2 Lie groups and Lie algebras

2.1 Lie groups

In physics, we are often interested in transformations that depend in a smooth way on a number of parameters $\alpha_{a}, a=1,2, \ldots, N$.
Example: rotations in 3D depend smoothy on the three Euler angles α, β, γ, i.e. $R(\alpha, \beta, \gamma)=$ $R\left(\theta_{i}\right), i=1,2,3$.
Let us call $\alpha \equiv\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, and $g(\alpha)$ a generic element of one of such groups. Then, we can set

$$
\left.g(\alpha)\right|_{\alpha=0}=e .
$$

If the group elements depend smoothly on the parameters, we can perform a Taylor expansion around $\alpha=0$, and obtain

$$
g(\alpha)=\underbrace{g(0)}_{=e}+\underbrace{\left.\frac{\partial}{\partial \alpha_{a}} g(\alpha)\right|_{\alpha=0}}_{\equiv i X_{a}} \alpha_{a}+\ldots
$$

X_{a} are N linear operators called the generators of the group
A Lie group G is a group which depends smoothly on some (real) parameters, i.e.
(LG1) its elements form a smooth (∞-differentiable) manifold
(LG2) group multiplication (in fact $g(\alpha) g^{-1}(\beta)$) is a smooth function $G \times G \rightarrow G$
A representation D of a Lie group G is a smooth map $D: G \rightarrow L(V)$, with $L(V)$ the set of linear transformations over a vector space V.
If D is a representation of al Lie group G, we denote $D(g(\alpha)) \equiv D(\alpha)$, with $D(0)=\mathbb{1}$.
Theorem 2.1 For a Lie group, the representation $D(\alpha)$ of an element $g(\alpha)$ continuously connected to the identity can be written as

$$
D(\alpha)=\exp \left[i \alpha_{a} X_{a}\right], \quad a=1,2, \ldots, N,
$$

where α_{a} are real parameters and X_{a} are linearly independent matrices. The dimension of V is called the dimension of the representation.

The linear operators X_{a} are called the generators of the representation D. They span a vector space, called the Lie algebra of the group (in the representation D). Note that, if $D(\alpha)$ is unitary, then X_{a} are hermitian operators (see Problem Sheet 2).

2.2 Lie algebra of the generators

Consider two group elements g_{1} and g_{2}. Their product is still a group element:

$$
\begin{aligned}
& g_{1}=\exp \left(i \alpha_{a}^{1} X_{a}\right) \\
& g_{2}=\exp \left(i \alpha_{a}^{2} X_{a}\right)
\end{aligned} \Longrightarrow g_{1} g_{2} \equiv g_{3}=\exp \left[i \gamma_{a} X_{a}\right]
$$

Since, in general, given two operators u, v such that their commutator $[u, v] z \equiv u v-v u \neq 0$, we have

$$
\exp [u] \exp [v]=\exp \left(u+v+\frac{1}{2}[u, v]+\ldots\right)
$$

we have

$$
g_{1} g_{2} \neq \exp \left(i\left(\alpha_{a}^{1}+\alpha_{a}^{2}\right) X_{a}\right)
$$

However, let us consider $u \equiv i \alpha_{a}^{1} X_{a}$ and $v \equiv i \alpha_{a}^{2} X_{a}$, and the product

$$
\underbrace{\exp [u]}_{=g_{1}} \underbrace{\exp [v]}_{=g_{2}} \underbrace{\exp [-u]}_{=g_{1}^{-1}} \underbrace{\exp [-v]}_{=g_{2}^{-1}}=\exp ([u, v]+\ldots)=\exp (w), \quad w \equiv i \beta_{a} X_{a} .
$$

For infinitesimal transformations, $u, v \rightarrow 0$, we can expand the exponentials, and get

$$
\left(1+i \alpha_{a}^{1} X_{a}\right)\left(1+i \alpha_{b}^{2} X_{b}\right)\left(1-i \alpha_{a}^{1} X_{a}\right)\left(1-i \alpha_{b}^{2} X_{b}\right)+\cdots=1+i \beta_{c} X_{c} .
$$

