1
2

(l + 1)(2 j − l) = 0 =⇒ l = 2 j .

But this implies j = l/2 for some integer l.
In conclusion, finite dimensional representations of SU(2) are labelled by the highest egeinvalue
j of J3, which is either integer of half integer. The eigenvalues of J3 satisfy the relations

J3|m〉 = m|m〉 , with − j ≤ m ≤ j (dimension 2 j + 1)

J−|m〉 = Nm|m〉 , with Nm =

√
1
2

( j + m)( j − m + 1)

• According to the value of j, a Hilbert space can be split into orthogonal subspaces having
a definite value of j, with

〈m1, j1|m2, j2〉 ∼ δm1m2δ j1 j2 .
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• The operator ~J2 ≡ JaJa = J+J− + J−J+ + J2
3 = 2J−J+ + J3 + J2

3 commutes with all Ja, so
its eigenvalue J2 is the same in each representation. This eigenvalue can be computed by
applying ~J2 to the state with the highest eigenvalue of J3, as follows:

~J2| j〉 = j( j + 1)| j〉 =⇒ J2 = j( j + 1) .

An operators that commutes with all the generators of the representation is called the
“Casimir” operator. Its eigenvalues can then be used to label the representation.
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