This implies

$$
-\alpha_{a}^{1} \alpha_{b}^{2}\left[X_{a}, X_{b}\right]=i \beta_{c} T_{c},
$$

which means that the commutator $\left[X_{a}, X_{b}\right]$ is a linear combination of the generators X_{a}, conventionally cast in the form

$$
\left[X_{a}, X_{b}\right]=i f_{a b c} X_{c} .
$$

The numbers $f_{a b c}$ are called the structure constants of the Lie algebra. By construction, they are independent of the representation of the Lie group. We have then proven that the generators X_{a} in any representation form a vector space that is closed under commutation
(LA1) $\left[X_{a}, X_{b}\right]=i f_{a b c} X_{c}$
From a direct calculation, one can also show that
(LA2) $\underbrace{\left[X_{a},\left[X_{b}, X_{c}\right]\right]+\left[X_{b},\left[X_{c}, X_{a}\right]\right]+\left[X_{c},\left[X_{a}, X_{b}\right]\right]}_{\text {cyclic permutations }}=0$
A vector space with a product satisfying (LA1) and (LA2) is called a Lie Algebra
From the algebraic structure of the generators we infer the following properties for $f_{a b c}$:
$($ LA1 $) \Longrightarrow f_{b a c}=-f_{a b c}($ antisymmetric in a and $b)$
$($ LA2 $) \Longrightarrow f_{a d e} f_{b c d}+f_{c d e} f_{a b d}+f_{b d e} f_{c a d}=0$
Note that the structure constans and the exponential map are enough to ontain the full structure of a Lie group, even beyond infinitesimal transformations. Also, if a Lie group admits a unitary representation, $f_{a b c}$ are real (see Problem Sheet 2)

2.3 Adjoint representation

The generators of the adjoint representation are defined by

$$
\left(T_{a}\right)_{b c}=-i f_{a b c}=i f_{b a c} .
$$

Due to the Jacobi identity for $f_{a b c}$, we have $\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c}$, which means that indeed T_{a} generate a representation of a Lie group.
The dimension of the adjoint representation is the number of generators, hence the number of real parameters needed to uniquely specify a group element.
Consider the real, symmetric matrix

$$
g_{a b} \equiv \operatorname{Tr}\left(T_{a} T_{b}\right) .
$$

This matrix can be diagonalised and recast in the form

$$
g_{a b}=k \operatorname{diag}(\underbrace{+1, \ldots,+1}_{m}, \underbrace{-1, \ldots,-1}_{N-m}) .
$$

If $m=n$, the Lie algebra is said to be compact. A Lie group generated by a compact Lie algebra is said to be a compact Lie group.
In a compact Lie algebra, $\operatorname{Tr}\left(T_{a} T_{b}\right)=\lambda \delta_{a b}$. In this case, we have
$\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c} \Longrightarrow \operatorname{Tr}\left(\left[T_{a}, T_{b}\right] T_{c}\right)=i f_{a b d} \operatorname{Tr}\left(T_{d} T_{c}\right)=i \lambda f_{a b c} \Longrightarrow f_{a b c}=-i \lambda^{-1} \operatorname{Tr}\left(\left[T_{a}, T_{b}\right] T_{c}\right)$.
This in turn implies that, for compact Lie algebras, $f_{a b c}$ is totally antisymmetric. In fact

$$
\begin{aligned}
\operatorname{Tr}\left(\left[T_{a}, T_{b}\right] T_{c}\right) & =\operatorname{Tr}\left(T_{a} T_{b} T_{c}\right)-\operatorname{Tr}\left(T_{b} T_{a} T_{c}\right) \\
& =\operatorname{Tr}\left(T_{b} T_{c} T_{a}\right)-\operatorname{Tr}\left(T_{C} T_{b} T_{a}\right)=\operatorname{Tr}\left(\left[T_{b}, T_{c}\right] T_{a}\right)
\end{aligned}
$$

This implies $f_{a b c}=f_{b c a} \Longrightarrow f_{a b c}$ is antisymmetric also in a, b.
Note that, if $f_{a b c}$ are real, then the adjoint representation is a real representation. Therefore, if it is unitary, is also orthogonal.

2.4 Examples of Lie groups and their algebras

General linear group $\mathbf{G L}(\mathbf{n}, \mathbb{K})$. This is the group of invertible linear transformations on \mathbb{K}^{n}, with $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. These are all $n \times n$ matrices with entries in \mathbb{K} with determinant different from zero.

$$
\begin{array}{llr}
\text { real parameters: } & n^{2} & G L(n, \mathbb{R}) \\
& 2 n^{2} & G L(n, \mathbb{C})
\end{array}
$$

Dilatations. $\quad x \mapsto \lambda x$, with $x \in \mathbb{K}^{n}, \lambda \in \mathbb{K}$

parameters:	1	$G L(1, \mathbb{R})$
	2	$G L(1, \mathbb{C})$

Dilatations form a subgroup of $G L(n, \mathbb{K})$.

Special linear group $\operatorname{SL}(\mathbf{n}, \mathbb{K})$. These are all $n \times n$ matrices with entries in \mathbb{K} with determinant equal to one. By construction $S L(n, \mathbb{K}) \subset G L(n, \mathbb{K})$.

$$
\begin{array}{ll}
\text { parameters: } & \underbrace{n^{2}}_{\text {real entries }}-\underbrace{1}_{\text {real entries }} \quad \underbrace{2 n^{2}}_{\operatorname{det} M=1} \quad S L(n, \mathbb{R}) \\
& =1+i \cdot 0
\end{array} \quad S L(n, \mathbb{C})
$$

Orthogonal groups. Let M be an orthogonal transformation for a scalar product $g: \mathbb{R}^{n} \times$ $\mathbb{R}^{n} \rightarrow \mathbb{R}$. Let us fix an orthonormal basis $\left\{e_{i}\right\}_{i=1, \ldots, n}$ such that the matrix $g_{i j}=g\left(e_{i}, e_{j}\right)$ is $g=$ $\operatorname{diag}(\underbrace{+1, \ldots,+1}_{s}, \underbrace{-1, \ldots,-1}_{n-s})$. The orthogonal group on such space is a Lie group denoted by $O(s, n-s)$. We can associate to M the matrix $M_{i j}=g\left(e_{i}, M e_{j}\right)$, that has the property $M^{T} g M=g$. This fixes all the elements on the diagonal and above the diagonal of M, thus giving $n(n+1) / 2$ constraints. Therefore

$$
\text { parameters: } \underbrace{n^{2}}_{\text {real entries }}-\underbrace{\frac{n(n+1)}{2}}_{M^{T} g M=g}=\frac{n(n-1)}{2} \text {. }
$$

Examples:

$O(n)$: group of isometries in n dimensions ($M^{T} M=\mathbb{1}$)
$O(3,1)$: Lorentz group
Special orthogonal groups. Note that $M^{T} g M=g \Longrightarrow(\operatorname{det} M)^{2}=1$. This implies $\operatorname{det} M=$ ± 1, hence orthogonal groups are divided into two connected components according to the value of det M. The component that contains the identity has $\operatorname{det} M=1$, and is called special orthogonal group $S O(s, n-s)$.

$$
\text { parameters: } \frac{n(n-1)}{2} .
$$

Example: $S O(n)$ is the group of rotations in n dimensions. Note that in three dimensions, $S O(3)$ has $3 \times 2 / 2=3$ parameters, which are in fact the three Euler's angles.

Unitary groups. Consider a unitary operator M with respect to a product $g: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$. The groups of unitary operators in n dimensions is denoted by $U(n)$. Recall that, if we fix an orthonormal basis $\left\{e_{i}\right\}_{i=1, \ldots, n}$ such that $g\left(e_{i}, e_{j}\right)=\delta_{i j}$, and we associate to M a matrix $M_{i j}=$ $g\left(e_{i}, M e_{j}\right)$, we have $M^{\dagger} M=\mathbb{1}$. This condition gives n^{2} real conditions (see Problem Sheet 2).

$$
\text { parameters: } \underbrace{2 n^{2}}_{\text {real entries }}-\underbrace{n^{2}}_{M^{\dagger} M=1}=n^{2} \text {. }
$$

Also,

$$
M^{\dagger} M=\mathbb{1} \Longrightarrow|\operatorname{det} M|=1 \Longrightarrow \operatorname{det} M=e^{i \phi} .
$$

The operators with $\operatorname{det} M=1$ form the special unitary $\operatorname{group} \operatorname{SU}(n)$.
parameters:
$\underbrace{n^{2}}_{\text {parameters of } U(n)}-\underbrace{1}_{\operatorname{det} M=1}$

2.5 The group $\mathrm{SU}(\mathbf{2})$

The group $S U(2)$ is made up of 2×2 complex matrices with unit determinant.

Fundamental representation. Consider the Pauli matrices $\sigma_{a}, a=1,2,3$:

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

From them construct $\tau_{a} \equiv \sigma_{a} / 2$. The matrix

$$
U(\vec{\theta})=\exp \left[i \theta_{a} \tau_{a}\right]=\cos (\theta / 2)+i \sin (\theta / 2) \hat{\theta}_{a} \sigma_{a}, \quad \theta \equiv|\vec{\theta}|, \quad \hat{\theta}=\vec{\theta} / \theta .
$$

is an element of $S U(2)$. In fact, since τ_{a} are hermitian, U is unitary. Also, since τ_{a} are traceless

$$
\operatorname{det} U=\operatorname{det}\left(\exp \left[i \theta_{a} \tau_{a}\right]\right)=\exp \left[\operatorname{Tr}\left(i \theta_{a} \tau_{a}\right)\right]=1 .
$$

So the τ_{a} are the generators of the representation that defines the group, which is called the fundamental representation. The Lie algebra of the group can be obtained from an explicit calculation:

$$
\left[\tau_{a}, \tau_{b}\right]=i \epsilon_{a b c} \tau_{c}, \quad a, b, c \in\{1,2,3\}
$$

where $\epsilon_{a b c}$ is the Levi-Civita symbol, defined by

$$
\epsilon_{a b c}=\left\{\begin{array}{lll}
+1 & \text { cyclic permuations } & \epsilon_{123}=\epsilon_{312}=\epsilon_{231}=+1 \\
-1 & \text { anti-cyclic permutations } & \epsilon_{213}=\epsilon_{321}=\epsilon_{132}=-1
\end{array}\right.
$$

Adjoint representation. The generators are $\left(T_{a}\right)_{b c}=-i \epsilon_{a b c}$:

$$
T_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \quad T_{2}=\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right), \quad T_{3}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Since the adjoint representation is real, $\exp \left[i \theta_{a} T_{a}\right]$ is not only a unitary matrix, but it is also an orthogonal matrix with unit determinant, so it is a member of $S O(3)$. Therefore, the adjoint representation of $S U(2)$ is the fundamental representation of $S O(3)$. This is the group of rotations in three dimensions, parameterised in terms of the Euler's angles as

$$
\Omega(\alpha, \beta, \gamma)=\exp \left[i \alpha T_{3}\right] \exp \left[i \beta T_{2}\right] \exp \left[i \gamma T_{3}\right]
$$

Once we have the adjoint representation, we compute

$$
\operatorname{Tr}\left(T_{a} T_{b}\right)=2 \delta_{a b} .
$$

Therefore, the Lie algebra of $S U(2)$ is compact.

Relation between $S U(2)$ and $S O(3)$. Since the Lie algebra of the adjoint representation of $S U(2)$ is the Lie algebra of $S O(3)$, we can establish a one-to-one correspondence (isomorphism)

$$
\text { Lie algebra of } S U(2) \approx \text { Lie algebra of } S O(3) \text {. }
$$

Is there also an isomorphism between $S U(2)$ and $S O(3)$? The answer is no. Heuristically, if we interpret θ as a rotation angle, for a rotation of 2π around an axis, say the z-axis, we have

$$
\exp \left[i(2 \pi) T_{3}\right]=\mathbb{1}, \quad \exp \left[i(2 \pi) \tau_{3}\right]=-\mathbb{1}
$$

so not all representations of $S U(2)$ are also representations of $S O$ (3). More precisely, consider $\vec{v} \in \mathbb{R}^{3}=\left(v_{1}, v_{2}, v_{3}\right)$, and construct the 2×2 matrix $v_{a} \sigma_{a}$. Then, $\forall U \in S U(2)$, we have (see Problem Sheet 2)

$$
U\left(v_{a} \sigma_{a}\right) U^{-1}=[\Omega \vec{v}]_{a} \sigma_{a},
$$

with $\Omega \in S O$ (3). Note that this is not a one-to-one correspondence, because if $U \in S U(2)$ corresponds to $\Omega \in S O(3)$, so does $-U$. In mathematical terms, we say that $S U(2)$ is the double cover of $\mathrm{SO}(3)$.

2.6 Finite-dimensional representations of $\mathbf{S U}(2)$

We now want to characterise all the finite-dimensional unitary representations of $S U(2)$. We consider then the generators J_{a} of a finite-dimensional representation. They satisfy of course the abstract $S U(2)$ algebra $\left[J_{a}, J_{b}\right]=i \epsilon_{a b c} J_{c}$. Each operator J_{a} is hermitian, so we can diagonalise the operator J_{3}.
We then define "raising" and "lowering" operators as follows

$$
J_{ \pm}=\frac{1}{\sqrt{2}}\left(J_{1}+i J_{2}\right) \Longrightarrow\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm},\left[J_{+}, J_{-}\right]=J_{3}, J_{-}=\left(J_{+}\right)^{\dagger}
$$

Now, if $J_{3}|m\rangle=m|m\rangle$, we have

$$
J_{3} J_{ \pm}|m\rangle=\left[J_{3}, J_{ \pm}\right]|m\rangle+J_{ \pm} J_{3}|m\rangle=(m \pm 1) J_{ \pm}|m\rangle .
$$

Therfore, $J_{ \pm}|m\rangle \propto|m \pm 1\rangle$.
We consider the state $|j\rangle$ corresponding to the highest eigenvalue j of J_{3}. By construction $J_{+}|j\rangle=$ 0 . Applying J_{+}to this state we obtain

$$
J_{-}|j\rangle=N_{j}|j-1\rangle
$$

Squaring the above we can compute the normalisation factor N_{j}, as follows:

$$
\langle j| J_{+} J_{-}|j\rangle=\langle j|\left[J_{+}, J_{-}\right]|j\rangle=\langle j| J_{3}|j\rangle=j=N_{j}^{2} \Longrightarrow N_{j}=\sqrt{j}
$$

This allows us to show that

$$
J_{+}|j-1\rangle=N_{j}|j\rangle
$$

as follows:

$$
J_{+}|j-1\rangle=\frac{1}{N_{j}} J_{+} J_{-}|j\rangle=\frac{1}{N_{j}}\left[J_{+}, J_{-}\right]|j\rangle=\frac{1}{N_{j}} J_{3}|j\rangle=\frac{j}{N_{j}}|j\rangle=N_{j}|j\rangle
$$

Applying J_{-}to $|j-1\rangle$ gives

$$
J_{-}|j-1\rangle=N_{j-1}|j-2\rangle,
$$

with a coefficient N_{j-1} that can be determined by squaring the above equation, as follows:

$$
N_{j-1}^{2}=\langle j-1| J_{+} J_{-}|j-1\rangle=\langle j-1| J_{-} J_{+}+\left[J_{+}, J_{-}\right]|j-1\rangle=N_{j}^{2}+\langle j-1| J_{3}|j-1\rangle=N_{j}^{2}+j-1 .
$$

This gives the relation

$$
N_{j-1}^{2}-N_{j}^{2}=j-1 .
$$

Also, if we apply J_{+}to $|j-2\rangle$ we obtain

$$
\begin{aligned}
J_{+}|j-2\rangle & =\frac{1}{N_{j-1}} J_{+} J_{-}|j-1\rangle=\frac{1}{N_{j-1}}\left(J_{-} J_{+}+\left[J_{+}, J_{-}\right]\right)|j-1\rangle=\frac{1}{N_{j-1}}\left(J_{-} N_{j}|j\rangle+J_{3}|j-1\rangle\right) \\
& =\frac{1}{N_{j-1}}(\underbrace{N_{j}^{2}+j-1}_{=N_{j-1}^{2}})|j-1\rangle=N_{j-1}|j-1\rangle .
\end{aligned}
$$

We now prove by induction that, for every non-negative integer k, once we define

$$
J_{-}|j-k\rangle=N_{j-k}|j-k-1\rangle,
$$

we have

$$
N_{j-k}^{2}-N_{j-k+1}^{2}=j-k,
$$

and

$$
J_{+}|j-k-1\rangle=N_{j-k}|j-k\rangle .
$$

We have already shown both equations to hold for $k=1$. Assuming they hold for $k-1$ we show they hold for k. In fact, squaring $J_{-}|j-k\rangle$, we obtain

$$
N_{j-k}^{2}=\langle j-k| J_{+} J_{-}|j-k\rangle=\langle j-k| J_{-} J_{+}+J_{3}|j-k\rangle .
$$

Using the induction hypothesis $J_{+}|j-k\rangle=N_{j-k+1}|j-k+1\rangle$, we have

$$
\langle j-k| J_{-} J_{+}|j-k\rangle=N_{j-k+1}^{2} .
$$

This gives

$$
N_{j-k}^{2}=N_{j-k+1}^{2}+j-k,
$$

which is the first of the two relations we needed to show. Now, applying J_{-}to $|j-k-1\rangle$ gives

$$
J_{+}|j-k-1\rangle=\frac{1}{N_{j-k}} J_{+} J_{-}|j-k\rangle=\frac{1}{N_{j-k}}\left(J_{-} J_{+}+\left[J_{+}, J_{-}\right]\right)|j-k\rangle=\frac{1}{N_{j-k}}\left(J_{-} J_{+}+J_{3}\right)|j-k\rangle .
$$

Using the induction hypothesis, we obtain

$$
J_{-} J_{+}|j-k\rangle=N_{j-k+1} J_{-}|j-k+1\rangle=N_{j-k+1}^{2}|j-k\rangle .
$$

This gives

$$
J_{+}|j-k-1\rangle=\frac{1}{N_{j-k}}(\underbrace{N_{j-k+1}^{2}+j-k}_{=N_{j-k}^{2}})|j-k\rangle=N_{j-k}|j-k\rangle .
$$

In the end, for each k, we have the two relations

$$
\begin{aligned}
& J_{-}|j-k\rangle=N_{j-k}|j-k-1\rangle \\
& J_{+}|j-k-1\rangle=N_{j-k}|j-k\rangle,
\end{aligned}
$$

as well as the recursion relation

$$
N_{j-k}^{2}-N_{j-k+1}^{2}=j-k .
$$

We can now solve the above recursion relation by adding all the rows of the following table

$$
\begin{array}{ccc}
N_{j}^{2} & = & j \\
N_{j-1}^{2}-N_{j}^{2} & = & j-1 \\
N_{j-2}^{2}-N_{j-1}^{2} & = & j-2 \\
\vdots & \vdots & \\
N_{j-k}^{2}-N_{j-k+1}^{2} & = & \vdots \\
& &
\end{array}
$$

$$
N_{j-k}^{2} \quad=(k+1) j-\frac{k(k-1)}{2}=\frac{1}{2}(k+1)(2 j-k) .
$$

If the representation is finite dimensional, $\exists l: J_{-}|j-l\rangle=0$. But this implies

$$
\langle j-l| J_{+} J_{-}|j-l\rangle=N_{j-k}^{2}=\frac{1}{2}(l+1)(2 j-l)=0 \Longrightarrow l=2 j .
$$

But this implies $j=l / 2$ for some integer l.
In conclusion, finite dimensional representations of $S U(2)$ are labelled by the highest egeinvalue j of J_{3}, which is either integer of half integer. The eigenvalues of J_{3} satisfy the relations

$$
\begin{aligned}
& J_{3}|m\rangle=m|m\rangle, \quad \text { with }-j \leq m \leq j \quad(\text { dimension } 2 j+1) \\
& J_{-}|m\rangle=N_{m}|m\rangle, \quad \text { with } N_{m}=\sqrt{\frac{1}{2}(j+m)(j-m+1)}
\end{aligned}
$$

- According to the value of j, a Hilbert space can be split into orthogonal subspaces having a definite value of j, with

$$
\left\langle m_{1}, j_{1} \mid m_{2}, j_{2}\right\rangle \sim \delta_{m_{1} m_{2}} \delta_{j_{1} j_{2}} .
$$

- The operator $\overrightarrow{J^{2}} \equiv J_{a} J_{a}=J_{+} J_{-}+J_{-} J_{+}+J_{3}^{2}=2 J_{-} J_{+}+J_{3}+J_{3}^{2}$ commutes with all J_{a}, so its eigenvalue J^{2} is the same in each representation. This eigenvalue can be computed by applying \vec{J}^{2} to the state with the highest eigenvalue of J_{3}, as follows:

$$
\vec{J}^{2}|j\rangle=j(j+1)|j\rangle \Longrightarrow J^{2}=j(j+1) .
$$

An operators that commutes with all the generators of the representation is called the "Casimir" operator. Its eigenvalues can then be used to label the representation.

